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Abstract of the Dissertation

Topics in Scattering Amplitudes

by

Tristan Lucas Dennen

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Zvi Bern, Chair

In Part 1, we combine on-shell methods with the six-dimensional helicity formalism of Che-

ung and O’Connell to construct tree-level and multiloop scattering amplitudes. As a non-

trivial multiloop example, we confirm that the recently constructed four-loop four-point

amplitude of N=4 super-Yang-Mills theory, including nonplanar contributions, is valid for

dimensions less than or equal to six. We demonstrate that the tree-level amplitudes of max-

imal super-Yang-Mills theory in six dimensions, when stripped of their overall momentum

and supermomentum delta functions, are covariant with respect to the six-dimensional dual

conformal group. We demonstrate that this property is also present for loop amplitudes.

In Part 2, we explore consequences of the recently discovered duality between color

and kinematics, which states that kinematic numerators in a diagrammatic expansion of

gauge-theory amplitudes can be arranged to satisfy Jacobi-like identities in one-to-one cor-

respondence to the associated color factors. The related squaring relations express gravity

amplitudes in terms of gauge-theory ingredients. We then present a Yang-Mills Lagrangian

whose diagrams through five points manifestly satisfy the duality between color and kinemat-

ics. Finally, we compute the coefficient of the potential three-loop divergence in pure N=4

supergravity and show that it vanishes, contrary to expectations from symmetry arguments.
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Part I

On-Shell Techniques in

Six-Dimensional

Maximally-Supersymmetric

Yang-Mills Theory
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CHAPTER 1

Superspace for 6D Maximal Super Yang-Mills

1.1 Introduction

In recent years many surprising results were discovered in the S-matrix of maximal su-

persymmetric theories in four dimensions. These include new symmetries and structures

[7, 8, 9, 10] , representations [11, 12, 13, 14, 15, 16, 17] of tree-level amplitudes, and un-

expected UV behaviour in loop perturbation theory [18, 19, 20, 21, 22, 23, 24, 25]. Many

of these advancements rely heavily on newly developed on-shell methods such as recursion

relations to construct tree amplitudes, and generalized unitarity to obtain loop corrections

by simply sewing tree amplitudes. More precisely, one can now use either the CSW method

[12, 13], which constructs general amplitudes from MHV vertices, or the BCFW [14] con-

struction, which expresses an n-point amplitude as direct products of lower point amplitudes,

to efficiently construct tree amplitudes for either gauge or gravity theory. Modern unitarity

methods [26, 27, 28] then allow one to construct loop amplitudes by expressing them in

terms of a set of integrals that reproduces the cuts of the amplitude. Tree amplitudes are

then used to construct the coefficients of these integrals.

While these current approaches rely on a four-dimensional spinor-helicity formalism [29,

30], many interesting questions are inherently D-dimensional. For example in the study of

divergences in maximal supersymmetric theories, one usually encounters various bounds (at

given loop level) on the dimension at which the first potential divergence should appear

[18, 19, 20, 31]. To study this bound, one is required to compute the divergences of the

D-dimensional theory. On the other hand even in QCD one loop amplitudes, D-dimensional

tree amplitudes are useful for obtaining rational terms when using unitarity methods [32].
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Therefore a spinor helicity formalism similar to four dimensions will be helpful for these

purposes.

Here we restrict ourselves to six dimensions, where the spinor-helicity formalism is very

similar to four dimensions, as recently demonstrated by Cheung and O’Connell [33]. The

Lorentz group SO(5,1) has the covering group SU∗(4). The vector forms an antisymmetric

representation of SU∗(4), and the on-shell condition is naturally solved by introducing SU∗(4)

spinors, pAB = λAaλBa , pAB = λ̃Aȧλ̃
ȧ
B. The indices a, ȧ transform under the little group

SO(4)'SU(2)× SU(2).

In this chapter, we will introduce Grassmann variables along with the spinors to form an

on-shell superspace for N = (1, 1) super Yang-Mills theory. The Yang-Mills field strength

is in the (1
2
, 1
2
) representation of the little group. Since for maximal N = (1, 1) theory the

full multiplet should be contained in a single superfield, the non-chiral nature of the field

strength then implies a non-chiral on-shell superspace. Being non-chiral has the advantage of

representing the amplitudes in a more symmetric fashion, instead of viewing the amplitudes

from the MHV (or MHV) point of view. We will also treat BCFW on-shell recursion, giving

all the details necessary to generate tree-level superamplitudes with arbitrarily many legs.

1.2 Six-Dimensional Spinor Helicity

We begin by reviewing the six-dimensional spinor-helicity formalism recently developed by

Cheung and O’Connell [33]. In six-dimensional Minkowski space, the Lorentz group is

SO(5,1), whose covering group is SU∗(4). The vector is in the anti-symmetric represen-

tation of SU∗(4), and can be expressed as

pAB = pµσ
µ
AB , pAB = pµσ̃

µAB , (1.1)

where {A,B · · · } are the fundamental representation indices of SU∗(4). Here the σµ
AB and

σ̃µAB are antisymmetric 4×4 matrices which play a role analogous to the Pauli matrices in

four dimensions. Our Clifford algebra conventions may be found in Appendix A. The scalar
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product of two vectors is defined as a contraction with the SU∗(4) invariant tensor εABCD.

The Dirac equation for Weyl spinors in six dimensions can be written as,

pµσ
µ
ABλ

Ba
p = 0 , pµσ̃

µAB λ̃pBȧ = 0 , (1.2)

and gives rise to two independent solutions for each of the Weyl spinors, λBa and λ̃Bȧ.

Each solution is labeled by an index a or ȧ, which are spinor indices of the little group

SU(2)×SU(2). We may lower and raise the little group indices with the matrices εab and ε
ȧḃ,

λa = εabλ
b , λ̃ȧ = εȧḃλ̃ḃ , (1.3)

and ε12 = −1, ε12 = 1, for this case as well. Spinor inner products are defined by contractions

of the SU∗(4) indices,

〈ia|jḃ] = λAa
i λ̃jAḃ = [jḃ|i

a〉 . (1.4)

Other common quantities are spinors contracted with the SU∗(4)-invariant Levi-Civita ten-

sor,

〈iajbkcld〉 ≡ εABCDλ
Aa
i λBb

j λCc
k λDd

l ,

[iȧjḃkċlḋ] ≡ εABCDλ̃iAȧλ̃jBḃλ̃kCċλ̃lDḋ . (1.5)

The on-shell massless condition can be solved using bosonic six-dimensional chiral spinors

in a way similar to the well-known four-dimensional case. The antisymmetry of pAB together

with the on-shell condition p2 ∼ εABCDpABpCD = det(/p) = 0 gives the bispinor representa-

tion,

pAB = λAa εabλ
Bb , pAB = λ̃Aȧ ε

ȧḃλ̃Bḃ , λAaλ̃Aȧ = 0 . (1.6)
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One can also express the vector momenta directly in terms of the spinors via,

pµ = −1

4
〈pa|σµ|pb〉εab = −1

4
[pȧ|σ̃

µ|pḃ]ε
ȧḃ . (1.7)

Spinor strings also appear in amplitudes. These are given by

〈ia|jȧ] = (λi)
A
a (λ̃j)Aȧ

〈ia|/p1/p2 · · · /p2n+1
|jb〉 = (λi)

A1a (p1)A1A2 (p2)
A2A3 · · · (p2n+1)A2n+1A2n+2 (λj)

A2n+2b ,

〈ia|/p1/p2 · · · /p2n|jḃ] = (λi)
A1a (p1)A1A2 (p2)

A2A3 · · · (p2n)A2nA2n+1 (λ̃j)A2n+1ḃ
. (1.8)

There are four polarization states for vector particles. Following Cheung and O’Connell,

the polarization vectors can be written as [33],

εµ
aȧ
(p, k) =

1√
2
〈pa|σµ|kb〉(〈kb|pȧ])−1 = (〈pa|kḃ])

−1 1√
2
[kḃ|σ̃

µ|pȧ] , (1.9)

where the a and ȧ indices are labels for the four polarization states. As for the four-

dimensional case, a null reference momentum k is needed to define the states. For each

of the Weyl spinors [iȧ| and 〈ja| the indices a and ȧ label two helicity states respectively.

The object (〈pa|kḃ])−1 = −(〈pa|kḃ])/2p · k is the inverse matrix of the spinor product 〈pa|kḃ]

with respect to the helicity indices. As for the four-dimensional case, the polarization vectors

are transverse, and a redefinition of the reference spinor can be shown to correspond to a

gauge transformation.

In light of the proliferation of indices, we make a brief list:

SU∗(4) fundamental labels: A,B,C, . . . = 1, 2, 3, 4

SO(5,1) vector labels: µ, ν, ρ, . . . = 0, 1, 2, . . . 5

SU(2)×SU(2) helicity labels: a, b, c, . . . = 1, 2 and ȧ, ḃ, ċ, . . . = 1, 2 . (1.10)
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1.3 Six-Dimensional N = (1, 1) Superspace

Recent constructions of the S-matrix for maximal gauge and gravity theories make use of

four-dimensional superspace. Here we construct the six-dimensional N = (1, 1) on-shell

superspace in similar fashion, i.e. by introducing Grassmann variables ηIa, where I is the R

index and a is the little group index, one can arrive at the usual superspace by contracting

the little group indices with the spinors. In four dimensions, I = 1, 2, 3, 4 and the little group

is U(1), under which the Grassmann variables transform as ηI → e−iθηI , η̄I → eiθη̄I . The

relation to the usual superspace can be seen with the help of the spinors

4D : θIα = λαηI , θ̄Jα̇ = λ̃α̇η̄J .

One can do similar for six dimensions. Maximal super Yang-Mills in six dimensions has

N = (1, 1) supersymmetry, with R-symmetry group USp(2)×USp(2)=SU(2)×SU(2). We

introduce ηaI and η̃ȧI′ where the I, I ′ are the SU(2)R symmetry indices. Note that η and η̃

are complex and independent. The full six-dimensional superspace variables are then

6D : qAI = λAa η
aI , q̃AI′ = λ̃Aȧη̃

ȧ
I′ .

In four-dimensional maximal super Yang-Mills theory, one can express the full amplitude

using either chiral or anti-chiral superspace, i.e. only half of the full superspace, since this

is enough to contain all physical degrees of freedom. This is due to the self-CPT conjugate

nature of the physical spectrum. A similar result holds in six dimensions. However since

the supertwistors are self-conjugate, only half of the degrees of freedom for ηaI and η̃ȧI′ are

independent. Therefore to construct our on-shell superspace we need to truncate the η, η̃s.

Since we wish to use the little group index to label our states, we will truncate using the

R-indices.

Note that this situation is equivalent to the issue of trying to construct off-shell N > 1

superspace, where chiral constraints usually lead to field equations. One of the well known
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examples is the N = 2 harmonic superspace [34] in four dimensions. Here one introduces

harmonic variables u±I to parameterize the SU(2)/U(1) coset. These variables are then used

to separate the θ variables into two separate sets (θ+α = u+I θ
I
α, θ̄

+
α̇ = u+I θ̄Iα̇) and + → −.

Then the prepotential, which contains the physical gauge field, depends only on a subspace

(the “analytic superspace”) which only includes θ+, θ̄+. The harmonic variables can be

viewed as providing a linear combination of the R-symmetry index, and therefore separating

the supercharges into subsets.1

Therefore, in our on-shell superspace formalism, the on-shell superfield appears as a

polynomial in a pair of anticommuting coordinates ηa, η̃
ȧ which carry SU(2)×SU(2) little

group indices,

Φ(η, η̃) = φ+ χaηa + φ′(η)2 + χ̃ȧη̃
ȧ + ga ȧηaη̃

ȧ + ψ̃ȧ(η)
2η̃ȧ

+ φ′′(η̃)2 + ψaηa(η̃)
2 + φ′′′(η)2(η̃)2 , (1.11)

where (η)2 ≡ 1
2
εabηbηa and (η̃)2 ≡ 1

2
εȧḃη̃

ḃη̃ȧ. Using these fields, we can obtain superamplitudes

in the usual way. The different component amplitudes can be read off from their η expansions.

For example, the four-gluon amplitude 〈gaȧ(1) gbḃ(2) gcċ(3) gdḋ(4)〉 appears as the coefficient

of η1aη̃
ȧ
1η2bη̃

ḃ
2η3cη̃

ċ
3η4dη̃

ḋ
4 in the four-point superamplitude A4. These amplitudes are functions

of momenta pi and supermomenta qi, q̃i defined by,

qAi = λAa
i ηia, q̃iB = λ̃iBḃη̃

ḃ
i . (1.12)

For a general discussion of higher-dimensional on-shell superspaces, see ref. [36].

1Of course these new bosonic R-coordinates also provide the infinite auxiliary fields that are necessary
to close the susy algebra off-shell. Different choices (or a subset) of these coordinates represent different
off-shell formulations, for example there is also the N=2 projective superspace [35].
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1.4 3-Point Kinematics

While amplitudes are generically written in terms of Lorentz invariants, the 3-point ampli-

tude has the problem of vanishing Lorentz invariants due to kinematic constraints: pi ·pj = 0.

In four dimensions this is solved by using complex momenta or going to split signature with

real momenta, then λ and λ̃ are no longer related and one can set either 〈ij〉 or [ij] to zero

without constraining the other. Since we intend to use on-shell recursion as a systematic way

of generating higher point amplitudes from three-point amplitudes, we must do something

similar in six dimensions. In this case, the Lorentz-invariant inner product of a fundamental

and an anti-fundamental spinor has vanishing determinant, i.e. the 2×2 matrix 〈ia|jȧ] has

rank one, which means we can factorize it into a bispinor as 〈ia|jȧ] = uiaũjȧ. Consistently

defining the SU(2) spinors ui and ũj for all of the spinor products 〈ia|jȧ], we have (for {i, j}

cyclically ordered),

〈ia|jȧ] = uiaũjȧ , 〈ja|iȧ] = −ujaũiȧ . (1.13)

Momentum conservation implies the following important and useful property:

uc1〈1c| = uc2〈2c| = uc3〈3c| , ũ1ċ[1
ċ| = ũ2ċ[2

ċ| = ũ3ċ[3
ċ| . (1.14)

In Ref. [33], Cheung and O’Connell also introduce pseudoinverses w and w̃ of these

spinors, which are ultimately the key to writing down the three-point amplitude. These

pseudoinverses are defined by

uawb − ubwa = εab , ũȧw̃ḃ − ũḃw̃ȧ = εȧḃ . (1.15)

Being pseudoinverses, w and w̃ are not uniquely specified by this definition. Specifically, wja

is only defined up to a shift wja → wja + bjuja (and likewise for w̃). This ambiguity can be

8



partially removed by requiring

wa
1λ

A
1a + wa

2λ
A
2a + wa

3λ
A
3a = 0 , w̃1ȧλ̃

ȧ
1A + w̃2ȧλ̃

ȧ
2A + w̃3ȧλ̃

ȧ
3A = 0 . (1.16)

Then wa
i are defined up to shifts with b1 + b2 + b3 = 0. Even though there is still ambiguity,

this will help us determine the full amplitude by requiring invariance under this shift.

The 3-pt Yang-Mills amplitude is given by

A3 = iΓabcΓ̃ȧḃċ = i(u1u2w3 + u1w2u3 + w1u2u3)abc(ũ1ũ2w̃3 + ũ1w̃2ũ3 + w̃1ũ2ũ3)ȧḃċ. (1.17)

This was presented in Ref. [33], and can be derived for example from Feynman diagrams and

the spinor definitions presented in this chapter.

The supersymmetrization of this amplitude is given by

Atree
3 (1, 2, 3) = −i

(
u1u2 + u2u3 + u3u1

)( 3∑
i=1

wi

)(
ũ1ũ2 + ũ2ũ3 + ũ3ũ1

)( 3∑
i=1

w̃i

)
, (1.18)

where ui and wi are defined in terms of uai and wa
i as,

ui = ua
i ηia, ũi = ũiȧη̃

ȧ
i , wi = wa

i ηia, w̃i = w̃iȧη̃
ȧ
i . (1.19)

One can confirm that this expression is correct by picking out particular component am-

plitudes. For example, the coefficient of ηa1η
b
2η

c
3η̃

ȧ
1 η̃

ḃ
2η̃

ċ
3 reproduces eq. (1.17). Similarly, the

coefficient of ηa2η2aη
c
1η̃

ȧ
1 η̃

ḃ
2η̃

ċ
3 gives

iu1c(ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ),

which is the amplitude for two gauginos and one gauge boson (g1, λ̃2, λ̃3).
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1.5 Recursive Construction of Tree-level Amplitudes

We now turn to BCFW on-shell recursion relations [37], which offer a means for constructing

tree amplitudes in a form where we can exploit the six-dimensional helicity techniques.

It also provides a convenient means for generating tree amplitudes needed in higher-loop

calculations.

1.5.1 BCFW recursion

The BCFW shift using six-dimensional spinor helicity was given in ref. [33], and the super-

symmetric version in [1]. Here we give a brief summary and the relevant bosonic shifts. We

begin by picking two external lines, say 1, 2 as special, and deform them by a null vector

proportional to a complex parameter z,

p1(z) = p1 + zr, p2(z) = p2 − zr , (1.20)

where r is a null vector satisfying p1·r = p2·r = 0. These conditions ensure that the deformed

momenta remain on-shell, p21(z) = p22(z) = 0, and the overall momentum conservation of the

amplitude is unaltered.

Since a tree amplitude is a rational function of momenta with no more than a single pole

in any given kinematic invariant, this deformation will result in a complex function with

only simple poles in z. Each pole in z will correspond to a propagator that is a sum of a

subset of external momenta that includes only one of the shifted momenta,

P2j(z)
2 ≡ (p2(z) + . . .+ pj)

2 = P 2
2j + 2zr · P2j . (1.21)

The location of the pole is given by solving the on-shell condition P2j(z)
2 = 0,

z2j = −
P 2
2j

2r · P2j

. (1.22)

As in common usage, we denote the shifted momenta evaluated at the value of z locating a
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pole with a hatted symbol “ ˆ ”, e.g. p̂2 ≡ p2(z = z2j).

If a shifted amplitude vanishes as z → ∞, then standard complex variable theory implies

that it is uniquely determined by its residues in z. ForD ≥ 4 dimensions, it is straightforward

to find choices of shifts where this property holds for Yang-Mills theories [38, 33]. The

poles correspond to configurations where propagators go on shell and where the amplitude

factorizes into a product of lower-point amplitudes. Each residue is then simply a sum

of products of two lower-point tree amplitudes on either side of the propagator, with the

shifted momenta evaluated at the location of the pole. If legs 1 and 2 are shifted, the BCFW

recursion relation gives us the unshifted amplitude as,

Atree
n (0) =

n−1∑
j=3

∑
h

AL

(
p̂2, . . . , pj,−P̂ (−h)

2j

) i

P 2
2j

AR

(
P̂

(h)
2j , pj+1, . . . , p̂1

)∣∣∣∣
z=z2j

, (1.23)

where AL and AR are lower-point tree amplitudes on the left and right sides of the propagator

and are evaluated at shifted momenta with z = z2j. The first sum in the above equation is

over all diagrams that produce poles, while the second is over all helicity states that cross

the internal leg P̂ .

In six dimensions, the conditions p1 · r = p2 · r = 0 can be solved by choosing r to

be proportional to the polarization of line 1, r ∼ ε1aȧ, and choosing the reference spinor

for the polarization vector to be λ2. This satisfies the needed constraints and leads to

sufficiently good behavior at large z. Since ε1aȧ has extra SU(2)×SU(2) little-group indices,

one introduces an auxiliary matrix Xaȧ to contract the indices so that,

rAB =
1√
2
Xaȧ(εAB

1 )aȧ = −Xaȧλ
[A
1aλ

B]
2b

[1ȧ|2b〉
= Xaȧ

[A/p2|1ȧ]〈1a|
B]

s12
, (1.24)

and the condition r2 = 0 now becomes detX = 0. This can automatically be satisfied by

choosing Xaȧ = xax̃ȧ, where the xa and x̃ȧ are arbitrary. These arbitrary variables will

cancel out once one sums over all contributions. When implementing the recursion relations

numerically, these variables are helpful since they can identify errors when one checks whether

the result is independent of the choice of xa, x̃ȧ. The above shift can be translated into a

11



redefinition of the spinors,

λAa
1 (z) = λAa

1 − z

s12
Xa

ȧ
[1ȧ|2b〉λA2b , λAb

2 (z) = λAb
2 − z

s12
Xa

ȧ
λA1a[1

ȧ|2b〉 ,

λ̃1Aȧ(z) = λ̃1Aȧ +
z

s12
Xa

ȧ
〈1a|2ḃ]λ̃

ḃ
2A , λ̃2Aḃ(z) = λ̃2Aḃ +

z

s12
Xa

ȧ
λ̃ȧ1A〈1a|2ḃ] . (1.25)

In section 1.5.2, we will describe the supersymmetrized BCFW recursion relations to

generate the tree amplitudes needed in calculations of multiloop amplitudes of N = 4 sYM

theory.

1.5.2 Supersymmetric BCFW recursion

In order to investigate high loop orders we need high-point tree amplitudes. To obtain

these, we use supersymmetric forms of the BCFW recursion relations. This also serves

as a warmup for the unitarity cuts, because the state sums generated by integration over

Grassmann parameters at loop level are similar to the state sums in supersymmetric forms of

the BCFW recursion relations. As discussed in ref. [1], the super-BCFW recursion relations

can be obtained by shifting the Grassmann variables,

η1a(z) = η1a − zXaȧ[1
ȧ|2b〉η2b/s12 , η2b(z) = η2b − zXa

ȧ
[1ȧ|2b〉η1a/s12 ,

η̃ȧ1(z) = η̃ȧ1 + zXaȧ[2ḃ|1a〉η̃
ḃ
2/s12 , η̃ḃ2(z) = η̃ḃ2 + zXa

ȧ
[2ḃ|1a〉η̃ȧ1/s12 , (1.26)

in addition to the shifts of the spinors in eq. (1.25). This is designed to maintain supermo-

mentum conservation, i.e. qA1 + qA2 = qA
1̂
+ qA

2̂
and q̃1A + q̃2A = q̃1̂A + q̃2̂A. These shifts on

η can be rephrased as shifts directly on the supermomenta by combining with the spinorial

shifts in eq. (1.25) and using the trick,

δab = − 1

s12
〈1a|/p2|1b〉 . (1.27)
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After the necessary rearrangements, we have,

qA1 (z) = qA1 +
z

s212
Xa

ȧ
[1ȧ|2b〉λA2b〈1a|2ḃ]λ̃

ḃ
2Bq

B
1 − z

s12
λAa
1 Xaȧλ̃

ȧ
1Bq

B
2 ,

qA2 (z) = qA2 − z

s12
λA1aX

a
ȧ
λ̃ȧ1Bq

B
2 − z

s212
Xa

ȧ
[1ȧ|2b〉λAb

2 〈1a|2ḃ]λ̃
ḃ
2Bq

B
1 ,

q̃1A(z) = q̃1A +
z

s212
Xa

ȧ
〈1a|2ḃ]λ̃

ḃ
2A[1

ȧ|2b〉λB2bq̃1B +
z

s12
λ̃1AȧX

aȧλB1aq̃2B ,

q̃2A(z) = q̃2A +
z

s12
Xa

ȧ
λ̃ȧ1Aλ

B
1aq̃2B +

z

s212
Xa

ȧ
λ̃2Aḃ[2

ḃ|1a〉[1ȧ|2b〉λB2bq̃1B . (1.28)

As we will see, these supermomentum shifts help us avoid dealing directly with the super-

coordinates η in the recursion.

The intermediate state sum in the recursion is realized as an integration over the Grass-

mann coordinates ηP , η̃P of the intermediate leg (labeled as P ), and the remainder of this

section is devoted to systematically carrying out these integrations.

To set up high-point recursion, it is useful to first organize the types of contributions. If

we track the factors containing Grassmann parameters, and drop other factors, the n-point

tree amplitudes have the schematic form,

An ∼ δ4
(∑

i
qAi

)
δ4
(∑

i
q̃iB

)
qn−4q̃n−4 for n ≥ 4 , (1.29)

where the fermionic delta function is defined as,

δ4
(∑

i
qAi

)
≡ 1

4!
εBCDE

(∑
i
qBi

)(∑
i
qCi

)(∑
i
qDi

)(∑
i
qEi

)
, (1.30)

and likewise for the antichiral supermomentum q̃A. We have left an unbalanced index A as

a reminder that the delta function is over the four SU∗(4) components. The supermomen-

tum delta functions for n ≥ 4 impose algebraic constraints on ηP , η̃P under the fermionic

integration. We can follow the same strategy as used in four dimensions to consider the

delta-function constraints as a set of algebraic equations to be systematically solved [39]. A
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P

(B)
1̂

j j + 1

n̂

P

(A)

1̂

2

n̂

3

L R L R

Figure 1.1: Two categories of BCFW diagrams. (A) contains a three-point subamplitude,
which does not have the full supermomentum delta function δ4(q)δ4(q̃). (B) contains no
three-point subamplitude, thus all delta functions are of degree four.

key identity for carrying this out is

δ4(qA1 + qA2 +QA) = s12 δ
2
(
η1a + s−1

12 〈1a|/p2Q
)
δ2
(
η2b + s−1

12 〈2b|/p1Q
)
. (1.31)

A similar antichiral identity also holds. These identities are analogous to ones used in four

dimensions [9].

Before proceeding, though, we are obliged to address a glitch in the spinor-helicity for-

malism: the spinors do not properly distinguish between particles and antiparticles, caus-

ing phase inconsistencies in diagrams containing fermions. This glitch and prescriptions

for resolving it have already been discussed in the four-dimensional case, for example, in

ref. [40, 39]. Here we use the prescription that if p is incoming, so that this momentum is

−p in our all-outgoing convention, then we take,

λAa
(−p) ≡ iλAa

p , λ̃(−p)Aȧ ≡ iλ̃pAȧ . (1.32)

In this way, we maintain the relationship between momenta and spinors, i.e.,

(−p)AB = λAa
(−p)λ

B
(−p)a = −λAa

p λBpa . (1.33)

Along the same lines, we demand that qA(−p) = −qAp , which we achieve with the same pre-

14



scription for the supercoordinates η: whenever −p is outgoing, we choose,

η(−p)a ≡ iηpa, η̃ȧ(−p) ≡ iη̃ȧp . (1.34)

Beyond four points, we can split all BCFW diagrams into two categories, as shown in

Fig. 1.1. We consider these two cases in turn.

Case (A):

In cases where one has to sew a three-point superamplitude to a higher-point tree super-

amplitude, illustrated in Fig. 1.1(A), the Grassmann integration has the form,

∫
d2ηPd

2η̃P A3L × δ4
(∑

i∈R

qBi

)
δ4
(∑

i∈R

q̃iC

)
qn−5q̃n−5 , (1.35)

where the summations are over all external lines of the right tree amplitude including shifted

legs, and the integration measure is d2ηPd
2η̃P = 1

4
dηaPdηPadη̃P ȧdη̃

ȧ
P .

To perform this integral, we view the factors in the three-point amplitude (1.18) as

algebraic constraints on the supercoordinates ηP , η̃P imposing,

u1̂ = u2 , uP = 1
2
(u1̂ + u2), wP = −w1̂ −w2,

ũ1̂ = ũ2 , ũP = 1
2
(ũ1̂ + ũ2), w̃P = −w̃1̂ − w̃2 . (1.36)

Since there are two components each in ηPa and η̃ȧP , the three-point amplitude is sufficient

to localize the ηP integrals. The solutions to the constraint equations are

ηPa = 1
2
wPa(u1̂ + u2) + uPa(w1̂ +w2) ,

η̃ȧP = −1
2
w̃ȧ

P (ũ1̂ + ũ2)− ũȧ
P(w̃1̂ + w̃2) , (1.37)

with the understanding that we are free to replace u1̂ ↔ u2 and ũ1̂ ↔ ũ2 at any step, due

to the leftover factors of (u1̂ − u2) and (ũ1̂ − ũ2).
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In practice, it is much easier to deal with supermomenta qi than the u and w variables.

It is straightforward to demonstrate that eq. (1.37) implies the substitutions,

qAP = −qA
1̂
− qA2 , q̃PA = −q̃1̂A − q̃2A . (1.38)

Thus one can substitute the result for qP in the tree amplitude on the right, avoiding the

more complicated eq. (1.37), and extract out the full supermomentum-conservation delta

function. At this stage, we are left with the task of integrating,

δ4
(∑

i∈E

qAi

)
δ4
(∑

i∈E

q̃iB

)
qn−5q̃n−5

∫
d2ηPd

2η̃PA3L , (1.39)

where the two delta functions correspond to the overall supermomentum conservation, and

E is the set of all external legs of the full amplitude. The remaining integral has the solution,

∫
d2ηPd

2η̃PA3L = i(u1̂ − u2)(ũ1̂ − ũ2) , (1.40)

which can be re-written in terms of the q, q̃ as,

i

(
−
q1̂/pK/p2q̃1̂
s1̂K

− q1̂q̃2 + q2q̃1̂ +
q2/pK/p1̂q̃2

s2K

)
, (1.41)

where pK is an arbitrary null reference vector. The sewing of a three-point amplitude with

a general tree amplitude will thus result in the form,

δ4
(∑

i∈E

qAi

)
δ4
(∑

i∈E

q̃iB

)
qn−5q̃n−5

(
−
q1̂/pK/p2q̃1̂
s1̂K

− q1̂q̃2 + q2q̃1̂ +
q2/pK/p1̂q̃2

s2K

)
, (1.42)

where all q, q̃s are in terms of external lines and q1̂ is the shifted q1 with z taking on the

value at the pole.

Case (B):

For the case with no three-point subamplitudes, illustrated in Fig. 1.1(B), we can always
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eliminate qP and q̃P from the “R” amplitude, using the “L” delta functions. The Grassmann

integral will then be of the form,

δ4
(∑

i∈E

qAi

)
δ4
(∑

i∈E

q̃iB

)
f(q, q̃)

∫
d2ηPd

2η̃P δ
4

(∑
i∈L

qCi

)
δ4
(∑

i∈L

q̃iD

)
. (1.43)

Focusing on the chiral integral, we proceed by splitting the delta function using eq. (1.31)

on legs j and P , which gives,

∫
d2ηP δ

4

(∑
i∈L

qCi

)
= sjP δ

2

(
ηja + s−1

jP 〈ja|/P (q1̂ + . . .+ qj−1)

)
= sjP δ

2

(
s−1
jP 〈ja|/P (q1̂ + . . .+ qj)

)
= −s−1

jP (q1̂ + . . .+ qj) /P/pj
/P (q1̂ + . . .+ qj)

= (q1̂ + . . .+ qj)
A(p1̂ + . . .+ pj)AB(q1̂ + . . .+ qj)

B , (1.44)

where P = p1̂ + p2 + · · · + pj, and we used the identity (1.27) between the first and second

lines. Likewise, the antichiral integration contributes,

∫
d2η̃P δ

4

(∑
i∈L

q̃iD

)
= (q̃1̂ + . . .+ q̃j)A(p1̂ + . . .+ pj)

AB(q̃1̂ + . . .+ q̃j)B . (1.45)

1.6 Analytic Low-point Amplitudes

In ref. [1], the three-, four- and five-particle tree-level superamplitudes were worked out

analytically using the BCFW recursion. The four-point superamplitude is the simplest case.

This is given by

Atree
4 (1, 2, 3, 4) = − i

s12s23
δ4
( 4∑

i=1

qAi

)
δ4
( 4∑

i=1

q̃iB

)
. (1.46)
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The five-point tree-level superamplitude is

Atree
5 = i

δ4
(∑

i q
A
i

)
δ4
(∑

i q̃iB

)
s12s23s34s45s51

{
qA1 (p2p3p4p5)

B
A q̃1B + cyclic

+
1

2

[
qA1 ∆̃2A + qA3 ∆̃4A + (q3 + q4)

A∆̃5A + (chiral conjugate)
]}

, (1.47)

where ∆̃2A = (p2p3p4p5 − p2p5p4p3)
B

A q̃2B, ∆̃4A = (p4p5p1p2 − p4p2p1p5)
B

A q̃4B, etc. The five-

particle amplitude is given here in a particularly compact form which lacks explicit cyclic

symmetry, although the symmetry does hold on the support of the fermionic delta functions.

In the next chapter, we will use these expressions as input into the BCFW recursion

to generate higher-point amplitudes, which we use to calculate unitarity cuts of multi-loop

amplitudes.
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CHAPTER 2

Generalized Unitarity and Six-Dimensional Helicity

2.1 Introduction

The unitarity method [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] gives a means

for constructing complete loop amplitudes directly from on-shell tree amplitudes. These

methods are efficient and display a relatively tame growth in complexity with increasing

number of external particles or loops, especially when compared to traditional Feynman-

diagrammatic approaches. With this approach, it is usually advantageous to simplify the

input tree amplitudes as much as possible prior to applying them in loop calculations. A

key tool for simplifying massless tree amplitudes strictly in four dimensions has been spinor

helicity [55, 56]. However, if we use dimensional regularization or any form of massive

regularization, massless four-dimensional spinor helicity techniques are no longer directly

applicable within the loops.

In this chapter we will describe a unitarity-based approach using the six-dimensional

spinor-helicity formalism of Cheung and O’Connell [33] to avoid these limitations. Here

we are concerned primarily with multiloop scattering amplitudes in N = 4 super-Yang-

Mills (sYM) theory. The supersymmetric theory needs an efficient formalism to organize its

spectrum of states, especially at high-loop orders, in much the same way as done in four

dimensions using an on-shell superspace [57, 9, 58, 39]. As we discuss, both aspects can be

addressed using the six-dimensional spinor helicity formalism described in Chapter 1.

In the past, the main bottleneck for carrying out next-to-leading-order QCD calculations

has been the difficulty of evaluating one-loop amplitudes [59]. The unitarity method offers

a universal solution to this difficulty that scales well with the number of external legs. Any
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contributions which can be captured by four-dimensional techniques — the so called “cut-

constructible pieces” — may be computed efficiently using four-dimensional helicity states in

the cuts [41, 45, 49, 60]. The remaining rational contributions tend to be the most complex

(and time consuming) parts of calculations, though there are a number of techniques for

dealing with such pieces. In the bootstrap approach, the rational pieces are constructed

by on-shell recursion in four dimensions [61, 60]. Another approach uses D-dimensional

generalized unitarity [43, 44, 62, 47, 50, 53]. A six-dimensional unitarity procedure for any

one-loop QCD amplitude has been given in ref. [53] using the on-shell procedure of reducing

integrals in ref. [48]. A related approach makes use of the relation between massive states in

four dimensions and those in extra dimensions to reduce the integrals obtained from unitarity

cuts [43, 54]. The six-dimensional helicity approach described here is well suited for either

of the latter two approaches for carrying out integral reductions.

We will consider multiloop N = 4 sYM amplitudes. To set this up, we make use of the

six-dimensional on-shell superspace presented in the previous chapter. General constructions

of on-shell superspaces have been discussed in ref. [36]. In strictly four dimensions, there is

a well-developed on-shell superspace [57, 9, 58, 39] for tracking contributions from different

states in the multiplet. However, as already noted above this leaves open the question of

whether contributions are missed by using four-dimensional momenta in the unitarity cuts

or in the recent BCFW constructions of planar loop integrands [63, 64]. This is especially

important when constructing amplitudes for use in D > 4 studies, but even in dimension-

ally regularized four-dimensional expressions, when divergences are present, there can be

nonvanishing contributions from terms that vanish naively in four dimensions. This be-

comes more important as the loop order or the number of external legs grows, allowing for a

greater number of potentially problematic terms. Besides terms with explicit dependence on

extra-dimensional momenta, such terms can be formed from antisymmetric combinations of

momenta which vanish in four dimensions. For example, we know that dimensionally regu-

larized two-loop six-point amplitudes in N = 4 sYM theory have such terms [65]. In theories

with fewer supersymmetries, such terms occur with more frequency, and, for example, appear

in one-loop QCD amplitudes [43].
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To illustrate the supersymmetric formalism, we first describe a two-particle cut of the

one-loop four-point N = 4 amplitude, then move on to a three-particle cut of the planar

two-loop four-point amplitude [66]. Finally, we turn to the rather nontrivial case of four-loop

four-point amplitudes in this theory, including the nonplanar terms. The latter amplitude has

recently been computed [67], using mainly four-dimensional techniques. Direct calculations

of four-point gluon amplitudes inN = 1 sYM inD = 10 dimensions, which upon dimensional

reduction givesN = 4 sYM theory, confirm that all terms are captured by calculating directly

in four dimensions, through three loops.1 At four loops, similar D = 10 checks have been

performed in the planar case, up to a mild assumption that no term has a worse power

count than the amplitude [68]. However, in the case of nonplanar contributions, there is no

complete check that the expressions built using four-dimensional momenta in the cuts are

complete, although a number of strong consistency checks have been performed [67]. In this

chapter we confirm that the expressions for the amplitudes of ref. [67] are valid for D ≤ 6,

as expected.

At four points, the integrands of N = 4 sYM do not depend explicitly on the space-time

dimension, but only implicitly through Lorentz dot products, as already noted in refs. [66,

69, 70, 68, 71, 67] and explicitly confirmed here at four loops. This suggests that the dual

conformal properties, which impose strong constraints on the form of the integrands in four

dimensions, will impose similar constraints in higher dimensions. In addition, dual conformal

invariance can be extended to the massive Higgs-regulated case [72]. These facts suggest that

the dual conformal properties of planar N = 4 sYM amplitudes should have extensions away

from four dimensions. Motivated by this, in Chapter 3 we will write down generators for

dual conformal transformations in six dimensions and prove transformation properties to all

loop orders.

1This property is special to maximal supersymmetry, and we have no expectation that it should hold for
other theories.
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2.2 The Unitarity Method

The modern unitarity method constructs loop amplitudes directly from on-shell tree ampli-

tudes [41], by combining unitarity cuts into complete expressions for amplitudes. The most

convenient cuts generally are those that reduce the loop amplitude integrands into a sum of

products of tree amplitudes,

Aloop
n

∣∣
cut

=
∑
states

AtreeAtree · · ·AtreeAtree . (2.1)

To construct the full amplitude, we can apply a merging procedure for combining cuts [62].

For more complicated cases, it is best to build an ansatz first in terms of some arbitrary

parameters. The arbitrary parameters are then determined by comparing the cuts of the

ansatz against the generalized unitarity cuts (2.1). If an inconsistency is found, the ansatz

is not general enough and must be enlarged. In four dimensions, a particularly simple

set of cuts to evaluate is those with the maximal numbers of cut propagators [45]. Often

it is convenient to build the ansatz for the amplitude by starting with generalizations of

these types of maximal cuts and then systematically relaxing the cut conditions one at a

time [51, 70, 67]. This approach, known as the method of maximal cuts, offers a systematic

procedure for obtaining complete amplitudes, including nonplanar contributions, at any

loop order in massless theories. One can carry out cut calculations either analytically or

numerically comparing to a target ansatz at high precision.2

An important concept is “spanning cuts”, or a complete set of cuts for determining an

amplitude. For the color-ordered one-loop four-point amplitude a spanning set is the usual s

and t channel two-particle cuts. More generally, spanning cuts are determined by requiring

that all potential terms that can contribute, including contact terms, can be detected by

the cuts. In section 2.3 we use such a spanning set of cuts to confirm the six-dimensional

validity of the complete four-loop four-point amplitude of N = 4 sYM theory, calculated in

refs. [67, 71] using mostly four-dimensional methods.

2Since this procedure does not involve any integration, high precision is straightforward. One can also
choose rational numbers for the kinematic points.
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Figure 2.1: A sample cut of the four-loop four-point amplitude.

2.3 Multiloop applications with maximal supersymmetry

In this section we consider the construction of multiloop amplitudes in maximally supersym-

metric Yang-Mills in six dimensions. After some general comments, we turn to one-loop and

two-loop warmups before discussing four-point amplitudes at four and six loops.

2.3.1 General considerations

In unitarity cuts, one must sum over states for multiple particles. The supersum then

corresponds to integrating over the η, η̃ coordinates of these lines. For example, when sewing

the four-loop cut displayed in Fig. 2.1, the sum over states is implemented by the Grassmann

integration, ∫ 7∏
i=1

(
d2ηlid

2η̃li

)
A(1)

5 A(2)
4 A(3)

4 A(4)
5 , (2.2)

where the superscript A(j)
4 labels the four distinct tree amplitudes composing the cut.

The strategy for dealing with such supersums is similar to the strategy used at tree level;

we use eq. (1.31) to localize as many η integrals as possible. In cuts with no three-point

subamplitudes, such as the cut in Fig. 2.1, there is a supermomentum delta function on each

tree amplitude. Each delta function can be used to localize two pairs of ηl, η̃l via eq. (1.31);

in a cut with m tree amplitudes, a total of 2(m − 1) pair of ηl, η̃l can be localized in this

manner, with one overall δ4(
∑

E q)δ
4(
∑

E q̃) extracted outside of the integral. We note that

when solving the delta-function constraints, care must be taken to avoid circular solutions.
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In general, the fermionic delta functions will be insufficient to localize all of the η integrals;

the remaining integrals must be handled in a different manner. One approach is to expand

the left-over integrand as a polynomial in ηli , η̃li and interpret the fermionic integral as

instructions to pick out the coefficient of
∏

i(ηli)
2(η̃li)

2. We will apply this approach to a

two-loop example in the next Section 2.3.3.

Cuts that have three-point subamplitudes are generally more difficult, and may need to

be handled on an ad hoc basis. One can usually make progress by combining three-point

subamplitudes into higher-point amplitudes and perform the remaining η integrals as before.

We note that for four-point loop amplitudes, after extracting out the overall supermo-

mentum delta functions, the number of remaining η, η̃s will always match the number of

Grassmann integrations. Therefore, the four-point loop amplitudes will depend on η, η̃ only

through the supermomentum delta functions, i.e. they will be proportional to a four-point

tree superamplitude.

To illustrate these techniques we now work out a few examples. (The cut of Fig. 2.1 is

evaluated in some detail in appendix B.)

2.3.2 One-loop four-point example

Here we compute a two-particle cut of the one-loop 4-point amplitude for six-dimensional

maximal super Yang-Mills. It was shown in D-dimensional maximal super Yang-Mills that

the two-particle cut for the one-loop 4-point amplitude takes the following form [73]

∑
s1,s2

Atree(k
s2
2 , 1, 2,−ks11 )Atree(−ks22 , 3, 4, ks11 ) = −istAtree(1, 2, 3, 4)

1

(p1 − k1)2(p3 − k2)2

where s1, s2 label the internal states and are summed over. We now reproduce this relation
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Figure 2.2: Two-particle cut for one-loop 4-point amplitude.

l1

l2

l3

p1

p2 p3

p4

Figure 2.3: The three-particle cut of a two-loop four-point amplitude.

in six dimensions. Using superspace to sum the internal states:

∑
s1,s2

Atree(k
s2
2 , 1, 2,−ks11 )Atree(−ks22 , 3, 4, ks11 )

= −
∫
d2ηk1

∫
d2ηk2

∫
d2η̃k2

∫
d2η̃k2

δ4(
∑

R q
A)δ4(

∑
R q̃A)

(p1 − k1)2s

δ4(
∑

L q
B)δ4(

∑
L q̃B)

s(p3 − k2)2

= −
∫
d2ηk1

∫
d2ηk2

∫
d2η̃k2

∫
d2η̃k2

δ4(
∑

full q
A)δ4(

∑
full q̃A)

(p1 − k1)2s

δ4(
∑

L q
B)δ4(

∑
L q̃B)

s(p3 − k2)2

= −
δ4(
∑

full q
A)δ4(

∑
full q̃A)

(p1 − k1)2s

(k1 · k2)2

s(p3 − k2)2
= −istAtree(1, 2, 3, 4)

1

(p1 − k1)2(p3 − k2)2

where we used k1 − k2 = p1 + p2.
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2.3.3 Two-loop four-point example

Now we evaluate the three-particle cut illustrated in Fig. 2.3, which is more complicated

than the one-loop example because it contains two five-point subamplitudes:

C2-loop =

∫ 3∏
i=1

d2ηlid
2η̃li Atree

5L (p1, p2, l3, l2, l1)Atree
5R (p3, p4,−l1,−l2,−l3) . (2.3)

We choose the following convenient representations for the five-point tree superamplitudes:

Atree
5L = i

δ4(
∑

L q)δ
4(
∑

L q̃)

sl3l2sl2l1sl11s12s2l3

{
qAl3(l2l1p1p2)

B
A q̃l3B + cyclic

+
1

2

[
qAl3∆̃

L
l2A

+ qAl1∆̃
L
1A + (ql1 + q1)

A∆̃L
2A + (chiral conjugate)

]}
,

Atree
5R = i

δ4(
∑

R q)δ
4(
∑

R q̃)

sl1l2sl2l3sl33s34s4l1

{
qAl1(l2l3p3p4)

B
A q̃l1B + cyclic

+
1

2

[
−qAl1∆̃

R
(−l2)A

− qAl3∆̃
R
3A + (q3 − ql3)

A∆̃R
4A + (chiral conjugate)

]}
, (2.4)

where the L,R superscript of the ∆’s denote which side of the cut they are defined with

respect to. For example, we have,

∆̃L
l2A

= (l2l1p1p2 − l2p2p1l1)
B

A q̃l2B ,

∆̃R
(−l2)A

= −(l2l3p3p4 − l2p4p3l3)
B

A q̃l2B . (2.5)

As discussed previously, one can extract an overall supermomentum delta function δ4(
∑

E q)δ
4(
∑

E q̃)

outside of the integral, leaving behind a degree eight delta function, which can be used to lo-

calize two pairs of ηs and η̃s. Here we choose to localize ηl1 , ηl2 and their antichiral partners.
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Thus the fermionic delta functions from the two tree amplitudes combine to give,

δ4
(∑

L

q
)
δ4
(∑

L

q̃
)
δ4
(∑

R

q
)
δ4
(∑

R

q̃
)

= δ4
(∑

E

q
)
δ4
(∑

E

q̃
)
s2l1l2

×δ2
(
ηl1a + s−1

l1l2
〈l1a|/l2(ql3 + q1 + q2)

)
δ2
(
ηl2b + s−1

l1l2
〈l2b|/l1(ql3 + q1 + q2)

)
×δ2

(
η̃ȧl1 + s−1

l1l2
[lȧ1 |/l2(q̃l3 + q̃1 + q̃2)

)
δ2
(
η̃ḃl2 + s−1

l1l2
[lḃ2|/l1(q̃l3 + q̃1 + q̃2)

)
, (2.6)

which is a direct application of eq. (1.31). From the above, one can immediately see that

the delta function localizes the d2ηlid
2η̃li integral in eq. (2.3) for i = 1, 2.

After factoring out the fermionic delta functions in A5LA5R, the remaining function

is of Grassmann degree four, and only terms proportional to (ηl3)
2(η̃l3)

2 can saturate the

remaining Grassmann integrals. Keeping in mind that ηl1 , ηl2 , η̃l1 , η̃l2 are localized through

eq. (2.6), the contributing terms in the curly bracket in eq. (2.4) are,

{
qAl3(l2l1p1p2)

B
A q̃l3B + qAl2(l1p1p2l3)

B
A q̃l2B + qAl1(p1p2l3l2)

B
A q̃l1B +

1

2

[
qAl3∆̃

L
l2A

+ q̃l3A∆
LA
l2

]}
×
{
qAl1(l2l3p3p4)

B
A q̃l1B + qAl2(l3p3p4l1)

B
A q̃l2B + qAl3(p3p4l1l2)

B
A q̃l3B − 1

2

[
qAl1∆̃

R
(−l2)A

+ q̃lA∆
RA
(−l2)

]}
.

(2.7)

Thus performing the final d2ηl3d
2η̃l3 integration gives for eq. (2.3),

C2-loop =
is23Atree

4 (p1, p2, p3, p4)

s12(l3 + l2)4(l1 + p1)2(p2 + l3)2(l3 − p3)2(p4 − l1)2

×
{
〈l3|/l2/l1/p1/p2 +

/l1/p1/p2
/l3/l2/l1

(l1 + l2)2
+
/l2/l1/p1/p2

/l3/l2

(l1 + l2)2
|l3]

−1

2

[
〈l3|

(/l2/l1/p1/p2 −/l2/p2/p1
/l1)/l2/l1

(l1 + l2)2
|l3]− [l3|

(/l2/l1/p1/p2 −/l2/p2/p1
/l1)/l2/l1

(l1 + l2)2
|l3〉

]}a

ȧ

×
{
〈l3|

/l2/l3/p3/p4
/l1/l2

(l1 + l2)2
+
/l1/l2/l3/p3/p4

/l1

(l1 + l2)2
+ /p3/p4

/l1/l2|l3]

+
1

2

[
〈l3|

(/l2/l3/p3/p4 −/l2/p4/p3
/l3)/l2/l1

(l1 + l2)2
|l3]− [l3|

(/l2/l3/p3/p4 −/l2/p4/p3
/l3)/l2/l1

(l1 + l2)2
|l3〉

]} ȧ

a

. (2.8)
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This expression can be cleaned up further, but for our purposes it is simplest to evaluate

it numerically. We have numerically checked that after dividing by the tree amplitude, this

expression matches the analogous expression obtained using four-dimensional cuts [66, 69],

but extended into six dimensions. Since the four-dimensional expression depends only on

Lorentz dot products of momenta, this extension is carried out simply by treating the dot

products as six-dimensional ones.

2.3.4 Multiloop N = 4 super-Yang-Mills and N = 8 supergravity

Following the procedure described above, one can directly check the six-dimensional unitarity

cuts of more complicated multiloop N = 4 sYM amplitudes. Up to three loops, the four-

gluon amplitude is known to be valid in D dimensions (subject to mild power counting

assumptions) [70]. As a nontrivial application of the methods described above, here we

confirm that the complete four-loop four-particle amplitudes ofN = 4 sYM theory computed

in ref. [67] are indeed valid for D ≤ 6. In that paper, the amplitude was given as a linear

combination of 50 integrals of the form,

stAtree
4

∫ ( 4∏
i=1

dDli
(2π)D

)
Nk(li, pi)∏16

j=1 l
2
j

, (2.9)

where the numerator Nk is a polynomial of degree six in the loop and external momenta. Of

these integrals, six are planar and the rest nonplanar. In ref. [67], many of the terms in the

numerators were explicitly determined using cuts with D = 4 momenta and helicity states.

Although a number of nontrivial checks were performed partially confirming their validity

in D > 4 dimensions, it is still useful to have a complete confirmation valid especially for

D = 11/2, which is the lowest dimension where an ultraviolet divergence can occur.

As explained in ref. [71], the validity of N = 4 sYM amplitudes in D dimensions implies

that the corresponding N = 8 supergravity amplitudes are valid as well. This follows

from the construction of N = 8 supergravity amplitudes from corresponding N = 4 sYM

amplitudes using the unitarity method in conjunction with the KLT relations [74], which are
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Figure 2.4: The eleven basic cuts decomposing a four-point four-loop amplitude into a
product of tree amplitudes. Together with ones involving two-particle cuts, these are the
basic ones for determining a massless four-point four-loop amplitude, including nonplanar
contributions [71, 67]. The complete spanning set is given by taking all possible distinct
permutations of cut and external legs.

known to be valid in D dimensions. We therefore need only confirm the D = 6 validity of

the N = 4 sYM amplitudes to confirm the result for N = 8 supergravity for 4 < D ≤ 6. A

key conclusion of ref. [71] is that the four-loop four-point amplitude of N = 8 supergravity

then cannot diverge in dimensions lower than D = 11/2, matching the behavior of N = 4

sYM theory.

As discussed in refs. [71, 67], any four-point four-loop amplitude of a massless theory

can be completely determined (up to scale-free integrals that integrate to zero in dimen-

sional regularization) via a set of eleven basic cuts shown in Fig. 2.4 along with simpler

ones containing two-particle cuts, not displayed. The complete spanning set is obtained

by considering all permutations of the legs of each constituent tree amplitude. This set is

constructed by demanding that all potential terms are detectable in at least one cut. To

carry out our six-dimensional evaluation, we compare the cuts formed from the products of

tree amplitudes against the corresponding cuts of the amplitudes as given in ref. [67]. In the

latter form, after dividing by the tree amplitude, only Lorentz inner products remain in the

amplitude, making numerical comparisons in six dimensions straightforward. In appendix B,

we give an explicit analytic evaluation of the sample nonplanar cut shown in Fig. 2.1.
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Figure 2.5: A nontrivial cut of the planar four-point six-loop N = 4 sYM theory.

More generally, after extracting an overall supermomentum-conservation delta function

from the cuts, the remaining delta functions localize most of the ηη̃ integration, leaving

behind six, four, and two pairs of ηη̃ respectively for diagrams (a), (b,c,d,e,g,j), and (f,h,i,k).

These extra pairs of ηη̃s then saturate the remaining integration, as was the case in the

two-loop example above. This then gives us a result for the state sum of these cuts, which

we evaluate with six-dimensional kinematics constrained to satisfy the on-shell conditions.

We find appropriate numerical solutions to the cut conditions by sequentially building

momenta that satisfy the on-shell conditions of each of the constituent tree amplitudes in a

cut. For a constituent n-point tree amplitude, we need to impose momentum conservation

and take the momenta on shell, p2i = 0. For n − 2 of the legs, we can choose arbitrary

null vectors, imposing the momentum conservation constraints on the final two legs. We

label the sum of the arbitrary n − 2 momenta as P =
∑n−2

i pi. We then define pn−1 ≡

(−P 2/2k · P ) k, where k is an arbitrary null vector. With this choice then pn ≡ pn−1 +

K automatically satisfies the on-shell condition p2n = 0. (It can happen that momentum

conservation constraints can lead to inconsistencies in this simple procedure, if a tree does

not have at least two unspecified legs. Although this can always be avoided in our case, we

note that such inconsistencies can be resolved by solving the cut conditions for groups of

tree amplitudes instead of one by one.)

By systematically stepping through the spanning set of cuts described above, we confirm

that for D ≤ 6 the full amplitude is correctly constructed by the mostly four-dimensional

evaluation of ref. [67], as expected.
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Another interesting case is the four-point six-loop amplitude of N = 4 sYM theory.

At six loops, the planar amplitudes can be expressed as a linear combination of integrals

similar to the four-loop form (2.9), except that the numerator Nk is a polynomial in the

loop and external momenta of degree ten instead of degree six. In four dimensions, any

Gram determinant det(pi · pj) vanishes for pi and pj corresponding to any five independent

momenta, since there can be no more than four linearly independent momenta. For the six-

loop four-point amplitude we have a total of nine independent external and loop momenta.

Thus with four-dimensional momenta and spinors in the cuts, the constructed amplitude is

trivially invariant under the shifts,

Nm → Nm + am det(pi · pj) , (2.10)

although its form changes. The am are constants. If we impose dual conformal symmetry [75,

68, 51, 76], the planar numerators are fixed with am = 0. What about higher dimensions?

Iterated two-particle cuts are simple to evaluate inD dimensions [66, 69], with the result that

all am detectable in such cuts vanish. As a more nontrivial check, we evaluated the cut shown

in Fig. 2.5 in six dimensions using the methods described above and numerically compared

it against the same cut obtained via four-dimensional methods [51, 39, 67] and extended

into six dimensions. Because this cut is composed of four- and five-point tree amplitudes,

its evaluation in six dimensions is similar to the four-loop cut described in appendix B. We

find that am = 0 in six dimensions to match the cut Fig. 2.5. Although we did not check a

spanning set of cuts, this result strongly suggests that all am vanish.
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CHAPTER 3

Dual Conformal Properties of Six-Dimensional

Maximal Super Yang-Mills Amplitudes

3.1 Introduction

Dual superconformal symmetry [75, 9] has played an important role in understanding the

structure of planar four-dimensionalN = 4 super-Yang-Mills (sYM) theory at both strong [8,

77, 78, 10] and weak coupling [79, 80]. In particular, the closure of the original and dual

superconformal symmetries forms an infinite-dimensional Yangian symmetry [81], which has

been extremely useful in determining the planar amplitudes of four-dimensional N = 4

sYM [82, 83, 84, 85].

Because the realization of this symmetry relies heavily on four-dimensional twistor vari-

ables [86, 87, 88], it is not immediately apparent how the symmetry behaves away from four

dimensions. This is an important question because the loop amplitudes are infrared diver-

gent and require regularization in four dimensions, and the dimensional regulator breaks the

symmetry [9, 80, 89]. Generically, any regularization scheme will result in either altering the

dimensionality or the massless condition of the external momenta, both of which are essential

to the definition of twistors. While one can modify the dual symmetry generators to account

for massive regulators [90], thus making the symmetry exact, it is a priori not apparent that

such a symmetry should exist without explicit calculation of the loop amplitudes, although

it is expected to exist.

To clarify these issues, six-dimensional four-point sYM multiloop amplitudes were re-

cently set up [2] using the six-dimensional spinor helicity formalism and on-shell superspace
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of refs. [33, 1]. If one restricts the external momenta to a four-dimensional subspace, these

should correspond to four-dimensionalN = 4 sYM amplitudes with loop momenta continued

to six dimensions. Interestingly, four-dimensional dual conformal symmetry can be used to

restrict the form of the multiloop planar integrand, and at four points, this integrand can

be straightforwardly extended to six dimensions. Furthermore, the four-dimensional dual

conformal boost generator can be extended to incorporate a massive regulator [82], which

can be interpreted as extra-dimensional momenta.

In ref. [2] it was conjectured that the six-dimensional maximal sYM n-point tree am-

plitude, when stripped of the momentum and supermomentum delta functions, transforms

covariantly under dual conformal inversion. More precisely, the delta-function-independent

part of the amplitude inverts with the same inversion weight on all external lines. The delta

functions then introduce extra inversion weight due to the mismatch of mass dimensions of

the momentum and supermomentum delta functions. This conjecture was checked explicitly

against the simple four-point tree amplitude.

In this chaper, we will show that the conjecture holds for all n ≥ 4–point tree amplitudes.

We will establish the proof by induction; assuming that the (n− 1)–point amplitude inverts

covariantly, via BCFW recursion relations [37], the n–point amplitude will invert in the same

way. This proof follows a similar line given for the four-dimensional N = 4 sYM theory in

ref. [91].

At loop level, while it is expected that the six-dimensional loop integration measure

spoils any dual conformal properties present at tree level, we can recover good behavior by

restricting our attention to the integrand. Using the tree-level result, we will demonstrate

that the multiloop planar integrands invert in the same fashion as in four dimensions; they

are covariant with equal weight on all external lines, and with extra weight for the dual

loop variables. We proceed by combining the tree-level result with the generalized unitarity

method [41] to show that all planar cuts, after restoring the cut propagators, invert uniformly,

and thus the planar multiloop integrand inverts in the same way.

By restricting the loop integration to a four-dimensional subspace, the six-dimensional
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maximal sYM amplitudes can be interpreted as four-dimensional massively regulated N =

4 sYM amplitudes. Furthermore, the four-dimensional loop integration measure inverts

with the precise weight to cancel the extra weight of dual loop variables in the integrand.

Because ultraviolet divergences are absent in four dimensions, and the massive regulator does

not break the six-dimensional dual conformal symmetry, one concludes that the regulated

N = 4 amplitude will obey the exact symmetry. Assuming cut constructability of the loop

amplitudes, which is expected for maximally supersymmetric Yang-Mills, this demonstrates

that the dual conformal symmetry is an exact symmetry of the planar amplitude of massively

regulated N = 4 theory.

3.2 Dual conformal symmetry

Dual conformal symmetry is a symmetry of the superamplitude that is made manifest by

introducing dual (or region) variables subject to the following constraints [9]:

(xi − xj)
AB = λAa

{ij}λ
B
{ij}a , (xi − xj)AB = λ̃{ij}Aȧλ̃

ȧ
{ij}B ,

(θi − θj)
A = λAa

{ij}η{ij}a , (θ̃i − θ̃j)A = λ̃{ij}Aȧη̃
ȧ
{ij}, (3.1)

where each leg is labeled by the indices {ij} of the two adjacent regions, the order of which

indicates the direction of momentum flow along the leg (for example, pµ{ij} = −pµ{ji}). For

tree amplitudes, this notation is redundant since j can always be chosen as i + 1. However

this prescription does not generalize to loop level, and thus we use a more general notation

in anticipation of the multiloop discussion in section 3.4. We will go back and forth between

using indices (i, j, . . .) to label regions and to label legs; the meaning of the indices should

be clear from the context. The superamplitude is viewed as a distribution on the full space

(x, θ, θ̃, λ, λ̃, η, η̃), with delta function support on the constraint equations (3.1). The cyclic

nature of the region variables then automatically enforces momentum and supermomentum

conservation.

To obtain the four-dimensional massive amplitudes, we break the six-dimensional spinors
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up into four-dimensional representations. Explicit details can be found in refs. [2, 36]. Here

we just note that the dual variables should also be broken into four-dimensional pieces and

the fifth and sixth dimensional components. With p{ij} = (p̌{ij},m{ij}, m̃{ij}), we have:

x̌i − x̌j = p̌{ij}, ni − nj = m{ij}, ñi − ñj = m̃{ij} , (3.2)

where we use a check mark over a variable to indicate the components in the four-dimensional

subspace. The physical mass squared is then m2
{ij} + m̃2

{ij}.

The dual conformal boost generator can be expressed as a composition of dual conformal

inversions and translations,

Kµ = I Pµ I , (3.3)

so we begin our discussion with the dual conformal inversion operator I. The inversion is

defined on the Clifford algebra as

I[(σµ)AB] ≡ (σ̃µ)
BA , I[(σ̃µ)AB] ≡ (σµ)BA , (3.4)

and on the region variables as

I[xµi ] ≡ (x−1
i )µ =

xiµ
x2i

, I[θAi ] ≡ (x−1
i )ABθ

B
i , I[θ̃iA] ≡ (x−1

i )AB θ̃iB . (3.5)

From the inversion of xµ, we also see that

I[(xi − xj)
AB] = (x−1

i )AC(xi − xj)
CD(x−1

j )DB

= (x−1
j )AC(xi − xj)

CD(x−1
i )DB , (3.6)

and integration measures invert as

I[d6xi] = (x2i )
−6d6xi , I[d4θi] = (x2i )

2d4θi , I[d4θ̃i] = (x2i )
2d4θ̃i . (3.7)

With these definitions in hand, we can deduce the inversion properties of all of the other
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variables by requiring the invariance of the constraint equations (3.1) and the definitions of

the u and w variables in eqs. (1.13) and (1.15). We leave the proofs of these properties to

appendix C and collect the results here:

I[λA{ij}a] =
xiABλ

Ba
{ij}√

x2ix
2
j

=
xjABλ

Ba
{ij}√

x2ix
2
j

, I[η{ij}a] = −

√
x2i
x2j

(
ηa{ij} + (x−1

i )AB θ
A
i λ

Ba
{ij}

)
,

I[λ̃{ij}Aȧ] =
xAB
i λ̃ȧ{ij}B√
x2ix

2
j

=
xAB
j λ̃ȧ{ij}B√
x2ix

2
j

, I[η̃ȧ{ij}] = −

√
x2i
x2j

(
η̃{ij}ȧ + (x−1

i )AB θ̃iAλ̃{ij}Bȧ

)
,

I[uia] =
βuai√
x2i−1

, I[wia] = − 1

β

√
x2i−1w

a
i ,

I[ũiȧ] =
ũȧi

β
√
x2i−1

, I[w̃iȧ] = −β
√
x2i−1w̃

ȧ
i , (3.8)

where β is an unfixed parameter that is irrelevant in our calculations.

Given these inversion rules, one can immediately deduce via eq. (3.3) how each variable

transforms under the dual conformal boost generator Kµ. Alternatively, one can deduce the

same information by requiring that the dual conformal boost generator respects all of the

constraints in eq. (3.1). If we were to use the usual dual conformal boost generator in x

space,

Kµ =
∑
i

(
2xµi x

ν
i − x2i η

µν
) ∂

∂xνi
, (3.9)

the LHS of the definition of the xi in eq. (3.1) would be nonzero under boosts, while the

RHS would vanish. To correct this, we must add derivatives with respect to λ and λ̃ to Kµ.

These new derivatives in turn would not be compatible with the definition of θi, so we must

also add θ and η derivatives. Requiring that all of the constraints in eq. (3.1) are consistent
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with Kµ then yields

Kµ =
∑
i

[(
2xµi x

ν
i − x2i η

µν
) ∂

∂xνi
+ θAi (σ

µ)ABx
BC
i

∂

∂θCi
+ θ̃iA(σ̃

µ)ABxiBC
∂

∂θ̃iC

]

+
1

2

∑
{jk}

[
λAa
{jk}(σ

µ)AB(xj + xk)
BC ∂

∂λCa
{jk}

− (θj + θk)
A(σµ)ABλ

B
{jk}a

∂

∂η{jk}a

+ λ̃{jk}Aȧ(σ̃
µ)AB(xj + xk)BC

∂

∂λ̃{jk}Cȧ

− (θ̃j + θ̃k)A(σ̃
µ)ABλ̃ȧ{jk}B

∂

∂η̃ȧ{jk}

]
,

(3.10)

where i runs over all regions, and {jk} runs over all legs. The bosonic part of this generator

was given in ref. [2]. One can explicitly check that the infinitesimal transformations generated

by this dual conformal boost generator match with those generated by eq. (3.3).

3.3 Dual conformal properties of tree-level amplitudes

In this section, we show that the tree-level amplitudes of six-dimensional maximal sYM

exhibit dual conformal covariance. In ref. [2], the four-point tree-level amplitude was shown

to be covariant under dual conformal inversion,

I[Atree
4 ] = (x21)

2(x21x
2
2x

2
3x

2
4)Atree

4 . (3.11)

Note that the extra factor (x21)
2 relative to the four-dimensional result comes from the mis-

match of the degrees of the momentum and supermomentum delta functions in six dimen-

sions. In six dimensions, the momentum conservation delta function is of degree six instead

of degree four as in four dimensions. Since the fermionic delta function is still of degree

eight, there will be a mismatch in inversion weights of degree two in (x21). After separating

out the delta functions from the rest of the amplitude,

Atree
n = δ6

(∑
i∈E

pi

)
δ4

(∑
i∈E

qi

)
δ4

(∑
i∈E

q̃i

)
fn , (3.12)
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it was conjectured that the function fn, for n ≥ 4, transforms as

I[fn] =

(∏
i∈E

x2i

)
fn (3.13)

under dual conformal inversion. We prove this by induction, utilizing the BCFW recursion

relations [37]; assuming that all fm transform as in eq. (3.13) for 4 ≤ m < n, each term in

the BCFW recursive construction of fn will respect eq. (3.13), and hence so will fn. For

the three-point amplitude, due to special kinematics, it is possible to consider the external

momenta in a four-dimensional subspace. It is then conceivable that the four-dimensional

dual conformal properties carry over to higher dimensions via covariance. However, closer

inspection is warranted, because the polarization vectors of the gluons could point outside

of the subspace. Furthermore, the six-dimensional three-point amplitude is not proportional

to the supermomentum delta function, and hence f3 cannot be defined.

Given that the function fn inverts as eq. (3.13), acting with the dual conformal boost

generator then gives

Kµ[fn] =

(∑
i∈E

2xµi

)
fn. (3.14)

The above results can be rewritten for the massive amplitudes. In four-dimensional

notation, the conformal inversion acts as

I [x̌µ] =
x̌µ
x2
, I [n] = − n

x2
, I [ñ] = − ñ

x2
, (3.15)

where x2 = x̌2 − n2 − ñ2. The massive amplitude then transforms under the dual conformal

boost generators as

Ǩµ[fn] =

(∑
i∈E

2x̌µ̂i

)
fn , Kn[fn] =

(∑
i∈E

2ni

)
fn , K ñ[fn] =

(∑
i∈E

2ñi

)
fn . (3.16)

The generator Ǩµ is closely related to the dual generator for the massively regulated ampli-
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tude [90]. The bosonic dual variable part is

Ǩµ =
∑
i

[
2 x̌µi

(
x̌νi

∂

∂x̌νi
+ ni

∂

∂ni

+ ñi
∂

∂ñi

)
− x2i

∂

∂x̌iµ

]
, (3.17)

while the bosonic part of the fifth and sixth components of Kµ is

Kn =
∑
i

[
2ni

(
x̌νi

∂

∂x̌νi
+ ni

∂

∂ni

+ ñi
∂

∂ñi

)
+ x2i

∂

∂ni

]
,

K ñ =
∑
i

[
2 ñi

(
x̌νi

∂

∂x̌νi
+ ni

∂

∂ni

+ ñi
∂

∂ñi

)
+ x2i

∂

∂ñi

]
. (3.18)

Since the massive formulation is obtained straightforwardly from the six-dimensional formal-

ism, from now on we will work with manifest six-dimensional covariance.

3.3.1 The BCFW shift in dual coordinates.

Taking the BCFW shift to be on legs 1 and n, we have

p1(z) = p1 + zr , q1(z) = q1 + zs , q̃1(z) = q̃1 + zs̃ ,

pn(z) = pn − zr , qn(z) = qn − zs , q̃n(z) = q̃n − zs̃ . (3.19)

The precise forms of r, s and s̃ are given in eqs. (1.24) and (1.28). For our purposes, it is

sufficient to note that this implies a shift in only the dual coordinates x1, θ1 and θ̃1,

p1(z) = x1(z)− x2 , q1(z) = θ1(z)− θ2 , q̃1(z) = θ̃1(z)− θ̃2 ,

pn(z) = xn − x1(z) , qn(z) = θn − θ1(z) , θ̃n(z) = θ̃n − θ̃1(z) , (3.20)

where

x1(z) = x1 + zr , θ1(z) = θ1 + zs , θ̃1(z) = θ̃1 + zs̃ . (3.21)
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Figure 3.1: A BCFW diagram without three-point subamplitudes.

Thus each BCFW term can be defined in a dual graph with just one shifted dual coordinate.

We will denote the legs with shifted momentum by placing hats over the leg labels, while a

hat over x and θ is used for shifted regions.

There are two types of BCFW diagrams, characterized by the presence or absence of a

three-point subamplitude. We must consider each case separately, due to the fact that we

cannot pull out an overall supermomentum conservation delta function from the three-point

amplitude, and thus the three-point amplitude does not have the straightforward inversion

of eq. (3.13).

3.3.2 BCFW diagrams without three-point subamplitudes

We first consider the case where there is no three-point subamplitude, as in Fig. 3.1. The

amplitudes on the left and right can be written as

AL = δ6

(∑
i∈L

pi

)
δ4

(∑
i∈L

qi

)
δ4

(∑
i∈L

q̃i

)
fL(1̂, · · · , j, P̂ ) ,

AR = δ6

(∑
i∈R

pi

)
δ4

(∑
i∈R

qi

)
δ4

(∑
i∈R

q̃i

)
fR(−P̂ , j + 1, · · · , n̂) . (3.22)

Each term in the BCFW recursion can then be written as

δ6

(∑
i∈E

pi

)
δ4

(∑
i∈E

qi

)
δ4

(∑
i∈E

q̃i

)
f (j)
n , (3.23)
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where f
(j)
n is the contribution to fn from the BCFW diagram labeled by j,

f (j)
n =

i

P 2

∫
d2ηPd

2η̃P δ
4

(∑
i∈L

qi

)
δ4

(∑
i∈L

q̃i

)
fLfR . (3.24)

From the induction step, the functions fL and fR invert as

I [fL] =
(
x̂21x

2
2 · · ·x2j+1

)
fL ,

I [fR] =
(
x2j+1 · · ·x2nx̂21

)
fR . (3.25)

The propagator in f
(j)
n has a simple inversion, given by

I

[
1

P 2

]
= I

[
1

x21,j+1

]
=
x21x

2
j+1

x21,j+1

, (3.26)

so the only remaining piece of f
(j)
n is the fermionic integral. Since the fermionic delta function

is of degree eight, the fermionic integral can be completely localized by the delta functions,

and the ηP , η̃P s in fL, fR will be replaced by the solution of the delta functions. The replace-

ment does not affect the inversion properties of fL, fR because it simply amounts to the use

of supermomentum conservation. The integral was shown in eq. (1.44) to give

∫
d2ηPd

2η̃P δ
4

(∑
i∈L

qi

)
δ4

(∑
i∈L

q̃i

)
=

(
θ̂1 − θj+1

)A
λ̃P̂Aȧλ̃

ȧ
P̂B

(
θ̂1 − θj+1

)B
×
(̂̃θ1 − θ̃j+1

)
C

λCa
P̂
λD
P̂a

(̂̃θ1 − θ̃j+1

)
D

. (3.27)

Note that we do not write fL and fR in the integral because they are independent of ηP , η̃P

after the replacement. To see how this expression inverts, we use eqs. (3.5) and (3.8) on each
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Figure 3.2: A BCFW diagram with a three-point subamplitude.

factor, such as

I

[(
θ̂1 − θj+1

)A
λ̃P̂Aȧ

]
= − 1√

x̂21x
2
j+1

(
θ̂B1 (x̂

−1
1 )BAx̂

AC
1 λ̃ȧ

P̂C
− θBj+1(x

−1
j+1)BAx

AC
j+1λ̃

ȧ
P̂C

)
= − 1√

x̂21x
2
j+1

(
θ̂1 − θj+1

)A
λ̃ȧ
P̂A

. (3.28)

Doing the same for the other factors, we find

I

[∫
d2ηPd

2η̃P δ
4

(∑
i∈L

qi

)
δ4

(∑
i∈L

q̃i

)]

=
1

(x̂21x
2
j+1)

2

∫
d2ηPd

2η̃P δ
4

(∑
i∈L

qi

)
δ4

(∑
i∈L

q̃i

)
(3.29)

Combining equations (3.25), (3.26) and (3.29), we arrive at the desired result

I
[
f (j)
n

]
=

(∏
i∈E

x2i

)
f (j)
n . (3.30)

3.3.3 BCFW diagrams with a three-point subamplitude

To make a statement about the inversion weight of the entire n-point amplitude, we must also

consider the BCFW terms which contain a three-point subamplitude, as shown in Fig. 3.2.

It was shown in section 1.5.2 that the contribution of such a diagram is given as,

42



∫
d2ηPd

2η̃P A3
i

P 2
An−1 (3.31)

= −δ6
(∑

i∈E

pi

)
δ4

(∑
i∈E

qi

)
δ4

(∑
i∈E

q̃i

)
(u2 − u1̂) (ũ2 − ũ1̂)

1

P 2
fn−1 ,

where fn−1 has been rewritten completely in terms of external leg variables by using the

substitutions qP̂ = −q1̂ − q2 etc. Hence,

f (2)
n = − (u2 − u1̂) (ũ2 − ũ1̂)

1

P 2
fn−1 . (3.32)

The inversion of P 2 and fn−1 here are straightforward, and we are left with the remaining

factors involving u and ũ. We consider the inversion of (u2 − u1̂) in detail. After applying

eq. (3.8), we get

I [u2 − u1̂] = −

√
x22
x̂21x

2
3

βu2a
(
ηa2 + (x−1

2 )ABθ
A
2 λ

Ba
2

)
+

√
x̂21
x22x

2
3

βu1̂a

(
ηa
1̂
+ (x̂−1

1 )AB θ̂
A
1 λ

Ba
1̂

)
. (3.33)

We can combine the θ-dependent terms in the above equation as

β√
x̂21x

2
2x

2
3

(
−u2a x2AB θ

A
2 λ

Ba
2 + u1̂a x̂1AB θ̂

A
1 λ

Ba
1̂

)
=

−β
2
√
x̂21x

2
2x

2
3

u1̂a(x̂1 + x2)AB(θ
A
2 − θ̂A1 )λ

Ba
1̂

=
β

2
√
x̂21x

2
2x

2
3

u1̂a(x̂1 + x2)ABλ
Ab
1̂
λBa
1̂
η1̂b

=
−β

4
√
x̂21x

2
2x

2
3

(x̂1 − x2)
AB (x̂1 + x2)AB u1̂

= β u1̂

(√
x̂2
1

x2
2x

2
3

−

√
x2
2

x̂2
1x

2
3

)
, (3.34)
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where in the second line we have used x̂1AB λ
Ba
1̂

= x2AB λ
Ba
1̂

and u1̂aλ
Ba
1̂

= u2aλ
Ba
2 . Putting

this back into eq. (3.33), we arrive at

I [(u2 − u1̂)] = β

√
x22
x̂21x

2
3

(u2 − u1̂) . (3.35)

The inversion of the antichiral factor (ũ2 − ũ1̂) behaves in the same way, except that β

appears in the denominator. Thus, putting everything together, we have

I
[
f (2)
n

]
=

(
x22
x̂21x

2
3

)(
x21x

2
3

) (
x̂21x

2
3 · · ·x2n

)
f (2)
n =

(∏
i∈E

x2i

)
f (2)
n . (3.36)

This completes the proof of eq. (3.13). In the next section, we turn our attention to planar

multiloop amplitudes.

3.4 Loop amplitudes through unitarity cuts

In this section, we will demonstrate that the L–loop planar integrand is covariant under

inversion in the following way:

I
[
IL
n

]
=

(∏
i∈E

x2i

)(
L∏
i=1

(x2li)
4

)
IL
n , (3.37)

where the integrand is defined with respect to the amplitude as

AL
n = δ6

(∑
i∈E

pi

)
δ4

(∑
i∈E

qi

)
δ4

(∑
i∈E

q̃i

)∫ ( L∏
i=1

d6xli

)
IL
n . (3.38)

Because we are focusing on the integrand itself, there are extra loop region weights (x2li)
4.

This is the same result as in four dimensions, although in six dimensions the loop integration

measure inverts with weight (x2li)
−6, which does not exactly cancel the weight of the inte-

grand. Therefore, the amplitude after integration will not be covariant unless the integral is

restricted to four dimensions, which, as we have discussed, is the case when interpreting the
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extra two dimensions as a massive regulator [90].

Our approach to eq. (3.37) is to study the inversion properties of unitarity cuts of the

amplitude. In the unitarity method, we are required to perform state sums across the cut

propagators, which is achieved by integrating the Grassmann variables ηli , η̃li of the cut lines.

Since the tree amplitudes contributing to the cuts have definite inversion properties, we only

need to understand how the ηli , η̃li integration modifies the inversion weight.

To make statements about inversion properties, it is more natural to express everything

in terms of dual variables than in terms of η and λ. We therefore trade the supersum η

integrals for θ integrals. Suppose a cut not containing any three-point subamplitudes has

an internal line between regions i and j. The supersum across this line is expressed as an

integral with measure d2η{ij}d
2η̃{ij}. The transformation to dual coordinates is achieved by

inserting 1 into the cut in a particular way, given by

AL
n

∣∣∣
cut

=

∫ ∏
{ij}

d2η{ij}d
2η̃{ij} ×Atree

(1) Atree
(2) Atree

(3) . . .Atree
(m)

=

∫ ∏
{ij}

d2η{ij}d
2η̃{ij} ×

∏
α

δ4

(∑
k∈α

qk

)
δ4

(∑
k∈α

q̃k

)
fα

=

∫ ∏
{ij}

d2η{ij}d
2η̃{ij} ×

∏
k

d4θkd
4θ̃k ×

∏
α

fα

×
∏
{rs}

δ4
(
θAr − θAs − λAa

{rs}η{rs}a
)
δ4
(
θ̃rB − θ̃sB − λ̃{rs}Bȧη̃

ȧ
{rs}

)
, (3.39)

where the product over {ij} runs over all internal cut lines, the product over k runs over

all regions, the product over {rs} runs over all lines, and the product over α runs over the

tree subamplitudes. The first two lines of this equality are the definition of the cut, where

we have ignored the momentum conservation delta functions on the subamplitudes, because

they combine straightforwardly into an overall momentum conservation when cut conditions

are relaxed and loop integrals are replaced. Because the integrand in the third and fourth

lines has a shift symmetry in the θ variables, the measure
∏
d4θ is understood to include

only (F − 1) of the regions, where F = n + L is the total number of regions in the graph.
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Figure 3.3: A cut of the two-loop four-point amplitude. (a) In the usual expression of the
cut, this diagram is dressed with a tree-level amplitude for each blob and a state sum over
each internal line. (b) As discussed in the text, for planar cuts this is equivalent to dressing
the diagram with an f function for each blob, introducing the dual variable constraints for
every line, and integrating over the dual θ variables of every region. Finally, a state sum over
each internal line is performed. One can check that the dressing of (b) contains 8× 8 = 64
fermionic delta functions and 5× 8 = 40 integrations over θ (because one of the six regions
is fixed by the shift symmetry), leaving 24 unintegrated fermionic delta functions, which are
exactly the supermomentum conservation of the subamplitudes in dressing (a).

An explicit example for the two-loop four-point amplitude is given schematically in Fig. 3.3.

It does not matter how we fix the symmetry in the measure; our choice will only affect

the overall supermomentum delta function, which does not contribute to the conjectured

transformation eq. (3.37). We therefore leave this detail implicit.

To see the equality of eq. (3.39), note that we can pull the subamplitude supermomentum

delta functions out of the θ delta functions in the fourth line, leaving behind (P − V ) delta

functions to be used for localizing the θ integrals, where P is the number of lines in the

graph, and V is the number of subamplitudes. Because there are (F − 1) of the θ integrals,

the leftover delta functions saturate the integral when F − 1 = P − V , which is indeed the

case for planar graphs.

We can now use the θ delta functions to eliminate all explicit η dependence from each

fα, so that the entire η dependence of the cut appears in the form

∫
d2η{ij}δ

4
(
θAi − θAj − λAa

{ij}η{ij}a
)
. (3.40)
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This performs the chiral half of the supersum across the line between regions i and j. The

antichiral half of the supersum is completely analogous, so we leave it out. The integration

over η{ij} thus contributes

θij · xij · θij ≡ (θi − θj)
A(xi − xj)AB(θi − θj)

B . (3.41)

We demonstrated in section 3.3.2 that this factor inverts with weight (x2ix
2
j)

−1.

Returning to the cut in eq. (3.39), the result of doing the η integrals is

AL
n

∣∣∣
cut

=

∫ ∏
k

d4θkd
4θ̃k ×

∏
α

f 0
α ×

∏
{ij}

(θij · xij · θij)(θ̃ij · xij · θ̃ij)

×
∏
{rs}

δ4
(
θAr − θAs − λAa

{rs}η{rs}a
)
δ4
(
θ̃rA − θ̃sA − λ̃{rs}Aȧη̃

ȧ
{rs}

)
, (3.42)

where now {rs} only runs over the external lines. An overall supermomentum delta function

pulls out, leaving (n − 1) delta functions of each chirality, which completely saturate the θ

integrations over the external regions (this also takes care of the shift symmetry detail). We

are finally left with

AL
n

∣∣∣
cut

= δ6

(∑
i∈E

pi

)
δ4

(∑
i∈E

qi

)
δ4

(∑
i∈E

q̃i

)

×
∫ (∏

k

d4θkd
4θ̃k

)∏
{ij}

(θij · xij · θij)(θ̃ij · xij · θ̃ij)

∏
α

fα , (3.43)

where the product over k now runs only over the internal regions, and we have replaced the

overall momentum conservation.

We are now in a position to formulate a set of diagrammatic rules for inverting the cut,

after restoring the cut propagators. Because each piece of the second line of eq. (3.43) inverts

covariantly, the cut inverts to itself multiplied by an overall prefactor (not considering the

inversion of the overall delta functions). To calculate the prefactor for a given cut, we have

the following rules:
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• For every loop region k, the θk, θ̃k measure contributes a factor (x2k)
4.

• Each internal leg {ij} contributes (x2ix
2
j)

−1, where a factor of x2ix
2
j comes from the cut

propagator, and a factor of (x2ix
2
j)

−2 comes from (θij · xij · θij)(θ̃ij · xij · θ̃ij)

• Each tree-level subamplitude contributes
∏

i x
2
i , where i runs over all regions adjacent

to the tree.

Given a region i, it is straightforward to invert these rules to figure out what power of x2i

appears in the prefactor. If i is an external region, x2i must appear to the power (ρi − σi),

where ρi and σi are the number of tree-level subamplitudes and the number of internal

propagators, respectively, adjacent to region i. Each external region necessarily borders

one fewer of the internal propagators than the subamplitudes, so the external regions each

give x2i . If, on the other hand, i is an internal region, then x2i appears to the power (ρi −

σi + 4). All internal regions necessarily border the same number of internal propagators as

subamplitudes, so the internal regions each give (x2i )
4. Therefore, we have reached the result

that each planar cut with no three-point subamplitudes inverts with the prefactor

(∏
i∈E

x2i

)(
L∏
i=1

(x2li)
4

)
, (3.44)

after the cut propagators have been restored, and not including the overall momentum and

supermomentum conservation. It is not difficult to extend this result to cuts involving

three-point subamplitudes. The supersum between a three-point subamplitude and another

subamplitude in a cut proceeds in the same way as sewing a three-point tree in BCFW. The

resulting merged subamplitudes then invert as in eq. (3.36).

Because all cuts invert in exactly the same way, and the correct amplitude must satisfy

all generalized unitarity cuts, we conclude that the L–loop integrand inverts as

I
[
IL
n

]
=

(∏
i∈E

x2i

)(
L∏
i=1

(x2li)
4

)
IL
n . (3.45)

For a recent discussion of the transition from cuts to the amplitude, see ref. [92]. Note
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that bubbles on external lines are not cut detectable, so they potentially violate eq. (3.45).

However, because this is the maximally supersymmetric theory, we do not expect these

contributions to appear [92].

If we restrict the loop integration measure in eq. (3.38) to a four-dimensional subspace,

as when interpreting the two extra dimensions as a massive regulator, the measure will

provide an extra inversion weight of
∏

i(x
2
li
)−4, which exactly cancels the extra weight of the

integrand. The inversion then commutes with the integration, since the infrared singularities

have been regulated, and the amplitude obeys an exact dual conformal symmetry to all loops,

which we may write as

I

[∫ ( L∏
i=1

d4xli

)
IL
n

]
=

(∏
i∈E

x2i

)∫ ( L∏
i=1

d4xli

)
IL
n , (massively regulated N = 4) .

(3.46)

3.5 Comments

In this chapter we demonstrated that the six-dimensional maximal sYM tree-level amplitudes

and multiloop integrands exhibit dual conformal covariance. While dual conformal symmetry

has been shown to exist for theories in D 6= 4 [93], it is noteworthy that such a symmetry

can be defined for theories which are not invariant under ordinary conformal symmetry [2,

94]. Also, because a massless on-shell particle in six dimensions is equivalent to a massive

particle in four dimensions, our six-dimensional result then naturally gives the dual conformal

properties of the massively regulated four-dimensional N = 4 theory [90].
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Part II

BCJ Color-Kinematics Duality and

Squaring Relations

50



CHAPTER 4

Gravity as the Square of Gauge Theory

4.1 Introduction

A key lesson from studies of scattering amplitudes is that weakly coupled gauge and gravity

theories have a far simpler and richer structure than is evident from their usual Lagrangians.

A striking example of this is Witten’s remarkable conjecture that scattering amplitudes

in twistor space are supported on curves of a degree controlled by their helicity and loop

order [11, 95, 96]. At weak coupling another remarkable structure visible in on-shell tree

amplitudes are the Kawai-Lewellen-Tye (KLT) relations, which express gravity tree-level

amplitudes as sums of products of gauge-theory amplitudes [74, 97]. These relations were

originally formulated in string theory, but hold just as well in field theory. In fact, in many

cases, they hold even when no string theory lives above the field theory [98].

The KLT relations have recently been recast into a much simpler form in terms of numera-

tors of diagrams with only three-point vertices. In the new representation the diagrammatic

numerators in gravity are simply a product of two corresponding gauge-theory numera-

tors [15]. Underlying these numerator “squaring relations” is a newly discovered duality

between kinematic numerators of gauge theory and their associated color factors, by Bern,

Carrasco and Johansson (BCJ). The BCJ duality states that gauge-theory amplitudes can be

arranged into a form where diagrammatic numerators satisfy a set of identities in one-to-one

correspondence to the Jacobi identities obeyed by color factors. The duality appears to hold

in large classes of theories including pure Yang-Mills theory and N = 4 super-Yang-Mills.

BCJ conjectured that the numerators of gravity diagrams are simply the product of two

corresponding gauge-theory numerators that satisfy the duality. These squaring relations
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were verified in ref. [15] at tree level up to eight points. Interestingly, the duality also leads

to a set of non-trivial relations between gauge-theory amplitudes [15], which are now well

understood in string theory [99]. The numerator duality relations have also been understood

from the vantage point of string theory [100, 101, 102]. In particular, the heterotic string

offers important insight into these relations, because of the parallel treatment of color and

kinematics [101].

The unitarity method [41] immediately implies that gravity loop amplitudes must have

the double-copy property, if the corresponding gauge-theory loop amplitudes can be put in a

form that satisfies the BCJ duality, as does indeed appear to be the case [103]. The squaring

relations then apply to gravity numerators for any value of loop momenta, i.e. with no cut

conditions applied. This is to be contrasted with the KLT relations, which are valid only

at tree level, and can be applied at loop level only on unitarity cuts that decompose loop

amplitudes into tree amplitudes [69]. The KLT relations take a different functional form for

every cut of a given amplitude, depending on the precise tree-amplitude factors involved in

the cut. The squaring relations, on the other hand, take a simple universal form for any

choice of loop momenta.

In our approach to understand the color-kinematics duality, we use a more traditional

Lagrangian viewpoint. A natural question is: what Lagrangian generates diagrams that

automatically satisfy the BCJ duality? We shall describe such a Lagrangian here, and

present its explicit form up to five points. We have also worked out the six-point Lagrangian

and outline its structure, and make comments about the all-orders form of the Lagrangian.

We find that a covariant Lagrangian whose diagrams satisfy the duality is necessarily non-

local. We can make this Lagrangian local by introducing auxiliary fields. Remarkably we

find that, at least through six points, the Lagrangian differs from ordinary Feynman gauge

simply by the addition of an appropriate zero, namely terms that vanish by the color Jacobi

identity. Although the additional terms vanish when summed, they appear in diagrams in

just the right way so that the BCJ duality is satisfied. Based on the structures we find,

it seems likely that any covariant Lagrangian where diagrams with an arbitrary number of

external legs satisfy the duality must have an infinite number of interactions.
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In ref. [104], the problem was posed of how to construct a Lagrangian that reflects the

double-copy property of gravity. That reference carried out some initial steps, showing that

one can factorize the graviton indices into “left” and “right” classes consistent with the

factorization observed in the KLT relations. (See also ref. [105].) Unfortunately, beyond

three points the relationship of the constructed gravity Lagrangian to gauge theory was

rather obscure. As it turns out, a key ingredient was missing: the duality between color and

kinematics, which was discovered much later [15]. Using the modified local version of the

gauge-theory Lagrangian whose Feynman diagrams respect the BCJ duality, we construct a

Lagrangian for gravity valid through five points, as a double copy of the gauge-theory one.

The likely appearance of an infinite number of interactions in the modified gauge-theory

Lagrangian is perhaps natural, because we expect any covariant gravity Lagrangian to also

have an infinite number of terms.

We present a simple application of the BCJ duality. Since the BCJ duality states that

diagrammatic numerators have the same algebraic structure as color factors, we can immedi-

ately make use of different known color representations of amplitudes to write dual formulas

where color and kinematic numerators are swapped. In particular, Del Duca, Dixon and Mal-

toni [106] have given a color decomposition of tree amplitudes using adjoint-representation

color matrices. They derived this color decomposition using the color Jacobi identity and

Kleiss-Kuijf relations [107]. By swapping color and numerator factors in their derivation, we

immediately obtain novel forms of both gauge-theory and gravity tree amplitudes.

4.2 Review of BCJ duality

4.2.1 General Considerations

Consider a gauge-theory amplitude, which we write in a diagrammatic form,

1

gn−2
Atree

n (1, 2, 3, . . . , n) =
∑

diags. i

nici∏
αi
sαi

, (4.1)
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Figure 4.1: A Jacobi relation between color factors of diagrams. According to the BCJ duality

the diagrammatic numerators of amplitudes can be arranged in a way that they satisfy relations

in one-to-one correspondence to the color Jacobi identities.

where the sum runs over all diagrams i with only three-point vertices, the ci are color factors,

the ni are kinematic numerators, and the sαi
are the inverse propagators associated with

the channels αi of the diagram i. Any gauge-theory amplitude can be put into this form

by replacing contact terms with numerator factors canceling propagators, i.e., sα/sα and

assigning the contribution to the proper diagram according to the color factor. The value

of the color coefficient ci of each term is obtained from the diagram i by dressing each

three-point vertex with a structure constant f̃abc, where

f̃abc ≡ i
√
2fabc = Tr

(
[T a, T b]T c

)
, (4.2)

and dressing each internal line with δab.

A key property of the f̃abc is that they satisfy the Jacobi identity. Consider, for example,

the color factors of the three diagrams illustrated in Fig. 4.1. They take the schematic form,

cs ≡ . . . f̃a1a2bf̃ ba3a4 . . . , ct ≡ . . . f̃a1a4bf̃ ba2a3 . . . , cu ≡ . . . f̃a1a3bf̃ ba4a2 . . . ,

(4.3)

where the ‘. . . ’ signify factors common to all three diagrams. The color factors then, of

course, satisfy the Jacobi identity

cs + ct + cu = 0 . (4.4)
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Here we have chosen a sign convention1 that differs from ref. [15].

The BCJ conjecture states that numerators ni can always be found that satisfy Jacobi

relations in one-to-one correspondence with the color Jacobi identities,

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 , (4.5)

where i, j and k label diagrams whose color factors are related by a Jacobi identity. (In

general the relative signs between the color factors in all Jacobi identities cannot be taken

to be globally positive, but according to the BCJ conjecture the relative signs always match

between the color and kinematic identities.) In addition, BCJ duality also requires that

the ni satisfy the same self-anti-symmetry relations as the ci. That is, if a color factor is

anti-symmetric under an interchange of two legs, the corresponding numerator satisfies the

same antisymmetry relations,

ci → −ci ⇒ ni → −ni . (4.6)

We note that when the color-ordered partial amplitudes are expressed in terms of numera-

tors satisfying these self-anti-symmetry relations, they automatically satisfy the Kleiss-Kuijf

relations [107, 106] between color-ordered partial amplitudes [15].

4.2.2 Five-point example and generalized Jacobi-like structures

Consider the five-point case as a simple example, discussed already in some detail from

various viewpoints in refs. [15, 100, 101, 102]. At five points there are 15 numerators and 9

independent duality relations, leaving 6 numerators. Of these remaining numerators, 4 can

be chosen arbitrarily due to a “generalized gauge invariance”. By choosing the remaining

two ni to correctly give two of the partial amplitudes, non-trivial relations between color-

ordered amplitudes can be derived from the condition that the remaining partial amplitudes

1In any given Jacobi relation the relative signs are arbitrary since they always can be moved between
color factors and kinematic numerators.
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are also reproduced correctly. For example,

s35A
tree
5 (1, 2, 4, 3, 5)− (s13 + s23)A

tree
5 (1, 2, 3, 4, 5)− s13A

tree
5 (1, 3, 2, 4, 5) = 0 . (4.7)

This relation has generalizations for an arbitrary number of external legs [15], which have

been derived using string theory [99].

As discussed in refs. [101, 102], eq. (4.7) is equivalent to a relation that exhibits a Jacobi-

like structure,

n4 − n1 + n15

s45
− n10 − n11 + n13

s24
− n3 − n1 + n12

s12
− n5 − n2 + n11

s51
= 0 , (4.8)

where only the sum over terms is required to vanish. In this equation, the Jacobi-like

structure involves additional minus signs because we follow the sign conventions given in

ref. [15] for the expansion of the five-point amplitude,

Atree
5 (1, 2, 3, 4, 5) ≡ n1

s12s45
+

n2

s23s51
+

n3

s34s12
+

n4

s45s23
+

n5

s51s34
,

Atree
5 (1, 2, 4, 3, 5) ≡ n12

s12s35
+

n11

s24s51
− n3

s43s12
+

n13

s35s24
− n5

s51s43
,

Atree
5 (1, 3, 2, 4, 5) =

n15

s13s45
− n2

s23s51
− n10

s24s13
− n4

s45s23
− n11

s51s24
. (4.9)

As explained in ref. [101, 102], relations of the form (4.8) are the natural gauge-invariant

numerator identities that emerge from string theory. Because of the generalized gauge in-

variance, these relations are less stringent than the BCJ duality. Indeed, the individual

terms in eq. (4.8) are not required to vanish, but only their sum. We note that the heterotic

string offers some important insight into the BCJ duality (4.5): in the heterotic string both

color and kinematics arise from world-sheet fields, making the duality more natural [101].

Identities of the form (4.8), though interesting, will not play a role in the analysis below. In

the remainder of this paper we will only be concerned with numerators ni that satisfy the

more stringent BCJ-duality requirements of eq. (4.5).
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4.2.3 Gravity squaring relations

Another conjecture in ref. [15] is that gravity tree amplitudes can be constructed directly

from the ni through “squaring relations”. Consider two gauge-theory amplitudes,

1

gn−2
Atree

n (1, 2, 3, . . . , n) =
∑

diags. i

nici∏
αi
sαi

,

1

g̃n−2
Ãtree

n (1, 2, 3, . . . , n) =
∑

diags. i

ñic̃i∏
αi
sαi

. (4.10)

These two amplitudes do not have to be from the same theory, and can have differing gauge

groups and particle contents. In ref. [15] the requirement that both the ni and the ñi satisfy

the BCJ duality was imposed, i.e. they satisfy all duality conditions ni + nj + nk = 0 and

ñi+ ñj + ñk = 0. The conjectured squaring relations state that gravity amplitudes are given

simply by

−i
(κ/2)n−2

Mtree
n (1, 2, 3, . . . , n) =

∑
diags. i

niñi∏
j sαi

, (4.11)

where the sum runs over the same set of diagrams as in eq. (4.10). The states appearing

in the gravity theory are just direct products of gauge-theory states, and their interactions

are dictated by the product of the gauge-theory momentum-space three-point vertices. The

squaring relations (4.11) were explicitly checked through eight points and have recently been

understood from the KLT relations in heterotic string theory [101].

Using standard factorization arguments it is simple to see why one would expect the BCJ

duality to imply that gravity numerators are a double copy of gauge-theory numerators.

Let us assume that the numerators of all n-point gauge-theory amplitudes (4.1) satisfy

the BCJ duality (4.5). Let us also assume that we have already proven that the squaring

relations (4.11) hold for amplitudes with fewer legs. Consider an ansatz for the n-point

graviton amplitude given in terms of diagrams by the double-copy formula (4.11). We now

step through all possible factorization channels using real momenta. By general field-theory

considerations we know that in each channel the diagrams break up into products of lower-
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point diagrams. The sum over diagrams on each side of the factorization pole forms a lower-

point amplitude. Since each numerator factor of the n-point expression satisfies the duality

condition, we expect the lower-point tree diagrams on each side of the factorized propagator

to inherit this property when we choose special kinematics to factorize a diagram. Thus on

each side of the pole we have a correct set of double-copy numerators for the lower-point

gravity amplitudes. Stepping through all factorization channels we see that we have correct

diagram-by-diagram factorizations in all channels. This provides a strong indication that

the double-copy property follows from BCJ duality.

4.3 A Lagrangian generating diagrams with BCJ duality

We now turn to the question of finding a Lagrangian which generates amplitudes with nu-

merators that manifestly satisfy the BCJ duality. If a local Lagrangian of this type could be

found, it would enable us to construct a corresponding gravity Lagrangian whose squaring

relations with Yang-Mills theory are manifest. We show that such a construction is in-

deed possible, and we present the explicit form of a Yang-Mills Lagrangian which generates

diagrams that respect the BCJ duality up to five points. We use it to construct the corre-

sponding Lagrangian for gravity. We also outline the structure of Lagrangians that preserve

the duality in higher-point diagrams.

4.3.1 General strategy of the construction

A Yang-Mills Lagrangian with manifest BCJ duality can only differ from the conventional

Yang-Mills Lagrangian by terms that do not affect the amplitudes. The amplitudes are

unaffected, for example, by adding total derivative terms or by carrying out field redefinitions.

In fact, the MHV Lagrangian [108] for the CSW [12] expansion is an example where identities

or structures of tree-level amplitudes can be derived through a field redefinition of the original

Lagrangian. Such a construction has the additional complication that a Jacobian can appear

at loop level. Surprisingly, we find that not only does a Lagrangian with manifest BCJ duality

exist, it differs from the conventional Lagrangian by terms whose sum is identically zero by
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the color Jacobi identity! Although the sum over added terms vanishes, they cause the

necessary rearrangements so that the BCJ duality holds. Another curious property is that

the additional terms are necessarily non-local, at least if we want a covariant Lagrangian

without auxiliary fields.

For example, consider five-gluon tree amplitudes. To obtain diagrams that satisfy the

BCJ duality one is required to add terms to the Lagrangian of the form

L′
5 ∼ Tr [Aν , Aρ]

1

�
(
[[∂µAν , Aρ], A

µ] + [[Aρ, A
µ], ∂µAν ] + [[Aµ, ∂µAν ], Aρ]

)
, (4.12)

along with other contractions. If we expand the commutators, the added terms immediately

vanish by the color Jacobi identity. If, however, the commutators are re-expressed in terms

of group-theory structure constants, they generate terms that get distributed across different

diagrams and color factors. We find similar results up to six points, suggesting that it is a

general feature for any number of points.

Since the BCJ duality relates the structure of kinematic numerators and color factors of

diagrams with only three-point vertices, the desired Lagrangian should contain only three-

point interactions. To achieve this we introduce auxiliary fields. The auxiliary fields not only

reduce the interactions down to only three points, they also convert the newly introduced

non-local terms into local interactions. This procedure introduces a large set of auxiliary

fields into the Lagrangian. This is not surprising since we want a double copy of this La-

grangian to describe gravity. The ordinary gravity Lagrangian contains an infinite set of

contact terms; if we were to write it in terms of three-point interactions we would need to

introduce a new set of auxiliary fields for each new contact term in the expansion. Since in

our approach the gravity Lagrangian is simply the square of the Yang-Mills Lagrangian, it

is natural to expect that the desired Lagrangian contains a large (perhaps infinite) number

of auxiliary fields. We now begin our construction of a Yang-Mills Lagrangian with manifest

BCJ duality.
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4.3.2 The Yang-Mills Lagrangian through five points

We write the Yang-Mills Lagrangian as

LYM = L+ L′
5 + L′

6 + . . . (4.13)

where L is the conventional Yang-Mills Lagrangian and L′
n, n > 4 are the additional terms

required to satisfy the BCJ duality. At four points, the BCJ duality is trivially satisfied

in any gauge [15], so L by itself will generate diagrams whose numerators satisfy eq. (4.5).

For simplicity we choose Feynman gauge for L,2 though similar conclusions hold for other

gauges. All contact terms are uniquely assigned to the three-vertex diagram carrying the

corresponding color factor. The L′
n are required to leave scattering amplitudes invariant, and

they must rearrange the numerators of diagrams in a way so that the BCJ duality is satisfied.

It turns out that the set of terms with the desired properties is not unique. Indeed, “self-

BCJ” terms that satisfy the BCJ duality by themselves can also be added. This ambiguity

is related to the residual “gauge invariance” that remains after solving the duality identities

[15, 101].

By imposing the constraint that the generated five-point diagrams satisfy the BCJ dual-

ity (4.5), we find the following Lagrangian:

L = 1
2
Aa

µ�Aaµ − gfa1a2a3∂µA
a1
ν A

a2µAa3ν − 1
4
g2fa1a2bf ba3a4Aa1

µ A
a2
ν A

a3µAa4ν

L′
5 = −1

2
g3fa1a2bf ba3cf ca4a5

×
(
∂[µA

a1
ν]A

a2
ρ A

a3µ + ∂[µA
a2
ν]A

a3
ρ A

a1µ + ∂[µA
a3
ν]A

a1
ρ A

a2µ
) 1

�(Aa4νAa5ρ) . (4.14)

The numerators ni are derived from this action by first computing the contribution from

the three-point vertices, which gives a set of three-vertex diagrams with unique numerators.

Then the contributions from the four- and five-point interaction terms are assigned to the

various diagrams with only three-point vertices according to their color factors. Since these

terms will contain fewer propagators than those obtained by using only three-point vertices,

2We are considering only tree level at this point. Therefore we ignore ghost terms.
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their contributions to the numerators contain inverse propagators. Finally, we combine all

diagrams with the same color factor, however they arose in the procedure above, into a single

diagram. Its kinematic coefficient is the desired numerator that satisfies the BCJ duality. In

this light, the purpose of L′
5 is to restore the BCJ duality (4.5) violated by the interaction

terms of L.

Although L′
5 is not explicitly local, as we mentioned, we can make it local by the in-

troduction of auxiliary fields. It turns out that without auxiliary fields there is no solution

for a local Lagrangian in any covariant gauge that generates numerators satisfying the BCJ

duality. The non-locality explains the difficulty of stumbling onto this Lagrangian without

knowing its desired property ahead of time.

As previously mentioned, L′
5 is identically zero by the color Jacobi identity. To see this

we can relabel color indices to obtain

L′
5 = −1

2
g3(fa1a2bf ba3c + fa2a3bf ba1c + fa3a1bf ba2c)f ca4a5

× ∂[µA
a1
ν]A

a2
ρ A

a3µ
1

�(Aa4νAa5ρ) . (4.15)

As apparent in (4.15), the canceling terms have different color factors and thus appear in

different channels. For the individual diagrams these terms are non-vanishing. Furthermore,

they alter the numerators of the individual diagrams such that the BCJ duality (4.5) is

satisfied.

It is interesting to note that there is one other term that can be added to Yang-Mills at

five points which preserves the relation (4.5):

D5 =
−β
2
g3fa1a2bf ba3cf ca4a5

×
(
∂(µA

a1
ν)A

a2
ρ A

a3µ + ∂(µA
a2
ν)A

a3
ρ A

a1µ + ∂(µA
a3
ν)A

a1
ρ A

a2µ
) 1

�(Aa4νAa5ρ) , (4.16)

where β is an arbitrary parameter. D5 also vanishes identically by the color Jacobi identity.

SinceD5 does not serve to correct lower-point contributions to make the BCJ duality relations

hold through five points, we do not need to include it. It does however show that there are
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families of Lagrangians with the desired properties.

4.3.3 Towards gravity

Now that we have a Lagrangian that gives the desired numerators ni for gauge theory (4.10),

we use it to construct the tree-level gravity Lagrangian by demanding that it gives diagrams

whose numerators are a double copy of the gauge-theory numerators, as in eq. (4.11). How-

ever, as explained above, we need to first bring the Yang-Mills Lagrangian into a cubic form

to achieve this. We can do so by introducing an auxiliary field Ba
µν :

LYM = 1
2
Aaµ�Aa

µ +BaµνBa
µν − gfabc(∂µA

a
ν +Ba

µν)A
bµAcν . (4.17)

This is equivalent to the ordinary Yang-Mills Lagrangian as we can immediately verify by

integrating out Ba
µν , i.e. by substituting the equation of motion of Ba

µν ,

Ba
µν =

g

2
fabc(Ab

µA
c
ν) . (4.18)

Since the BCJ duality is trivially satisfied through four points, naively one would take the

square of this action to obtain a tree-level action for gravity valid through four points.

However, since the squaring is with respect to the numerators ni and not numerator over

propagator, ni/sα, we need the auxiliary fields to generate the numerators with the inverse

propagators directly, instead of multiplying and dividing by inverse propagators afterwards.

This implies that the auxiliary fields must become dynamical (to generate the required

propagator) and that their interactions must contain additional derivatives to produce the

inverse propagator necessary to cancel the propagator. At four points this leads to the

Lagrangian:

LYM = 1
2
Aaµ�Aa

µ −Baµνρ�Ba
µνρ − gfabc(∂µA

a
ν + ∂ρBa

ρµν)A
bµAcν , (4.19)
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where the equation of motion for the auxiliary field Ba
µνρ becomes

�Ba
µνρ =

g

2
fabc∂µ(A

b
νA

c
ρ) . (4.20)

We are now ready to construct a gravity action that gives the correct four-point ampli-

tude. We begin in momentum space, where the identification

Aµ(k)Ãν(k) → hµν(k) (4.21)

can be trivially implemented. We first demonstrate how the gravity action can be derived

from the four-point Yang-Mills Lagrangian. We write the Yang-Mills Lagrangian in momen-

tum space. Since gravity does not have any color indices, we encode the information of the

structure constants in the anti-symmetrization and cyclicity of the interaction terms. We

drop the coupling constant for now; it can easily be restored in the final gravity action. We

also neglect factors of 2π in the measure for convenience. We arrive at

SYM ∼ 1

2

∫
dDk1d

Dk2 δ
D(k1 + k2)k

2
2

[
Aµ(k1)Aµ(k2)− 2Bµνρ(k1)Bµνρ(k2)

]
,

+

∫
dDk1d

Dk2d
Dk3 δ

D(k1 + k2 + k3) (4.22)

× P6

{[
k1µAν(k1) + kρ1Bρµν(k1)

]
Aµ(k2)A

ν(k3)
}
,

where P6 indicates a sum over all permutations of {k1, k2, k3} with the anti-symmetrization

signs included. From here, we can read off a gravity action valid through four points:

Sgrav = Skin + Sint , (4.23)
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with

Skin ∼ 1

4

∫
dDk1d

Dk2δ
D(k1 + k2)k

2
2

×
[
Aµ(k1)Aµ(k2)− 2Bµνρ(k1)Bµνρ(k2)

]
×
[
Ãσ(k1)Ãσ(k2)− 2B̃στλ(k1)B̃στλ(k2)

]
,

Sint ∼
∫
dDk1d

Dk2d
Dk3δ

D(k1 + k2 + k3)

× P6

{[
k1µAν(k1) + kρ1Bρµν(k1)

]
Aµ(k2)A

ν(k3)
}

× P6

{[
k1λÃσ(k1) + kτ1 B̃τλσ(k1)

]
Ãλ(k2)Ã

σ(k3)
}
. (4.24)

In extracting the Feynman rules from this action the “left” and “right” fields each contract

independently. For example, for the propagators we have,

〈Aµ(k1)Ãρ(k1)Aν(k2)Ãσ(k2)〉 =
iηµνηρσ
k21

δ4(k1 + k2) ,

〈Aµ(k1)B̃ρστ (k1)Aν(k2)B̃ηκλ(k2)〉 = − iηµνηρηησκητλ
2k21

δ4(k1 + k2) . (4.25)

By construction, this action will give the correct three- and four-graviton tree-level ampli-

tudes.

We note that one can construct the coordinate-space action by combining the left-right

fields as

AµÃν → hµν ,

AµB̃νρσ → gµνρσ ,

BµρσÃν → g̃µρσν ,

BµρσB̃ντλ → fµρσντλ , (4.26)

where hµν is the physical field, which includes the graviton, anti-symmetric tensor, and
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dilaton. The kinetic terms in x space take the form

Skin = −1

2

∫
dDx

[
hµν�hµν − 2gµνρσ�gµνρσ − 2g̃µνρσ�g̃µνρσ + 4fµνρστλ�fµνρστλ

]
. (4.27)

The interaction terms can similarly be constructed, but we do not display them here as there

are 144 of them.

To move on to five points, we need to introduce a new set of auxiliary fields to rewrite

the non-local terms in a local and cubic form. We simply give the result:

L′
5 → Y aµν�Xa

µν +Daµνρ
(3) �Ca

(3) µνρ +Daµνρσ
(4) �Ca

(4) µνρσ

+ gfabc
(
Y aµνAb

µA
c
ν + ∂µD

aµνρ
(3) Ab

νA
c
ρ − 1

2
∂µD

aµνρσ
(4) ∂[νA

b
ρ]A

c
σ

)
+ gfabcXaµν

(
1
2
∂ρC

bρσ
(3) µ∂[σA

c
ν] + ∂ρC

bρσ
(4) ν[µA

c
σ]

)
. (4.28)

Note that these new auxiliary fields do not couple to Bµνρ. It is now straight-forward to

transform (4.28) to momentum space and, through the squaring process, obtain a gravity

Lagrangian that is valid through five points.

4.3.4 Beyond five points

As we increase the number of legs we find new violations of manifest BCJ duality, so we

need to add further terms. We have constructed a six-point correction to the interactions so

that the Lagrangian generates numerators with manifest BCJ duality.

The general structure of L′
6 is similar to that of L′

5; after relabeling color indices, we can

arrange L′
6 to vanish by two Jacobi identities:

0 =
(
fa1a2bf ba3c + fa2a3bf ba1c + fa3a1bf ba2c

)
f cda6fda4a5 ,

0 = fa1a2b
(
f ba3cf cda6 + f bdcf ca6a3 + f ba6cf ca3d

)
fda4a5 . (4.29)

The first of these two color factors is contracted with 59 different terms having a schematic
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form3

1

�(Aa1Aa2Aa3)
1

�(Aa4Aa5)Aa6 , (4.30)

where the parenthesis indicate which fields the 1
� acts on. The second color factor contracts

with 49 terms of the form
1

�(Aa1Aa2)Aa3
1

�(Aa4Aa5)Aa6 . (4.31)

In each term, there are an additional two partial derivatives in the numerator acting on the

gauge fields. The large number of terms arises from the many different ways to contract

the 8 Lorentz indices. We have found that the coefficients of these 108 terms depend on 30

distinct free parameters, in addition to the β that showed up at five points (4.16). Thus,

there is a 30-parameter family of self-BCJ six-point interactions.

We anticipate that this structure continues to higher orders, with the addition of new

vanishing combinations of terms. We have seen no indication that the Lagrangian will

terminate; for each extra leg that we add to an amplitude, we will likely need to add more

terms to the action to ensure that the diagrams satisfy the BCJ duality. A key outstanding

problem is to find a pattern or symmetry that would enable us to write down the all-order

BCJ-corrected action without having to analyze each n-point level at a time.

If the construction of a Lagrangian to all orders succeeds, it would be a fully off-shell

realization of the BCJ duality at the classical level. It would be interesting to then study

non-perturbative phenomena such as instantons using this Lagrangian to see whether BCJ

duality and the squaring relations can elucidate physics beyond the regime of scattering

amplitudes. Our off-shell construction suggests that BCJ duality may also work at loop

level. Of course, one would need to account for the ghost structure and, more importantly,

demonstrate that the loop amplitudes so constructed do indeed have the desired duality

properties manifest.

3Momentum conservation can alter these counts but we give them as an indication of the number of terms
involved.
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Figure 4.2: A graphical representation of the color basis c1,σ2,...,σn−1,n introduced in ref. [106]. Each

vertex represents a structure constant f̃abc, while each bond indicates contracted indices between

the f̃abc. This is also precisely the diagram associated with the kinematic numerator n1,σ2,...,σn−1,n.

4.4 A few simple implications

In this short section, we point out that the BCJ duality immediately leads to some novel

forms of gauge and gravity amplitudes. Del Duca, Dixon and Maltoni [106] presented an

alternative color decomposition from the usual one,

Atree
n (1, 2, . . . , n) = gn−2

∑
σ∈Sn−2

c1,σ2,...,σn−1,nA
tree
n (1, σ2, . . . , σn−1, n) , (4.32)

where Atree
n is the full color-dressed n-gluon amplitude, and the Atree

n are the usual color-

ordered partial gauge-theory amplitudes. The sum runs over all permutations of n− 2 legs.

The color factors are

c1,σ2,...,σn−1,n ≡ f̃a1aσ2x1 f̃x1aσ3x2 · · · f̃xn−3aσn−1an . (4.33)

Diagrammatically, this color factor is associated with Fig. 4.2. This form is derived starting

from eq. (4.1) and using color Jacobi identities along with the Kleiss-Kuijf relations, which

are equivalent to the self-anti-symmetry of the diagrammatic numerator factors.

A simple observation is that when diagram numerators are chosen to satisfy the BCJ

duality, they have precisely the same algebraic structure as color factors. Thus, we can

immediately write a dual formula decomposing the full amplitude into numerators instead

of color factors:

Atree
n (1, 2, . . . , n) = gn−2

∑
σ∈Sn−2

n1,σ2,...,σn−1,nA
scalar
n (1, σ2, . . . , σn−1, n) , (4.34)
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where Ascalar
n is a dual partial scalar amplitude with ordered legs obtained by replacing

the gauge-theory numerator factors with group-theory color factors. The numerator factors

n1,σ2,...,σn−1,n are the numerators of the diagrams displayed in Fig. 4.2. Note that all other

numerators can be expressed as linear combinations of the n1,σ2,...,σn−1,n through the duality

relations, and the form (4.34) for the gauge-theory amplitude makes this property manifest.

This form is related to an unusual color decomposition of gauge-theory amplitudes which

follows from applying KLT relations to the low-energy limit of heterotic strings [98].

Similarly, this immediately gives us a new representation for graviton amplitudes in terms

of gauge-theory amplitudes,

Mtree
n (1, 2, . . . , n) = iκn−2

∑
σ∈Sn−2

n1,σ2,...,σn−1,nA
tree
n (1, σ2, . . . , σn−1, n) , (4.35)

where Atree
n is the usual gauge-theory color-ordered amplitude.
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CHAPTER 5

A Color Dual Form for Gauge-Theory Amplitudes

How far does the analogy between color and kinematics extend? We know that in SU(Nc)

gauge theory, useful trace representations of the color factors exist. In this chapter, we show

that the analogy between color and kinematics is sufficiently robust that a representation of

the kinematic numerators exists which shares the same algebraic properties as color traces.

Moreover we will show that additional interesting constraints can be imposed which uniquely

determine the kinematic trace-like representation in terms of kinematic numerators satisfying

the duality.

At tree level, the well-known trace-based color decomposition of gluon amplitudes is [56],

Atree
m = gm−2

∑
σ

Tr[T a1 · · ·T am ]Atree
m (1, 2, . . . ,m) , (5.1)

where g is the gauge coupling, Atree
m is a partial amplitude stripped of color factors, and

the T ai are fundamental-representation matrices of an SU(Nc) Lie group. The sum runs

over all non-cyclic permutations of external legs. The labels on momenta, polarizations or

spinors, implicit in eq. (5.1), are also to be permuted in the sum. The color-stripped partial

amplitudes can be expressed as a subset of diagrams following the same ordering of legs as

in the partial amplitudes, but with no color factors. (For example, see eq. (4.5) of ref. [15].)

We propose that a dual description exists where we can swap the role of color and

kinematics in the trace-based color decomposition, in particular by rewriting eq. (5.1) in a

dual form,

Atree
m = gm−2

∑
σ

τ(12...m)A
dual
m (1, 2, . . . ,m) , (5.2)
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Figure 5.1: An antisymmetric vertex in a cubic graph is replaced by a difference of two
double-line vertices.

where the τ(12...m) are kinematic prefactors satisfying the same cyclic properties as color

traces. Adual
m is a dual amplitude defined by replacing all kinematic numerators with color

factors. That is, they can be generated by the same color-ordered graphs that generate

Atree
m , except instead of a kinematic factor at every vertex, we simply have an f̃abc. The dual

amplitudes are not gauge-theory amplitudes, but amplitudes in a φ3 theory dressed with

group-theory factors.

If we assume that the duality (4.5) holds, then gravity amplitudes can be obtained directly

from Yang-Mills numerators by replacing the color factors with another copy of the kinematic

numerators [15], as proven at tree level [4] and conjectured to hold to all loop orders [103].

Since the kinematic numerators share the same algebraic properties as color factors, it is then

straightforward to rearrange gravity amplitudes into a form analogous to the gauge-theory

dual form (5.2),

Mtree
m = i

(
κ

2

)m−2∑
σ

τ(12...m)A
tree
m (1, 2, . . . ,m) ,

Here κ is the gravitational coupling, Atree
m are partial amplitudes of Yang-Mills theory and τ

is exactly the same kinematic prefactor as in eq. (5.2).

The τ ’s are generated by expressing each numerator in terms of a set of objects which

satisfy the cyclic symmetry of color traces. For example, at the three-point level we demand
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Figure 5.2: Sewing of two vertices in a double-line graph (a). The ordering of the external
legs follows the arrow around the graph. This graph corresponds with the kinematic quantity
τ(1342). The same double-line graph is displayed in (b) in a form emphasizing that it is the
same quantity whether we sew the two three-point τ ’s in the 12 channel or 13 channel.

that,

n123 = τ(123) − τ(132) ,

where n123 is just the three vertex, as illustrated in Fig. 5.1. In general, we will use paren-

theses around the subscript labels on the τ ’s to indicate which color trace the quantity is

analogous to. In particular, τ(123) is analogous to Tr[T a1T a2T a3 ].

For any number of legs, we can associate diagrams to the τ ’s in a manner completely

parallel to the standard ’t Hooft double-line formalism for color. Just as the color traces

“trivialize” the color Jacobi identities, the τ ’s will do the same for the kinematic numer-

ator factors, emphasizing the parallelism between color and kinematics. For example, in

Fig. 5.2(a) we display the double-line diagram for τ(1324) obtained by sewing together two

double-line three-point graphs. For the duality (4.5) to hold, the kinematic expression as-

sociated with each double-line graph should depend on only the topological structure of the

graph, rather than on the detailed structure of vertices and internal lines in the underlying

cubic graph. That is, a more appropriate way to draw the graph in Fig. 5.2(a) is shown in

Fig. 5.2(b). In much the same way as single traces used in the tree-level color decomposition

depend on only the cyclic ordering of legs, we demand that the τ ’s also depend on only

the ordering. The property that one should obtain the same object when sewing in either
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channel is of course reminiscent of a key feature of string theory. However, at present we take

the diagrams only as guides, since we do not have rules for directly combining lower-point

τ ’s into higher-point ones.

To be more explicit, consider some examples. At four points there are three graphs

contributing to eq. (4.1). These numerators are expressed in terms of τ via

n12(34) = τ(1[2,[3,4]]) , (5.3)

where the parenthesis on the indices of n indicates the associated propagators, i.e. in this

case we have one, i/(k3 + k4)
2. For τ the brackets signify an antisymmetric combination,

i.e. τ(12[3,4]) ≡ τ(1234) − τ(1243). The two other channels at four points are just relabelings

of this channel. We note that by expressing the nj in terms of τ , the Jacobi-like equation

n12(34) − n23(41) − n42(31) = 0 holds automatically.

Can we find an explicit form of τ with the desired cyclicity? It is not difficult to check

at four points that

τ(1234) =
1

6
(n12(34) + n23(41))

indeed satisfies cyclicity and after using the duality relations (4.5) returns the numerators

when combined as in eq. (5.3). The other τ ’s are given by relabelings. Interestingly, this

solution satisfies some additional properties, namely invariance under a reversal of arguments

and also an identity reminiscent of the U(1) decoupling identity for amplitudes,

τ(1234) + τ(1342) + τ(1423) = 0 .

More generally, our ability to express the τ ’s directly in terms of the graph numerators

nj is precisely dependent on having τ satisfying identities of the same form as Kleiss-Kuijf
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identities,

τ(1{α}m{β}) = (−1)|β|
∑
{σ}

τ(1{σ}m), (5.4)

where the sum is over the “ordered permutations” {σ} ∈ OP({α}, {βT}), that is, all per-

mutations of {α}
⋃

{βT} that maintain the order of the individual elements belonging to

each set within the joint set. The notation {βT} represents the set {β} with the ordering

reversed, and |β| is the number of elements in {β}. For gauge-theory partial amplitudes,

these relations were conjectured in ref. [109] and proven in ref. [110]. They are a consequence

of the antisymmetric nature of the vertices describing the nj, as noted in ref. [15]. Indeed,

any cyclic object, such as τ , that can be expressed as a linear combination of the nj with

prefactors that respect the symmetry and relabeling properties of the nj automatically will

satisfy the Kleiss-Kuijf relations.

At five points we have

n12(3(45)) = τ(1[2,[3,[4,5]]]) ,

τ(12345) =
1

20

∑
σ

n12(3(45)) ,

where the sum runs over cyclic permutations. The numerator n12(3(45)) is the graph with

Feynman propagators i/(k1 + k2)
2 and i/(k4 + k5)

2. One can straightforwardly verify that

this τ satisfies the relations (5.4).

At six points we can express the numerators of the two contributing diagrams in terms

of the τ via

n12(3(4(56))) = τ(1[2,[3,[4,[5,6]]]]) ,

n(12)(34)(56) = n12(3(4(56))) − n12(4(3(56))) .

The decomposition of τ in terms of the numerators is more complicated, in part because
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non-trivial rearrangements are possible using the duality (4.5). One such solution is

τ(1...6) = 1
1890

∑
σ

(
32n12(3(4(56))) − 3n12(4(3(56)))

− 31
2
n12(3(6(45))) − 31

2
n12(6(3(45))) + 2n36(1(2(45)))

+ 2n36(2(1(45))) + 2n36(4(1(25))) − n26(1(4(35)))

− n26(4(1(35))) − n35(1(2(46))) − n35(2(1(46)))

+ n24(1(3(56))) + n24(3(1(56))) − n26(1(3(45)))

− n26(3(1(45)))

)
, (5.5)

where here the sum runs over the cyclic permutations of labels. The reader may also verify

that τ(1...6) satisfies the Kleiss-Kuijf relations (5.4), given the algebraic properties of the

kinematic numerators.

We have explicitly verified through nine points that an expression for τ in terms of

kinematic numerators (as in eq. (5.5)) exists and that it automatically satisfies the Kleiss-

Kuijf-like relations (5.4). The explicit expression for τ at m = 7 contains more than 600

numerators and grows rapidly as the number of legs increases. Generally, it is better to think

of the nj numerators as functions of the τ . A general solution is

n12(3(...m))··· ) = τ(1[2,[3,[...m]]··· ]) .

The remaining numerators can be obtained by solving the duality relations (4.5), which must

automatically hold for numerators expressed in terms of the τ ’s.

An interesting consequence of the above is that we can define an alternative color de-

composition in place of eq. (5.1), where instead of color traces we use objects that satisfy

Kleiss-Kuijf relations as well. These objects are given by taking the above equations for the

τ in terms of the numerators nj and replacing them with color factors cj. This gives a valid

set of objects to use in place of color traces in eq. (5.1). Using the explicit formulas given

above, it is straightforward to confirm though six points that the amplitude in eq. (5.1) is
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Figure 5.3: Cubic diagrams appearing in one-loop four-point amplitudes.

unchanged under this substitution.

Can this construction be extended to loop level? As an initial peek at this question, we

turn to the simple case of a one-loop four-point N = 4 super-Yang-Mills amplitude, first

obtained in ref. [111]. We follow the same diagrammatic double-line formalism as at tree

level.

The four types of cubic diagrams contributing to the four-point one-loop amplitude are

shown in Fig. 5.3. The numerators associated with these diagrams in the BCJ representation

are

n(a) = stAtree , n(b) = n(c) = n(d) = 0 ,

where s and t are standard four-point Mandelstam invariants. Although this seems like a

trivial state of affairs, expanding each numerator in terms of the double-line graphs reveals

unexpected structure. In this expansion, there are multiple lines flowing around the double-

line graphs, and we indicate the external legs attached to each line with a (12 . . .) in the

subscript of τ . Since each one-loop graph carries two independent lines, each τ will have two

sets of parentheses in the subscripts. The graphs that appear in the expansion of the present

example are τ(1)(234), τ(12)(34) and τ(1234)(), along with relabelings of these. The decomposition

of the four numerators in terms of the τ ’s is straightforward and closely parallels a U(Nc)

color decomposition.

One immediate solution to the decomposition can be obtained by setting τ(1234)() propor-

tional to the box numerator, and the other two τ functions to zero. A similar construction
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also works for the five-point amplitude [41] of N = 4 super-Yang-Mills theory. In this case

τ(12345)() are set proportional to the pentagon numerator given in ref. [112].1

A more interesting solution to the four-point decomposition is

τ(1234)() =
1

62
stAtree , τ(12)(34) =

3

31
stAtree ,

τ(1)(234) = − 3

62
stAtree .

With this solution the τ functions satisfy the same identities as the color-ordered partial

amplitudes, namely,

τ({α})({β}) = (−1)|β|
∑
{σ}

τ({σ})() ,

where the sum is over the “cyclically ordered permutations” COP({α}, {βT}), that is, all

permutations of {α}
⋃
{βT} that maintain the cyclic orderings of {α} and {βT} separately,

and with one leg fixed (see ref. [41]).

To go beyond these simple examples, one needs a self-consistent assignment of loop mo-

mentum labels, with an understanding of the proper way to associate kinematic information

with the double-line graphs. At tree and one-loop level, each double-line graph can be inter-

preted as defining an embedding of the underlying cubic graph in a plane, while at higher

loops, non-planar embeddings also appear, introducing a topological hierarchy to the graphs

analogous to the 1/Nc expansion of Yang-Mills. We leave the study of loop level to future

work.

There are also a number of other interesting open questions. For example, it would be

very useful to find a direct recursive procedure for building the τ ’s. Such a construction would

automatically produce numerators that satisfy the color-kinematics duality. We also note

that the double-line graphs describing the kinematic trace representation are reminiscent

of open string diagrams. This brings up the interesting question of whether the properties

1We thank J. J. M. Carrasco and H. Johansson for pointing out that the color-kinematics duality holds
with this form.
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we have described here can be unraveled in string theory. More generally, the trace-like

representation described here emphasizes a group-theoretic origin for the duality. Because

the same kinematic numerators appear in gravity theories, the same underlying group theory

should carry over to gravity. It remains an important challenge to understand the origin of

this duality and to fully map out its implications.
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CHAPTER 6

Absence of Three-Loop Four-Point Ultraviolet

Divergences in N = 4 Supergravity

Recent years have seen a resurgence of interest in the possibility that certain supergravity

theories may be ultraviolet finite. This question had been carefully studied in the late 70’s

and early 80’s in the hope of using supergravity to construct fundamental theories of gravity.

The conclusion of these early studies was that nonrenormalizable ultraviolet divergences

would almost certainly appear at a sufficiently large number of quantum loops, though this

remains unproven. Although supersymmetry tends to tame the ultraviolet divergences, it

does not appear to be sufficient to overcome the increasingly poor ultraviolet behavior of

gravity theories stemming from the two-derivative coupling. The consensus opinion from

that era was that all pure supergravity theories would likely diverge at three loops (see e.g.

ref. [113]), though with assumptions, certain divergences are perhaps delayed a few extra

loop orders [114].

More recently, direct calculations of divergences in supergravity theories have been car-

ried out [69, 70, 71, 115], shedding new light on this issue. From these studies we now

know that through four loops maximally supersymmetric N = 8 supergravity is finite in

space-time dimensions, D < 6/L + 4 for L = 2, 3, 4 loops. These calculations also tell us

that the bound is saturated. In D = 4, E7(7) duality symmetry [116] has recently been used

to imply ultraviolet finiteness below seven loops [117], also explaining the observed lack of

divergences. In a parallel development, string theory and a first quantized formalism use

supersymmetry considerations to arrive at similar conclusions [118]. The latter approach

leads to D-dimensional results consistent with the explicit calculations through four loops,
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Figure 6.1: A sample cut at three loops displaying cancellations in N = 4 supergravity
special to four dimensions.

but predicts a worse behavior starting at L = 5. At seven loops, the potential four-graviton

counterterm of N = 8 supergravity [119] appears to be consistent with all known symme-

tries [117, 120]. (See ref. [121] for a more optimistic opinion.) More generally, 1/N -BPS

operators serve as potential counterterms for N = 4, 5, 6, 8 supergravity at L = 3, 4, 5, 7

loops, respectively, suggesting that in D = 4 ultraviolet divergences will occur at these

loop orders in these theories [120]. It therefore might seem safe to conclude that N = 4

supergravity [122] in particular will diverge at three loops.

On the other hand, studies of scattering amplitudes suggest that additional ultraviolet

cancellations will be found beyond these. We know that even pure Einstein gravity at

one loop exhibits remarkable cancellations as the number of external legs increases [123].

Through unitarity, such cancellations feed into nontrivial ultraviolet cancellations at all loop

orders [124]. In addition, the proposed double-copy structure of gravity loop amplitudes [103]

suggests that gravity amplitudes are more constrained than symmetry considerations suggest.

In this chapter we show that the ultraviolet properties of N = 4 supergravity are indeed

better than had been anticipated.

To motivate the possibility of hidden cancellations in N = 4 supergravity, consider the

unitarity cut displayed in Fig. 6.1 isolating a one-loop subamplitude in a three-loop ampli-

tude. As noted in refs. [123, 125], at one loop a five-point diagram in an N = 4 supergravity

amplitude effectively can have up to five powers of loop momenta in the numerator, similar

to the power counting of pure Yang-Mills theory. There are also three additional powers

of numerator loop momentum coming from the tree amplitude on the right-hand side of

the cut, giving a total of at least eight powers of numerator loop momentum. Taking into

79



(a) (b) (c)

(d) (f)

(i)(h)(g)

(j) (k) (l)

(e)

Figure 6.2: The twelve graphs appearing in the three-loop N = 4 sYM amplitude [103] and
in gravity amplitudes obtained from these using the double-copy formula.

account three loop integrals and ten propagators suggests that this amplitude should diverge

at least logarithmically in D = 4. (The power counting analysis of this cut performed in

ref. [125] assumed that additional powers of numerator loop momenta coming from the tree

amplitude in the cut can be ignored, contrary to our analysis.)

However, this type of power counting is too näıve and does not account for the special

property that no one- and two-loop ultraviolet divergences are present in D = 4 [126]. Thus

in D = 4 there are additional cancellations of the loop momenta in one-loop subdiagrams,

effectively removing powers of loop momenta from the numerators of the loop integrands

once all pieces have been combined and integrated. These additional cancellations can affect

the higher-loop effective overall power counting. We show this occurs by computing the

coefficient of the potential three-loop four-point divergences in N = 4 supergravity.

To make the calculation of the potential three-loop divergence feasible, we use the duality

between color and kinematics uncovered by Bern, Carrasco and Johansson (BCJ) [15, 103].

According to this conjecture, we can reorganize a (super) Yang-Mills amplitude into graphs

where the numerators satisfy identities in one-to-one correspondence with color Jacobi iden-

tities. Whenever this is accomplished, we obtain corresponding gravity amplitudes simply

by replacing color factors with kinematic numerators of a corresponding second gauge-theory
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amplitude. That is, gravity loop amplitudes are given by [103],

(−i)L+1

(κ/2)n−2+2L
Mloop

n =
∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

njñj∏
αj
p2αj

, (6.1)

where nj and ñj are kinematic numerator factors from gauge-theory amplitudes and κ is the

gravitational coupling. The factors Sj are the usual combinatoric factors associated with the

symmetries of the graphs. The sum runs over all distinct graphs with cubic vertices, such

as the ones appearing in Fig. 6.2. The propagators appearing in eq. (6.1) are the ordinary

propagators corresponding to the internal lines of the graphs. Depending on the particular

theory under consideration, we use different component gauge-theory numerators in eq. (6.1).

In our study of pure N = 4 supergravity with no matter multiplets [122], we take

one component gauge theory to be N = 4 super-Yang-Mills (sYM) theory and the second

component to be nonsupersymmetric pure Yang-Mills theory. This construction was used

in earlier one- and two-loop studies of N ≥ 4 supergravity amplitudes [127]. The main

differences in our case are that integrated gauge-theory expressions are not known and that

the N = 4 sYM numerators are not all independent of loop momenta.

As explained in refs. [103, 4], only one of the two component gauge-theory amplitudes

needs to be in a form manifestly satisfying the duality for the double-copy property (6.1)

to hold. The other gauge-theory amplitude can be any convenient representation arranged

into diagrams with only cubic vertices. We note that our construction applies immediately

to all four-point amplitudes of pure N = 4 supergravity, since these are constructed simply

by considering all possible external states on the N = 4 sYM side of the double copy; at

four-points this information is entirely encoded in an overall prefactor of the tree amplitude.

At three loops, we take the N = 4 sYM copy from ref. [103], since it has BCJ duality

manifest. This representation of the N = 4 sYM amplitude is described by the 12 graphs

in Fig. 6.2. For the pure Yang-Mills copy, we use ordinary Feynman diagrams in Feynman

gauge, including ghost contributions. The contact contributions are assigned to diagrams

with only cubic vertices according to their color factor. In this construction, most Feynman

diagrams are irrelevant because in the double-copy formula they get multiplied by vanishing
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N = 4 sYM diagram numerators. This construction gives the complete three-loop four-point

integrand of N = 4 supergravity. We have also applied these ideas to reproduce the absence

of one- and two-loop divergences in pure N = 4 supergravity, starting from the one- and

two-loop four-point sYM amplitudes [111, 66].

To prove the correctness of our construction, we use the unitarity method [41, 69]. The

generalized unitarity cuts decompose the constructed integrand into sums of products of

tree amplitudes, which match against the values obtained using the double-copy property at

tree level [103, 4]. Since all cuts automatically have the proper values in D dimensions, the

amplitude so constructed is correct.

Inserting the numerators of pure Yang-Mills amplitudes generated by the Feynman rules

into the double-copy formula (6.1) leads to tens of thousands of high-rank tensor integrals,

from which we must extract the ultraviolet divergences. We do so by expanding in small

external momenta. This gives vacuum diagrams containing both infrared and ultraviolet

divergences. To deal with ultraviolet divergences, we use the four-dimensional-helicity reg-

ularization scheme [128], since it preserves supersymmetry and has been used successfully

in analogous multiloop pure gluon and supersymmetric amplitudes. In this scheme, the

number of states remain at their four-dimensional values. Then at the level of the vac-

uum integrals, we introduce a uniform mass m to separate the infrared divergences from

the ultraviolet ones. Although ultimately there are no one- and two-loop ultraviolet diver-

gences in N = 4 supergravity, individual integrals generally do contain subdivergences due

to their poor power counting. To deal with this, we make extensive use of the observations

of Marcus and Sagnotti [129] to subtract subdivergences integral by integral. Extractions of

ultraviolet divergences in higher-dimensional N = 8 supergravity were discussed recently in

refs. [130, 115].

At two or higher loops, the introduced mass regulator induces unphysical regulator de-

pendence in individual integrals. However, at least for logarithmically divergent integrals,

the regulator dependence comes entirely from subdivergences, which we systematically sub-

tract [129]. We therefore introduce the mass regulator before subtracting subdivergences,
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Figure 6.3: The basis of vacuum integrals for one through three loops.

but after reducing all integrals to logarithmic by series expansion in small external momenta.

To implement the subtractions, we recursively define the subtracted divergence S[. . .] of an

integral,

S

[∫ L∏
i=1

dpi I

]
≡ Div

[∫ L∏
i=1

dpi I

]
−

L−1∑
l=1

∑
l−loop
subloops

Div

[∫ L∏
j=l+1

dp′j S

[∫ l∏
i=1

dp′i I

]]
, (6.2)

where Div[. . .] is the complete divergence of an integral, I is the integrand, and dpi is

shorthand for dDpi/(2π)
D. The sum over subloops must include all subloops of the diagram

where a subdivergence could occur — not just the loops that are manifestly parametrized

by pi — and here we have indicated this by changing variables to p′i in each subtraction,

such that the l−loop subintegral under consideration is parametrized by p′1, . . . , p
′
l. For

example, graph (e) in Fig. 6.2 has seven one-loop subintegrals and six two-loop subintegrals

to consider, and each two-loop subintegral has three one-loop subintegrals of its own.

By the time we apply eq. (6.2), each integral has a single scale given by the mass regulator

m. We are left with the task of calculating the divergences Div[. . .] of single-scale vacuum

integrals. To evaluate these integrals, we first eliminate tensors composed of loop momenta

from the numerators by noticing that the integrals must be linear combinations of products

of metric tensors ηµν . (See ref. [115] for a recent discussion of evaluating tensor vacuum in-

tegrals.) Then we reduce the resulting scalar integrals to a basis using integration by parts,

as implemented in FIRE [131]. The resulting basis is given by the scalar vacuum integrals

shown in Fig. 6.3 (along with products of lower-loop integrals), with a single massive propa-

gator corresponding to each line. As cross checks we also used MB [132] and FIESTA [133].
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Graph (divergence)/(〈12〉2[34]2stAtree(κ
2
)8)

(a)-(d) 0
(e) 263

768
1
ε3
+ 205

27648
1
ε2
+
(
−5551

768
ζ3 +

326317
110592

)
1
ε

(f) − 175
2304

1
ε3
− 1

4
1
ε2
+
(
593
288
ζ3 − 217571

165888

)
1
ε

(g) −11
36

1
ε3
+ 2057

6912
1
ε2
+
(
10769
2304

ζ3 − 226201
165888

)
1
ε

(h) − 3
32

1
ε3
− 41

1536
1
ε2
+
(
3227
2304

ζ3 − 3329
18432

)
1
ε

(i) 17
128

1
ε3
− 29

1024
1
ε2
+
(
−2087

2304
ζ3 − 10495

110592

)
1
ε

(j) −15
32

1
ε3
+ 9

64
1
ε2
+
(
101
12
ζ3 − 3227

1152

)
1
ε

(k) 5
64

1
ε3
+ 89

1152
1
ε2
+
(
−377

144
ζ3 +

287
432

)
1
ε

(l) 25
64

1
ε3
− 251

1152
1
ε2
+
(
−835

144
ζ3 +

7385
3456

)
1
ε

Table 6.1: The graph-by-graph divergences for the four-graviton amplitude with helicities
(1−2−3+4+) (up to an overall normalization). Each expression includes a permutation sum
over external legs, with the symmetry factor appropriate to the graph. These quantities are
not individually gauge-invariant, and here we use spinor helicity with the choice of reference
momenta q1 = q2 = k3 and q3 = q4 = k1. The sum over the diagram contributions vanishes.

We evaluated all but the last of these integrals to the required order in ε by Mellin-Barnes

integration with resummation of residues using the methods presented in ref. [134]. The last

integral can be evaluated by making a two-loop subintegral massless and integrating it first.

This does not affect the ultraviolet divergence because there are no subdivergences in this

case. (The value of the two-loop subintegral can be found in ref. [135].) The results are

rational linear combinations of the transcendental numbers ζ2, ζ3, and
√
3 Im

(
Li2
(
eiπ/3

))
.

At two loops only the first two integrals shown in Fig. 6.3 are needed. Adding together the

contributions reproduces the fact that there are no two-loop divergences in pure supergravity

theories. At three loops all vacuum integrals in Fig. 6.3 contribute. In Table 6.1, we have

collected the derived divergences of the three-loop four-graviton amplitude for each graph

in Fig. 6.2. The results shown in the table are summed over the independent permutations

including symmetry factors. The individual graphs are not gauge invariant and are valid

only for the indicated choice of spinor-helicity reference momenta (see e.g. ref. [56]). We

have divided out a prefactor depending on the four-point color-ordered super-Yang-Mills tree

amplitude, spinor inner products and the usual Mandelstam invariants s and t. We note

that the transcendental numbers except ζ3 cancel within each graph.

In the sum over all contributions (obtained by adding the rows in the table 6.1), not only
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do the 1/ε3 and 1/ε2 divergences cancel, as required because there are no divergent subam-

plitudes, but the 1/ε singularity also cancels. This proves that the three-loop amplitude is

ultraviolet finite. As a rather nontrivial check, we confirmed that the sum over all contri-

butions is independent of reference momentum choices. As another nontrivial confirmation,

we found that by introducing a uniform mass in the amplitude at the start of the calcula-

tion, all ultraviolet divergences cancel without the need for subdivergence subtraction. This

matches expectations that all ultraviolet subdivergences should cancel out from the total am-

plitude (although there may be potential regulator dependence issues with this approach).

Since all nonvanishing four-point amplitudes in the theory are proportional to four-graviton

ones, our calculation demonstrates that there are no divergences in any three-loop four-point

amplitude of the theory.

In summary, we used the recently uncovered duality between color and kinematics to

streamline the calculation of the coefficient of the potential three-loop ultraviolet divergence

of N = 4 supergravity, proving that it vanishes. Might cancellations persist beyond this? It

is interesting to note that the D = 4 cancellations found in one- and two-loop subamplitudes

and used to motivate our three-loop computation can be used just as well to argue for

higher-loop cancellations. Moreover, the double-copy property of gravity amplitudes shows

there is more structure than captured by the known symmetries. Our three-loop calculation

provides a concrete example showing that power counting based on known symmetries can be

misleading. The results of this calculation strongly motivate further high-loop explorations

of the ultraviolet divergence structure of supergravity theories. In particular, they emphasize

the importance of explicitly computing the ultraviolet properties of N = 8 supergravity at

five loops.
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APPENDIX A

Clifford algebra conventions

Here we follow the conventions of [33]. The Clifford algebra is given as,

σµ
ABσ̃

νBC + σν
ABσ̃

µBC = 2ηµνδCA . (A.1)

The explicit forms of the matrices σ, σ̃ are given in [33]. They satisfy the following identities:

σµ
ABσµCD = −2εABCD ,

σ̃µABσ̃CD
µ = −2εABCD ,

σ̃µABσµCD = −2
(
δ
[A
C δ

B]
D

)
,

tr(σµσ̃ν) = σµ
ABσ̃

νBA = 4ηµν . (A.2)

From the above, one can deduce,

xµ =
1

4
(σ̃µ)BAxAB =

1

4
(σµ)BAx

AB ,

xAB =
1

2
εABCDxCD ,

xABxBE =
1

2
εABCDxCDxBE = x2δAE ,

x2 = xνxν = −1

8
εABCDx

ABxCD . (A.3)
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Some useful formulæ:

X[ab] = εabX
c
c, X

[ab] = −εabXc
c

εABCDεAEFG =
(
δBEδ

C
F δ

D
G + δCEδ

D
F δ

B
G + δDE δ

B
F δ

C
G

−δBF δCEδDG − δCF δ
D
E δ

B
G − δDF δ

B
Eδ

C
G

)
(A.4)
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APPENDIX B

An Analytic Four-Loop Cut

In this appendix, we present a nontrivial cut of the four-loop four-point amplitude of N = 4

sYM. In particular, we analytically evaluate the cut shown in Fig. 2.1, which is a nonplanar

permutation of the cut (k) in Fig. 2.4. Since this cut consists of only four- and five-point

subamplitudes, the calculation is not significantly more difficult than the two-loop example

in section 2.3.3. The cut is evaluated by carrying out the Grassmann integration,

C4-loop =

∫ ( 7∏
i=1

d2ηlid
2η̃li

)
Atree

5 (p1, p2, l1, l2, l3)Atree
4 (−l1,−l2, l4, l5)

×Atree
4 (−l4,−l5, l6, l7)Atree

5 (p3, p4,−l3,−l6,−l7) . (B.1)

Here we have seven on-shell internal momenta labeled li, and four component tree amplitudes.

In this cut, we can use the supermomentum delta functions to localize six of the seven internal

supercoordinates ηli , η̃li . The remaining supercoordinate integration is handled in the same

way as in the example of section 2.3.3.

A solution to the supercoordinate delta-function constraints is

ql1 → −s−1
l1l2

/l1/l2ql3 , q̃l1 → −s−1
l1l1

/l1/l2q̃l3 ,

ql2 → −s−1
l1l2

/l2/l1ql3 , q̃l2 → −s−1
l1l2

/l2/l1q̃l3 ,

ql4 → −s−1
l4l5

/l4/l5ql3 , q̃l4 → −s−1
l4l5

/l4/l5q̃l3 ,

ql5 → −s−1
l4l5

/l5/l4ql3 , q̃l5 → −s−1
l4l5

/l5/l4q̃l3 ,

ql6 → −s−1
l6l7

/l6/l7ql3 , q̃l6 → −s−1
l6l7

/l6/l7q̃l3 ,

ql7 → −s−1
l6l7

/l7/l6ql3 , q̃l7 → −s−1
l6l7

/l7/l6q̃l3 , (B.2)
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where we have ignored all dependence on {q1, q2, q3, q4}, since these will drop out after the

final ηl3 integration. As usual, we take the Mandelstam invariants to be slilj = (li + lj)
2.

Because of extra factors of these invariants coming from the Grassmann integrations — seen

in eq. (2.6) — we must also multiply the final cut by s2l1l2s
2
l4l5
s2l6l7 . The rest of the calculation

is similar to the derivation of eq. (2.8), giving,

C4-loop =
s23(l4 + l5)

2(l6 + l7)
2Atree

4 (p1, p2, p3, p4)

s12(p1 + l3)2(p2 + l1)2(p3 − l7)2(p4 − l3)2(l2 + l3)2(l2 − l4)2(l5 − l6)2(l3 + l6)2

× 〈la3 |
(
/p1/p2

/l1/l2 +
/l2/l3/p1/p2

/l1/l2 +/l1/l2/l3/p1/p2
/l1

(l1 + l2)2

−
/l1/l2(/l3/p1/p2

/l1 −/l3/l1/p2/p1)− (/l1/p2/p1
/l3 − /p1/p2

/l1/l3)/l2/l1

2(l1 + l2)2

)
|l3ȧ]

× 〈l3a|
(
/l6/l7/p3/p4 +

/l7/p3/p4
/l3/l6/l7 +/l6/l7/p3/p4

/l3/l6

(l6 + l7)2

+
(/l7/p3/p4

/l3 −/l7/l3/p4/p3)
/l7/l6 −/l6/l7(/l3/p4/p3

/l7 − /p3/p4
/l3/l7)

2(l6 + l7)2

)
|lȧ3 ] . (B.3)

This expression is just a gamma trace, and although it appears to be chiral, the γ7 term

in the trace actually drops out. In fact, the five-point tree amplitude itself is non-chiral,

although this property is not manifest in the present form.

One can compare this to the cut of the amplitude derived in ref. [67] using (mostly)

four-dimensional methods,

C4-loop =
s12s23Atree

4 (p1, p2, p3, p4)

(p2 + l1)2(p3 − l7)2(l1 − l5)2(l4 − l7)2

×

(
s212(l2 − l6)

2

(l2 + l3)2(l3 + l6)2
+

s23(l4 + l5)
4

(p1 + l3)2(p4 − l3)2

+
s12(l4 + l5)

2(p1 + l3 + l6)
2

(p1 + l3)2(l3 + l6)2
+
s12(l4 + l5)

2(p4 − l2 − l3)
2

(p4 − l3)2(l2 + l3)2

)
. (B.4)

We have evaluated these two expressions numerically using six-dimensional momenta to

verify their equality.
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APPENDIX C

Proof of variable inversion formulæ

In this appendix, we derive the inversion properties in eq. (3.8).

• I[λA{ij}a] =
xiABλBa

{ij}√
x2
i x

2
j

=
xjABλBa

{ij}√
x2
i x

2
j

Our starting point is the constraint equation (xi − xj)AB = λ̃{ij}Aȧλ̃
ȧ
{ij}B . Contract-

ing both sides with λBa
{ij} provides an equation linear in λ, but loses normalization

information. We then proceed with the inversion

0 = I[(xi − xj)ABλ
Ba
{ij}]

= (x−1
j )AC(xi − xj)CD(x

−1
i )DBI[λBa

{ij}]. (C.1)

This implies that (x−1
i )DBI[λBa

{ij}] is in the null space of (xi − xj)CD, so

(x−1
i )DBI[λBa

{ij}] = Mabλ
Db
{ij}

⇒ I[λAa
{ij}] = xiABMabλ

Bb
{ij}

= xjABMabλ
Bb
{ij} , (C.2)

where Mab is a normalization matrix, which we partially fix by inverting the original
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constraint equation

I[(xi − xj)
AB] = I[λAa

{ij}]I[λ
B
{ij}a]

⇒ (x−1
i )AC(xi − xj)

CD(x−1
j )DB = xiACMabλ

Cb
{ij} xjBDM

acλD{ij}c

⇒ (xi − xj)
CD = −x2ix2jMabM

acλCb
{ij}λ

D
{ij}c

⇒ MabM
ac = − δcb

x2ix
2
j

. (C.3)

This is the only constraint on M . Without loss of generality, we choose Mab =

εab(x
2
ix

2
j)

−1/2.

• I[η{ij}a] = −
√

x2
i

x2
j

(
ηa{ij} + (x−1

i )ABθ
A
i λ

Ba
{ij}

)
To invert η, we begin with the constraint equation (θi − θj)

A = λAa
{ij}η{ij}a . Inverting,

we have

I[(θi − θj)
A] = I[λAa

{ij}]I[η{ij}a]

⇒ (x−1
i )AB θ

B
i − (x−1

j )AB θ
B
j =

xiAB√
x2ix

2
j

λB{ij}aI[η{ij}a]

=
xjAB√
x2ix

2
j

λB{ij}aI[η{ij}a] . (C.4)

Multiplying the above equations by xi and xj, respectively, we get

θAi − (xix
−1
j )AB θ

B
j =

√
x2i
x2j
λA{ij}aI[η{ij}a] ,

(xjx
−1
i )AB θ

B
i − θAj =

√
x2j
x2i
λA{ij}aI[η{ij}a] . (C.5)

Adding these two equations gives

(θi − θj)
A − (xix

−1
j )AB θ

B
j + (xjx

−1
i )AB θ

B
i =

x2i + x2j√
x2ix

2
j

λA{ij}aI[η{ij}a] . (C.6)
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We rewrite the LHS as

−λA{ij}aηa{ij} −
(xixj)

A
B θ

B
j

x2j
+

(xjxi)
A
B θ

B
i

x2i

= −λA{ij}aηa{ij} −
(xixj)

A
B θ

B
i − x2i (θi − θj)

A

x2j
+

(xjxi)
A
B θ

B
i

x2i

= −
x2i + x2j
x2j

(
λA{ij}aη

a
{ij} + θAi − (xjx

−1
i )AB θ

B
i

)
= −

x2i + x2j
x2j

(
λA{ij}aη

a
{ij} + (xi − xj)

AB(x−1
i )BC θ

C
i

)
= −

x2i + x2j
x2j

λA{ij}a
(
ηa{ij} − λBa

{ij}(x
−1
i )BC θ

C
i

)
. (C.7)

where in the second line we used (xi − xj)AB(θi − θj)
B = 0 , and in the third line we

used (xi − xj)
AB(xi − xj)BC = 0 . We can now read off the solution.

• I[uia] =
βua

i√
x2
i+2

, I[ũiȧ] =
ũȧ
i

β
√

x2
i+2

Here, we begin with the definition 〈ia|i + 1ḃ] = uiaũi+1ḃ. Contracting both sides with

uai and inverting, we have

I[uai ]I [〈ia|i+ 1ḃ]] = −I[uai ]
〈ia|i+ 1ḃ]√
x2ix

2
i+2

= 0 . (C.8)

Since uia is the only vector annihilated by the matrix 〈i|i+ 1], we conclude that

I[uai ] = αiuia , (C.9)

for some αi. Returning to the original equation defining u and ũ, we get a set of

constraints on αi,

α1α̃2 = −(x21x
2
3)

−1/2 , α̃1α2 =− (x21x
2
3)

−1/2 ,

α2α̃3 = −(x22x
2
1)

−1/2 , α̃2α3 =− (x22x
2
1)

−1/2 ,

α3α̃1 = −(x23x
2
2)

−1/2 , α̃3α1 =− (x23x
2
2)

−1/2 . (C.10)
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The solution to these equations is

αi =
β√
x2i+2

, α̃i =
1

β
√
x2i+2

. (C.11)

• I[wia] = − 1
β

√
x2i+2w

a
i , I[w̃iȧ] = −β

√
x2i+2w̃

ȧ
i

Because w is defined as the pseudoinverse of u via uiawib − uibwia = εab, its inversion

is straightforward. The definition inverts as

εba = I[uia]I[wib]− I[uib]I[wia] ,

=
β√
x2i+2

(
uai I[wib]− ubiI[wia]

)
. (C.12)

This is again the definition of w as the psuedoinverse of u,

β√
x2i+2

I[wia] = −wa
i , (C.13)

whence the result follows.
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