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1  |  INTRODUC TION

There have been numerous studies aimed at the identification 
of prognostic biomarkers of aging outcomes (Barron et al., 2015; 

Niedernhofer et al., 2017; Sebastiani et al., 2017). Biomarkers could 
be useful to identify biological processes associated with aging, to 
identify the likelihood of important health outcomes, and to assess 
the effectiveness of interventions. Most studies have utilized assays 
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Abstract
The biological bases of longevity are not well understood, and there are limited bio-
markers for the prediction of long life. We used a high-throughput, discovery-based 
proteomics approach to identify serum peptides and proteins that were associated 
with the attainment of longevity in a longitudinal study of community-dwelling men 
age ≥65 years. Baseline serum in 1196 men were analyzed using liquid chromatogra-
phy–ion mobility–mass spectrometry, and lifespan was determined during ~12 years 
of follow-up. Men who achieved longevity (≥90% expected survival) were compared 
to those who died earlier. Rigorous statistical methods that controlled for false positiv-
ity were utilized to identify 25 proteins that were associated with longevity. All these 
proteins were in lower abundance in long-lived men and included a variety involved in 
inflammation or complement activation. Lower levels of longevity-associated proteins 
were also associated with better health status, but as time to death shortened, levels 
of these proteins increased. Pathway analyses implicated a number of compounds as 
important upstream regulators of the proteins and implicated shared networks that 
underlie the observed associations with longevity. Overall, these results suggest that 
complex pathways, prominently including inflammation, are linked to the likelihood 
of attaining longevity. This work may serve to identify novel biomarkers for longevity 
and to understand the biology underlying lifespan.
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of specific candidate biomarkers that are hypothesized to reflect rel-
evant outcomes (Sanchis-Gomar et al., 2015), but some have also 
used more broad ranging analytical approaches aimed at identifying 
biomarker signatures, for instance using metabolomics (Cheng et al., 
2015).

Mass spectrometry (MS)-based proteomic methods have been 
successfully adopted for biomarker discovery (Huang et al., 2017), 
but such proteomic approaches have been limited by technically 
demanding and time-consuming methods, and have had inher-
ently low throughput. Previous studies were frequently restricted 
to relatively small sample sizes that are inadequate to assess 
associations on a population scale. Newer approaches, such as 
aptamer-based or antibody-based affinity proteomics, allow mul-
tiplexing and larger sample sizes but are constrained to the evalu-
ation of candidate proteins (Benson et al., 2019; Gold et al., 2010). 
We developed high-throughput and sensitive MS-based methods 
that allow a broad, discovery-based assessment of the serum pro-
teome (Baker et al., 2010, 2014) and have used those methods to 
interrogate samples from a large longitudinal cohort of older men 
to identify proteins associated with bone loss and mortality (E. S. 
Nielson et al., 2017; Orwoll et al., 2018). Similar pipelines for large 
scale discovery proteomics have been employed in several other 
pioneering studies (Geyer et al., 2016; Price et al., 2017; Surinova 
et al., 2015).

We have used discovery proteomics in a 12-year longitudinal 
study of older men to identify serum proteins that are associated 
with longevity and have explored the biological pathways that may 
be involved in their regulation. Some of these proteins are well doc-
umented to be associated with longevity, while others have not been 
previously reported. These results illustrate the utility of this ap-
proach for biomarker discovery, provide candidate protein biomark-
ers potentially useful to identify individuals who may be long-lived, 
and offer insight into the biological basis of longevity.

2  |  RESULTS

2.1  |  Study participants

We utilized serum samples and phenotypic data from men ≥65 years 
enrolled in a large, prospective, longitudinal study (MrOS)(http://
mrosd​ata.sfcc-cpmc.net). Of the entire MrOS cohort (N  =  5994), a 
randomly selected subcohort (N = 2473) had serum proteomic assess-
ments of baseline serum samples and were followed prospectively for 
11.9 ± 4.6 years. In these analyses (the analytic cohort), we compared 
those with proteomic measures who achieved longevity, defined as 
reaching or exceeding the 90th percentile of expected age for their 
birth cohort (N = 554), to those who died before achieving longevity 
(N = 642) (Figure 1). Less than 1% of long-lived men died within 5 years 
of baseline, and all men in this group lived at least 3.7 years (the 10th 
percentile of follow-up time was 9.1 years). Just 13 (2%) of the shorter-
lived men died within 1 year of baseline, and an additional 30 (5%) in 
this group died with between 1 year and 2 years of follow-up. Thus, 

our study design explicitly mitigated the risk of inadvertently detecting 
proteins associated with life-threatening acute illness effects. Potential 
confounding by age was minimized by requiring complete overlap in 
baseline age distributions between the two groups (see 4.2 Analytic 
sample). The characteristics of the overall MrOS cohort, the randomly 
selected subcohort with proteomic measurements, and the analytic co-
hort are shown in Table 1. The randomly selected subcohort with prot-
eomic measures was similar to the entire MrOS cohort. In the analytic 
cohort, the mean age at baseline was 77.4 ± 3.2 years (range 73–84). 
Generally, these men were similar to the overall MrOS cohort, apart 
from being slightly older on average due to the age selection criteria. 
Compared to the shorter-lived men, the men who achieved longevity 
were slightly older, had minimally lower BMI, and had slightly better 
levels of self-reported health, scores in the physical component of the 
SF-12 and scores on the Healthy Aging Index (lower scores are better).

2.2  |  Proteins associated with longevity

We analyzed 3831 serum peptides mapping to 224 proteins. The raw 
data are available as a MassIVE dataset (accession MSV000085611). 
Protein identifiers used in the MassIVE files are provided (in the 
“Symbol” column) in Table S1. The effect sizes of the associations of 
peptides with longevity are shown in Figure 2a. Protein-level meta-
analysis of the peptide associations revealed 25 proteins associated 
with longevity (Table 2), defined as having a meta-analyzed fold change 
of at least 1.1 in magnitude and posterior probability of less than 0.1 
that the effect is opposite of the estimated direction. An additional 34 
proteins (second tier) had significant associations with longevity (Table 
S2), but with slightly smaller fold changes and slightly higher posterior 
probabilities of incorrect sign (see 4.4 Statistical analyses). The effect 
sizes of the protein-level associations are shown in Figure 2b. All 25 
strongly associated proteins (and all but 3 of the 34 second-tier pro-
teins) were of lower abundance in those men who achieved longevity 
(fold changes −1.10 to −1.22) than in shorter-lived men. Key quan-
titative results from the mass spectrometric data analysis are avail-
able in Table S3, including the protein identifiers, number of peptides 
quantitated, mean relative abundance levels for long-lived men and 
controls, fold changes, Bayesian posterior probabilities, and technical 
coefficients of variation (CVs).

The relative abundance levels of the 25 longevity-associated 
proteins in the members of the analytic sample are shown in the 
heatmaps in Figure 2c. Among the men who achieved longevity, 
there was a large fraction with a pattern of consistently lower abun-
dance levels. That pattern was present in a considerably smaller seg-
ment of the men who did not reach longevity, and in the latter group, 
a larger fraction had a pattern of consistently higher abundance of 
the longevity proteins.

In a clustering analysis of the complete set of identified serum 
proteins in the proteomics cohort, there was evidence of 12 clusters 
of intercorrelated proteins, and those clusters were similar when the 
clustering was performed separately in both long-lived men and con-
trols. The 25 longevity-associated proteins grouped into 5 clusters 

http://mrosdata.sfcc-cpmc.net
http://mrosdata.sfcc-cpmc.net
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(Figure S1) showing modest to high levels of pairwise correlation 
(r = 0.33–0.89) among proteins in each cluster, suggesting that pro-
teins within a cluster may share some underlying regulation.

Although it is difficult to equate tissue levels to circulating 
protein levels, to explore the tissues that were likely to contribute 
to the serum proteins associated with longevity, we used stud-
ies recently published by Jiang et al. that examined the relative 
abundance of proteins in human tissues (Jiang L, Wang M, Lin S, 

Jian R, Li X, Chan JY, Fang H, Dong G, Tang H, Snyder M (2019) A 
Quantitative Proteome Map of the Human Body. https://www.biorx​
iv.org/conte​nt/10.1101/797373v2). Figure S2 shows the tissues 
that were most frequently described as having high levels of pro-
tein expression of the longevity-associated proteins. Cardiovascular 
and neurological tissues were most prominent. The proteins within 
clusters (above) did not appear to originate more often from unique 
tissue sources.

F I G U R E  1 Study overview. Overview of the selection of MrOS participants (left) and the proteomic measurement and analysis workflow 
(right)

TA B L E  1 Cohort characteristics, mean ±SD

MrOS Proteomics Analytic Long-liveda  Not long-lived

N 5994 2473 1196 554 642

Age at baseline 73.7 ± 5.9 73.6 ± 5.8 77.4 ± 3.2 78.5 ± 3.1 76.4 ± 2.9

BMI 27.4 ± 3.8 27.4 ± 3.8 27.0 ± 3.5 26.8 ± 3.4 27.2 ± 3.7

Self-reported health (1–5)b  4.2 ± 0.7 4.2 ± 0.7 4.2 ± 0.7 4.2 ± 0.6 4.1 ± 0.7

SF-12 Physical Componentb  48.8 ± 10.3 48.9 ± 10.3 47.7 ± 10.8 48.8 ± 9.9 46.7 ± 11.4

SF-12 Mental Componentb  55.6 ± 7.0 55.8 ± 6.6 55.6 ± 7.0 55.7 ± 7.0 55.6 ± 7.0

Healthy Aging Index (0–10)c  3.0 ± 1.6 2.9 ± 1.6 3.1 ± 1.6 3.0 ± 1.5 3.3 ± 1.7

aTo reach or exceed the 90th percentile of expected age for birth cohort. 
bHigher score is better. 
cLower score is better. 

https://www.biorxiv.org/content/10.1101/797373v2
https://www.biorxiv.org/content/10.1101/797373v2
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2.3  |  Prediction of longevity and mortality

To examine the hypothesis that baseline levels of proteins were 
predictive of subsequent longevity and mortality, we used several 
complementary analytical approaches. First, the ability of protein 
signatures to predict longevity was analyzed using receiver oper-
ating characteristics (ROC). All possible combinations of the 25 
most robustly associated proteins were evaluated for ability to 
separate the long-lived and control groups, and the most informa-
tive subset of 14 of the proteins was summarized using Bayesian 
model averaging where combinations of proteins were weighted 
by joint posterior model inclusion probability. The Bayesian model-
averaged classifier yielded area under the ROC curve (AUC) of 0.62 
(p < 0.0001) (Figure 3a). While this finding does not suggest these 
proteins are clinically useful for the prediction of which men will be 
long-lived, it does provide additional evidence of their association 
with longevity.

Second, when considering either the entire cohort with proteomic 
measures (N = 2473) or the analytic cohort, higher abundances of each 
one of these 25 proteins were individually predictive of earlier mortality. 
Table 3 shows the age-adjusted hazard ratios of mortality correspond-
ing to standard-deviation changes in protein abundance for the full pro-
teomics cohort (hazard ratios 1.03–1.32, p < 0.0001 for most proteins). 
An example of the relationships between protein abundance and death 
rate in the entire proteomics cohort is shown in Figure 3b; men in the 
highest tertile of C7 levels had a higher risk of death, and those in the 
lowest tertile a lower risk, compared to those in the middle tertile. As 
age increased and time to death shortened (see below), the differences 
were reduced. These analyses yielded similar results in the analytic co-
hort, including both the long-lived men and those who died earlier.

Finally, while the average abundance of the 25 longevity-asso-
ciated proteins was lower, at any age, in the long-lived men than in 
those who died earlier, in both groups the levels of these proteins 
tended to be higher in individuals whose time to death was shorter, 

F I G U R E  2 Protein associations with longevity. (a)The associations of 3831 serum peptides identified by MS-based measurements 
with the achievement of longevity during observation. Volcano plot of the effect sizes and negative-log10-transformed p-values. (b) The 
associations with longevity of 224 proteins mapping to the 3831 serum peptides. Volcano plot of the effect sizes and log p-values. Proteins 
associated with longevity are identified by dark symbols: large black dots =tier 1 proteins (Table 2); small black dots =tier 2 proteins 
(Supplemental Table 2); small gray dots =nonsignificant proteins. (c) Heatmaps showing the standardized relative abundance of the 25 tier 1 
serum proteins associated with longevity in each of the 554 men who achieved longevity during observation (cases, top) and the 642 men 
who died before achieving longevity (controls, bottom). The z-scores for all protein associations were precalcuated using the full cohort, so 
the z-score values (represented as heatmap colors) are directly comparable between the two panels
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even after adjustment for baseline age (p = 0.026). In contrast, the 
average abundance of all the other measured proteins that were 
not associated with longevity was unrelated to the time to eventual 
death (p  =  0.68) (Figure 3c). Although protein abundance was as-
sessed at only one time point, these results suggest that an increase 
in these longevity-associated proteins heralds impending death.

2.4  |  Proteins associated with longevity are 
associated with better health status

Centenarians have been reported to have an unexpectedly low bur-
den of adverse health conditions (Gellert et al., 2018). Similarly, in the 
analytic cohort, lower levels of an overall abundance score summariz-
ing the 25 longevity-associated proteins (lower score indicates lower 
protein abundance overall; see Protein abundance summary score in 
4.4 Statistical analyses) were significantly associated with a better self-
rated health status (Spearman r = −0.127, p < 0.0001), better scores 
on the SF-12 physical component index (r = −0.135, p < 0.0001), lower 
(i.e., better) Healthy Aging Index (r = 0.155, p < 0.0001), and a lower 

score on the Fried frailty index (r  = 0.192, p  <  0.0001). The results 
were the same when the entire proteomics cohort was considered. 
Moreover, with the exception of the proteins in Cluster 5 (CD5L and 
IGHM; see Figure S1), each of the protein clusters and all of the pro-
teins in each cluster were individually correlated with these health in-
dices in the same direction as the overall protein score, on average at 
similar magnitudes but varying (ranging from ~0.02 to ~0.20 in size) 
depending on the health index and protein. CD5L and IGHM were not 
correlated with any of the health indices.

2.5  |  Relationship of proteins associated with 
longevity, mortality and bone loss

In analyses of the MrOS cohort, we previously reported proteins 
that are associated with early mortality (E. S. Orwoll et al., 2018) and 
with accelerated bone loss (Nielson et al., 2017), and we explored 
to what extent the proteins associated with longevity are also as-
sociated with these other two phenotypes. In the Venn diagram in 
Figure 4a, it is apparent that there is considerable overlap among the 

TA B L E  2 Proteins with robust absolute fold change >1.1 for longevity

Gene UniProt # Peptides Protein Name
Meta Fold 
Change Meta p

C9 CO9 19 Complement component C9 −1.217 0.0002

S100A9 S10A9 3 Protein S100-A9 −1.206 0.0700

CD163 C163A 5 Scavenger receptor cysteine-rich type 1 protein M130 −1.179 0.0179

CRP CRP 6 C-reactive protein −1.170 0.0183

IGHM IGHM 19 Immunoglobulin heavy constant mu −1.157 0.0002

C7 CO7 49 Complement component C7 −1.150 0.0001

FCGR3A FCG3A 4 Low affinity immunoglobulin gamma Fc region receptor 
III-A

−1.148 0.0984

LGALS3BP LG3BP 14 Galectin-3-binding protein −1.148 0.0002

NRP1 NRP1 3 Neuropilin-1 −1.140 0.0966

ALCAM CD166 4 CD166 antigen −1.139 0.0535

GPLD1 PHLD 7 Phosphatidylinositol-glycan-specific phospholipase D −1.136 0.0239

B2 M B2MG 7 Beta-2-microglobulin −1.133 0.0133

A2 M A2MG 21 Alpha-2-macroglobulin −1.133 0.0002

MMP2 MMP2 5 72 kDa type IV collagenase −1.132 0.0286

VWF VWF 58 von Willebrand factor −1.120 0.0001

CSF1R CSF1R 5 Macrophage colony-stimulating factor 1 receptor −1.119 0.0390

HPR HPTR 13 Haptoglobin-related protein −1.117 0.0003

CFD CFAD 7 Complement factor D −1.111 0.0078

CD5L CD5L 6 CD5 antigen-like −1.111 0.0788

FCGBP FCGBP 34 IgGFc-binding protein −1.108 0.0001

IGHG3 IGHG3 13 Immunoglobulin heavy constant gamma 3 −1.106 0.0014

F2 THRB 53 Prothrombin −1.104 0.0001

CST3 CYTC 7 Cystatin-C −1.102 0.0569

PTGDS PTGDS 4 Prostaglandin-H2 D-isomerase −1.101 0.0826

MCAM MUC18 7 Cell surface glycoprotein MUC18 −1.101 0.0445
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proteins associated with longevity, mortality, and accelerated bone 
loss. However, almost universally, the directions of the associations 
with longevity are in the opposite direction to those of mortality 
and bone loss. Figure 4b shows the magnitude and direction of fold 
changes for each phenotype with each of the proteins referenced 
in the Venn diagram, and with few exceptions, the protein signature 
for bone loss and mortality in the top bands of the heatmap is similar 
and diametrically opposed to that of longevity in the bottom band. 
To show these relationships in a more quantitative way, we also plot-
ted the values of longevity protein fold changes versus mortality and 
bone loss fold changes (Figure S3).

2.6  |  Pathway analyses: identification of upstream 
regulators of longevity-associated proteins

Ingenuity pathway analysis (IPA) was used to identify upstream reg-
ulators and pathways that could be responsible for the proteomic 

patterns associated with longevity. Upstream regulators are com-
pounds whose biological actions can be directly linked to a protein 
of interest. The upstream regulators with activation scores |Z|>2 (ei-
ther activated or inhibited) of the longevity-associated proteins are 
shown in Table 4, along with the associated target proteins in our 
dataset. Of note, accounting for the direction of association in each 
measured protein that is regulated by the upstream regulator, almost 
all the upstream regulator pathways highlighted are predicted to be 
inhibited in long-lived men. The pathways with high activation scores 
were all associated with multiple longevity-associated proteins, and 
some proteins were members of multiple (>3) upstream regulatory 
pathways, suggesting a potential convergence of multiple pathways 
resulting in an altered protein abundance observed in long-lived men 
in this study.

Several additional analyses supported the relevance of the IPA 
predictions of upstream regulators. First, serum concentrations of 
two upstream regulators with high activation scores in our IPA anal-
yses were available from independent ELISA assays (Cauley et al., 

F I G U R E  3 Prediction of longevity and mortality. (a) Receiver operating curve analysis showing the discrimination of long-lived vs control 
by a Bayesian model-averaged classifier comprising a maximally informative subset of 14 of the 25 tier 1 longevity-associated proteins. (b) 
The relationship between C7 abundance at baseline age and death rate in the entire proteomic cohort (N = 2473). Shown are the hazard 
ratios (HR) of death (± 95% CI) for the highest and lowest tertiles of C7 abundance compared to the middle tertile across years of age at 
baseline. (c) A plot of an abundance index of the 25 tier 1 longevity-associated proteins (left) as a function of time to death, compared to an 
abundance index of all 165 measured proteins not associated with longevity (right)
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2016): IL-6 and IL-10, with activation scores −2.834 and −2.166, 
respectively. As predicted by the IPA, long-lived men had IL-6 and 
IL-10 concentrations that were lower than other men (22% lower, 
p < 0.001, and 11% lower, p = 0.042, respectively). Similarly, serum 
levels were available for 3 other upstream regulators with less ro-
bust activation scores: TNF (activation score = −1.14), TNF receptor 
1 (activation score = −1.41), and TNF receptor 2 (activation score = 
−0.85). Their levels were also, as predicted by IPA, lower in the long-
lived men: 12% lower for TNF (p = 0.18), 13% lower for TNF receptor 
1 (p < 0.001), and 6% lower for TNF receptor 2 (p = 0.004). Second, 
the relative abundance levels of proteins assessed in the present 
MS-based analyses that were not associated with longevity, but that 
were linked by IPA to upstream regulators, were also generally in 
the directions predicted by IPA. For example, 73% (29 of 40) of the 
abundance levels of proteins linked to IL-6 regulation were in the 
direction predicted, and 83% (10 of 12) of the relationships were as 
predicted for proteins linked to IL-10 regulation.

Using IPA analyses, we also examined how the activation pat-
terns of the upstream regulators of the proteins associated with 
longevity may differ from those of the mortality and accelerated 

bone loss phenotypes. In Figure 5a, we show the 35 regulatory 
pathways with strong activation scores for longevity (activation 
score |Z|≥2), along with a heatmap displaying the patterns of acti-
vation for the regulators across the 3 phenotypes. The directions 
of activation or inhibition in longevity are uniformly opposite 
those for bone loss and mortality. Finally, with the hypothesis that 
the 5 clusters of intercorrelated longevity-associated proteins de-
scribed above may reflect shared biological foundations, we exam-
ined the upstream regulators that might be involved in regulating 
the proteins in each cluster. An IPA-derived network analysis of 
the largest cluster (including the proteins in the cluster and other 
biologically associated proteins) is shown in Figure 5b, illustrating 
the importance of IL6 (which participates in 31 of the 120 con-
nections in the network) and alpha V integrin (IGTAV, participat-
ing in 10 connections, including one to IL6) in its regulation. By 
way of comparison, the average number of connections per gene 
(beta index) for the network is just 2.14, indicating that the typical 
amount of connectivity for genes in the network is considerably 
lower than that displayed by IGTAV and especially IL6. Excluding 
the connection between them, these two genes account for nearly 
25% (39/120) of the total number of edges in the network. Similar 
network analyses of the other 4 highly intercorrelated clusters 
containing at least 1 of the 25 longevity proteins are shown in 
Figure S4. Each of these networks contains at least one hub gene 
with a node degree 3 to 5 times larger than the beta index for 
the network. A comprehensive mapping between the gene names 
used by IPA (and in this paper) and the corresponding UniProt 
names and identifiers for our 224 measured proteins is provided 
in Table S1.

3  |  DISCUSSION

High-throughput proteomic analysis of population-based study sam-
ples provides the opportunity to identify biomarkers for important 
health outcomes. Using those methods, we identified serum proteins 
that are associated with longevity in a longitudinal study of older, 
community-dwelling men with a long follow-up period. Further, 
we used those findings to explore biological pathways that might 
be involved. The majority of the proteins we identified have been 
associated with inflammation, although some have multifunctional 
biological roles and their associations with longevity may reflect 
other mechanisms. Pathway analyses suggested that several major 
upstream regulators may be causally responsible for the associa-
tions. The proteins and regulatory pathways that are associated with 
longevity are also associated, but in opposite directions, with the 
adverse health outcomes of bone loss and mortality. Moreover, late-
life disability and morbidity are lower among people who experience 
extreme longevity (Hitt et al., 1999). In concert with those findings, 
the longevity-associated proteins in this study were associated with 
several indices of better health status. Finally, we observed a gradual 
increase in the abundance of longevity-associated proteins as time to 
death shortened in both long-lived and shorter-lived men. Although 

TA B L E  3 Hazard ratios of longevity-associated proteins with 
mortality. The hazard ratios were adjusted for baseline age of the 
participants

Gene UniProt Hazard Ratio p-value

A2 M A2MG 1.18 <0.0001

B2 M B2MG 1.20 <0.0001

CD163 C163A 1.03 0.2891

ALCAM CD166 1.14 <0.0001

CD5L CD5L 1.08 0.0109

CFD CFAD 1.16 <0.0001

C7 CO7 1.32 <0.0001

C9 CO9 1.22 <0.0001

CRP CRP 1.17 <0.0001

CSF1R CSF1R 1.15 <0.0001

CST3 CYTC 1.21 <0.0001

FCGR3A FCG3A 1.14 <0.0001

FCGBP FCGBP 1.14 <0.0001

HPR HPTR 1.11 0.0001

IGHG3 IGHG3 1.10 0.0001

LGALS3BP LG3BP 1.16 <0.0001

MMP2 MMP2 1.13 <0.0001

MCAM MUC18 1.07 0.0142

IGHM IGHM 1.08 0.0030

NRP1 NRP1 1.14 <0.0001

GPLD1 PHLD 1.15 <0.0001

PTGDS PTGDS 1.16 <0.0001

S100A9 S10A9 1.13 <0.0001

F2 THRB 1.11 0.0001

VWF VWF 1.15 <0.0001
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the apparent linkage between the abundance of these proteins and 
death cannot be directly attributed to death per se, this finding sug-
gests a shift in underlying biological processes that might be linked 
to impending death. An understanding of those events would be of 
obvious interest.

The search for biomarkers of important health outcomes has 
been a biomedical research priority. Biomarkers can provide tools 
for prediction and diagnosis, insight into pathophysiology, and tar-
gets for the development of therapeutics. To our knowledge, this 
study represents the largest non-targeted proteomic effort to dis-
cover biomarkers of longevity. Previous proteomic analyses have 
been limited to smaller numbers of participants, cross-sectional 
analyses, and/or to the assessment of specific candidate proteins or 
other compounds. Some of those studies have used aptamer-based 
approaches to scan large numbers of proteins to identify interesting 

patterns linked to age and health-related phenotypes and outcomes 
(Emilsson et al., 2018; Menni et al., 2015; Sun et al., 2018; Tanaka 
et al., 2018). Our approach offers an unbiased opportunity to iden-
tify serum peptides/proteins associated with long life. In fact, our 
unbiased approach yielded longevity-associated proteins that were 
also measured in a recent analysis using a very large aptamer-based 
array (Emilsson et al., 2018), but also identified a number (4 of 25; 
FCGR3A, HPR, FCGBP, MCAM) that were apparently not assessed 
by that aptamer approach, highlighting the benefit of discovery 
proteomics.

The fact that many proteins were associated with longevity is not 
only biologically interesting but also supports the usefulness of pop-
ulation proteomic approaches to identify peptides and proteins of 
potential usefulness as biomarkers. MS-based discovery proteomic 
methods are evolving quickly and more in-depth measurements 

F I G U R E  4 Comparison of protein associations for longevity, mortality, and bone loss. (a) Venn diagram of the overlap of proteins associated 
with longevity, mortality, and bone loss. The accompanying table lists the overlapping proteins, with protein overlap groups color-coded to 
match the regions of the Venn diagram. Shown in parentheses are the directions of protein associations for each phenotype in the order (left 
to right): longevity, bone loss, mortality. (b) A heatmap of the relative protein abundance of proteins associated with longevity, mortality, and/
or bone loss. Shown are the signed fold changes for all proteins that were significantly associated with at least one of the phenotypes using 
the same criteria for significance that is used in this study (meta-fold change at least 1.1 in magnitude and meta-p less than 0.1)
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TA B L E  4 Regulatory pathways for longevity-associated proteins. Tier 1 proteins associated with longevity appear in boldface, tier 2 
proteins appear with neither boldface nor parentheses, and proteins that we did not find significant for longevity but that were linked to 
the upstream regulators in the IPA knowledge base appear in parentheses. UniProt names and identifiers corresponding to the gene names 
appearing in the table can be found in Supplemental Table S1

Upstream
Regulator

Activation
z-score Target proteins measured in cohort

Alpha catenin 3.403 C6A3, (IGF1), (IGF2), (IGFBP2), (IGFBP6), (IL6ST), (LUM), MMP2, S100A8, S100A9, (TIMP1), (VCAM1)

APOE 2.280 ACTB, ADIPOQ, (APOD), (APOE), CD44, CLU, ECM1, (GPX3), (HABP2), (HSP90B1), HSPA5, HSPG2, 
(IGF1), (IGFBP6), (LRP1), MMP2, S100A8, S100A9, (SERPINA3), (TIMP1), (VCAM1)

LRP1 2.213 (C1R), (C1S), (LRP1), MMP2, (SERPINF1), (SERPING1)

AIRE −2.000 (AMBP), (IGF2), ITIH3, S100A9

PRKCE −2.000 CRP, HSPA5, (IL6ST), (VCAM1)

SOX9 −2.000 (COMP), (KIT), PTGDS, (VNN1)

NOS2 −2.058 ADIPOQ, (AZGP1), CD14, CD44, CFD, (CP), (ITIH4), LGALS3BP, S100A8, (SERPINA3), (TIMP1)

Creb −2.157 ADIPOQ, CD14, CD5L, CSF1R, DBH, (IGF1), (KRT1), MCAM, MMP2, (PCOLCE), (PRG4)

CSF1 −2.159 (APOE), CD163, CSF1R, FCGR3A, (FN1), (HSP90B1), HSPA5, (IGF1), (IL6ST), (PTPRJ), THBS1, (VCAM1)

IL10 −2.166 (APCS), CD14, CD163, CD44, CSF1R, FCGR3A, (IL6ST), MMP2, S100A8, (SELL), (TIMP1), (VCAM1)

CHUK −2.178 CLU, (CP), ENPP2, (IGFBP6), MMP2, (NID1), (SOD3), (VCAM1)

GLI1 −2.182 CLU, (FUC2), (IGF1), (IGF2), (IGFBP6), MMP2, (PVR), S100A9

Vegf −2.194 A2 M, (ANPEP), (APOM), CD44, (CRTAC1), ENPP2, (FN1), (IGFBP3), (IL6ST), LYVE1, MMP2, NRP1, 
(PVR), (TIMP1), (VCAM1), VWF

F3 −2.195 F2, LCP1, MMP2, (SERPINC1), (VCAM1)

CXCL12 −2.209 (C5), CD14, CD44, (FN1), (KIT), MMP2, THBS1, (TIMP1)

STAT −2.219 A2 M, (AGT), CRP, (IL6ST), (SERPINA3), (TIMP1)

HNF4A −2.313 (A1BG), (AGT), (AHSG), ALCAM, (AMBP), (ANPEP), (APCS), (LPA4), (APOC1), (APOC2), (APOC3), 
(APOE), APOH, (APOM), (C1S), (C2), (C4B), C6, (C8G), (CP), (CPB2), CRP, DNAJC14, (F11), (F12), 
(F13B), (F7), (F9), (FETUB), GPLD1, (GSN), (HPX), (HSP90B1), HSPA5, (IGF1), (IL1RAP), (IL6ST), 
ITIH3, (ITIH4), (KNG1), (LPA), MBL2, (MST1), (PEPD), (PLG), (PON1), PROZ, PTGDS, (PTPRG), 
S100A9, (SERPINA10), (SERPINA3), (SERPINA4), (SHBG), (TTR), VTN

CCL2 −2.334 ADIPOQ, (IGF1), MMP2, PTGDS, (TIMP1), (VCAM1)

IL1B −2.337 A2 M, (APCS), (APOC2), (APOE), B2 M, (C1R), CD14, CD44, (CFB), (CP), (CPB2), CRP, ENPP2, (FN1), 
HSPA5, HSPG2, (IGF1), (IGFALS), (IGFBP3), (IGFBP5), (IGFBP6), (IL1RAP), LCP1, MMP2, NRP1, 
PTGDS, RNASE1, S100A8, S100A9, (SELENOP), (SERPINA3), (SERPINF2), (SPARC), THBS1, 
(TIMP1), (VCAM1)

SREBF1 −2.348 ADIPOQ, (ALDOA), (APOC3), CD14, CFD, (CFI), (FN1), (GPX3), HSPA5, IGHM, PTGDS, (SELENOP), 
(SERPINA3)

CTNNB1 −2.375 ACTB, ADIPOQ, ALCAM, (AOC3), (APOD), C6, CD44, CFD, CLU, DBH, ECM1, ENPP2, (FN1), (IGF2), 
(IGFBP2), (IGFBP5), IGHM, (JCHAIN), (KIT), (KRT1), MMP2, NCAM1, (PTPRJ), (RBP4), S100A8, 
(SERPINA3), (TIMP1), (VCAM1)

IL1 −2.395 (APOC3), (APOE), (C2), (CFB), (CP), CRP, CSF1R, (FN1), (IGF1), (KIT), (LRP1), MMP2, (RBP4), S100A9, 
(SAA4), (SELL), (SHBG), (SPARC), (TIMP1), (VCAM1)

CEBPD −2.408 (AGT), (APOC3), CD14, CLU, (CPB2), CSF1R, (IGF1), (IGFBP5)

LDL −2.429 (APOE), (HSP90B1), HSPA5, (HYOU1), (IGF1), (IGFBP2), (IGFBP3), (LRP1), MMP2, S100A8, (VCAM1), 
(VNN1)

ANGPT2 −2.464 (C1R), (CFB), (FN1), HSPA5, MMP2, (PROS1), (SERPING1), (SOD3), THBS1, (VCAM1)

MYD88 −2.550 (APCS), CD14, CD44, HSPA5, (IGF1), (IGFBP5), MMP2, S100A8, (TIMP1), (VCAM1)

CEBPA −2.601 A2 M, ADIPOQ, (AGT), (ANPEP), (LPA4), (APOC3), (APOC4), CD14, CFD, (CPB2), CSF1R, (F9), GGH, 
HPR, HSPA5, (IGF1), (IGFBP3), NRP1, (RARRES2), S100A8, S100A9, (SERPINF1), THBS1, (VCL)

EGF −2.629 ALCAM, (ANPEP), CD44, CLU, (CPB2), CSF1R, (FN1), (IGF1), (IGF2), (IGFALS), (IGFBP2), (IGFBP3), 
(IGFBP5), MMP2, (MST1), NCAM1, NRP1, S100A9, (SERPINA3), (SPARC), THBS1, (TIMP1), 
(VCAM1), (VCL)

(Continues)
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should allow a more comprehensive evaluation of similar biomark-
ers. In addition to the potential value for biomarker development, 
the identification of factors that are lower in longer-lived, health-
ier people may conceivably have eventual therapeutic implications. 
Parabiosis experiments in animal models suggest that modulation of 
circulating factors can extend lifespan and improve health (Ashapkin 
et al., 2020).

The proteins we found to be reduced in long-lived men strongly 
reinforce previous findings that implicate a low level of inflamma-
tion in the genesis of longevity. For instance, lower CRP was asso-
ciated with long life in our participants. Similarly, a variety of the 
longevity-associated proteins in this study was related to regulation 
of complement activation, an integral element in both adaptive and 
innate immune systems that yields the generation of potent inflam-
matory mediators and cell destruction (Dunkelberger & Song, 2010). 
Members of the complement cascade that were lower in men who 
experienced longer life included complement factor D, complement 
C7, and complement C9. Additional proteins negatively associated 
with longevity in our analysis are also implicated in inflammatory 
pathways, including CD166 (activated leukocyte cell adhesion mol-
ecule) (Bowen et al., 1995), (Zimmerman et al., 2006), CD5 antigen 
(Aziz et al., 2015), galectin-3–binding protein (Yang et al., 2008), 
macrophage colony-stimulating factor 1 receptor (Chitu & Stanley, 
2006), cell surface glycoprotein (MCAM) (Stevenson et al., 2017), 
and S100-A9 (Wang et al., 2018). Adding to these findings, lower 
levels of several immunoglobulin-related proteins were associated 
with longevity (low affinity immunoglobulin gamma Fc region recep-
tor III-A, immunoglobulin heavy constant mu, immunoglobulin heavy 
constant gamma 3, IgGFc-binding protein).

Other longevity-associated proteins have functions linked to 
inflammation but are involved in other potentially relevant biolog-
ical processes as well. Metalloproteinase 9 (72 kDa type IV collage-
nase) is critical for remodeling of the extracellular matrix (Van den 
Steen et al., 2002) and cardiovascular physiology (Yabluchanskiy 
et al., 2013). It is linked to atherosclerosis (Zhu et al., 2017) and 
heart failure (Meschiari et al., 2018) as well as some elements of the 

inflammatory response to injury. Scavenger receptor cysteine-rich 
type 1 protein (CD163) is exclusively expressed in monocytes and 
macrophages, is involved in the clearance of hemoglobin/haptoglo-
bin complexes, and may protect tissues from free hemoglobin-me-
diated oxidative damage. It is also expressed during the resolution 
phase of inflammation (Alvarado-Vazquez et al., 2017; Etzerodt & 
Moestrup, 2013). Neuropilin is a cell surface receptor that plays im-
portant roles in semaphorin and VEGF signaling, and thus in the con-
trol of neuronal cell regulation as well as endothelial cell migration 
and proliferation (Nakamura & Goshima, 2002; Pellet-Many et al., 
2008). It is also expressed in T cells and may help mediated prolifer-
ation in response to antigenic stimuli. Beta-2-microglobulin (B2 M) is 
known as a marker of aging and cellular senescence (Althubiti et al., 
2014) and is associated with declines in neurogenesis (Villeda et al., 
2011). B2 M is the small extracellular immunoglobulin-like subunit of 
the major histocompatibility complex (MHC) class I molecule, and its 
levels are elevated in inflammation, liver or renal dysfunction, some 
viral infections, and malignancies (Li et al., 2016). Finally, cystatin C 
levels were lower in men who achieved longevity. Cystatin is a small 
molecular weight protein and is typically used as a marker of renal 
function, but higher levels have also been linked to the development 
of late-onset Alzheimer's Disease (Chuo et al., 2007) and it has been 
implicated in diverse aspects of immunity/inflammation and apopto-
sis (Zi & Xu, 2018).

To provide biological insight into the upstream regulators that 
could be involved in the generation of the proteomic patterns ob-
served in our data, we utilized IPA analysis that is based on cu-
rated predictions from cause–effect relationships reported in the 
literature (Kramer et al., 2014). IPA analysis is strengthened by the 
inclusion of knowledge of the direction of pathway interactions (ac-
tivation or inhibition). In nearly all cases, the activity of the identified 
regulators is predicted to be inhibited. Although they represent a di-
versity of biological functions, the list is highly enriched in cytokines 
and transcription factors which play key roles in the regulation of in-
flammation and immunity, including IL1α, IL17, CEBPA, PRDM1, IL6, 
IL1β, IL5, IL10, CXCL12, and others. A variety have been identified as 

Upstream
Regulator

Activation
z-score Target proteins measured in cohort

PRDM1 −2.642 (APOM), CD44, (CFH), CRP, ECM1, (F5), (F9), IGHM, (JCHAIN), S100A8, S100A9, (SELL), (SERPINA3), 
(TTR)

IL5 −2.763 A2 M, (ALDOA), (HSP90B1), HSPA5, IGHM, (JCHAIN), (LUM), QSOX1

cytokine −2.763 CLU, CRP, (IGFBP2), MMP2, (PON1), (SPARC), (TIMP1), (VCAM1), VWF

IL17A −2.937 ACTB, CD14, CD163, CRP, MMP2, NRP1, S100A8, S100A9, (SERPIND1), (TIMP1), (VCAM1), VWF

IL1A −2.987 (APOD), CD44, HSPG2, (IGF1), (IGFBP5), (KIT), MCAM, MMP2, S100A8, S100A9, (SERPINA3), 
(SPARC), (VCAM1)

IL6 −3.053 A2 M, (ADAMTS13), (AGT), (ANPEP), (APCS), (APOE), CD14, CD163, CD44, CFD, (CFH), (CFP), CLU, 
(COMP), (CP), (CPB2), CRP, CST3, ENPP2, (F12), (FN1), (GP1BA), (GP5), (HPX), HSPA5, (IGF1), 
(IGF2), (IGFBP3), (IGFBP5), (IGFBP6), IGHM, (IL6ST), (JCHAIN), (KIT), LCAT, (LPA), LRG1, MMP2, 
(PLG), (PON1), (PPBP), S100A9, (SAA4), (SERPINA3), (SERPINA7), THBS1, (TIMP1), (TTR), (VCAM1)

ADCYAP1 −3.162 (ATRN), (CRTAC1), ENPP2, (LUM), (MAN1A1), MCAM, (SERPINA3), (SERPINF1), (SPARC), (TGFBI)

Table 4 (Continued)
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being part of the senescence-associated secretory phenotype (SASP) 
(Basisty et al., 2020; Coppe et al., 2008; Matjusaitis et al., 2016), del-
eterious products released by senescent cells that accumulate with 
aging (van Deursen, 2014; Kirkland & Tchkonia, 2017). In fact, many 
of the longevity-associated proteins (11 of 25) are considered SASP, 
and four (galectin-3-binding protein, CD166 antigen, 72 kDa type IV 
collagenase, cystatin-C) are considered "core" SASP—proteins that 
are consistently stimulated by a variety of senescent stimuli (Basisty 
et al., 2020). Moreover, there is overlap between the longevity-as-
sociated proteins we have identified (e.g., S100A9, S100A8), or their 

upstream regulators (e.g., APOE, IL1β, IL6, IL17), and the genes that 
are differentially expressed in response to caloric restriction and 
are related to inflammation (Ma et al., 2020). These findings further 
highlight the strength of the association of reduced inflammation to 
longevity and may support the hypothesis that lower levels of cell 
senescence facilitates longer life. Also represented are a number 
of factors important in cell development or proliferation (including 
SOX9, ATF4, P53, GLI1, CTNNB1) and metabolism (PRKCE, SREBF1).

Recent work had highlighted the potential importance of circu-
lating protein clusters as biomarkers for important health outcomes 

F I G U R E  5 Upstream regulators of proteins associated with longevity. (a) Heatmap showing upstream regulators of longevity-associated 
proteins as determined by Ingenuity Pathway Analysis (IPA). Only those regulators with large activation scores (|Z| ≥2) are included. 
Orange shades indicate IPA-predicted activation and blue shades indicate predicted inhibition of the regulator. (b) Network analysis 
(IPA) of the largest cluster (Cluster 1) of intercorrelated serum proteins associated with longevity. To derive these networks, we used IPA 
network-building tools in a systematic and algorithmic manner to connect the proteins appearing in the clusters to one another and to 
annotate their relationships to other closely connected proteins. Green symbols show measured proteins that were decreased in long-
lived men, red symbols measured proteins that were increased, and blue symbols unmeasured proteins or regulators that are predicted 
by IPA to be inhibited. Blue lines represent inhibitory relationships that were consistent with IPA predictions, orange lines activating 
relationships consistent with IPA prediction, yellow lines relationships inconsistent with IPA prediction, black lines relationships that exist 
in the IPA knowledge base but without a prediction, solid lines direct relationships and dashed lines indirect relationships. Arrows indicate 
directionality of activation, and flat ends show directionality of inhibition. Lines with neither arrows nor flat ends indicate only a general 
relationship or interaction of the molecules. The names appearing in the figure are IPA gene names, not UniProt identifiers; a mapping of 
gene names and current UniProt identifiers is in Supplemental Table S1
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(Emilsson et al., 2018), and similarly, we found that the proteins as-
sociated with longevity in the current study also clustered. Of the 25 
longevity-associated proteins we identified, 18 were also measured 
by Emilsson et al. (Emilsson et al., 2018) and 12 were found to be 
part of clusters in their cohort (AGES). Two of their clusters were 
enriched in proteins we also found to be associated with longev-
ity. Four of our longevity-associated proteins (neuropilin, CD166, 
alpha-2 microglobulin and 72 kDa type IV collagenase; members of 
our related clusters 1 and 2, Figure S1) were part of their cluster 
PM27, a 378-protein module associated with prevalent heart fail-
ure and reduced survival. Three (beta-2-microglobulin, complement 
factor D and cystatin-C; members of our cluster 3, Figure S1) were 
part of their cluster PM26, a 390-protein module that was positively 
association with prevalent and incident coronary heart disease and 
heart failure as well as reduced overall survival probability. Clusters 
such as these may suggest shared biological underpinnings, and our 
integrative analyses using IPA yielded pathways that appeared to 
converge on nodes that tied together the longevity-associated pro-
teins and related proteins and regulators. These analyses may yield 
targets for additional research evaluation aimed at uncovering caus-
ative events related to longevity.

Our analysis has important strengths. It takes advantage of a 
large, prospective observational study that includes excellent fol-
low-up and ascertainment of longevity. We analyzed discovery 
proteomic measures in almost 1200 men, thus representing the 
largest such experiment available. We utilized very robust statis-
tical methods to link peptides to proteins and to reduce the likeli-
hood of type II error. Several limitations should also be mentioned. 
The proteomic analysis we performed is limited in terms of sen-
sitivity, but on the other hand, it is relatively comprehensive and 
we examined a very large number of participants. As our pathway 
and protein–protein interaction analyses demonstrate, many of the 
longevity-associated proteins we report are linked, and although 
we can implicate major pathways as being associated with longer 
life, it is more difficult to evaluate the relative importance of each 
peptide/protein. Since the numbers of minority participants were 
limited, we could not examine these associations in non-white men. 
We did not include women. Observational studies such as ours are 
limited in their ability to disentangle correlative from the causal 
factors, and from these analyses, we cannot determine the time 
of life at which potentially advantageous pathways become associ-
ated with longevity. Moreover, we did not include a direct assess-
ment of health, but ultimately it will be important to understand 
both longevity and disease-free longevity. Future experimental 
studies may help to elucidate the relationships among proteins and 
with outcomes relevant to human health.

In summary, we performed broad based serum proteomic analy-
ses on a large number of older men and describe peptides and pro-
teins that are associated with longevity. Many of the proteins we 
identified as being reduced in those who were long-lived are involved 
in inflammation, and a number were previously found to be linked 
to early mortality but in the opposite direction. Pathway analyses 
were highly enriched in regulators of inflammation and immunity, 

reinforcing the importance of inflammation in the determination of 
lifespan. These results provide the opportunity to further evaluate 
these peptides and proteins as biomarkers and highlight the poten-
tial importance of the biological pathways they implicate in the ori-
gins of long life.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study participans

The Study of Osteoporotic Fractures in Men (MrOs) is a prospec-
tive observational cohort study of men aged ≥65 years. The design 
and recruitment have been previously described (Blank et al., 2005; 
E. Orwoll et al., 2005). Briefly, 5994 community-dwelling, ambula-
tory men were recruited from six areas of the US (Birmingham, AL; 
Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, OR; and 
San Diego, CA) between March 2000 and April 2002. Eligible par-
ticipants were able to walk without assistance from another person 
and had not had bilateral hip replacements. Participants or their sur-
rogates were regularly contacted with triannual questionnaires, in 
part to determine vital status. Rates of follow-up were high: ~95% 
of all questionnaires were completed. Reported deaths were con-
firmed with death certificates. Written informed consent was ob-
tained from all participants. The institutional review board at each 
study site approved the protocol.

4.2  |  Analytic sample

For the current analysis, 2473 non-Hispanic white participants were 
randomly selected from MrOS (Figure 1). Too few non-white men 
were enrolled (~10%) to enable analyses of racial or ethnic differ-
ences. Within the subcohort of 2473, we selected men who had 
the potential to achieve longevity, specifically to reach or exceed 
the 90th percentile of expected age for their birth cohort. That ex-
pected age for each birth cohort was defined by an analysis of actu-
arial life tables from the United States Social Security Administration 
(see Supplemental Methods). Men who enrolled at ages less than 73 
were excluded because they did not have sufficient time to reach the 
90th percentile of age for their birth year cohorts. Men who enrolled 
at ages greater than 84 were excluded because they were already 
quite close to the 90th percentile of their birth year cohorts; almost 
none of them failed to reach the 90th percentile during follow-up, 
and there were few or no same-aged controls to compare them to. 
In order to guard against leverage effects, we required overlap in the 
age distributions of the long-lived and not-long-lived groups such 
that each discrete stratum by year of age would contain at least 5 
participants from each group. Using these criteria, 1196 men were 
eligible. Control participants were MrOS subjects with enrollment 
ages in the selected baseline age range [73-84] who died during ob-
servation (or were lost to follow-up; 8%) before they reached the 
90th percentile of age for their birth year cohort.
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4.3  |  Serum proteomic analysis

The proteomics workflow is illustrated in Figure 1 and has been de-
scribed in detail in (E. S. Orwoll et al., 2018). Briefly, 150 µL of serum 
from the baseline MrOS visit that had been stored at −80°C since 
collection was depleted of 14 high-abundance proteins using IgY14 
immunoaffinity depletion columns (Sigma-Aldrich, St. Louis, MO, 
USA) and digested with trypsin. A pooled serum from 102 MrOS 
participants served as technical control of sample processing and 
analysis; they were embedded throughout the proteomic runs. The 
tryptic peptide samples were analyzed using a LC-IMS-MS platform 
(Baker et al., 2010, 2014). Specifically, the analytical platform uti-
lized in this work coupled a 1-m ion mobility drift tube and an Agilent 
6224 time-of-flight (TOF) mass spectrometer with an upgraded 
1.5-m TOF flight tube providing resolution of ~25,000. The coupled 
high-performance LC (HPLC) system was a fully automated in-house 
built 4-column system equipped with in-house packed capillary col-
umns (30-cm long having an o.d. of 360 µm, i.d. of 75 µm, and 3-µm 
C18 packing material) and operated under a constant flow rate of 
1 µL/min (Livesay et al., 2008). Ten µL of each sample was loaded 
onto a reverse-phase column and separated over a 58-min gradient 
from 100% of mobile phase A (0.5% formic acid in water) to 60% B 
(0.5% formic acid in 100% acetonitrile). Specifically, the percentage 
of mobile phase B for 0, 1.2, 12, 51, 58, 59, and 62 minutes was 0, 
8, 12, 35, 60, 95, and finally 0% completing the separation/wash 
cycle. The acquisition range for the MS spectra extended from 100 
to 3200 m/z. The details of the platform performance have been de-
scribed elsewhere (Baker et al., 2010). Detection and quantification 
of LC-IMS-MS features with characteristic (mass, charge, LC elution 
time, IMS drift time and abundance) was performed using Decon2LS 
(Jaitly et al., 2009) and FeatureFinder (Crowell et al., 2013) software 
tools. The detected features were identified by mapping their mass, 
elution time, and drift time using VIPER software tools (Crowell et al., 
2013; Zimmer et al., 2006) and linked to known proteins. Peptide 
abundances were log10 transformed. We removed outliers flagged 
by a multivariate distance measure. Data normalization was based 
on estimates of technical variability that were computed from meas-
ured abundances of peptides that were detected in all 102 pooled 
control samples.

4.4  |  Statistical analyses

4.4.1  |  Peptide and protein-level associations with 
long-lived status

We have published portions of our statistical analysis pipeline pre-
viously (Nielson et al., 2017; E. S. Orwoll et al., 2018). We used 
bias-corrected estimates from linear regression models to estimate 
associations between individual peptide abundances and long-lived 
status, followed by Bayesian meta-analyses that combined peptide-
level results to yield associations at the protein level. We then used a 
resampling procedure to ensure protein-level estimates were stable.

The linear regression model used normalized log10 peptide abun-
dance levels as the dependent variable, and incorporated adjust-
ments only for participant age and the population-based birth-cohort 
cumulative hazard at age to account for differential hazard at the 
same age in different subcohorts. Measures of body mass index 
were essentially identical in long-lived and control groups. The mod-
els included indicators for MrOS clinical site (to ensure no variabil-
ity based on unappreciated differences in study conduct between 
sites) and an indicator for peptides whose abundance was partially 
imputed during mass-spectrometry analysis. The fold difference be-
tween peptide abundance in the longevity group and the short-lived 
group was estimated as the antilog of �1 from the following model:

Our approach to account for bias in the peptide fold changes 
caused by missing peptide values was application of the Heckman 
selection model (Heckman, 1979), the details of which have been 
previously described (Nielson et al., 2017).

Peptide associations were combined by Bayesian meta-analysis 
to yield protein-level effects ("meta-effects") based on all peptides 
mapped to a protein. The sampling variance of each individual peptide 
estimate was estimated by the squared standard error of the association 
effect (from the peptide-level model) and assumed to be a known fixed 
quantity. We imposed mildly informative Bayesian prior distributions 
for the mean and variance of the peptide associations, specifically that 
they were normally distributed with mean 0 and variance 1 on the log10 
abundance scale, and that the variance was inverse-gamma distributed 
with both shape and scale parameters set to 1/100. Estimation was 
done via Gibbs sampling, and the model was estimated using Markov 
Chain Monte Carlo (MCMC) with an adaptive burn-in of 2500 samples 
and initial MCMC sample size of 10000, times a scaling factor equal to 
the base-10 log of the peptide count (or 1, if the peptide count was less 
than 10), with interim checks for convergence and adaptive expansion 
of the MCMC sample size if needed. As a sensitivity analysis, the pep-
tide models were re-estimated with the inclusion of the first 4 GWAS 
principal components (accounting for >75% of the variance in a GWAS 
analysis of the MrOS cohort) to adjust for potential genetic biases in the 
cohort composition and then meta-analyzed by protein as above, but 
the impact of this additional adjustment was negligible.

To investigate stability of effect size estimates, we performed a de-
lete-half jackknife resampling sensitivity analysis based on a bootstrap 
of 200 jackknife replicates sampled with replacement (Efron, 1994; 
Shao, 1989). For each replicate, we ran each protein through the en-
tire estimation pipeline and compared the bootstrap distribution of 
meta-effect estimates to the full-cohort estimate. We found that the 
replicate distribution of effects for proteins represented by at least 2 
peptides reliably reproduced the credibility bounds obtained from the 
full-cohort meta-analysis. Singleton peptides were often less stable. 
Therefore, protein-level meta-effects were reported only for the 224 
proteins represented by at least 2 measured peptides.

log10peptide abundance∼�+�1alive 90th+

�2age+�3cumhazard+(adjustment variables)+error
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Proteins with differential abundance between the longevity and 
control groups were selected based on their meta-effect size and "me-
ta-p" value (posterior probability that the sign of the meta-effect is in-
correctly estimated). Proteins were prioritized if their bootstrap meta-p 
was less than 0.1 and the absolute value of their bootstrap log10 me-
ta-effect was at least 0.041 (corresponding to a fold change of about 
1.1 or 0.9). This rule led to the selection of 25 proteins (referred to as 
"tier 1"; see Table 2). A second tier of 34 proteins with absolute me-
ta-fold change >1.05 and meta-p < 0.2 that also were in the top third of 
ranks generated by an empirical Bayes ranking procedure (https://arxiv.
org/abs/1312.5776) were tabulated as well (Table S2). It is important 
to note that these meta-p values are Bayesian posterior probabilities 
and do not carry the same interpretation as p-values. They have already 
been adjusted for our prior expectations (via the Bayesian prior distri-
butions) and do not require any correction for multiple comparisons.

To facilitate comparisons of longevity proteomic associations 
with those of the mortality and bone loss phenotypes that we ex-
amined in previous papers (Nielson et al., 2017; E. S. Orwoll et al., 
2018), we reanalyzed both phenotypes using methods identical to 
those employed for this study and selected robustly associated pro-
teins using the same selection criteria (absolute meta-fold change 
>1.1 and meta-p < 0.1). The selected proteins for these phenotypes 
are presented in Figure 4a.

4.4.2  |  Estimates of protein abundance

Protein clustering, receiver operating characteristic (ROC) curves, 
and correlations with health phenotypes were based on estimates 
of protein abundance, which were derived via a crossed-random-
effects model that included all peptides observed for each protein 
(Nielson et al., 2017). Protein levels for each participant were es-
timated using predicted values for the total effects (i.e., fixed plus 
random effects) minus the best linear unbiased prediction of the cor-
responding random effect for each peptide.

4.4.3  |  Clustering

To identify clusters of proteins that might share biological regula-
tion, protein abundance estimates were standardized by protein, and 
pairwise distances between all proteins were calculated using the 
Gower dissimilarity measure. These distances were clustered hierar-
chically using Ward's linkage, yielding 12 clusters by the Duda-Hart 
stopping rule, 5 of which contained longevity-associated proteins 
(from either tier 1 or tier 2).

4.4.4  |  Protein abundance summary score

Briefly, we standardized the measured abundances within each pro-
tein, combined these standardized values across the 25 longevity-
associated proteins (additionally noting the subtotals separately for 

each cluster), and then standardized the combined total; it is this 
final overall standardized value that we refer to as the "overall abun-
dance score" above. Scores were additionally calculated for each of 
the 5 clusters as averages of the (standardized) abundance values of 
the proteins in each cluster. Hence, a lower score indicates generally 
lower protein levels. The total protein score was correlated (using 
Spearman's correlation) with self-reported health, the SF-12 physical 
component, the Healthy Aging Index (Sanders et al., 2014), and the 
Fried Frailty Index adapted for MrOS (Cawthon et al., 2007; Fried 
et al., 2001), all measured at the MrOS baseline visit.

4.4.5  |  Multiprotein longevity signatures

To investigate whether and which combinations of proteins were 
predictors of long-lived status, we performed logistic regression 
modeling and plotted ROC curves. We calculated Mahalanobis dis-
tances for participants based on all 25 tier 1 proteins and compared 
this to alternative calculations of Mahalanobis distances computed 
from smaller subsets, finding that a set of 14 proteins separated 
the groups just as well as the full 25. We then fit logistic regres-
sion models on all possible combinations of these 14 proteins and 
computed area under the ROC curve based on predicted values. We 
used a Bayesian model-averaging procedure (Burnham KP, Anderson 
DR. 2002.  Model Selection and Multimodel Inference:  A Practical 
Information-Theoretic Approach, 2e. New York:  Springer-Verlag 
DOI:  10.1007/b97636) to approximate the average classification 
performance of multiprotein models and reported this in Figure 3a.

4.4.6  |  Mortality and death-proximity associations

We investigated associations between the 25 longevity-associated 
proteins and mortality, anticipating that each protein's mortality 
association would be approximately the inverse of its longevity as-
sociation. For each protein, we fit a semiparametric time-to-event 
model (using cubic splines), adjusted for participant age, on data 
from the entire proteomics cohort (N = 2473) as well as the analytic 
cohort, to obtain a hazard ratio of mortality. Furthermore, to inves-
tigate whether proteins were correlated with proximity to death (to 
calculate the slopes in Figure 3c), we fit a structural equation model 
(SEM) for the top 25 longevity-associated proteins, and another for 
the set of 165 proteins that were not associated with longevity (i.e., 
including neither tier 1 nor tier 2 proteins; note that tier 2 proteins 
were not used in either model). The models included a measurement 
component summarizing the protein abundances into a single fac-
tor score. The structural portion of each model assumed the effect 
of age on protein abundance levels was at least partially mediated 
by proximity to death. To disentangle the effect of death proximity 
from the expected aging effect, we used as instrumental variables 
health status (as measured by the physical component of the SF-
12) and cumulative hazard of death (from US population statistics). 
Finally, we calculated protein abundance score predictions from the 

https://arxiv.org/abs/1312.5776
https://arxiv.org/abs/1312.5776
http://DOI:%A010.1007/b97636
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models and performed a kernel-weighted (Epanechnikov) local poly-
nomial spline smoothing of those predictions along a time-to-death 
axis. The linear association between predicted protein abundance 
scores and time to death was estimated as the average time deriva-
tive of the spline in each instance.

4.5  |  Pathway analyses

We used the Ingenuity Pathway Analysis software (IPA, Spring 
2019 release, QIAGEN Inc.; https://digit​alins​ights.qiagen.com/
produ​cts-overv​iew/disco​very-insig​hts-portf​olio/analy​sis-and-
visua​lizat​ion/qiagen-ipa/) to identify networks of interacting pro-
teins associated with longevity, predicted upstream regulators 
of those associations, and causal networks potentially related to 
those effects (Kramer et al., 2014). The proteomic dataset was 
input into ingenuity pathway analysis (IPA) using the Core Analysis 
platform (Ingenuity Systems, Redwood City, CA) under default set-
tings: Direct and indirect relationships between molecules sup-
ported by experimentally observed data were considered, de-novo 
networks did not exceed 35 molecules, and all sources of data from 
human, mouse, and rat studies in the Ingenuity Knowledge Base 
were considered. IPA provides an upstream regulator analysis to 
determine likely direct regulators of the proteins in our dataset, 
designating them as "activated" or "inhibited" based on a z-score 
calculated from the fold change directions and magnitudes among 
the proteins in our data that could be mapped to the regulator. 
Regulator associations are quantitated by the activation state, in-
cluding the predicted direction of the associations (activated or 
inhibited), and the salience of the activation of the putative regula-
tor, as measured by the magnitude of the z-score. For each cluster 
(see Clustering), we used IPA network-building tools in a systematic 
and algorithmic manner to create networks of genes that according 
to the IPA knowledge base are closely connected to the proteins 
comprising each of the 5 protein clusters associated with longev-
ity. Connectivity of genes within each network was assessed by 
the degree of the gene node (i.e., the number of other genes in 
the network with a connection to that node) and compared to the 
overall beta index for the network, which characterizes the average 
number of connections per node (counting each pair only once).
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