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Abstract. A set system F is t-intersecting, if the size of the intersection of every pair of its
elements has size at least t. A set system F is k-Sperner, if it does not contain a chain of
length k + 1.

Our main result is the following: Suppose that k and t are fixed positive integers, where
n+t is even and n is large enough. If F ⊆ 2[n] is a t-intersecting k-Sperner family, then |F|
has size at most the size of the sum of k layers, of sizes (n+ t)/2, . . . , (n+ t)/2 + k − 1.
This bound is best possible. The case when n+ t is odd remains open.
Keywords. Extremal set theory, Sperner families, intersection theorems
Mathematics Subject Classifications. 05D05

1. Introduction

1.1. Definitions and Notation

For a positive integer n, we write [n] := {1, 2, . . . , n} and 2[n] for the power set of [n]. For a
set S, we denote by

(
S
i

)
the family of all i element subsets of S.

For a family of sets F ⊆ 2[n], we define Fi := {F ∈ F : |F | = i} and fi := |Fi|. We use
∆i and ∇i to denote the i-shadow and i-shade of F , respectively, so that

∆iF := {A : |A| = i, A ⊂ F for some F ∈ F}
and ∇iF := {A : |A| = i, A ⊃ F for some F ∈ F}.

∗Partially supported by NSF grants DMS-1764123 and RTG DMS-1937241, the Arnold O. Beckman Research
Award (UIUC Campus Research Board RB 18132), the Langan Scholar Fund (UIUC), and the Simons Fellowship.

†Partially supported by RTG DMS-1937241.
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If the subscript i is unspecified, then assuming F is r-uniform, ∆F = ∆r−1F and simi-
larly ∇F = ∇r+1F .

Definition 1.1. [k-Sperner family]
A (k + 1)-chain is a collection of k + 1 sets A0, A1, . . . , Ak such that A0 ⊂ A1 ⊂ . . . ⊂ Ak. A
family of sets F ⊆ 2[n] is a k-Sperner family if there is no (k + 1)-chain in F . If k = 1, then F
is simply a Sperner family or an antichain.

Definition 1.2. [t-intersecting family]
A family of setsF ⊆ 2[n] is t-intersecting if for every pair of setsA,B ∈ F , we have |A∩B| ⩾ t.
If t = 1, then F is intersecting.

1.2. History

The maximum size of an antichain in 2[n] was determined by Sperner [Spe28].

Theorem 1.3 (Sperner). Let F ⊆ 2[n] be an antichain. Then,

|F| ⩽
(

n

⌊n
2
⌋

)
.

Furthermore, equality holds only if F is one of the largest layers in the Boolean lattice 2[n].

Sperner’s theorem was extended to k-Sperner families by Erdős [Erd45].

Theorem 1.4 (Erdős). The maximum-size k-Sperner family F ⊆ 2[n] is the union of the largest
k layers in the Boolean lattice 2[n].

A different extension of Sperner’s theorem was given by Milner [Mil68]. Milner additionally
required the family F to be t-intersecting.

Theorem 1.5 (Milner). If F ⊆ 2[n] is a t-intersecting antichain, then

|F| ⩽
(

n

⌊n+t+1
2

⌋

)
.

In a different direction, Frankl [Fra90] determined the maximum size of an intersecting k-
Sperner family. Different proofs were given by Gerbner [Ger13] and by Gerbner, Methuku and
Tompkins [GMT17].

Theorem 1.6 (Frankl). Let F ⊆ 2[n] be an intersecting, k-Sperner family. Then,

|F| ⩽


∑n+1

2
+k−1

i=n+1
2

(
n
i

)
, if n is odd,(

n−1
n
2
−1

)
+
∑n

2
+k−1

i=n
2
+1

(
n
i

)
+
(
n−1
n
2
+k

)
, if n is even.

Furthermore, if n is odd, equality holds only if

F =

(
[n]

⌊n
2
⌋+ 1

)
∪
(

[n]

⌊n
2
⌋+ 2

)
∪ . . . ∪

(
[n]

⌊n
2
⌋+ k

)
,
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while if n is even and k > 1, equality holds only if for some x ∈ [n],

F =

{
F ∈

(
[n]
n
2

)
: x ∈ F

}
∪
(

[n]
n
2
+ 1

)
∪ . . . ∪

(
[n]

n
2
+ k − 1

)
∪
{
F ∈

(
[n]

n
2
+ k

)
: x /∈ F

}
.

A common generalization of the theorems of Milner and Frankl would be to determine the
maximum size of a t-intersecting, k-Sperner family.

Frankl [Fra21] proposed conjectures on the maximum size of a t-intersecting k-Sperner fam-
ily F ⊂ 2[n] and made some progress towards proving these conjectures. The conjectured ex-
tremal family depends on the parity of n+ t.

In the case when n+ t is even, the conjectured maximum size of a t-intersecting, k-Sperner
family is very easy to describe.

Conjecture 1.7 (Frankl). If n + t is even, n > t, and F ⊆ 2[n] is a t-intersecting, k-Sperner
family, then

|F| ⩽
k−1∑
i=0

(
n

n+t
2

+ i

)
.

Conjecture 1.7 is clearly tight if true, as evidenced by the family
⋃k−1

i=0

( [n]
n+t
2

+i

)
.

Let us mention that Frankl proved Conjecture 1.7 when t ⩾ n−O(
√
n). As the main result

of this paper, we settle Conjecture 1.7 if t and k are fixed and n is sufficiently large.

Theorem 1.8. Let t and k be positive integers. There exists n0 = n0(t, k) such that if n ⩾ n0

and n+ t is even, then the following holds: if F ⊆ 2[n] is a t-intersecting k-Sperner family, then

|F| ⩽
(
[n]
n+t
2

)
+ . . .+

(
[n]

n+t
2

+ k − 1

)
.

Furthermore equality holds if and only if F =
⋃k−1

i=0

( [n]
n+t
2

+i

)
.

2. Proof of Theorem 1.8

2.1. Main ideas

The proof has two parts. In the first part we compress F , a t-intersecting, k-Sperner family, into
the layers of the Boolean lattice containing the sets of sizes n+t

2
−k+1, . . . , n+t

2
+2k−2. This part

of the proof also works when n + t is odd. In the second part, we use Katona’s circle method,
i.e., for every cyclic permutation σ of [n] we define Fσ to be the collection of sets from F ,
whose elements are consecutive on σ, the so-called intervals. For every σ, we show that for
an appropriate weight function w, the total weight w(Fσ) is maximized when Fσ contains all
intervals of size r for every n+t

2
⩽ r ⩽ n+t

2
+ k− 1. Then we reduce the general problem to this

weighted version of the problem on the cycle.
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2.2. Compression Argument

We recall the well-known Katona shadow t-intersection theorem.

Theorem 2.1 (Katona shadow t-intersection theorem [Kat64]). Let F be an r-uniform, t-inter-
secting family. Then, for r − t ⩽ ℓ ⩽ r,

|∆ℓ(F)| ⩾
(
2r−t
ℓ

)(
2r−t
r

) |F|.

One can conclude the following lemma from the above theorem. We include its proof for
sake of completeness.

Lemma 2.2 ([Mil68]). For i ⩽ ⌊n+t−1
2

⌋, if F ⊆ 2[n] is t-intersecting, then we have

|∇i+1(Fi)| ⩾ |Fi|.

Proof. Define the family of complements FC
i := {FC : F ∈ Fi}. Since Fi is t-intersecting,

FC
i is (n + t − 2i)-intersecting. Since i ⩽ ⌊n+t−1

2
⌋, we have n + t − 2i ⩾ 1, so Theorem 2.1

can be applied to FC
i with r := n− i, t := n+ t− 2i, and ℓ := n− i− 1, yielding

|∆n−i−1(FC
i )| ⩾

(
2(n−i)−(n+t−2i)

n−i−1

)(
2(n−i)−(n+t−2i)

n−i

) |FC
i | =

(
n−t

n−i−1

)(
n−t
n−i

) |FC
i | =

n− i

i− t+ 1
|Fi| ⩾ |Fi|.

Since |∇i+1(Fi)| = |∆n−i−1(FC
i )|, the desired result follows.

The next lemma shows that we may restrict our attention to families of sets of size at
least n+t

2
− (k − 1).

Lemma 2.3. Let F ⊆ 2[n] be a t-intersecting and k-Sperner family, where n + t is even. Then
there exists a t-intersecting k-Sperner family G ⊆ 2[n] with |G| ⩾ |F| and min{|G| : G ∈ G} ⩾
n+t
2

− (k − 1).

Proof. Recall that fi := |Fi|. Assume that there is i < n+t
2
−(k−1) such that fi > 0 and fj = 0

for every j < i. We show that there is a t-intersecting k-Sperner family F ′ with |F ′| ⩾ |F|
and |F ′| ⩾ i + 1 for every set F ′ ∈ F ′. We show the existence of such an F ′ by using a
compression operation.

We define a series of auxiliary families Hj for j ⩾ i as follows: Hi := Fi and Hj :=
∇j(Hj−1) ∩ Fj for j > i. Note Hi+k = ∅, as otherwise there would be a (k + 1)-chain in F .
Let u be the smallest integer such that i+1 ⩽ u ⩽ i+k andHu = ∅. Then we formally define the
familyF ′ := (F\Fi)∪∇i+1(Hi)∪· · ·∪∇u(Hu−1). Conceptually, the compression operation is
as follows: we compress the sets in Hi onto ∇i+1(Hi); that is, we define an intermediate family
Gi+1 = (F \ Hi) ∪ ∇i+1(Hi). If u = i + 1, we stop and define F ′ := Gi+1. Otherwise, we
think of the sets in Hi+1 as appearing with multiplicity two in the family Gi+1. Now, define a
new intermediate family Gi+2 := (Gi+1 \ Hi+1) ∪ ∇i+2(Hi+1). Conceptually, compress one of
the copies of each set in Hi+1 onto its (i + 2)-shade ∇i+2(Hi+1), and leave the other copy on
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the (i+1)-layer, so that Hi+1 ⊂ Gi+2. We repeat this compression process for every j < u. The
family obtained after performing this series of compressions is F ′.

In each step we added elements to the sets, hence F ′ will be t-intersecting. By Lemma 2.2,
we have |∇j+1(Hj)| ⩾ |Hj| for j ⩽ n+t

2
− 1, so |F ′| ⩾ |F|. It remains to be shown that F ′

contains no (k + 1)-chains.
Let A0 ⊂ A1 ⊂ . . . ⊂ Ak be a (k + 1)-chain in F ′ with |A0| = j, where i+ 1 ⩽ j ⩽ i+ k.

Note that |A1| ⩾ j + 1, . . . , |Ai+k−j| ⩾ j + (i+ k − j) = i+ k, so Ai+k−j+1, . . . , Ak ∈ F .
If all of the setsA0, A1, . . . , Ai+k−j were contained inF , then the (k+1)-chainA0⊂ . . .⊂Ak

would have already been in F . Otherwise, pick the largest m such that Am /∈ F , and assume that
|Am| = ℓ, so that ℓ ⩾ j+m. By construction, there must be a chainB0⊂B1⊂ . . .⊂Bℓ−i−1⊂Am

with Br ∈ Fi+r for 0 ⩽ r ⩽ ℓ−i−1. Now the chain B0⊂B1⊂ . . .⊂Bℓ−i−1⊂Am+1⊂ . . .⊂ Ak

is contained in F , and it has size ℓ− i+k−m ⩾ j− i+k ⩾ k+1, which is a contradiction.

Remark 2.4. The bottleneck of the above proof is that we need to do the upshifting operation up
to k − 1 times, and we need the shade to be expanding, i.e., that is the reason that we require
i < n+t

2
− (k− 1). Observe that the parity of n+ t was not considered, so the same proof works

when n+ t is odd.
We will use the following simple lemma whose proof we include for completeness.

Lemma 2.5 (Sperner [Spe28]). Let F ⊆ 2[n] be a Sperner family with m := min{|F | : F ∈
F} > n

2
. Then for every ⌊n

2
⌋ ⩽ j ⩽ m, we have |∆j(F)| ⩾ |F|.

Proof. Observe that if F ⊆
(
[n]
ℓ

)
for some ℓ > n

2
, then |∆ℓ−1(F)| ⩾ |F|. This holds because if

we consider the bipartite graph B with parts F and ∆ℓ−1(F) with F ′ ∈ ∆ℓ−1(F) connected to
F ∈ F if and only if F ′ ⊂ F , then dB(F ) = ℓ for all F , while dB(F

′) ⩽ n− ℓ + 1 ⩽ ℓ. Thus
|F| · ℓ ⩽ |∆ℓ−1(F)| · (n− ℓ+ 1) and so |F| ⩽ |∆ℓ−1(F)|.

Now the lemma follows from repeated applications of this statement.

Our next lemma shows that we may restrict our attention to families of sets of size at most
n+t
2

+ 2k − 2.

Lemma 2.6. If F ⊆ 2[n] is a t-intersecting k-Sperner family with min{|F | : F ∈ F} = n+t
2

−c,
then there exists a t-intersecting k-Sperner family F ′ ⊆ 2[n] with |F| ⩽ |F ′|, and

min{|F | : F ∈ F} = min{|F ′| : F ′ ∈ F ′} and max{|F ′| : F ′ ∈ F ′} ⩽
n+ t

2
+ c+k−1.

Proof. We first partition F into F1,F2, . . . ,Fk by letting F1 consist of all minimal sets of F
and once F1, . . . ,F j are defined, then let F j+1 consist of all the minimal sets of F \ ∪j

i=1F i.
Then for every 1 ⩽ j ⩽ k, we partition F j into F j> ∪ F j⩽ with

F j> = {F ∈ F j : |F | > n+ t

2
+c+j−1} and F j⩽ = {F ∈ F j : |F | ⩽ n+ t

2
+c+j−1}.

We define F ′j := F j⩽ ∪∆n+t
2

+c+j−1(F j>).
Sets in F j ∩ F ′j have size at most n+t

2
+ c + j − 1, sets F in F ′j \ F j have size exactly

n+t
2

+ c+ j − 1 and there exists F ∗ ∈ F j \ F ′j with F ⊊ F ∗. This implies F ′j is an antichain
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for all j = 1, 2, . . . , k. By Lemma 2.5, we have |F j| ⩽ |F ′j| for all 1 ⩽ j ⩽ k. Also, if
1 ⩽ i < j ⩽ k, then F ′i ∩ F ′j = ∅ since all new sets in F ′j \ F j are of size n+t

2
+ c + j − 1,

while all sets in F ′i have size at most n+t
2

+c+ i−1 < n+t
2

+c+j−1. Thus for F ′ := ∪k
j=1F ′j ,

we have |F| ⩽ |F ′|. Observe that F ′ is k-Sperner as it is the union of k antichains. Finally, F ′

is t-intersecting as all sets in F ′ \ F have size at least n+t
2

+ c and all sets in F ∩ F ′ have size
at least n+t

2
− c.

Observe that starting with an arbitrary t-intersecting k-Sperner family F , after applying
Lemma 2.3 we obtain another one F ′ with |F| ⩽ |F ′| and min{|F | : F ∈ F} ⩾ n+t

2
− k + 1.

Then applying Lemma 2.6 with c = n+t
2

− min{|F | : F ∈ F ′}, we obtain a t-intersecting
k-Sperner family F ′′ with |F| ⩽ |F ′| ⩽ |F ′′| and min{|F | : F ∈ F ′′} = n+t

2
− m for some

0 ⩽ m ⩽ k− 1 and max{|F | : F ∈ F ′′} ⩽ n+t
2

+ k− 1+m. Therefore, in the next subsection,
in the rest of the proof of Theorem 1.8, we will assume that F has this property.

2.3. Proof of Theorem 1.8

Let σ be a cyclic permutation of [n] and Fσ be the subfamily of those sets in F that form an
interval in σ. Note that there are (n − 1)! choices for σ. For a set G, let w(G) =

(
n
|G|

)
and

w(G) =
∑

G∈G w(G). Remember m is defined as n+t
2

− min{|F | : F ∈ F}. By the above
discussions, we have 0 ⩽ m ⩽ k − 1. If m = 0 then F has the required structure, hence we
assume m > 0. The aim of this subsection is to prove the following lemma.

Lemma 2.7. Suppose n + t is even with t ⩽ n and n is large enough. For every cyclic per-
mutation σ and t-intersecting k-Sperner family F ⊆

⋃n+t
2

+k−1+m

i=n+t
2

−m

(
[n]
i

)
, we have w(Fσ) ⩽

n
∑k−1

i=0

(
n

n+t
2

+i

)
and equality holds if and only if Fσ consists of all intervals of size at least n+t

2

and at most n+t
2

+ k − 1.

Before continuing, let us show how Lemma 2.7 implies Theorem 1.8.

Proof of Theorem 1.8 using Lemma 2.7. As mentioned in the last paragraph of the previous sub-
section, by Lemma 2.3 and Lemma 2.6, we can assume that F ⊆

⋃n+t
2

+k−1+m

i=n+t
2

−m

(
[n]
i

)
holds. Then

using Lemma 2.7 we have:

∑
σ

∑
F∈Fσ

w(F ) ⩽ (n− 1)! · n
k−1∑
i=0

(
n

n+t
2

+ i

)
= n! ·

k−1∑
i=0

(
n

n+t
2

+ i

)
.

From the other side, ∑
σ

∑
F∈Fσ

w(F ) =
∑
F∈F

|F |!(n− |F |)!
(

n

|F |

)
= n!|F|,

which implies the required upper bound on |F|.
The uniqueness of the extremal family follows from two observations. First, the proofs of

Lemma 2.3 and Lemma 2.6 imply that if a t-intersecting k-Sperner family F contains a set
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F with |F | /∈ [n+t
2
, n+t

2
+ k − 1], then so does the output F ′′ of the compression argument.

Then, for any F ⊆
⋃k−1+m

i=−m

( [n]
n+t
2

+i

)
that contains F with |F | /∈ [n+t

2
, n+t

2
+ k − 1], there exists

a cyclic permutation σ with F ∈ Fσ, and so the uniqueness part of Lemma 2.7 implies that
w(Fσ) < n

∑k−1
i=0

(
n

n+t
2

+i

)
, and thus the inequality above is strict, and so is the bound on |F|.

In order to prove Lemma 2.7, we need some preparation. Let us fix a cyclic permutation σ
of [n]. We partition all intervals, i.e., sets of consecutive elements of [n] with respect to σ, into n
chains: the h-th chain Ch consists of {σ(h)}, {σ(h), σ(h+1)}, . . . , [n] \ {σ(h− 1)} and we let
Cσ = {Ch : h ∈ [n]}. A family G of intervals is σ-k-Sperner t-intersecting if it is t-intersecting
and for every C ∈ Cσ we have |G ∩ C| ⩽ k. Such a family is consecutive if for every C ∈ Cσ
the chain C ∩ G consists of consecutive intervals, and full consecutive if further |C ∩ G| = k
holds for every C ∈ Cσ. Clearly, if G is a k-Sperner t-intersecting family of intervals of [n] with
respect to σ, then G is σ-k-Sperner t-intersecting, and if F ⊆ 2[n] is t-intersecting k-Sperner,
then Fσ is σ-k-Sperner t-intersecting for any σ. As the t-intersection property depends only
on the smallest intervals Gh ∈ Ch, one can replace any G ∈ G ∩ Ch by any G′ ∈ Ch \ G
with |G′| > |Gh| to obtain another σ-k-Sperner t-intersecting family. So if G′

h is the maximum
interval of Ch∩G and G is an interval from Ch\G with |Gh| < |G| < |G′

h|, then we can proceed
as follows: if |G| ⩾ n

2
, then we replace G′

h by G, while if |G| < n
2
, then we replace Gh by G

to obtain a family G ′. By our choice, we have w(G) < w(G ′). As the difference of the sizes of
maximum and minimum intervals of Ch in the family strictly decreased, after a finite number of
replacements, we obtain a consecutive σ-k-Sperner t-intersecting family. Note that during this
process, we do not care if we created a (k + 1)-chain which is not in one of the Ch.

Finally, we can extend any consecutive σ-k-Sperner t-intersecting family to a full one. More
generally, the following holds.

Observation 2.8. If G is a k-Sperner t-intersecting family of intervals with respect to σ such
that every interval has size between n+t

2
−m and n+t

2
+ k − 1 +m for some 0 ⩽ m ⩽ k − 1,

then there exists a full consecutive σ-k-Sperner t-intersecting family G ′ with w(G) ⩽ w(G ′).

Proof. By the argument above, we can obtain a consecutive σ-k-Sperner t-intersecting fam-
ily G∗. If for a chain Ch, we have |G∗ ∩ Ch| < k, then we add the interval of Ch to G∗ that is
one larger than the maximum interval in G∗ ∩ Ch. We could only get into trouble if for some h
the smallest interval Gh of Ch ∩ G∗ is strictly larger than n+t

2
+m, but then we can add G ∈ Ch

with |G| = n+t
2

+ m to G∗ without violating the t-intersecting property as such G t-intersects
all other intervals in G∗ because of the size restrictions.

To prove Lemma 2.7, it is sufficient to show the following statement.

Lemma 2.9. Suppose n + t is even and n is large enough. Let G be a full consecutive σ-k-
Sperner t-intersecting family of intervals on a cycle of length n such that min{|G| : G ∈ G} =
n+t
2

− m and max{|G| : G ∈ G} ⩽ n+t
2

+ k − 1 + m for some 0 ⩽ m ⩽ k − 1. Then
w(G) ⩽ n

∑k−1
i=0

(
n

n+t
2

+i

)
, and equality holds if and only if G consists of all intervals of size at

least n+t
2

and at most n+t
2

+ k − 1.
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The following Fact is well-known; we include its proof for completeness. For a family G,
let ∆iv(G) denote the family of those sets in ∆(G) that form an interval on the cycle.

Fact 2.10. Let G be a family of intervals on a cycle of length n. If G consists of i-intervals for
some 2 ⩽ i, then |∆iv(G)| ⩾ |G|.

Proof. There is an injection ι from G to ∆iv(G) defined as follows: ι(G) is the interval obtained
by removing G’s clockwise rightmost element.

The next Fact is standard. We include its proof, as it is a bit technical to see it instantly.

Fact 2.11. For every fixed a < b with 0 < b there exists n0 = n0(a, b) such that if n ⩾ n0, then
we have

(
n

⌊n
2 ⌋+a

)
+
(

n

⌊n
2 ⌋+b

)
⩽

(
n

⌊n
2 ⌋+a+1

)
+
(

n

⌊n
2 ⌋+b−1

)
and equality holds if and only if b = a+1.

Proof. If a is negative, then
(

n
⌊n
2
⌋+a

)
<

(
n

⌊n
2
⌋+a+1

)
and

(
n

⌊n
2
⌋+b

)
⩾

(
n

⌊n
2
⌋+b−1

)
so the statement of

the Fact holds for all values of n.
Hence, we can assume 0 ⩽ a < b. If b = a + 1, then clearly equality holds. If b > a + 1,

then dividing by n! and multiplying by (⌊n
2
⌋+ a+ 1)! · (⌈n

2
⌉ − a)! · (⌊n

2
⌋+ b)! · (⌈n

2
⌉ − b+ 1)!,

the desired inequality is equivalent to

(⌊n
2

⌋
+ a+ 1

)
·
(⌊n

2

⌋
+ b

)
! ·
(⌈n

2

⌉
− b+ 1

)
!

+
(⌊n

2

⌋
+ a+ 1

)
! ·
(⌈n

2

⌉
− a

)
! ·
(⌈n

2

⌉
− b+ 1

)
<(⌈n

2

⌉
− a

)
·
(⌊n

2

⌋
+ b

)
! ·
(⌈n

2

⌉
− b+ 1

)
!

+
(⌊n

2

⌋
+ a+ 1

)
! ·
(⌈n

2

⌉
− a

)
! ·
(⌊n

2

⌋
+ b

)
.

Rearranging gives

(2a+ 1) ·
(⌊n

2

⌋
+ b

)
! ·
(⌈n

2

⌉
− b+ 1

)
! < (2b− 1) ·

(⌊n
2

⌋
+ a+ 1

)
! ·
(⌈n

2

⌉
− a

)
!,

which is equivalent to

2a+ 1

2b− 1
<

(⌈n
2
⌉ − a) · . . . · (⌈n

2
⌉ − b+ 2)

(⌊n
2
⌋+ b) · . . . · (⌊n

2
⌋+ a+ 2)

.

The left hand side is a fixed rational number smaller than 1, while the right hand side tends to 1
as n tends to infinity.

The next simple observation is going to be the core of our argument. For a cyclic permuta-
tion σ and an interval G, define Gt as the complement of G together with the (counterclockwise)
leftmost ⌊ t

2
⌋ and rightmost ⌈ t

2
⌉ elements of G with respect to σ. For example, if σ is 123 . . . n,

G is the interval [7, s], then G
5 is {7, 8} ∪G ∪ {s− 2, s− 1, s}.

For a family G of intervals, let Gt
= {Gt

: G ∈ G}.
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Lemma 2.12. Suppose n + t is even, σ is a cyclic permutation of [n]. If G is a full consecutive
σ-k-Sperner t-intersecting family with interval sizes between n+t

2
− m and n+t

2
+ k − 1 + m

for some 0 ⩽ m ⩽ k − 1, then for any G ∈ G no proper subinterval H of Gt belongs to G.
Moreover, if |G| = n+t

2
−m, then G

t ∈ G.

Proof. Any proper subinterval of Gt intersects G in less than t elements, thus Gt cannot contain
any interval from G.

As |G| + |Gt| = n + t, if |G| = n+t
2

−m, then G
t
t-intersects every element of G. Also, if

G
t
/∈ G, then for the chain Ch containing G

t, we have |G ∩ Ch| < k as there are k − 1 intervals
in Ch that are larger than G

t. This contradicts the full consecutive σ-k-Sperner property.

The next lemma establishes some inequalities on the number of intervals that a full consecu-
tive σ-k-Sperner t-intersecting family G satisfying the assumptions of Lemma 2.12 may contain.
For i = −m,−m+1, . . . , k+m− 1, let Gi be the family of intervals of length n+t

2
+ i in G and

let gi denote the size of Gi.

Lemma 2.13. Suppose n+t is even, m < k and n is large enough. Let G be a full consecutive σ-
k-Sperner t-intersecting family of intervals on a cycle of length n such that min{|G| : G ∈ G} =
n+t
2

−m and max{|G| : G ∈ G} ⩽ n+t
2

+ k − 1 +m. Then we have the following inequalities:

1. g−j−1 + gj ⩽ n for all 0 ⩽ j ⩽ m− 1 satisfying j < k −m.

2.
∑j

i=−(j+1) gi ⩽ (j + 1)n−
∑m

i=k−j g−i for all 0 ⩽ j ⩽ m− 1 such that j ⩾ k −m.

3.
∑k−j

i=−m gi ⩽ (k − j + 1)n−
∑m

i=j g−i for all 1 ⩽ j ⩽ m such that j < k −m.

4.
∑k−1+j−1

i=−m gi ⩽ kn−
∑−j

i=−m gi for all 1 ⩽ j ⩽ m.

Proof. To prove (1), note that Lemma 2.12 applied to G−(j+1) implies that∆(G−(j+1)
t
) is disjoint

from G. Fact 2.10 implies that |∆(G−(j+1)
t
)| ⩾ |G−(j+1)

t| = g−j−1, and since ∆(G−(j+1)
t
) is a

family of (n+t
2

+ j)-intervals, it follows that gj + g−j−1 ⩽ gj + |∆(G−(j+1)
t
)| ⩽ n.

The proofs of (2) and (3) are similar. We define families H1,H2 of missing intervals, i.e.
that are not members of G, as follows:

Hj
1 = {H /∈ G :

n+ t

2
⩽ |H| ⩽ n+ t

2
+ j, ̸ ∃G ∈ G H ⊃ G},

Hj
2 = {H /∈ G :

n+ t

2
⩽ |H| ⩽ n+ t

2
+ j, ̸ ∃G ∈ G G ⊃ H}.

Observe that by definition and by the full consecutive property, we have H1 ∩H2 = ∅.
To prove (2), we consider Hj

1 and Hj
2. First, as in the proof of (1), for any 1 ⩽ i ⩽ j + 1,

∆(G−i
t
) is disjoint from G by Lemma 2.12 and, by Fact 2.10, has size at least g−i. Note that all

these missing intervals (missing from G) are only below intervals of G, so Hj
1 ⊇

⋃j+1
i=1 ∆(G−i

t
).

On the other hand, if G ∈ G−i with k− j ⩽ i ⩽ m, then, as G is consecutive, the chain Ch ∈ Cσ
that contains G misses all intervals that are exactly k larger than |G|, i.e. of size n+t

2
+ k − i.
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Thus we obtain that Hj
2 contains at least

∑m
i=k−j g−i missing intervals each of which are only

above some intervals of G. This means that ∪j
i=0Gi, Hj

1, H
j
2 are pairwise disjoint, have sizes∑j

i=0 gi,
∑−1

−(j+1) gi, and
∑m

i=k−j g−i, and contain intervals of sizes between n+t
2

and n+t
2

+ j.
There are (j + 1)n such intervals, therefore

∑j
i=0 gi +

∑−1
−(j+1) gi +

∑m
i=k−j g−i ⩽ (j + 1)n

holds. Merging the first two terms and rearranging yields (2).
To prove (3), we consider Hk−j

1 ,Hk−j
2 . As j < k − m, this time ∪m

i=1∆(G−i
t
) belongs

to Hk−j
1 , and by Lemma 2.12 and Fact 2.10, Hk−j

1 has size at least
∑m

i=1 g−i. For any G ∈ G−i

with i ⩾ j, the intervalsG′ ofCh withG ∈ Ch and |G′|−|G| ⩾ k are missing by the consecutive
property of G. There are i− j+1 of such missing intervals. We obtain that H2 contains at least∑m

i=j g−i missing intervals. Again, ∪k−j
i=0Gi, Hk−j

1 , and Hk−j
2 are pairwise disjoint, so the sum

of their sizes is at most (k − j + 1)n. After rearrangement, this yields (3).
Finally, to see (4) observe first that as for a full consecutive σ-k-Sperner t-intersecting family,

we have |Ch ∩ G| = k for all h, we have
∑k−1+m

i=−m gi = |G| = kn. So the statement of (4) is
equivalent to the statement that the number of intervals in G of size at least n+t

2
+ k − 1 + j

is at least
∑−j

i=−m gi. Again, we apply Lemma 2.12 and observe that intervals G of G−i
t do not

strictly contain any interval of G. Therefore, if i ⩾ j, then the chain Ch containing G has at least
i− j+1 intervals from G of size at least n+t

2
+ k+ j− 1. Counting all these, G contains at least∑−j

i=−m gi intervals of size at least n+t
2

+ k + j − 1 as desired.

We are now ready to prove Lemma 2.9. As the proof involves lots of formulas, we sketch
the main idea. As mentioned in the last paragraph of the proof of Lemma 2.13, the size of a full
consecutive σ-k-Sperner t-intersecting family G is kn, so its weight w(G) =

∑
G∈G w(G) =∑

G∈G
(

n
|G|

)
=

∑k+m−1
i=−m gi

(
n

n+t
2

+i

)
is a sum of kn binomial coefficients. If gi = 0 whenever i is

negative, then we are done as w(|G|) is monotone decreasing in |G| if |G| > n
2
, and gi ⩽ n for

all i. If there exists i < 0 with gi > 0, then we plan to apply Fact 2.11 to obtain another set of
coefficients g′i such that

∑
i g

′
i = kn,

∑
i gi

(
n

n+t
2

+i

)
⩽

∑
i g

′
i

(
n

n+t
2

+i

)
, and

∑j
i=0 g

′
i ⩽ (j + 1)n

hold for all j = 0, 1, . . . , k − 1. When applying Fact 2.11, we will match g−i with gk−1+i for
all i = 1, 2, . . . ,m, therefore we will first have to make sure that g−i ⩽ gk−1+i and then we can
apply Fact 2.11.

Proof of Lemma 2.9. Note that if m = 0 then we are done, hence we assume m ⩾ 1. Let us
introduce the coefficients g′i:

• for −m ⩽ i ⩽ k − 1, let g′i = gi,

• for i = 2, 3, . . . ,m let g′k−1+i = g−i,

• let g′k =
∑k+m−1

i=k gi −
∑m

i=2 g−i.

By the definition of g′k and the fact that |G| =
∑k+m−1

i=−m gi = kn, we have
∑k+m−1

i=−m g′i = kn and∑k+m−1
i=k g′i =

∑k+m−1
i=k gi.
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Lemma 2.13 (4) states
∑k−1+j−1

i=−m gi ⩽ kn −
∑−j

i=−m gi. Plugging in kn =
∑k−1+m

i=−m gi and
rearranging yields

−j∑
i=−m

gi ⩽
k−1+m∑
i=k−1+j

gi (*)

Applying (*) with j = 1, we obtain

g′k =
k+m−1∑
i=k

g′i −
k−1+m∑
i=k+1

g′i =
k+m−1∑
i=k

gi −
−2∑

i=−m

g′i ⩾
−1∑

i=−m

gi −
−2∑

i=−m

gi = g−1. (**)

We would like to compare
∑k+m−1

i=k g′i
(

n
n+t
2

+i

)
to
∑k+m−1

i=k gi
(

n
n+t
2

+i

)
. As mentioned above, A :=∑k+m−1

i=k g′i =
∑k+m−1

i=k gi. Also, (*) and g′k−1+i = g−i for all i = 2, 3, . . . ,m imply
k−1+m∑
i=k−1+j

g′i =

−j∑
i=−m

gi ⩽
k−1+m∑
i=k−1+j

gi (⋄)

for all j = 2, 3, . . . ,m. Therefore, we can apply the following general statement that can be
easily seen by induction: a1, a2, . . . , an, b1, b2, . . . , bn and d1 ⩾ d2 ⩾ . . . ⩾ dn are all non-
negative integers with

∑n
i=j ai ⩽

∑n
i=j bi for all j = 2, 3, . . . , n and

∑n
i=1 ai =

∑n
i=1 bi. Then∑n

i=1 aidi ⩾
∑n

i=1 bidi. Plugging in n := m, ai := g′i, bi := gi, and di :=
(

n
n+t
2

+i

)
, we obtain

k+m−1∑
i=k

g′i

(
n

n+t
2

+ i

)
⩾

k+m−1∑
i=k

gi

(
n

n+t
2

+ i

)
.

Thus

w(G) =
k+m−1∑
i=−m

gi

(
n

n+t
2

+ i

)
⩽

k+m−1∑
i=−m

g′i

(
n

n+t
2

+ i

)
. (***)

Now for every 1 ⩽ j ⩽ m, we apply Fact 2.11 either 2j − 1 times if n+t
2

+ j − 1 ⩽ n+t
2

+ k− j
or k times if n+t

2
+ j − 1 > n+t

2
+ k − j to obtain

g′j

((
n

n+t
2

− j

)
+

(
n

n+t
2

+ k + j − 1

))
⩽ g′j

((
n

n+t
2

+ j − 1

)
+

(
n

n+t
2

+ k − j

))
.

(****)
Based on (****), we want to give the weights of intervals of length n+t

2
− j to “imaginary”

intervals of length n+t
2

+ j−1 and those of length n+t
2

+k+ j−1 to those of length n+t
2

+k− j.
As m ⩽ k − 1, all imaginary intervals will have length between n+t

2
and n+t

2
+ k − 1 (actually,

m ⩽ k would suffice). Recall that g′j is defined for −m ⩽ j ⩽ k + m − 1. Therefore, we
introduce

g′′j =



g′j + g′−(j+1) if 0 ⩽ j ⩽ m− 1 and n+t
2

+ j < n+t
2

+ k −m,

g′j + g′−(j+1) + g′−(k−j) if 0 ⩽ j ⩽ m− 1 and n+t
2

+ j ⩾ n+t
2

+ k −m,

g′j if j ⩾ m and n+t
2

+ j < n+t
2

+ k −m,
g′j + g′−(k−j) if j ⩾ m and n+t

2
+ j ⩾ n+t

2
+ k −m,

0 if j < 0 or j > k
g′k − g−1 if j = k.
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Observe that g′′k = g′k − g−1 ⩾ 0, see (**). Also, the values g′−j decreased to 0 = g′′−j for
j = 1, 2, . . . ,m, but according to the first two cases of the definition of g′′, the value of g′j−1

was increased by g−j (and possibly something else). Also, the values of g′k−1+j = g′−j were
erased for j = 2, 3, . . . ,m and were given to g′k−j according to the second and fourth cases of
the definition of g′′. Finally, g−1 = g′−1 from g′k was given to g′k−1 according to the fourth case
of the definition of g′′. So

∑k
i=0 g

′′
i =

∑k−1+m
i=−m g′i = kn.

Now, (****) implies that (***) continues as

w(G) =
k+m−1∑
i=−m

gi

(
n

n+t
2

+ i

)
⩽

k+m−1∑
i=−m

g′i

(
n

n+t
2

+ i

)
⩽

k+m−1∑
i=−m

g′′i

(
n

n+t
2

+ i

)
. (*****)

We claim that for any j = 0, 1, . . . , k − 1, we have
∑j

i=0 g
′′
i ⩽ (j + 1)n.

If 0 ⩽ j ⩽ m− 1 such that n+t
2

+ j < n+t
2

+ k −m, then more is true:

g′′j = g′j + g′−(j+1) = gj + g−(j+1) ⩽ n

by Lemma 2.13 (1).
If 0 ⩽ j ⩽ m− 1 such that n+t

2
+ j ⩾ n+t

2
+ k −m, then

j∑
i=0

g′′i =
k−1−m∑
i=0

g′′i +

j∑
i=k−m

g′′i

=
k−1−m∑
i=0

gi + g−(i+1) +

j∑
i=k−m

gi + g−(i+1) + g−(k−i) =

j∑
−(j+1)

gi +
m∑

i=k−j

g−i ⩽ (j + 1)n

ensured by Lemma 2.13 (2).
If m ⩽ j < k −m, then g′′j = g′j = gj ⩽ n, so the inequality

∑j
i=0 g

′′
i ⩽ (j + 1)n holds, as

it holds in the previous two cases.
Finally, let us consider the case j ⩾ max{m,⩾ k −m}. If j = k − 1, then there is nothing

to prove as
∑k−1

i=0 g
′′
i ⩽

∑k
i=0 g

′′
i = kn. If j ⩽ k− 2, then we write j = k− j∗ with 2 ⩽ j∗ ⩽ m

and obtain
k−j∗∑
i=0

g′′i =

k−j∗∑
i=−m

gi +
m∑

i=j∗

g−i ⩽ (k − j∗ + 1)n

by Lemma 2.13 (3).
To finish the proof of the lemma, observe that gi = 0 for i < 0,

∑k
i=0 g

′′
i = kn, and∑j

i=0 g
′′
i ⩽ (j + 1)n imply that (*****) can be continued as

w(G) =
k+m−1∑
i=−m

gi

(
n

n+t
2

+ i

)
⩽

k+m−1∑
i=−m

g′i

(
n

n+t
2

+ i

)
⩽

k+m−1∑
i=−m

g′′i

(
n

n+t
2

+ i

)
⩽ n

k−1∑
i=0

(
n

n+t
2

+ i

)
,

as claimed.
The uniqueness of the extremal family follows from the strictness of Fact 2.11 if it is applied

with b ̸= a + 1 which is the case in our proof. So G can be extremal only if Fact 2.11 is never
applied and that happens only if G does not contain intervals of size smaller than n+t

2
.
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3. Concluding remarks

The conjectured extremal families do not have such a simple structure when n + t is odd. We
construct two plausible candidates for the maximum size t-intersecting, k-Sperner family:

A(t, k) =

{
F ∈

(
[n]

n+t−1
2

)
: n /∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ⩽ |A| ⩽ n+ t− 1

2
+ (k − 1)

}
.

B(t, k) =
{
F ∈

(
[n]

n+t−1
2

)
: [1, t] ∈ F

}
∪
{
A :

n+ t− 1

2
+ 1 ⩽ |A| ⩽ n+ t− 1

2
+ (k − 1)

}
∪
({

B : |B| = n+ t− 1

2
+ k

}
\
{
B : |B| = n+ t− 1

2
+ k, [1, t] ∈ B

})
.

It is not hard to show that |B(t, k)| ≫ |A(t, k)| for n sufficiently large (in terms of k and
t). However, it may be checked by computer that A(t, k) is optimal for small values of n and
specific choices of t and k, for example t = 2 and k = 2. We conjecture that B(t, k) is the largest
such family when n is sufficiently large.
Conjecture 3.1. There exists a positive integer n0 = n0(k, t) such that if n+ t is odd, n > n0,
and F ⊆ 2[n] is a t-intersecting, k-Sperner family, then

|F| ⩽ |B(t, k)| =
(
n− t
n−t−1

2

)
+

k∑
i=1

(
n

n+t−1
2

+ i

)
−
(

n− t
n−t−1

2
+ k

)
.

Frankl [Fra21] more modestly conjectured the following (Frankl’s conjecture is formulated
for s-union families rather than t-intersecting families, but our formulation is equivalent to
Frankl’s after taking complements).

Conjecture 3.2 (Frankl). Let g(n, t, k) := max{|G| − |∆n−t+1
2

−k(G)| : G ⊂
( [n]

n−t+1
2

)
is inter-

secting}. Then, if n+ t is odd and F is a t-intersecting, k-Sperner family, then

|F| ⩽ g(n, t, k) +
k∑

i=1

(
n

n+t−1
2

+ i

)
.

Note that Conjecture 3.1 can be interpreted as a strengthening of Conjecture 3.2, in that
additionally there is a conjecture for the value of the function g(n, t, k) for sufficiently large n.
The connection may be made more apparent by noting that, after taking complements, we may
equivalently define g(n, t, k) := max{|G| − |∇n+t−1

2
+k(G)| : G ⊂

( [n]
n+t−1

2

)
is t-intersecting}.

Finally, let us mention that a cycle method proof for the case of odd n+ t is unlikely to work,
for the following reason. The conjectured extremal family B(t, k) contains only those (⌊n+t

2
⌋)-

sets that are supersets of a fixed t-element set T . Suppose one can prove a lemma analogous
to Lemma 2.7 stating that some appropriate weight function w(G) is maximized by a family of
intervals that contain t fixed elements. In that case, the t fixed elements should be consecutive
on the cycle. However, for many cyclic permutations σ, T is not consecutive, so B(t, k)σ does
not achieve the bound of this putative lemma. Therefore, the double-counting argument at the
beginning of Section 2.3 would only give an upper bound that is larger than the size of B(t, k).



14 József Balogh et al.

Acknowledgements
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