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Abstract

Probabilistic Historical Biogeography: New Models for Founder-Event Speciation,
Imperfect Detection, and Fossils Allow Improved Accuracy and Model-Testing

by
Nicholas ]J. Matzke
Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor John Huelsenbeck, Chair
Historical biogeography has a diversity of methods for inferring ancestral
geographic ranges on phylogenies, but many of the methods have conflicting
assumptions, and there is no common statistical framework by which to judge
which models are preferable. Probabilistic modeling of geographic range evolution,
pioneered by Ree and Smith (2008, Systematic Biology) in their program
LAGRANGE, could provide such a framework, but this potential has not been

implemented until now.

[ have created an R package, “BioGeoBEARS,” described in chapter 1 of the
dissertation, that implements in a likelihood framework several commonly used
models, such as the LAGRANGE Dispersal-Extinction-Cladogenesis (DEC) model and
the Dispersal-Vicariance Analysis (DIVA, Ronquist 1997, Systematic Biology) model.
Standard DEC is a model with two free parameters specifying the rate of “dispersal”
(range expansion) and “extinction” (range contraction). However, while dispersal
and extinction rates are free parameters, the cladogenesis model is fixed, such that

the geographic range of the ancestral lineage is inherited by the two daughter



lineages through a variety of scenarios fixed to have equal probability. This fixed
nature of the cladogenesis model means that it has been indiscriminately applied in
all DEC analyses, and has not been subjected to any inference or formal model

testing.

The process of founder-event speciation, thought to be crucial especially in island
systems, is completely left out of the DEC and DIVA models, but it is implemented as
an option in BioGeoBEARS, enabling the creation of models such as DEC+], DIVA+],
etc. The models in BioGeoBEARS are fully parameterized, so that users can easily
create new models of their own devising (e.g., vicariance only, founder-event
speciation only, any combination of these, etc.) by setting parameters to 0 or 1.
Alternatively, parameters controlling various processes can be set to be free
parameters, and estimated from the data. Implementation of all models in a
common framework allows use of standard statistical model choice procedures such
as the Likelihood Ratio Test (LRT) or Akaike Information Criterion (AIC) to
objectively compare models and hypothesis about the biogeographical processes

operating in different clades and regions.

BioGeoBEARS also adds a number of features not previously available in most
historical biogeography software, such as distance-based dispersal, a model of
imperfect detection, and the ability to include fossils either as ancestors or tips on a

time-calibrated tree.



In Chapter 2, I validate BioGeoBEARS by showing that it exactly reproduces the log-
likelihoods and parameter inferences made by the LAGRANGE DEC model on the
LAGRANGE test dataset of the Hawaiian Psychotria clade. I further validate the
method by taking the Psychotria phylogeny and simulating geographic range
evolution under the DEC and DEC+] models, and then conducting inference under
the two models. Model choice using LRT is highly accurate, with false positive and
false negative rates of approximately 5%, indicating that the test has the desired
frequentist properties, and also indicating that DEC and DEC+] are easy to
distinguish from the data, even on a small phylogeny. The simulation results also
indicate that when DEC+] is the true model, DEC+] has 87% accuracy in inferring

ancestral states, while DEC has only 57% accuracy.

The DEC and DEC+] models are then applied to 13 island clades, most of them
classic Hawaiian study systems (Drosophila, silverswords, etc.), under a variety of
dispersal constraint scenarios. Standard statistical model comparisons show that
DEC+] is vastly superior to standard DEC for all clades, for the first time verifying
the importance of founder-event speciation in island clades via statistical model
choice, and falsifying vicariance-dominated models of island biogeography. The case
of Psychotria is typical: the DEC+] model is about 300,000 times more probable than
the DEC model in an unconstrained analysis, according to AIC weights. Furthermore,
the inferred maximum likelihood (ML) estimates of parameters often differ radically
under the DEC+] model, with the “DE” part of the model sometimes playing no role

(i.e., the parameters d and e, controlling anagenetic range expansion and range



contraction, are inferred to be 0). Further more, under DEC+], ancestral nodes are
usually estimated to have ranges occupying only one island, rather than the

widespread ancestors often favored by DEC.

Chapter 3 expands this analysis to compare the cladogenesis models used by the
programs LAGRANGE, DIVA, and BayArea (Landis et al. 2013, Systematic Biology).
(The BayArea program actually ignores cladogenesis, which identical to assuming
that the ancestral range is copied, unmodified, to both daughter lineages at each
cladogenesis event.) These models, along with +] versions, are run on a samples of
island clades and non-island (continental and oceanic) clades. Almost all analyses,
including continental clades, strongly favored the “+]” models over the models
without founder-event speciation. However, founder-event speciation was
measurably less frequent in non-island analyses, being 2-4 times weaker than in
analyses of island clades. Only one clade was found (“Taygetis clade” butterflies

from the Neotropics) which favored the DEC model over all others.

Chapter 4 addresses the problem of including fossils in the inference of geographic
range evolution on phylogenies. This is done by taking into account the fact that
detection of presence and absence in regions will often be imperfect for fossil taxa. A
hierarchical model is use to link a probabilistic model of imperfect detection with
the traditional likelihood calculations of geographic range evolution. The NEOMAP
database is used to provide occurrence data through time for two example clades

with good fossil records, namely, North American Canidae and Equinae. The



database is also used to provide counts of occurrences of taphonomic control groups
that are used to measure relative sampling effort in each region and time bin. The
two clades are found to prefer different models for cladogenesis: equids favor DEC,
but canids favor BAYAREA+]. This result is found both with and without usage of
the imperfect detection model. [ronically, in test data chosen because of their high-
quality fossil record, the record was so good that the model for imperfect detection
had little impact. However, modeling imperfect detection is likely to be extremely

useful in situations with poorer data, or with subsampled data.

Several important conclusions may be drawn from this research. First, formal
model selection procedures can be applied in phylogenetic inferences of historical
biogeography, and the relative importance of different processes can be measured.
These techniques have great potential for strengthening quantitative inference in
historical biogeography. No longer are biogeographers forced to simply assume,
consciously or not, that some processes (such as vicariance or dispersal) are
important and others are not; instead, this can be inferred from the data. Second,
founder-event speciation appears to be a crucial explanatory process in most clades,
the only exception being some intracontinental taxa showing a large degree of
sympatry across widespread ranges. This is not the same thing as claiming that
founder-event speciation is the only important process; founder event speciation as
the only important process is inferred in only one case (Microlophus lava lizards
from the Galapagos). The importance of founder-event speciation will not be

surprising to most island biogeographers. However, the results are important



nonetheless, as there are still some vocal advocates of vicariance-dominated
approaches to biogeography, such as Heads (2012, Molecular Panbiogeography of
the Tropics), who allows vicariance and range-expansion to play a role in his
historical inferences, but explicitly excludes founder-event speciation a priori. The
commonly-used LAGRANGE DEC and DIVA programs actually make assumptions
very similar to those of Heads, even though many users of these programs likely
consider themselves dispersalists or pluralists. Finally, the inclusion of fossils and
imperfect detection within the same likelihood and model-choice framework clears
the path for integrating paleobiogeography and neontological biogeography,

strengthening inference in both.

Model choice is now standard practice in phylogenetic analysis of DNA sequences: a
program such as ModelTest is used to compare models such as Jukes-Cantor, HKY,
GTR+I+G, and to select the best model before inferring phylogenies or ancestral
states. It is clear that the same should now happen in phylogenetic biogeography.
BioGeoBEARS enables this procedure. Perhaps more importantly, however, is the
potential for users to create and test new models. Probabilistic modeling of
geographic range evolution on phylogenies is still in its infancy, and undoubtedly
there are better models out there, waiting to be discovered. It is also undoubtedly
true that different clades and different regions will favor different processes, and
that further improvements will be had by linking the evolution of organismal traits
(e.g., loss of flight) with the evolution of geographic range, within a common

inference framework. In a world of rapid climate change and habitat loss,



biogeographical methods must maximize both flexibility and statistical rigor if they

are to play a role. This research takes several steps in that direction.

BioGeoBEARS is open-source and is freely available at the Comprehensive R Archive

Network (http://cran.r-project.org/web/packages/BioGeoBEARS /index.html). A
step-by-step tutorial, using the Psychotria dataset, is available at PhyloWiki

(http://phylo.wikidot.com /biogeobears).
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Chapter 1: BioGeoBEARS: an R package for model testing and ancestral state

estimation in historical biogeography

Summary

1. Historical biogeography has a diversity of methods for inferring ancestral
geographic ranges on phylogenies, but many of the methods have conflicting
assumptions, and there is no common statistical framework by which to judge
which models are preferable.

2. The R package BioGeoBEARS implements several common models (e.g.,
LAGRANGE, DIVA) as well as new models including processes such as founder-event
speciation. As the models are fully parameterized, users can now statistically
compare models using standard model choice metrics such as AIC.

3. BioGeoBEARS adds a number of features, such as distance-based dispersal, a
model of imperfect detection, and inclusion of fossils, not previously available in
most historical biogeography software.

4. An example compares the default LAGRANGE model (DEC) to a model adding
founder-event speciation (DEC+]), on the LAGRANGE test dataset of the Hawaiian
shrub Psychotria. DEC+] dramatically outperforms DEC, and results in substantially

different inferences about ancestral ranges.



Introduction

Historical biogeography is the field devoted to inferring the history by which living
species came to have their present geographic ranges on the globe, and to studying
the processes that have produced these distributions (Crisci 2001). The field dates
back to Wallace (1855) and Darwin (1859), but much of its history is contentious,
with rival schools of thought conducting decades-long arguments primarily over
starting assumptions. A classic example in the phylogenetic branch of historical
biogeography is the “vicariance versus dispersal” debate. Under the twin influences
of the cladistics revolution and the plate tectonics revolution, vicariance proponents
enjoyed several decades of dominance (Nelson & Rosen 1981; Cracraft & Shipp
1988), but with the advent of molecular phylogenetics and molecular dating in the
1990s, many reached the conclusion that many clades were too young to be
explained by vicariance events caused by continental breakups in the Mesozoic
(Zink, Blackwell-Rago & Ronquist 2000; Donoghue & Moore 2003; de Queiroz 2005;
Cowie & Holland 2006). This left long-distance dispersal as the major explanatory
process, and this seems to be the most common assumption in historical
biogeography analyses today, although there remain vocal proponents of vicariance
biogeography (Ebach & Tangney 2007; Parenti & Ebach 2009; Heads 2012) and
modern analyses using the most advanced dating methods sometimes do find
groups old enough and with the proper distributions to be explained by

Gondwanaland breakup (Wood et al. 2013).



Historical biogeography in recent years has come to be dominated by phylogenetic
biogeography (Maguire & Stigall 2008), wherein the evolution of geographic range
is traced on an explicitly hypothesized cladogram, or more recently, a time-
calibrated phylogeny. Phylogenetic biogeographers use several algorithmic, event-
based (Sanmartin 2007) inference methods, most prominently the computer
programs DIVA (Ronquist 1996; Ronquist 1997) and LAGRANGE (Ree et al. 2005;
Ree & Smith 2008; Ree & Sanmartin 2009; Smith 2010) and approaches derived
from them (Nylander et al. 2008; Yu, Harris & He 2010; Wood et al. 2013; Yu, Harris
& He 2013). In these methods, biogeography is simplified into a limited number of
discrete regions. Each OTU (operational taxonomic unit, typically a species or
monophyletic population) may be present or absent in each region. The goal is then
to find the best estimate of the history of lineages occupying and moving between
these discrete regions, according to some optimality criterion. DIVA is a parsimony
inference program that allows species to occupy one or more states, and searches
for biogeographic histories with minimum cost, where dispersal and extinction
events have a positive cost, while zero cost is assigned to vicariance events for
widespread ancestors, and to sympatric speciation events for ancestors occupying a
single area. LAGRANGE, probably the most popular method today, uses a DEC
(dispersal-extinction-cladogenesis) model that assigns probabilities to various
range-changing events. These event probabilities are used to calculate the
likelihood of the observed geographic range data at the tips of the tree. Maximum
likelihood (ML) optimization is then performed, and the values of the parameters

and ancestral states that confer maximum probability on the data constitute the ML



estimate. Additional advantages of LAGRANGE include the ability to specify
dispersal matrices that change in different time-strata, allowing researchers to
implement hypotheses of differing connectivity and distances between regions over
time. LAGRANGE was the origin of parametric, model-based biogeography (Ree &
Sanmartin 2009). Although DIVA and LAGRANGE are conceptually similar in many
ways, they make significantly different assumptions in the cladogenesis events

allowed (Ronquist & Sanmartin 2011; Webb & Ree 2012).

A variety of other methods are also in use, including the still-common practice of
simply treating biogeography as a standard multistate morphological character and
then employing parsimony, ML, or Bayesian approaches (Clark et al. 2008;
Sanmartin, Van der Mark & Ronquist 2008; Drummond et al. 2012) as well as
entirely new approaches that allow widespread species and take distances into
account using Approximate-Bayesian Computation (ABC) -like (Webb & Ree 2012)
or fully Bayesian (Landis et al. 2013) approaches. Finally, on top of the diversity of
computational approaches, decades-old, nonalgorithmic techniques such as
panbiogeography remain in use (Morrone 2006; Grehan & Schwartz 2009; Heads

2012), although not without substantial protest (Waters et al. 2013).

Historical biogeography is thus burdened with a variety of methods based on
conflicting assumptions, and no consensus on which are the best methods to use, or
even on how to determine what methods are the best. The main reason the issue

remains unresolved is the lack of any common statistical framework by which to



judge the competing models and assumptions that go into historical biogeography
analyses. Some studies do compare different methods on the same datasets, and
measure the amount of agreement and disagreement in ancestral range estimates
made by different methods (e.g., Clark et al. 2008; Buerki et al. 2011; Diaz Gomez
2011). However, it is hard to reach any general conclusions about which methods
and assumptions are the best, both because the method outputs are different (e.g.
parsimony vs. likelihood estimates of ancestral range) and because any single clade
being studied might, or might not, have been the product of the processes assumed
in the inference method. When single clades are examined, and the different
inference methods use different optimality criteria, there is no easy way to
generalize about which biogeographic study systems are likely to follow or disobey

the assumptions of the various inference methods.

BioGeoBEARS

In order to begin to address this problem, I created the package BioGeoBEARS
(Matzke 2013b) in the R programming language (R Core Team 2013).

“BioGeoBEARS” stands for BioGeography with Bayesian (and likelihood)

Evolutionary Analysis in R Scripts. The package allows probabilistic inference of
both historical biogeography (ancestral geographic ranges on a phylogeny) and
comparison of different models of range evolution. It reproduces the model
available in LAGRANGE (Ree et al. 2005; Ree & Smith 2008), conducting ML

optimization with optimx (Nash & Varadhan 2011; Nash & Varadhan 2012), but



makes available numerous additional models. For example, LAGRANGE as typically
run has two free parameters, d (dispersal rate, i.e. the rate of range addition along a
phylogenetic branch) and e (extinction rate, really the rate of local range loss along a
phylogenetic branch), and a fixed cladogenesis model that gives equal probability to
a number of allowed range inheritance events. Specifically, the allowed
cladogenesis events are (1) vicariance, (2) a new species starts in a subset of the
ancestral range (sympatric-subset speciation), and (3) the ancestral range is copied
to both species. In all cases, at least one descendant species must have a starting
range of size 1. LAGRANGE assigns equal probability to each of these events, and
zero probability to any other events. BioGeoBEARS allows the user to turn on an
additional cladogenic event, namely founder-event speciation, wherein the new

species jumps to a range outside of the ancestral range.

BioGeoBEARS also allows the relative weighting of the different sorts of
cladogenesis events to be made into free parameters, allowing use of optimization
and standard model choice procedures (e.g., AIC or the Likelihood Ratio Test;
Burnham & Anderson 2002) to pick the best model. The relative probability of
different descendent range sizes is also parameterized and thus can also be
specified or estimated, freeing researchers from the LAGRANGE assumption that
every cladogenesis event has at least one daughter species of range size 1. This is
important if, for example, the researcher wishes to implement and test a DIVA-like
model in a likelihood framework; the DIVA model assigns probability 0 to

sympatric-subset speciation, and assigns equal probability to all descendent range



sizes during a vicariance event. Thus, in DIVA, an ancestor with range ABCD may
split into descendant species with ranges AB and CD; but in the LAGRANGE DEC
model, this is disallowed (Ree & Smith 2008; Ronquist & Sanmartin 2011), and the
only vicariance scenarios allowed are those that split off a single area, e.g. (A, BCD).
This limitation of the LAGRANGE model can cause considerable difficulty when
researchers wish to test a classic vicariance hypothesis with modern parametric
methods, as Wood et al. (2013) discovered. However, in BioGeoBEARS, converting
the LAGRANGE DEC model into a DIVA-like model simply involves changing 2
parameters. The parameter s, which controls the relative probability of sympatric-
subset events, is changed from 1 to 0. The parameter mx01v, which controls the
relative probability of different descendent range sizes, is changed from 0.0001
(which forces the smaller daughter species to always have range size 1 during
vicariance, i.e. the LAGRANGE DEC assumption) to 0.5 (which gives equal

probability to all descendant range sizes during vicariance).

Model parameters

In a similar fashion, BioGeoBEARS enables access to many different models by
parameterizing each process or assumption made in programs such as DIVA or
LAGRANGE. These parameters may then be fixed to values that reproduce specific
models, or the parameter may be set to be free, and the researcher can test whether

or not the additional parameter contributes significant improvement to the data



likelihood. The parameters and brief descriptions of each are given in Table 1, along

with the values that reproduce various popular models.

Additional parameters are included that allow new model features not available in
any current package. For example, the parameter b exponentiates the branch
lengths of the input phylogeny. If b is set to zero, then all the branch lengths are
rescaled to have length 1, resulting in inference that will resemble that of a
speciational, or parsimony, model (Pagel 1999b; Pagel 1999a). (This operation is
only meaningful for non-time-stratified analyses.) Several parameters (Table 1)
also allow users to implement a model for the imperfect detection of species
presence in each region (Link & Barker 2009). This can occur either as a positive
constraint on the possible ranges of a species, or, if count data are available for both
detections of a species and detections of a taphonomic control (Bottjer & Jablonski
1988), as a probabilistic statement of the likelihood the count data given each
possible range at the tip. These revised data likelihoods (much as with uncertain

states in DNA; Felsenstein 2004) are then fed into the inference machinery.

Fossils

The flexibility available in BioGeoBEARS also enables the natural incorporation of
fossil geographic range data. There are three ways to include fossils in
BioGeoBEARS analyses. (1) If the researchers think they know the ancestral

range(s) at a particular node, this can be hard-coded into the analysis via the



“fixnode” and “fixlike” parameters of the BioGeoBEARS run object. (2) The more
likely situation is that the ancestral nodes on the tree will have unknown ranges, but
the researcher will have fossil species with biogeographic range information. These
can be included as fossil tips in the tree, as done by Wood et al. (2013). Unlike
LAGRANGE, BioGeoBEARS explicitly implements likelihood calculations for both
non-ultrametric trees that include fossil tips, for both time-stratified and non-time-
stratified analyses. LAGRANGE accepts non-ultrametric trees and fossil tips appear
to function well in non-time-stratified analyses (Wood et al. 2013), but including
fossil tips in time-stratified analyses, as done in BioGeoBEARS, is somewhat more
complex, as it cannot be assumed that all tips start in the time stratum closest to the
present. (3) When fossils are anagenetic ancestors (for example, in cases where
species-level mammalian phylogenies are available, complete with the stratigraphic
time ranges of each species, e.g. Tedford, Wang & Taylor 2009), they may be
included as very short side branches; BioGeoBEARS will treat any branches shorter
than a user-specified cutoff length as direct ancestors, and will not apply the
cladogenesis model at the node that links them to the rest of the phylogeny. This
fixes the flaw in early attempts to include anagenetic ancestors in LAGRANGE
(Matzke & Maguire 2011). As noted above, the use of taphonomic control groups to
estimate sampling effort is implemented, and this may be used to modify the
likelihoods at any tips or nodes. Although a different context (estimating lineage
diversity patterns in space and time), Valentine et al. (2013) provide a dramatic
demonstration of how severe mistakes in inference can be caused by failure to

account for biases in fossil sampling.



Additional features

BioGeoBEARS implements a number of additional features that increase analysis
flexibility and researchers’ ability to propose and test hypotheses. While
LAGRANGE allows users to manually specify a dispersal matrix representing the
relative probability of dispersal between each region, and allows different dispersal
matrices in different time strata, this approach has some limitations. Setting these
relative dispersal probabilities is often a “seat-of-the-pants” operation on the part of
the researcher - for example, who is to say whether trans-oceanic dispersal is 100
times less likely than intracontinental dispersal, or 1000 times less likely? Ideally,
such probabilities would be controlled by free parameters in an explicit model. The
values of the parameters may then be inferred with maximum likelihood (ML) or
Bayesian approaches. BioGeoBEARS enables several parameterizations, for example
the user can make dispersal probabilities a function of distance to some power, x
(Webb & Ree 2012; Landis et al. 2013). If x is negative, then long-distance dispersal
has a lower probability than short-distance dispersal. If x is 0, then distance has no
effect. Users can combine this with a traditional dispersal matrix that is fixed to
specifying connectivity or other geographical and environmental features thought to

influence dispersal probabilities.

Another limitation of the dispersal matrix approach is that it is not identical with

specifying the disappearance of areas in the past. For example, each of the various

10



Hawaiian Islands emerged at a particular time point, and in LAGRANGE, the
traditional approach is to set the dispersal rates to nonexistent islands to 0.
However, this still formally allows the possibility of long-term persistence on an
island, which can cause unexpected results in the likelihood calculations. Therefore,
BioGeoBEARS allows users to include an “areas allowed” matrix for every time
stratum. This even allows the inference ancestral species existing in ranges that are
not found in the present (as is expected for some older clades in the Hawaiian

islands; e.g., Jordan, Simon & Polhemus 2003; Lapoint, O’Grady & Whiteman 2013).

Given the bewildering variety of historical biogeography packages and their
features, it is useful to have a systematic summary of the features of each. In Table
2,1 compare BioGeoBEARS to the most popular and/or most recent historical

biogeography software available.

Number of areas

An extremely important consideration in all discrete historical biogeography
analyses is the number of areas, and the maximum number of areas that any species
may occupy at a given time. This is because the size, s, of the state space under a
maximum range size constraint m, is the sum of number of possible combinations of

ranges of size 1, 2,..., m, or

11



s= z <IZ> (eqn1)

(This equation is implemented for users in the cladoRcpp function
numstates_from_numareas.)

This means that for 5 areas, there are 25=32 possible states, where each state is a
possible geographic range (a combination of presences and absences in the study
area). But for 10 areas, there are 1024. This means that the rate matrix used to
calculate the transition probabilities along the branches is of size 1024x1024.
Exponentiation of large matrices becomes extremely slow. Cladogenesis calculations
can also become slow (Ronquist 1997) because, formally, the probability of every
possible combination of (ancestral state, left descendant state, right descendant

state) must be assessed. For 10 areas, this is 10243=1,073,741,824 combinations.

C++ LAGRANGE and BioGeoBEARS make use of the FORTRAN library EXPOKIT
(Sidje 1998) to speed up the exponentiation of large matrices. While EXPOKIT
enables much more rapid calculations than available in Python LAGRANGE, the
exponential increase in matrix size with number of areas means that C++
LAGRANGE and BioGeoBEARS only have modestly higher limits on the number of
areas. Both C++ LAGRANGE and BioGeoBEARS also implement the optional use of
the sparse matrix exponentiation routines from EXPOKIT. In theory, sparse matrix
exponentiation should allow the rapid exponentiation of larger matrices and thus

use of more areas. However, the accuracy of the results of sparse matrix

12



exponentiation is lower, and when analyses are run with and without sparse matrix
exponentiation in BioGeoBEARS, the exponentiation results are correlated but not
identical, apparently resulting in different ML inferences (NJM, unpublished data).

Thus, caution is recommended in using the sparse matrix exponentiation routines.

Accessory packages

BioGeoBEARS accesses EXPOKIT via an accessory R package, rexpokit (Matzke &
Sidje 2013) which contains the FORTRAN and C++ source code, linked to R with
Rcpp (Eddelbuettel & Francois 2013; Eddelbuettel, Francois & Bates 2013).
Compilation from source can be a complex affair, depending on one’s operating
system and installed compilers, so most users should simply install the binary of

rexpokit, available from CRAN.

The cladogenesis calculations that BioGeoBEARS requires would be extremely slow
in an R-only implementation, as a great many for-loops are required to check
whether various combinations of ancestral and descendant states are allowed
events during cladogenesis. Therefore, these were implemented in C++ using Rcpp,
in the accessory R package cladoRcpp (Matzke 2013c). cladoRcpp includes a
number of tricks to minimize the combinatorial explosion of cladogenesis events, as
a great many theoretically possible events can be excluded as having probability

zero. The easiest way to install cladoRcpp is also via the binary at CRAN.
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Table 2 lists approximate computation times, in order to give users a sense of what
is possible, given their research timeline, computational resources, and
biogeographical study system. These should be treated as rough estimates of the
amount of computational time required, not formal time trials. They are based on
several years' experience working with these programs, and in the case of SHIBA,
the published description of the runtime (Webb & Ree 2012). As is commonly
observed, the great flexibility and interpretability of R, which enabled the
implementation of the diverse feature suite of BioGeoBEARS, also comes at the cost
of slow run times. Thus, for analyses with small numbers of areas, BioGeoBEARS is
as slow or slower than Python LAGRANGE. However, as the number of areas
increases, the computation time comes to be dominated by the time required for
matrix exponentiation. Thus, for large numbers of areas, BioGeoBEARS approaches

C++ LAGRANGE in terms of computation speed.

Computation times in BioGeoBEARS can be improved by use of parallel processing
on multiple cores. If the user specifies more than one core, then the matrix
exponentiation calculations are parallelized via R’s parallel package, mclapply
function. Note that the parallel functions are not available in R.app, so users with
Macintoshes should run large analyses with R started from the Terminal command

line, rather than R.app.

Bayesian analyses
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This introduction to BioGeoBEARS has focused on the models available, and
likelihood implementations of them. Bayesian analysis has been implemented
through use of the LaplacesDemon package (Statisticat 2013b), however, that
package is now maintained off of CRAN, so its usage is not formally included in
BioGeoBEARS at the current time. Essentially all that is required is for the user to
specify priors on parameters of interest for LaplacesDemon, and then use
BioGeoBEARS to provide the data likelihoods. LaplacesDemon makes available
dozens of flavors of Bayesian MCMC sampling once these inputs are available.
Example functions making use of LaplacesDemon may be found in the BioGeoBEARS

extdata/a_scripts directory.

Utility and plotting functions

BioGeoBEARS also contains a large number of utility functions for manipulating
time-scaled phylogenies (e.g., prt prints an R phylo3 object to an interpretable table
format), geographic range data, and the outputs from other biogeography inference
programs. Biogeographers may have fond memories of puzzling over the text output
of programs like DIVA and LAGRANGE, which produce their primary output in the
form of a list of nodes and ancestral states. Frustratingly, DIVA, Python LAGRANGE,
C++ LAGRANGE, and R’s ape package (Paradis 2012) each use a different numbering
scheme for internal nodes. BioGeoBEARS has functions for reading these outputs
and plotting them on phylogenies; see e.g. get_lagrange_nodenums and related

functions.
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cladoRcpp contains the function numstates_from_numareas, which implements
Equation 1, above, and which is key for planning runs with large numbers of

areas/states.

Example and Conclusion

An example script that conducts a BioGeoBEARS analysis “out of the box” has been
provided in supplementary material. This example runs the default LAGRANGE-
style DEC analysis on the Hawaiian Psychotria dataset used as the initial example for
LAGRANGE (Ree & Smith 2008) and available at the LAGRANGE Configurator (Ree
2013). The ML parameter inferences and log-likelihood are identical to those found
by LAGRANGE. Ancestral state probabilities may differ, due to the different defaults
for the type of ancestral state inference run in LAGRANGE versus BioGeoBEARS
(Table 2; BioGeoBEARS by default estimates ancestral states under the global ML
model, which is faster than local optimization, and may be more accurate; Mooers
2004). The script also runs a DEC+] model and compares the results with the
likelihood ratio test and AIC. The likelihood ratio test rejects the hypothesis that
DEC and DEC+] confer equal likelihoods on the data (p=1.80E-07), and relative AIC

model weights indicate that the DEC+] model is 294895 more probable than DEC.

A comparison of the ancestral state inferences under the two models is shown in

Figure 1. Under the DEC+] model, the parameter estimates for d and e drop to 0. In
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essence, this means that founder-event speciation/jump dispersal process is doing
all of the work in moving Psychotria lineages around the Hawaiian Islands. Figure 1
also shows that the DEC+] model results in less uncertainty in the estimation of
ancestral nodes, and gives a much simpler picture of the events that led to modern
distributions, essentially a small number of founder-events between islands,

coupled with common within-island speciation.

In conclusion, BioGeoBEARS shows great potential for enhancing the accessibility of
parametric, probabilistic model-based methods in historical biogeography (Ree &
Sanmartin 2009), and for testing these same methods and models. Undoubtedly,
users will discover additional useful models with novel combinations of free and
fixed parameters. In this sense, the situation may resemble that found in the
evolution of the simple Jukes-Cantor model of DNA substitution into the complex
GTR+I+G model (Posada & Crandall 1998). Hopefully, the model-testing framework
implemented in BioGeoBEARS will help to resolve some of the long-standing

debates over models and starting assumptions in historical biogeography.
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Figure 1. Ancestral range inferences under the maximum likelihood estimate on the
Hawaiian shrub clade Psychotria (Ree & Smith 2008) using a BioGeoBEARS
implementation of the LAGRANGE DEC (dispersal-extinction-cladogenesis) model
(top) and BioGeoBEARS DEC+] model. The DEC model has 2 parameters (d, e), and
the DEC+] model adds a third free parameter (j) controlling the relative probability
of founder-event speciation events at cladogenesis, versus the traditional
LAGRANGE DEC cladogenesis events. The most probable states are shown at left;
note that these are the most probable states at each node and corner (corners
represent the states just after speciation); they do not necessarily correspond
exactly to what a joint reconstruction of the single best joint history would show.
The probability of each possible ancestral range at each node, under the ML-
estimated parameters for each model, is shown at right. The DEC+] model shows
much less uncertainty in ancestral states, favors ancestors with single-island ranges,
and confirms the progression of taxa from the oldest island (Kauai) to the younger
islands. Key: Kauai, K, blue; O, Oahu, yellow; M, Maui-Nui, green; H, Hawaii Big
[sland, red. Ranges that are combinations of these four areas have a color thatis a

mix of the component area colors. A range of all areas (KOMH) is white.
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Chapter 2: Formal Model Testing of the Dispersal-Extinction-Cladogenesis
(DEC) Model Reveals that Founder-event Speciation is a Dominant Process

Structuring the Biogeography of Island Clades

Abstract

Probabilistic modeling of geographic range evolution was a major advance in
historical biogeography, making biogeographical problems accessible to model-
based maximum likelihood (ML) and Bayesian methodologies. The most popular
model is Dispersal-Extinction-Cladogenesis (DEC), implemented in the software
LAGRANGE (Ree & Smith 2008). Standard DEC is a model with two free parameters
specifying the rate of “dispersal” (range expansion) and “extinction” (range
contraction). However, while dispersal and extinction rates are free parameters, the
cladogenesis model is fixed, such that the geographic range of the ancestral lineage
is inherited by the two daughter lineages through a variety of scenarios fixed to
have equal probability. This fixed nature of the cladogenesis model means that it has
been indiscriminately applied in all DEC analyses, and has not been subjected to any
inference or formal model testing. [ re-implement DEC in the R package
BioGeoBEARS, which exactly reproduces LAGRANGE DEC parameter inferences and
likelihoods. However, BioGeoBEARS also allows additional parameters controlling
the probability of new cladogenesis processes. The example shown here is “founder-
event speciation”, in which one daughter jumps to an area completely outside the
ancestral range. The new model, termed DEC+], is tested and verified by simulation,
and is then applied to 13 island clades under a variety of constraint scenarios.

Standard statistical model comparisons show that DEC+] is vastly superior to
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standard DEC for all clades, for the first time verifying the importance of founder-
event speciation in island clades via statistical model choice, and falsifying
vicariance-dominated models of island clades. Furthermore, the inferred ML
estimates of parameters often differ radically under the DEC+] model, with the “DE”
part of the model sometimes playing no role. Under DEC+], ancestral nodes are
usually estimated to have ranges occupying only one island, rather than the
widespread ancestors often favored by DEC, and simulation results indicate that
when DEC+] is the true model, DEC+] has 87% accuracy in inferring ancestral states,
while DEC has only 57% accuracy. These results indicate that careful consideration

of cladogenesis models in historical biogeography of island clades is recommended.

Keywords: historical biogeography, cladogenesis, speciation, model-testing,

LAGRANGE
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Introduction

Probabilistic modeling of geographic range evolution Ree et al. 2005; Ree & Smith
2008; Ree & Sanmartin 2009) was a major advance in historical biogeography,
making biogeographical problems accessible to model-based maximum likelihood
and Bayesian inference methodologies (reviewed by Ronquist & Sanmartin 2011;
Sanmartin 2012), where previously only parsimony approaches (e.g., Ronquist
1997) had been available. The most popular model is Dispersal-Extinction-
Cladogenesis (DEC), implemented in the software LAGRANGE in Python (Ree 2013)
or C++ (Smith & Ree 2010). LAGRANGE has been has been widely used in the years
since publication, with Ree et al. (2005) and Ree and Smith (2008) attracting a total

of 566 citations to date (Google Scholar search, 8/4/2013).

DEC is an example of an “event-based” inference method (Ronquist 1996; Sanmartin
2007; Kodandaramaiah 2010), and on that basis may be distinguished from the
area-based or pattern-based methods that were dominant in historical
biogeography into the 1990s (Nelson & Rosen 1981; Cracraft & Shipp 1988; Page
1988; Crisci 2001 ). All such methods abstract geography into a limited number of
discrete areas. At any point in time, a particular lineage will be present or absent in
each of the areas, and this list of presences and absences constitutes the “geographic
range” of the lineage at that point in time. Using this discrete-areas simplification
(and sometimes it is a dramatic simplification, and should always be employed with

caution), the problem then becomes how to make the best estimate of the history of
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geographic range evolution down the phylogeny. This may be done by assuming
some optimality criterion and some model for the evolution of geographic range. In
a parsimony framework, the optimum history is the one with the minimum number
steps (as in the parsimony-based DIVA; Ronquist 1996; Ronquist 1997) or the
model parameters that confer the maximum likelihood on the geographic range data
at the tips of the tree (typically the ranges of observed, living species), given the

phylogeny and the model (as in LAGRANGE’s DEC).

In DEC, geographic range is allowed to change across a phylogeny through several
types of events. Along the branches of a phylogenetic tree (anagenetic evolution),
the events allowed are “dispersal” (range expansion by adding an area) and
“extinction” (range reduction through extirpation in an area). Dispersal and
extinction are treated as continuous-time Markov processes, where the probability

of change is a function of the amount of time that has passed along a branch.

DEC’s cladogenesis model

Under DEC, geographic range is also allowed to change at cladogenesis events (the
nodes on the phylogeny), with the geographic range of the ancestral lineage
inherited by the two daughter lineages through a variety of equiprobable scenarios.
These scenarios are (1) sympatric speciation in an ancestor with a range size of one
area. Here, the ancestral range (e.g., (A)), is simply copied to both daughter species

(left daughter: A, right daughter: A). The second sympatric speciation scenario
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occurs when an ancestor is widespread, inhabiting multiple areas. Here, under DEC,
inheritance of the complete widespread range by both daughters is not allowed.
However, sympatric speciation may still take place, where one daughter inherits the
complete ancestral range, and the other daughter begins with a range of a single
area, somewhere within the ancestral range. The intuition behind this type of
cladogenesis event is that new species often form by budding off from widespread
ancestors, either because they colonize some new habitat (such as a mountaintop)
or new ecological niche. The assumption that the new species must have a range
size of one area is justified on the basis that speciation usually requires isolation of
the gene pool, and this is most likely in a restricted subpopulation with a limited
range. In this article, scenario #2 is termed “sympatric-subset” speciation, and #1 is
termed “sympatric-range copying”. It should be noted that “sympatry” vs. allopatry
in the historical biogeography context is relative to the discrete areas chosen for the
analysis. Within-range speciation is termed sympatric as the daughter lineages have
overlapping ranges; however, this may have little or nothing to do with the true

detailed process of speciation, which might still be allopatric, but at a smaller scale.

The third cladogenesis scenario allowed in the DEC model is vicariance, wherein a
widespread ancestral range is divided up between the two daughter species. It is
important to note that in the LAGRANGE DEC model, the assumption that one of the
daughters must have a range of size of 1 area is kept for the vicariance process.
Thus, an ancestor with range ABCD may divide into daughters with ranges (A, BCD),

(C, ABD), etc., but the daughter ranges are not allowed to inherit the ranges (AB,
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CD), (AD, BC), etc. DIVA makes a different assumption, allowing all of these
vicariance scenarios; however, DIVA disallows sympatric-subset speciation
(Ronquist & Sanmartin 2011). Comparison of the DEC and DIVA assumptions about
cladogenesis highlights the fact that whatever cladogenesis model is implemented in
an inference program is not necessarily the only choice theoretically available, even

though it might be the only choice practically available to researchers.

Most researchers who use LAGRANGE DEC have focused on the inference of ranges
at ancestral nodes, and on the estimation of the anagenetic parameters governing
the rates of dispersal and extinction (parameters d and e). These are usually treated
as free parameters to be optimized, sometimes under user-specified constraints
based on distance or connectivity (e.g., Clark, Wagner & Roalson 2009; Webb & Ree
2012). The cladogenesis model often receives less attention, probably because it is
a fixed, hard-coded model, and is therefore automatically part of any LAGRANGE
analysis. The fact that the cladogenesis model is fixed in available software means
that it has been applied indiscriminately, whether or not it is appropriate for the
biology and geography of the group in question. Having a fixed model also prohibits
model comparison, giving users no capability to detect when the cladogenesis model
is appropriate or inappropriate. DEC might well be the correct model, or at least a
wrong but useful model (Box & Draper 1987), but researchers will unable to check
these assumptions unless additional plausible models are constructed and
statistically compared to DEC.

Founder-event speciation
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One well-known form of speciation that is left out of standard DEC analyses is
“founder-event speciation” (Paulay & Meyer 2002; Templeton 2008), sometimes
termed founder-event speciation through long-distance dispersal (Heads 2012) or
allopatric mode II speciation (Wiley 1981; Maguire & Stigall 2008; Lomolino,
Lomolino & Lomolino 2010). (Allopatric mode I speciation is vicariance.) In
founder-event speciation, a small number of individuals, sometimes even a single
individual, take part in a rare, long-distance colonization event which founds a
population which is instantly genetically isolated from the ancestral population.
Founder-event speciation has received extensive theoretical attention from a
population geneticists, going back to Mayr’s “genetic revolution” theory for
peripheral isolate populations (Mayr 1954; Gould & Eldredge 1972), and it remains
a controversial question whether or not the population-genetic founder effect and
resulting genetic bottlenecks commonly contribute significantly to shifting of
adaptive peaks (Carson & Templeton 1984; Coyne & Orr 2004) or to other genetic
and morphological changes in evolutionary history. However, to most
biogeographers (but not all; see Heads 2012) it seems undeniable that founder
event speciation is an important mode of lineage splitting, and of moving taxa
around the planet. The importance of founder-event speciation for explaining
certain biogeographical patterns remains true whether or not founder-event
speciation plays any major role in production of non-biogeographical
macroevolutionary patterns and processes (although there is some evidence that it
does; Carson & Templeton 1984; Moore & Donoghue 2007). Founder-event

speciation is particularly likely to be important in oceanic island systems (de
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Queiroz 2005; Cowie & Holland 2006), where much evidence supports the
importance of rare dispersal events for structuring biogeography -- for example, the
high prevalence of self-fertilizing taxa on islands (Carlquist 1974), the progression
rule of Hennig (1966), or the strong relationships between organismal mode of
dispersal and the biogeographic origin of taxa on oceanic islands (Paulay & Meyer

2002; Gillespie et al. 2012).

Types of speciation, and example descendant ranges:

Ancestral Sympatric (range copying) Sympatric (subset) Vicariance Founder Event
ranges: A A A D B A
A LI_I - - LI_I LI_I
A A A
S 0 O N
AB
I | I | I I
AB AB AB AB AB AB AB
ABC ABC A ABC C ABC A BC B AC D ABC E ABC
ABC Ll_l
ABC ABC ABC ABC ABC ABC ABC
ABCD ABCD AB ABCD A ABCD | AB CD A BCD | E ABCD ABCD E
ABCD I—I—I
ABCD ABCD ABCD ABCD ABCD ABCD ABCD

Figure 1. Various models for the evolution of geographic range at cladogenesis events. The events allowed by
LAGRANGE are highlighted in gray. Each allowed event is fixed to have equal probability in the LAGRANGE algorithm.
LAGRANGE requires that, at cladogenesis, at least one daughter species must have a range size of 1. This means that,
while some vicariance events are allowed, others are not (row 4, columns 3). Widespread sympatry is also
disallowed (column 1, rows 2-4) and sympatric-subset speciation where the subset species has a range size larger
than one area. Note: The trees shown are just examples of each type of event; an exhaustive enumeration of all of the
possibilities would require a much larger figure: for a four-area ancestor, if the one-area restriction is maintained for
one of the daughters, there are eight possible vicariance events, and eight possible sympatric-subset events. (The
number is eight, not four, since the left and right daughters are not exchangeable.) If the one-area restriction is lifted,
there are 28 possible vicariance events, and 28 possible sympatric-subset events, for the four-area ancestor.
Founder-event speciation, with the dispersing lineage initially restricted to a single area, is implemented in this paper
(column 4).

Given the recognized importance of founder-event speciation in the literature, it is
peculiar that the most popular inference methods in historical biogeography (DIVA
and LAGRANGE) fail to take it into account. Part of the reason that the process’s

absence has not been addressed until now may be that some think that founder-

31



event speciation is covered by the “dispersal” process of Dispersal-Extinction-
Cladogensis (DEC) and Dispersal-Vicariance Analysis (DIVA). However, as noted
above, these concepts of dispersal are anagenetic range-expansion events (e.g., A 2>
AB or ABD - ABCD) and are not identical with founder-event speciation, in which,

by definition, dispersal occurs simultaneously with lineage-splitting.

Figure 1 shows examples of the types of cladogenesis events allowed (grey
highlighting) and disallowed (white) in the DEC model. From the figure, it can be
seen that, computationally, implementing the founder-event process in an algorithm
is not much more difficult than implementing any other cladogenesis process.
However, it does require “thinking outside the box” in a fairly literal way, in that
daughter species may jump to areas outside of the geographic range of their

ancestors.

Some perceptive commentators (Ree & Sanmartin 2009; Kodandaramaiah 2010;
Goldberg, Lancaster & Ree 2011) have in fact noted the absence of founder-event
speciation from DIVA and DEC, and suggested that it should be taken into
consideration in historical biogeography, at least in island systems. Here, I take their
advice. The DEC model and ML inference procedure of LAGRANGE is re-
implemented in the R package BioGeoBEARS (Matzke 2013b), and then the DEC
model is extended by adding founder-event speciation, creating a DEC+] model. The
2-parameter DEC model is nested within the 3-parameter DEC+] model, and thus

the likelihood ratio test (LRT; Burnham & Anderson 2002) can be used to compare
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the models in a frequentist framework. Standard model selection procedures based
on Akaike Information Criterion (AIC) are also used to compare models. Finally, a

Bayesian approach to model comparison is also implemented.

These model tests are first run on the Hawaiian Psychotria, a clade of understory
trees with an endemic subclade spread across the four main high islands. This is the
same dataset used as the example in the original LAGRANGE paper (Ree & Smith
2008, derived from Nepokroeff et al. 2003) and available as the default example
with the Python version of LAGRANGE (Ree 2013). All inference procedures yield
strong support for DEC+] over DEC on the Psychotria dataset, despite the small size
of the dataset. As a test of the sensitivity and specificity of the inference procedure
and the distinguishability of the models, simulations are conducted under the DEC
and DEC+] models. Psychotria is used as a typical small phylogenetic biogeography
dataset, and the ML-estimated parameters from the DEC and DEC+] runs on
Psychotria were used to produce 1000 simulations under each model. These
simulated datasets were then each subjected to inference under DEC and DEC+], and
the results were compared with the LRT, allowing the measurement of the rate of

false positives and false negatives under the LRT.

All of these analyses supported the identifiability and superiority of the DEC+]
model on the Psychotria clade. Therefore the DEC and DEC+] models were compared
on a large sample of phylogenetic biogeography datasets from published studies of

island clades. Remarkably, DEC+] dominates in every case. In many cases, the DEC+]
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model results in much different inferences of the anagenetic dispersal and
extinction rates (usually moving them closer, or all the way, to zero), suggesting that
jump dispersal is the dominant process structuring biogeography in these clades.
The inference of highest-probability ancestral states is also often changed, with
widespread ancestors inferred under DEC disappearing, and being replaced with
single-island ancestors. Finally, some conclusions are drawn about the possibility of
generalizing these conclusions to non-island clades, and about the possibilities that
the model-comparison approach opens up for model-based, parametric

biogeography (Ree & Sanmartin 2009).

Methods

Implementation of DEC model

In a DEC analysis, the investigator divides the geography into a small number of
discrete regions, such as islands, ecoregions, or continents. The OTUs (operational
taxonomic units) at the tips of the phylogeny are then scored for presence or
absence in each of these regions. The user may then impose constraints, such
dispersal limits, or a maximum range size. The latter is useful for limiting the
number of possible geographic ranges, and thus states, in the transition rate matrix.
Without constraints on the maximum size of ranges, the number of states rises
exponentially at m=2", where n equals the number of discrete areas in the analysis,

and m represents the number of possible geographic ranges, i.e. the number of
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possible combinations of presence and absence in each area. In effect this limits the
complexity of the geographic discretization to less than 10 areas in an analysis with
no maximum range size, or about 20 areas with a maximum range size of 2 or 3

(Webb & Ree 2012).

DEC as typically used in LAGRANGE has two free parameters, the rate of range
expansion (“dispersal”, parameter d) and range contraction (“extinction”, parameter
e). These are combined into a rate matrix (Ree & Smith 2008) which is
exponentiated (Moler & Van Loan 2003) to calculate the probabilities of each state
at the bottom of a branch, as a function of the branch length (typically in units of
millions of years, Myr) and the probabilities of the states at the top of the branch. In
most phylogenetic methods, when two branches meet at an ancestral node, the
probabilities at the two branch bottoms are simply multiplied to produce data
likelihoods at the ancestral node; this is the basis of the Felsenstein pruning
algorithm (Felsenstein 1981; Felsenstein 2004). However, in applications where
states change “instantaneously” at cladogenesis events, the downpass probabilities

must be combined in a more complex way, via a cladogenesis model.

This cladogenesis model is essentially a three-dimensional rate matrix (Ronquist
1997) where the dimensions correspond to the states in the ancestor, the states in
the left descendent daughter species, and the states in the right descendent
daughter species, and the “time” is a discrete unit (a single cladogenesis event).

However, it is easier to visualize what is going on by flattening the transition matrix
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to two dimensions, where the m-1 rows represent the possible ancestral states (the
null state, a range of 0 areas, is excluded here), and the (m-1)? columns represent

every possible pair of (left, right) descendant states.

In the DEC cladogenesis model, conditional on a particular ancestral geographic
range, each possible cladogenesis event (Figure 1) has equal weight and therefore
equal probability. This has the advantage of allowing rapid calculation, but the

disadvantages (noted above) of assuming a fixed cladogenesis model.

Implementation of the DEC+] model

Examples of cladogenesis models for a three-area analysis are shown in Tables 1A
and 1B, for DEC and DEC+], respectively. It can be seen from Table 1 that
implementing the DEC+] model is primarily a matter of assigning a parameter, j, to
jump dispersal events in the cladogenesis matrix. Note that the parameter j
represents the weight assigned to each individual jump dispersal event, not the total
weight assigned to all jump dispersal events collectively. To calculate the
probabilities of a particular daughter pair of ranges, conditional on an ancestral
range, all that is required is that the weights of all of the allowed cladogenesis
events from a particular ancestral range be summed; the per-event probability is
just the per-event weight divided by the sum of the weights. It is imaginable that an
alternative way to parameterize the cladogenesis model would be to assign

parameters controlling the relative probability each class of cladogenesis event;
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however, because the number of each type of cladogenesis event will vary for each
ancestral range size (Table 1), and will vary further if users impose any constraints
on allowed ranges, this would likely be difficult. Therefore, the strategy of assigning
each individual event a weight, and then calculating the per-event probabilities by
dividing by the sum of the weights, is the simplest and most generalizable

calculation strategy.

A more detailed depiction of the DEC and DEC+] cladogenesis models for analyses
with 2, 3, and 4 areas is available in an Excel spreadsheet in the Supplementary Data
1. (Beyond 4 areas, graphical depiction of the cladogenesis matrix becomes
impractical: e.g., for 5 areas, the full matrix has 25-1=31 rows for possible ancestral
states, and 312=961 columns for possible descendent daughter pairs.) The
spreadsheet includes a worksheet that allows readers to vary the j weight
parameter and see the resulting changes in the calculation of the probabilities of

both founder and non-founder cladogenesis events.

BioGeoBEARS parameterizes the per-event weights of each type of cladogenesis
event (Table 1). Parameters may be fixed to single values, may be set to be free, or
may be set to be deterministic functions of each other. In this analysis, the weights
of each allowed sympatric range-copying (y), sympatric-subset (s), and vicariance
(v) event were set to be fixed to 1 in the DEC analysis (reproducing the LAGRANGE
model), and were set to equal (3-j)/3 in the DEC+] mode], to facilitate comparison

with DEC. Users are warned that, due to the operation, described above, of dividing
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the per-event weights by the sum of the weights, parameter identifiability must be
taken into account when setting parameters. For example, the model y=s=v=j=1.0 is

identical with the model y=s=v=j=0.5.

An important question arises when parameterizing a founder-event speciation
model, namely, how should features like dispersal constraints be implemented?
LAGRANGE allows users to manually specify a dispersal matrix, or a series of time-
stratified dispersal matrices, which constitute multipliers to the d parameter when
the state transition matrix is constructed. This dispersal matrix can consist of ones
and zeros, indicating for which regions dispersal (range-expansion) is allowed or
disallowed; or it can consist of intermediate values, indicating the analyst’s model of
the relative probability of dispersal between regions. It would probably be unfair to
the DEC model, in initial testing, to impose such constraints on the dispersal (range-
expansion) process, but not impose them on the founder-event speciation process.
Therefore, in the current implementation, dispersal matrices and other constraints
are applied identically to d and j as probabilities are calculated - i.e., if dispersal
(range expansion) between two areas is prohibited, jump dispersal during
cladogenesis is also prohibited. It is not actually a given that the two processes
would share the same constraints. For events like island submergence, they would,
but for distance-based effects on dispersal probability, range-expansion dispersal
and founder-event dispersal should be parameterized differently. For now, this is

left as a matter for future research.
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The parameterization described above ensures that the DEC model is a special case
of the DEC+] model. The models are identical when j=0. This enables usage of the

Likelihood Ratio Test for model testing.

Computational implementation

Due to the exponential expansion of the size of the transition matrix with the
number of areas, and, equally importantly, the similarly dramatic expansion of the
cladogenesis matrix, special attention was given to the computational

implementation of both the anagenetic and cladogenetic models.

The anagenetic calculations (matrix exponentiations) are performed using the
FORTRAN EXPOKIT library (Sidje 1998), a library well-regarded for its accuracy and
speed in dealing with large matrices (Moler & Van Loan 2003). EXPOKIT was made
accessible to R by creation of the BioGeoBEARS accessory R package, rexpokit
(Matzke & Sidje 2013), approved and freely available from CRAN via R’s
install.packages command (R Core Team 2013). Parts of some EXPOKIT wrapper
functions were modified from the open-source implementations in C++ LAGRANGE
(Smith & Ree 2010) and the R package expoRkit (Sidje & Hansen 2012) with
assistance from the authors (S. Smith, personal communication; N. Hansen, personal

communication).
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Matrix exponentiations using the rexpokit implementation of EXPOKIT were faster
than other matrix exponentiations available in R, using EXPOKIT’s dense matrix
exponentiation routine, for transition matrices of a variety of sizes (data not
shown). EXPOKIT also contains routines for rapid exponentiation of sparse
matrices, which should speed calculation times for very large matrices, and these
are implemented in rexpokit and BioGeoBEARS. However, preliminary tests
showed that sparse matrix exponentiation produces only approximately similar
probability calculations, resulting in differences in inference, so the sparse matrix

routines are only recommended for experimental use in BioGeoBEARS.

The cladogenesis calculations are implemented the BioGeoBEARS accessory
package cladoRcpp (Matzke 2013c), also available on CRAN. For any biogeography
analysis with more than a few areas, direct enumeration of the entire cladogenesis
matrix - checking each and every combination of ancestral range, left daughter
range, right daughter range to see if it matches an allowed cladogenesis event -
becomes onerous and soon, impossible (Ronquist 1997). To make cladogenesis
calculations as fast as possible, the searches through ancestor/left/right descendant
combinations are performed in C++, accessed from R via the Rcpp package
(Eddelbuettel & Francois 2013). Further speed is attained by searching for each
category of cladogenesis event individually, using the known constraints on the size
of daughter ranges, and the relationships between the descendant and daughter
ranges that are imposed by the cladogenesis model, to narrow the state

combinations that must be checked. This search through the state combination
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space need be performed only once for each calculation of the likelihood of the data,
given the tree and model parameters (or once for each stratum, in a time-stratified
analysis). Therefore, to make the cladogenesis event probabilities accessible for the
calculations at each node during a downpass, cladoRcpp stores a table of allowed
events and their probabilities, where every row stores the index of the ancestral
state, the index of the left descendant state, and the index of the right descendant
state, and corresponding probability for that particular range inheritance scenario.
Events with zero probability are not stored in the table, dramatically reducing
memory costs and improving calculation times. This is essentially the coordinate-
ordered-object (COO) format used to efficiently store large sparse matrices, but for a

3-dimensional matrix.

Maximum likelihood optimization and ancestral range estimation

Given the phylogeny, geographic ranges at the tips, and anagenetic and cladogenetic
models, and values for the d, ¢, and j parameters, the likelihood of the observed
range data at the phylogeny tips can be calculated. By default, BioGeoBEARS uses
the R package optimx (Nash & Varadhan 2011; Nash & Varadhan 2012) to perform
ML estimation of the free parameters, using the quasi-Newton method with box

constraints (Byrd et al. 1995).

Once the ML estimate of the parameters has been made, BioGeoBEARS estimates the

probability of each possible ancestral state at each ancestral node. This is done for
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all nodes by conducting a downpass and an uppass through the tree (Felsenstein
2004), taking care to propagate the probabilities differently when moving up or
down the tree, due to the asymmetric nature of both the anagenesis and
cladogenesis processes. The resulting ancestral state probabilities represent the
ancestral states estimated under the globally optimum model. LAGRANGE, in
contrast, does a global ML search, but then estimates ancestral states by iteratively
constraining each state to be true at each node, and then performing a separate ML
search under each constraint (Ree & Smith 2008). This is ancestral state estimation
under local optimization (Mooers & Schluter 1999; Felsenstein 2004; Mooers 2004).
Although local optimization is available in BioGeoBEARS, by default, BioGeoBEARS
calculates ancestral states under the globally optimum model, both for reasons of
speed (local optimization requires a number of ML searches equal to the number of
nodes times the number of states, whereas global optimization requires only one ML
search) and because Mooers (2004) found that ancestral states estimated under the

global model are more accurate.

Validation

BioGeoBEARS was validated against both the Python version of LAGRANGE

(http://www.reelab.net/lagrange/configurator/instructions, versions 20120508

and 20130526) and C++ version (version 0.20, commit 33,

https://github.com/blackrim/lagrange). Validation was conducted in two ways.

First, for each test dataset, analyses were run in both versions of LAGRANGE. The
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ML estimates of d and e, and the resulting log-likelihood of data, were recorded.
Then, these d and e estimates were input into BioGeoBEARS, along with the same
tree and tip range data used in the LAGRANGE runs, and the resulting log-likelihood
was checked against the LAGRANGE log-likelihood. Second, BioGeoBEARS was set
to let d and e vary as free parameters, and used to obtain the ML estimates. These

were compared to the LAGRANGE estimates.

Study system: Hawaiian Psychotria

The clade used for the primary validation study was Hawaiian Psychotria.
Psychotria is a hyperdiverse genus (~2000 species worldwide) of tropical shrub,
with a subclade endemic to Hawaii (Nepokroeff et al. 2003). Hawaiian Psychotria
approximately follows the common Hawaiian progression rule, with the deepest-
diverging lineages located on the oldest high island, Kauai. In the paper introducing
LAGRANGE, Ree and Smith (2008) simplified and ultrametricized the Psychotria
phylogeny published by Nepokroeff (2003), and this is the default example dataset
for Ree’s LAGRANGE Configurator

(http://www.reelab.net/lagrange/configurator/index). The phylogeny at the

Configurator website was downloaded and scaled to the recommended age of 5.2

million years (Ma).

Ree and Smith compared several constraints models using LAGRANGE and the

Psychotria dataset. Their model MO was an unconstrained analysis. M1 was
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unconstrained, except that the maximum range size was set to 2 for the analysis. M2
had the 2-area constraint, and added the constraint that dispersal could only happen
from west-to-east. Finally, their “stratified” model only allowed dispersal between
islands when the islands are known to have emerged above sea level based on
geological data (Hawaii, 0.5 Ma; Maui-Nui, 1.9 Ma; Oahu, 3.7 Ma; Kauai, 5.1 Ma;
Clague 1996; Nepokroeff et al. 2003; Ree & Smith 2008). Each of these models was
run in both versions of LAGRANGE, and implemented in BioGeoBEARS for
validation. Then, a 3-parameter version of each model was constructed and run in

BioGeoBEARS.

Simulation to test specificity and sensitivity in model choice, and accuracy of ancestral

range estimation

Although the DEC+] model is only slightly more complex than the DEC model, with
one additional parameter, it is possible that any likelihood advantage DEC+] has in
explaining geographic range data on phylogenies is due to some artifact. The DEC
cladogenesis model is already rather complex, the number of areas is limited, and
the amount of data available is roughly equal to that found in a single multistate
character (but see Landis et al. 2013 for a more complex evaluation). This differs
sharply from the situation in e.g. analysis of DNA alignments, which involve a small
number of states (four) and hundreds of columns that are treated as statistically
independent replicates of a common substitution process (for discussion and testing

of this sort of independence assumption, see Nasrallah, Mathews & Huelsenbeck

44



2011; Landis et al. 2013). Furthermore, issues have been raised about likelihood-
based inferences on discrete characters, for example emphasizing their uncertainty
(Cunningham, Omland & Oakley 1998) or the difficulty in achieving sufficient
support to justify multiparameter models (Mooers & Schluter 1999) in the relatively

small phylogenies available in the studies of most clades.

Of course, historical biogeography is at an advantage over other fields in this
respect: the parameters in the models of discrete range evolution are directly
inspired by known processes and known geography. This can be illustrated by
contrasting biogeography models with the models for the evolution of discrete
morphological characters. In the latter case, the assumed model of probabilistic
character state change is assuming de facto that all the complexities of evolution of
development, selective regimes, character description, character coding, and
character discretization can be put in a black box and modeled with a simple
stochastic process. Nevertheless, it is useful to test, via simulation, our ability to
discriminate between the DEC and DEC+] models. As has been noted, “[i]f a method
does not perform well under very simple models of evolutionary change or if a
method does not perform well even when all of its assumptions are satisfied, that
method probably has little hope of performing well for real character data”
(Huelsenbeck 1995). Simulation tests provide a “first cut” for assessing the quality
of inference methods (Huelsenbeck 1995), yet, despite the ubiquity of simulation
studies in other fields where selecting the best model of character evolution is

considered crucial (e.g., Posada & Crandall 2001) there has been almost no
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simulation work on model selection in historical biogeography (the exception is

Landis et al. 2013), and none comparing DEC and DEC+].

To remedy this, biogeographical histories were simulated on the Psychotria
phylogeny, using the ML-estimated parameters from the DEC and DEC+] runs on the
MO model. 1000 simulations from each model were conducted, and the simulated
histories were saved. Then, on each of the 2000 simulations, ML inference was
conducted under DEC and DEC+], using the same default settings described above
for the original inference. The difference in support for each model was measured
via the log-likelihoods, and a likelihood-ratio test with one degree of freedom
(Burnham & Anderson 2002) was conducted on each pair of inferences to test the
null hypothesis that the two models confer the same likelihood on the simulated
data. In the 1000 simulations where the DEC model is the true one, the null
hypothesis should be rejected (producing a false positive) no more frequently than
would be expected by chance, i.e. when the p-value cutoff used to reject the null
hypothesis is set to 0.05 (the value used here), the null hypothesis should be falsely
rejected only in 1 in 20 simulation/inference pairs. The false negative rate (failure
to reject the null hypothesis, when the null hypothesis is false) was also measured
by repeating the inference/LRT procedure on the 1000 datasets simulated under

the DEC+] model.

The accuracy of ancestral state estimates was measured for each of the 4000

simulation/inference pairs in two ways. First, the mean accuracy was calculated by
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calculating the fraction of the nodes for which the most probable state under
ancestral range estimation matched the true simulated range. Second, the mean
absolute difference from truth, D, was calculated, by taking the inferred ancestral
range probabilities at each node, and calculating the absolute difference between
the inferred range probabilities and the true probabilities of the known ancestral
ranges at each node. As the true range history is known under simulation, the
probability of the true ancestral state is 1, and the probability of all other states is 0.
The value S, where S=1-D, represents the mean similarity to truth, and S=1 would
represent an exact match between the inferred and true range probabilities. S is
more convenient for comparisons to mean accuracy. S was plotted as a function of
node age for the different simulation/inference pairings, to assess how estimation

accuracy changes as the inference moves further from the tips.

The accuracy of parameter inference was assessed by taking the distributions of
inferred parameters for each model/inference combination, and comparing them to
the true model parameters. All statistical analyses and graphs were done in R 2.15

(R Core Team 2013).

Bayesian implementation

ML estimation only provides point estimates of parameters, and frequentist model
tests such as the LRT require certain theoretical assumptions which may not always

be met in real datasets. As a check on the likelihood-based model selection
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procedures used for most of this study, a Bayesian version of inference and model
choice under DEC and DEC+] inference was implemented on the test Psychotria

dataset, unconstrained (M0) geography model.

The impressive R package LaplacesDemon (Statisticat 2013b, available at

http://www.bayesian-inference.com/software) implements a wide variety of

Bayesian techniques. Given only user-specified priors on free parameters, and a
user-specified likelihood function, MCMC chains can be constructed with minimal
overhead in LaplacesDemon, which also supplies sophisticated diagnostic functions
and plots. LaplacesDemon implements more than two dozen MCMC algorithms, two
of were used here. First, standard random-walk Metropolis MCMC (Link & Barker
2009; Statisticat 2013a) was employed. Uniform priors were applied to the d, e, and
j parameters, with the bounds set to match the limits used in ML search (0-5 for d
and e, and 0-3 for j). The same BioGeoBEARS function that was used to calculate the
data likelihood in ML estimation was used for the Bayesian analysis. The DEC and
DEC+] models were run separately, each for 10,000 generations. A 2- or 3-
parameter problem is a simple one compared to many MCMC analyses, and
inspection of trace and autocorrelation plots indicated that this run length was more
than sufficient to accomplish burnin (which occurred within 200 generations),
establish stationarity, and achieve sufficient sampling to characterize the posterior.
The posterior samples were used plot the posterior distribution of each parameter
under each model. To approximate the marginal log-likelihood of each model for

Bayesian model choice, the nonparametric self-normalized importance sampling
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algorithm of Escoto 2011) was used (LaplacesDemon LML function, NSIS option).
The Bayes factor was calculated from the ratio of the approximate marginal

likelihoods.

The second MCMC analysis used reversible-jump MCMC (Green 1995) with both
DEC and DEC+] sampled in the same MCMC search. As is often found in RIMCMC
analyses, due to the strong likelihood advantage of one model (in this case, DEC+]),
the prior probability of the two models has to be extremely heavily biased in favor
of the poorer model (DEC) in order to achieve any sampling at all of the weaker
model (Link & Barker 2009). A prior that produced adequate sampling of both
models was thus sought by trial and error, resulting in a prior probability of
0.000001 placed on the DEC+] model. Not coincidently, this prior almost exactly
balances the log-likelihood advantage of DEC+] (~14 log-likelihood units) on the
Psychotria dataset. Priors even slightly different resulted in runs that exclusively or
almost exclusively sampled only one model. The functioning RJMCMC analysis was
run for 50,000 generations and was assessed as described above. Here, the Bayes
factor was calculated as the ratio of the posterior probability of DEC+] (which is
simply the frequency at which the DEC+] model was sampled in the post-burnin

posterior distribution) to the prior probability of the DEC+] model.

Multiclade analysis
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In order to assess the importance of the founder-event process in the historical
biogeography of island clades, ML inference with the DEC and DEC+] models was
conducted on a sample of 13 clades exclusively or mostly found on island systems.
Datasets were gathered from recent published analyses in the historical
biogeography literature. The criteria for inclusion were as follows: the clade had to
be primarily island-based, the published study had to include the presence/absence
information for each tip in the tree, and the published phylogeny had to be either
dated or contain molecular branchlengths and sufficient dating information to allow

estimation of an ultrametric tree using r8s (Sanderson 2003).

Where possible, original tree files were gathered from supplemental material or
other online sources, but usually the only available source for the tree was the
published graphic. As has been noted (Boettiger & Temple Lang 2012), the digital
archiving of published, dated, phylogenies is still not standard practice, and the
limited tree-digitization software available is typically platform-specific or
otherwise difficult to use, driving some researchers to use calipers on the published
trees in printed-out journal article pages in order obtain trees with branchlengths
(Boettiger & Temple Lang 2012). Here, a relatively workable alternative approach to
digitizing trees was discovered. GraphClick, a cheap and user-friendly manual

digitization program (Arizona Software, $8, http://www.arizona-

software.ch/graphclick/) was used to obtain the x and y coordinates of the tip

nodes, the internal nodes, and the “corners” (the branch bottoms below nodes on a

typical phylogeny with square corners). Then, an R script, TreeRogue (Matzke

50



2013f) was used to assemble the coordinates and tip labels into a standard Newick
file. An experienced user can use this system to digitize a tree to Newick format in a
matter of minutes; some of the trees used in this study were digitized by
undergraduate research assistants, although this requires above-average computer
skills, training in the reading and interpretation of phylogenies, and strong attention
to detail, as missing even one node during digitization will cause the Newick
conversion operation to fail. Accuracy of digitization is approximately 1 millimeter
on a printed page or computer screen, which translates to less than 1% error in the
digitized tree compared to the original, certainly well below the statistical

uncertainty inherent in any dating analysis.

Island clades were gathered opportunistically by searching Google Scholar for
historical biogeography studies, especially studies that examined Hawaiian clades or
that used LAGRANGE. Some older studies were included, despite the weaker dating
and biogeography methods, because they covered “classic” island radiations (e.g.,
the Hawaiian silversword alliance). The full accounting of datasets and their
sources is given in Table 2. The clades and source studies are briefly summarized
below, along with notes about the methods used, for more recent papers when
methods more sophisticated than simple single-state parsimony character mapping
were available. The Hawaiian understory tree Psychotria (Rubiaceae, wild coffee;
Nepokroeff et al. 2003; Ree & Smith 2008) served as the example dataset for the
original Python LAGRANGE (Ree & Smith 2008) and is used as the default example

on the LAGRANGE Configurator (Ree 2013). The biogeographically famous
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Hawaiian Drosophilidae, considered by many to be the paradigmatic examples of
founder-event speciation (Carson 1974; Hampton & Kaneshiro 1976; Templeton
1980; DeSalle & Templeton 1988) were sampled via an older, but well-dated study
on Hawaiian Drosophila Kambysellis et al. 1995) and a state-of-the-art study on
Scaptomyza (Lapoint, O’Grady & Whiteman 2013); the latter study used LAGRANGE
These studies do not cover the full diversity of Hawaiian Drosophilidae, which is
immense (ca. 900 species), but they do cover the breadth of these genera in Hawaii.
The Hawaiian honeycreepers (Fringillidae: Drepanidinae), one of the most famous
examples of a spectacular morphological adaptive radiation, was sampled via the
study of Lerner et al. (2011), which used a large multilocus dataset, including
molecular data from extinct taxa, to produce a well-dated phylogeny. The Hawaiian
endemic damselfly genus Magalagrion (Odonata: Coenagrionidae) was explored by
Jordan (2003), in a study which concluded that most speciation in the genus was
inter-island (Jordan, Simon & Polhemus 2003). The hyperdiverse Hawaiian
leathopper genus Nesophrosyne (Cicadellidae) was comprehensively treated in a
massive study (6 genes, 191 species) by Bennett and 0’Grady (Bennett & O’Grady
2011; Bennett & O'Grady 2013). This study relied heavily on LAGRANGE for its
historical biogeography estimates of ancestral areas and process (Bennett, 2013
#825). The historical biogeography of the recently-discovered Hawaiian endemic
spider genus Orsonwelles (Araneae; Hormiga 2002) was studied by Hormiga et al.
(2003) who used area cladograms to determine that this genus had more within-
island than between-island speciation events, and that while the genus might follow

the progression rule, other scenarios were also possible. Hawaiian representatives
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of Plantago (Plantaginaeaceae), a genus of small forbs, were investigated by Dunbar-
Co (2008), who concluded that they followed the usual progression rule. The
information to do a biogeographical analysis of the Hawaiian silversword alliance
(Asteraceae), another famous Hawaiian adaptive radiation, was assembled from two

papers (Baldwin & Sanderson 1998; Gillespie & Baldwin 2010).

To supplement the 9 Hawaiian clades described above, 4 non-Hawaiian island
clades were included as well. The ubiquitous study-system lizard genus Anolis
(Dactyloidae) was included by way of an extensive biogeographical and taxonomic
review of the members of the genus in and surrounding the Caribbean (Kohler &
Vesely 2010; Nicholson et al. 2012). This was the only case in which a digitizable,
comprehensive tree was not included as a Figure in the study; therefore the dated
tree was regenerated from scratch by taking the input sequence alignment
(obtained courtesy of K. Nicholson, personal communication) and conducting a
BEAST dating analysis (Drummond & Rambaut 2007; Drummond et al. 2012) using
the settings and calibration points described by Nicholson (2012), and taking the
resulting well-resolved maximum clade credibility tree (MCC) for use in
biogeographical analysis. It should be noted that the dates obtained by Nicholson et
al. (2012) are quite old (the root of the genus tree is 87 Ma), as a result of the input
calibrations, which consist of two fossils of age 28 mya and 17-23 mya, each of
which the authors place very high in the tree as sister to extant species or small
clades. Given the recent documentation of extensive morphological convergence in

Anolis (Mahler et al. 2013) these calibrations might be questioned, especially as

53



Nicholson et al. note that many workers in the group favor younger dates
(Nicholson et al. 2012). Nicholson et al. premise their discussion of biogeography on
ancient dates and vicariance interacting with the complex geological history of the
Caribbean. However, their biogeographic inference method is parsimony character
mapping combined with narrative interpretation; there is therefore no explicit
dispersal matrix or other constraint that must be taken into account in the present
likelihood analysis (such an analysis would a fascinating, but very large, project).
Therefore, only an unconstrained, non-time-stratified analysis was run in the
present study. For such analyses, the relative branch lengths are important, but the
absolute timescale is just a scaling factor which will not influence model
comparison. Therefore, Nicholson et al.’s dating is taken as a given here; however,
group seems ripe for a more sophisticated tip-dating approach that directly includes

fossil OTUs and morphological models in the dating analysis (e.g., Wood et al. 2013).

Another lizard clade used was Microlophus (Tropiduridae), the “lava lizards” of the
Galapagos (Benavides et al. 2009). Benavides et al. (2009) constitutes a detailed
dating study, but the reconstruction of biogeographic history is primarily narrative
based, albeit with topological tests for the monophyly of certain postulated
geographical clades. The next clade sampled was Cyrtandra (Gesneriaceae), a
tropical herbaceous plant with species spread across the Pacific. It was previously
examined by Clark et al. (Clark et al. 2008; Clark, Wagner & Roalson 2009) in their
comparative study of ML-based DEC, Fitch parsimony (Bremer 1992), parsimony-

based dispersal-vicariance analysis (DIVA; Ronquist 1996; Ronquist 1997), and
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stochastic mapping (Nielsen 2002). The final clade employed was southeast Asian
members of subgenus Vireya of the shrub genus Rhododendron (Ericaceae; Brown,
Nelson & Ladiges 2006; Webb & Ree 2012). Like Caribbean Anolis, but unlike the
other clades considered in this study, Vireya is not primarily found on oceanic
islands; it has representatives spread from the Himalayas to Australia (Webb & Ree
2012). However, Malesia is its center of diversity, and it is interesting to test
whether or not a clade distributed on continental islands will support the DEC or
DEC+] models in a fashion similar to oceanic island clades. In addition, Vireya has
become another study group, serving as the example dataset for the introduction of
methods such as SHIBA (Webb & Ree 2012) and BayArea (Landis et al. 2013). Due
to the lack of rigorous dating information for the clade, Webb & Ree (2012) explore
two different scalings of the age of the clade, 11 and 55 my. As a time-stratified
analysis is not being done in the present study, as discussed above this scaling issue

is unimportant for model selection, so only the 11 my scaling was used.

Datasets could be analyzed once they had been processed into the input format
required for BioGeoBEARS and C++ LAGRANGE, namely, a Newick file and a
geography text file in PHYLIP format (Smith 2010). To achieve maximum
comparability and broadness of results, if the source study in question made use of a
dispersal matrix, a time-stratified dispersal matrix, or other constraints, these were
also converted into the necessary input text files and settings for BioGeoBEARS.
Wherever a constrained analysis was run, an unconstrained run was also

implemented for comparison. For Hawaiian groups, depending on their geography
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and the quality of the dating, it was usually possible to implement the M0, M1, M2,
and M3 (time-stratified dispersal matrix) constraints models of Ree & Smith (2008).
In addition to these, a refinement of time-stratified dispersal was also implemented,
wherein a time-stratified areas-allowed matrix was added to the analysis. For
clades older that Kauai, an additional time-stratified analysis was constructed,
wherein an ancient area, “Z”, existed before the emergence of Kauai. For clades
thought to have immigrated to Hawaii from a continent, “Z” remains extant
throughout the analysis. This procedure then allows 2 possible constraints models
- models with dispersal from Z being equally probable as any other dispersal, or the
more realistic model of extremely low-probability dispersal from a continent.
Alternatively, for clades thought to descend from an older Hawaiian high island, Z
represents that older island, which disappears soon after the emergence of Kauai, as
there was a slowdown in island formation before Kauai (Clague 1996). Note that
even though no extant tips in these phylogenies inhabit area Z, BioGeoBEARS will
still infer it as the ancestor after all of the extant high islands have submerged. The
constraints models are summarized described in Table 2, and the details are found

in the geography files.

All input files (Newick files, geography files, and constraints files, as well as the
scripts used to run each analysis) are available in Dryad (dryad.org). In addition to
replicating the constraints used in published analyses, unconstrained analyses were
run for comparison. DEC and DEC+] inferences were run on each dataset, and on

each available dispersal model for datasets that included these. The DEC and DEC+]
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models were compared with the likelihood ratio test, AIC, and AICc (Burnham &
Anderson 2002) using custom functions implemented in BioGeoBEARS (Matzke

2013b).

Results

Validation

BioGeoBEARS’s DEC model performed extremely well in validation tests against
LAGRANGE for on the example Psychotria dataset for constraints M0-M3 (Table 3).
In almost all cases, BioGeoBEARS was able to reproduce the exact log-likelihoods
returned by LAGRANGE for the same input data and parameter estimates. In
addition, the ML searches conducted by BioGeoBEARS returned exact or virtually
exact matches to the parameter estimates and log-likelihoods returned by
LAGRANGE. This is strong evidence that the fundamental logic of LAGRANGE has
been understood and incorporated into BioGeoBEARS, even though BioGeoBEARS
was rewritten from scratch in R, and contains additional features and
parameterizations, including founder-event speciation and others not used here,

that make the construction of BioGeoBEARS more complex.

The one exception to perfect matches in the validation tests was in the time-
stratified analysis of Psychotria. Here, BioGeoBEARS gave slightly different

parameter estimates and log-likelihoods than some of the LAGRANGE
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implementations. However, the LAGRANGE implementations differed among each
other as well. Programming a stratified analysis is a rather complex affair, as the
phylogenetic essentially tree has to be sectioned, sometimes producing subtrees
with root branches, and sometimes producing branch segments, and the likelihoods
have to calculated, tracked, and correctly passed on to the connecting pieces during
the downpass, and the uppass as well, if ancestral states are being estimated. The
2013 version of Python LAGRANGE repaired a bug in the stratified calculations in
the 2012 version (Ree 2013), and BioGeoBEARS returns the same result as the 2013
version. C++ LAGRANGE returned the most divergent result, indicating some issue

different from that in the 2012 Python LAGRANGE.

One important, though not itself comprehensive, check of stratification calculations
is to run the same analysis in a stratified and non-stratified context. This “null
stratification” simply uses the same dispersal matrix as the non-stratified analysis
and repeats the identical matrix at each time step. All programs passed this check

except 2012 Python LAGRANGE (Table 3).

Hawaiian Psychotria: DEC versus DEC+]

Comparison of the performance of the 2-parameter DEC model to the 3-parameter

DEC+] model on the Hawaiian Psychotria dataset yielded dramatic results on all

constraints models (Table 4). At the cost of only one additional free parameter, j,

58



the likelihood of the tip range data conferred by the model jumps by 11-15 log-

likelihood units.

With one additional free parameter, approximately 2 log-likelihood units would
constitute a statistically significant increase. As a result, formal model tests show
that DEC+] is very strongly favored in all cases, with the Likelihood Ratio Test

rejecting the nested 2-parameter model at the p<0.0001 cutoff level in all cases.

AIC weights gives a sense of the relative support that the data lend to the 3-
parameter model. The ratio of the weights in favor of DEC+] is impressive, ranging
from 1800 (for the highly constrained, time-stratified M3 model) to 10 (for the M2
model where dispersal is eastwards-only). As the dataset is small (only 19 OTUs,
and thus 19 geographic ranges, in the Psychotria tree), AICc was also calculated.
However, because of the small number of free parameters (2 or 3), the results with
AlCc were substantively the same, with only a slight decreasing in the overwhelming

support for DEC+].

In sum, with the Psychotria dataset, from a frequentist perspective, the DEC model is
decisively rejected in favor of a model that includes the process of founder-event
speciation, and from a model selection perspective, DEC+] earns virtually all of the

model weight.
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Consideration of parameter inference under DEC and DEC+] is also revealing. For
Psychotria, under DEC+], the j parameter is always positive, and the d and e
parameters are inferred to be effectively zero (hitting the lower bound of the ML
inference bounds). This is an indication that the “D” and “E” processes of the DEC
model are completely unnecessary for explaining the biogeography of Hawaiian
Psychotria. Instead, this is accounted for, with much higher probability, by a series
of cladogenesis events, mostly sympatric range-copying within a single area, and
founder-event speciation. The only exception to this is the M3B model. In this
model, which has a time-stratified areas-allowed matrix in addition to a time-
stratified dispersal constraints matrix, d and e are positive even under DEC+], and
the models are closer in the likelihood they confer on the tip data. In this highly-
constrained model, the range-expansion and range-contraction processes have
much less flexibility. In an unconstrained model, the dispersal-extinction process
suggests substantial waiting times between dispersal (range-expansion) events, and
subsequent cladogenesis events. These waiting times lower the probability of the
data, as many other events could be happening instead, with approximately equal
probability. When there are tight area constraints, by contrast, range-expansion
only can occur after a new island has emerged, which will often also coincide with
an appropriate cladogenesis event in the dated tree. Thus, the advantage of the
founder-event speciation events - instantaneous change perfectly correlated with
speciation events, and no need for long residence times in widespread states before

cladogenesis occurs - is reduced, bringing the models closer together.
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Figure 2 depicts the ancestral geographic ranges estimated under each model. It can
be seen that the DEC model reconstructs several ancestral nodes with widespread
ranges (a well-known tendency of the model; Clark et al. 2008; Ree & Smith 2008;
Buerki et al. 2011), which then break up through vicariance to produce daughter
lineages with narrow ranges. Under DEC+], this phenomenon completely
disappears. It is replaced by founder-events at each node where geography changes.
[t appears that the entire geographic distribution of Psychotria in the Hawaiian
islands can be explained by only two processes: founder-event speciation, and
sympatric speciation within single islands. This fits the conceptual model held by
many biogeographers of oceanic islands; however, notably, this is not the

computational model implemented in DEC analyses.

The pie charts depicting the relative probability of each ancestral range (Figure 2,
right side) also show that ancestral states are reconstructed with much less
uncertainty under the DEC+] model than the DEC model. This should not be
surprising, as the fact that the probabilities are less spread out over the possible
ancestral ranges is directly related to the higher likelihood of the data. One
weakness of DEC, for this dataset, appears to be that it has difficulty finding the
ancestral states that confer the highest likelihood on the data, and reconstructs
several nodes with very high uncertainty. This important fact can be missed in plots

that show only the single most-probable state (Figure 2, left side).
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Two somewhat subtle points should be made about interpreting the ancestral range
estimates in depictions such as Figure 2. First, these depict the best estimates, under
the model parameters, of the ancestral range at each node and each “corner” (the
corner positions are used to represent the geographic range immediately after a
cladogenesis event). The best estimate at each node is not identical with the single
best joint history (Felsenstein 2004), so in some locations on a phylogeny, the
highest probability ancestral ranges at each individual node cannot be read naively
as a joint history. Second, unlike LAGRANGE, BioGeoBEARS by default estimates
ancestral states under the global ML model. LAGRANGE estimates ancestral states
by conducting an ML search for the best model, conditional on fixing each possible
state at each node in the tree. The resulting ancestral states will usually be similar

but not necessarily identical.

Simulation results: false positives and false negatives

For the 1000 simulations under each ML model, the difference in data log-likelihood
between the ML models estimated under DEC and under DEC+] was calculated. The
top histogram in Figure 3 shows the log-likelihood advantage of the DEC+] model
over the DEC model, when the true model is DEC. As DEC is a special case of DEC+],
the additional free parameter of DEC+] means that it will always explain the data at
least slightly better than DEC. However, when the true model is DEC, this advantage
is very slight, usually less than 2 log-likelihood units; the mean advantage is 0.247.

This is exactly the desired behavior, indicating that when DEC+] has a large

62



advantage over DEC, this is not likely to be due to chance or to some systematic

artifact.

This conclusion is confirmed by the lower panel in Figure 3, which shows the log-
likelihood advantage of DEC+] over DEC when the true model is DEC+]. In this
situation, the advantage of DEC+] is massive, with a mean advantage of 7.86 log-
likelihood units. Only rarely is the advantage less than 2 log-likelihood units, which
would indicate situations that produced a false negative, in which DEC would not be
rejected in favor of DEC+], in spite of DEC+] being the correct model.

These impressions are confirmed by calculation of the rates of false positives and
false negatives under the Likelihood Ratio Test (Table 5). When data was simulated
under DEC, the LRT rejected DEC in favor of DEC+] only 43/1000 times, a rate
approximately equal to the p-value cutoff (p<0.05). This indicates that the LRT has
the desired frequentist properties when comparing DEC to DEC+]. On the other
hand, when data was simulated under DEC+], false negatives (failures to reject DEC
when DEC+] is true) occurred for 59/1000 simulations, or a false negative rate of
0.059. This too is acceptable, although the false negative rate might well decline

further if a similar simulation experiment were conducted on a larger tree.

Simulation results: accuracy of ancestral state estimates

For each of the 4000 simulation/inference pairs, the fraction of nodes for which the

true ancestral range matched the inferred most-probable ancestral range was
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calculated. The distribution of this fraction is shown in Figure 4. The mean fraction
of nodes correct were ordered as follows: DEC+] simulations, DEC inference: 0.57;
DEC simulations, DEC inference: 0.78; DEC simulations, DEC+] inference: 0.83;
DEC+] simulations, DEC+] inference: 0.87. The means were all significantly different
from each other, using the paired-sample t-test for inferences made on the same
simulations, and the unpaired Welch'’s t-test for comparing means between different

simulation runs (two-tailed tests, all p-values < 2e-15).

Examining the similarity of all ancestral state probabilities to the true probabilities
through calculation of S for each node yielded very similar histograms (data not
shown), and the same ordering: DEC+] simulations, DEC inference: 0.62; DEC
simulations, DEC inference: 0.78; DEC simulations, DEC+] inference: 0.81; DEC+]
simulations, DEC+] inference: 0.84. These differences in mean S were also all

significant, using the same tests as above (all p-values < 2e-15).

It is somewhat surprising that DEC+] inference of ancestral ranges is more accurate
than DEC inference, when the true generating model is DEC. We seem to have a
moderate exception to the otherwise well-established dictum that “the performance
of a method is maximized when its assumptions are satisfied” (Huelsenbeck 1995).
In the present case, the explanation might be related to some interaction between
the of range sizes that each model prefers, and the fact that the starting ancestral
range for the simulations was usually either Kauai or Kauai+Oahu. For example, if

the simulations produce many nodes with small geographic ranges, due to the
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starting state, but the DEC model tends to infer widespread ancestors, DEC+] could

have a slight advantage simply because it tends to prefer single-area ancestors.

The mean value of S for each node age in the Psychotria phylogeny, plotted against
age, is graphed in Figure 5 for each of the four simulation/inference pairs. Reduced
accuracy for older nodes is seen in all analyses, and the relative ordering of

accuracies remains the same for all node ages.

Simulation results: parameter inference

Figure 6 compares the ability of DEC and DEC+] to correctly infer parameter values
when biogeography was simulated under each model. As demonstrated for
LAGRANGE (Ree 2005; Ree & Smith 2008), DEC’s ability to correctly infer d is good,
but it typically vastly underestimates e. DEC+] shows similar properties. It is
probable that very little information about extinct ranges is usually retained in the
tip geography of a phylogeny, especially in a relatively small phylogeny. DECJ+]
usually does correctly infer d, and correctly infers a j parameter near zero, when the

true value of j is zero.

When the true model is DEC+], with d and e approximately zero, DEC of course
nevertheless infers a positive value for d, as some positive value is required in order
to get lineages distributed across the geography of the study area in the first place.

Interestingly, when the true model is DEC+], DEC inference will sometimes infer a
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positive value for e, even though the true value of e is zero. Inference of a positive e
is infrequent, but it still occurs much more commonly than when DEC inference was
performed on DEC simulations with a truly positive value of e! The answer to this
paradox is likely the fact that the jump dispersal process will sometimes create
distributions on the phylogeny that DEC can only explain by positing a range
expansion, followed by a range loss. This configuration of the data would
mistakenly appear to give some positive signal for the extinction/range-loss
process, and for a positive value of e. Excluding the process of founder-event
speciation from the inference, when it is a part of the true model, leads to

pathological behavior in DEC-based parameter inference.

On the other hand, when DEC+] is the true process, DEC+] inference usually recovers
zero values for d and e nearly 100% of the time, and also usually infers a positive
value for j. It appears thatj is typically underestimated, although in the simulation
experiment conducted here, the true value is at the 90.6% percentile of the
empirical distribution of inferred j estimates, and so not significantly outside of the
distribution. On a small phylogeny, with only four areas, the number of jump
dispersal events that might occur in a forward simulation might be small, and the
probability of “convergence” (independent jump dispersal to the same island) would
not be an infrequent occurrence. Furthermore, there is no guarantee that every
forward simulation will produce tip species occupying all four islands. If these
factors are influencing the underestimation of j, they would be expected to weaken

on a collection of simulations that are conditioned through rejection sampling to
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have tip species occupying all four islands, or in simulations conducted under
constraints that prevent, for example, back-dispersal to older islands. Analyses with
larger trees and more areas would also be expected to be less subject to

underestimation of j.

Bayesian inference on Psychotria M0 dataset

Trace plots and histograms for the parameters and the model log-posterior
probabilities are shown in Supplementary Figures 1, Supplementary Figures 1.1-1.6.
The results of random-walk Metropolis MCMC are shown in Supplementary Figures
1.1-1.4. Inference of d appears to be unproblematic for both DEC and DEC+], with
the ML estimate of d appearing at the peak of the posterior distribution in both
cases. However, for the e parameter, the ML estimate (0.028) is well outside the
95% highest posterior distribution (HPD) for the DEC model, a result further
highlighting the weaknesses of DEC inference in estimating e. Even when the ML
estimate of e is nonzero, the likelihood surface is extremely broad, and the
likelihood advantage of a positive e value over e=0 is tiny. Inference of j appears
unproblematic, with the ML estimate of j (0.11) within the 95% HPD, and with j=0

outside of the 95% HPD.

The estimates of the log-marginal likelihood for DEC and DEC+] were -44.6 and
-36.4, respectively. This yields a Bayes Factor of 3595 in favor of DEC+]. On the

Jeffreys’ scale for the interpretation of Bayes Factors (Jeffreys 1961), anything above
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100:1 is considered decisive support for a model. Under reversible-jump MCMC,
prior probability of DEC+] was set to 0.000001, and the posterior probability was
0.1524, resulting in a Bayes Factor of 152422. This Bayes Factor is similar in
magnitude to the ratio of model weights calculated from AIC, and indicates that the
likelihood advantage of DEC+] is dominating the result. The Bayes Factor calculated
from the posterior distribution random-walk Metropolis MCMC appears to be more
conservative, taking into account the uncertainty in parameter inference and

resulting uncertainty in model choice.

DEC versus DEC+] on island clades

Figure 7 shows the relative probabilities of DEC and DEC+] as calculated from AICc
weights for each of the 13 study clades and 53 constraints scenarios. In general, the
results are overwhelming support for the importance of including founder-event
speciation as an explanatory process in the biogeography of island clades, with
DEC+] being anywhere from 4 times more probable than DEC, to 1017 times more
probable. The same figure calculated for AIC weights is almost identical (not
shown) and Table 6 indicates that the AIC weight ratios are even more impressive.
However, as AIC has no correction for small sample size, AICc is recommended as a

more conservative metric (Burnham & Anderson 2002).

The only 2 exceptions to this pattern are the time-stratified analyses of Drosophila

and Scaptomyza. In both cases the issue seems to be highly unrealistic versions of
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the stratified models, which can occur when clades much older than Kauai are
forced into constraints models originally set up for the younger Psychotria clade
(Ree & Smith 2008). In both cases, a more realistic implementation of the
constraints model taken from the source studies, improved the situation for DEC+].
In the case of the case of Drosophila, this was a constraints model adding a Z area
representing an ancient island that later submerged (Kambysellis et al. 1995). In the
case of Scaptomyza, this meant adding a Z area with a permanently ultralow
probability of dispersal (Lapoint, O’Grady & Whiteman 2013), representing a

permanent but very distant continent (Table 6).

The p-values of the likelihood ratio test closely follow the results from AICc model
weights, with 51/53 analyses resulting in rejection of the null model (equivalence of
DEC and DEC+]) with p<0.05. The most common situation is extremely confident
rejection of the null (p<0.00001), an impressive result given the small size of the

datasets (a maximum of 198 OTUs).

Figure 7 and Table 6 also give some evidence that the degree of support for DEC+]
over DEC is often related to the size of the tree - large analyses can give extremely
high AICc ratios and extremely low p-values, whereas in small clades (Plantago,
Orsonwelles, silverswords) the support is relatively weaker (although still strong,
and statistically significant in likelihood ratio test terms). However, this pattern is
complex, partially because it is confounded with the constraints models, and more

complex constraints tend to result in somewhat weaker support for DEC+]. In
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addition, clades undoubtedly differ in terms of the importance of founder-event

speciation in the clade’s biogeographic history.

Turning to inference on the explanatory processes, Figure 11 shows the ML point
estimates of d, e, and j for each clade/constraint combination, under DEC and DEC+].
In essence, when j is moderate or large, d and e drop to zero or are greatly reduced.
As noted above for Psychotria, this is evidence that the “DE” part of DEC is not even
needed in these clades. However, d and e do not always drop to 0; sometimes all
three processes are supported. There even appears to be some correlation of d
inference between the DEC and DEC+] models. One data configuration in which d
will usually be positive, of course, is when some tips have ranges of more than one
area. The founder-event speciation process, as implemented here, only buds off
offspring with a range size of one area. As widespread ranges may not be inherited
by both descendents under either the DEC or the DEC+] model, any phylogeny with
more than one tip with a widespread range will require a positive d to explain the
data. Inference of e is extremely problematic, as discussed previously, so no huge
weight should be put on the e estimates. The j parameter is always positive (except
for the two cases where DEC+] was not supported, discussed above), but ranges
from small to the upper limit (j=3). Small values of j indicate that only a few nodes of
the phylogeny have configurations of tip geography that are conducive to founder-
event speciation explanations, i.e., subtrees with area arrangements such as
(A(A(A,D))). However, when j=3, this means that the values of y, s, and v

(controlling sympatric range-copying, sympatric subset, and vicariant speciation,
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respectively) are 0. In this situation (here found in Microlophus), jump dispersal is

the only process that needs to be invoked to explain distributions.

For illustrative purposes, two pairs of range estimates are shown (Figure 9 and
Figure 10), comparing the inference under DEC versus DEC+]. All of the inferences
for all of the runs are available in a large PDF available in Supplemental Figures 2. A
useful way to compare the ancestral range estimates made under DEC and DEC+] is
to size a window such that one page at a time is viewed, and then flip back and forth

between pages of the PDF, using the Page Up/Page Down keys.

The general picture that emerges across all island clades examined is that the
patterns found in Psychotria apply in general: under the DEC+] model, ancestors are
usually inferred to have narrower ranges, this inference is made with higher
confidence, and the estimated history can usually be interpreted quite simply as a
series of within-island and between-island speciation events. This conclusion will of
course not surprise many island biogeographers, who have accepted the dominant
role of founder-event speciation for decades. However, it should be surprising that
a model that is apparently inappropriate in such situations, namely DEC, has come

to be so widely applied, even in the island situation.

Conclusions
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The probabilistic Dispersal-Extinction-Cladogenesis (DEC) model implemented in
LAGRANGE (Ree et al. 2005; Ree & Smith 2008) was revolutionary. It was the
advent of parametric biogeography (Ree & Sanmartin 2009), wherein rather than
simply relying on parsimony reconstructions, events are assigned probabilities, and
optimal estimates of history can be made by maximum likelihood or Bayesian
approaches. However, probably because it was the first major effort, LAGRANGE
did not fully explore all of the potentiality inherent in the parametric approach. One
of major advantages of an explicit, probabilistic modeling framework is access to
standard tools for model comparison and model choice. All that is required to use

these tools is the implementation of new models within the same framework.

This has been done here by the creation of the DEC+] model, which adds founder-
event speciation to the suite of processes available in the original DEC model. As
demonstrated here, that the BioGeoBEARS implementation replicates LAGRANGE’s
DEC model, and the ML inferences from this model. A simulation experiment
showed that the two models have surprisingly good identifiability, and that when
the likelihood ratio test is used to test the models, the test has high specificity and
sensitivity, and that the false positive rate matches the p-value cutoff, a key desired
behavior of a frequentist test. The simulation also showed acceptable estimation of
d and j, but not ¢, similar to the results of Ree et al. (2008). Bayesian inference
backed this point up, by showing that the ML point estimate for e can be well outside

of the 95% HPD estimated for the parameter.

72



Finally, the simulation study showed that there is an intimate relationship between
assumptions about biogeographic process, and the accuracy of estimations of
biogeographic history. The hazards of inferring history under the incorrect model
are stark - when DEC+] was the true process, the accuracy of ancestral range

estimation under DEC was 57%, but under DEC+] it was 87%.

When we turn to comparisons of DEC and DEC+] on real datasets, the results are
quite stark. On a broad sample of island clades, there is massive support for DEC+]
over DEC, over a wide range of constraints models. The differences in data
likelihoods, and resulting AIC and AICc, are of approximately the same order of
magnitude as those found when comparing DEC inference and DEC+] inference on
the simulated DEC+] data. In other words, reality looks like it was simulated under
the DEC+] model, rather than the DEC model. Several side-benefits accrued from
using a better model, namely, simpler estimated histories, more confident estimates
at ancestral nodes, and apparent elimination of the bias towards widespread

ancestors sometimes found in DEC.

What is the mathematical cause of the dramatic improvement in likelihoods under
the DEC+] model, on these datasets? A hypothesis is presented here (Figure 11). In
order to distribute lineages across the study region, the DEC model is forced to use
range expansion events, which are anagenetic events controlled by a continuous-
time rate matrix, and these events must be followed by the correct cladogenesis

events. This means that in order for vicariance or subset speciation to happen at a
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node on the tree, some time before that node, the correct dispersal event must have
happened, and then, by chance, no other (cumulative) changes, either dispersal or
extinction, may happen before the speciation event. Thus, a positive d is required to
spread lineages out, but having a positive d means that branch histories that
produce the correct ancestor at the correct time (the time of speciation) will be
somewhat improbable, compared to all of the other possible histories. The waiting
time between range expansion and an uncorrelated cladogenesis process is
probably what lowers likelihoods in the DEC model. By contrast, on the DEC+]
model, d and e are often zero, meaning the probability of no change anagenetically
along a branch is 1. Cladogenesis and dispersal are perfectly correlated, and if the
tip geography is suitable, a very simple history of founder-events can explain the

distribution.

A pessimistic view would be to see the above result as a negative finding about the
DEC model and its widespread use in apparently inappropriate situations such as
island clades, but this would be to miss the most important point. The first
probabilistic models that are applied to some phenomenon are always oversimple.
DNA substitution models are a case in point - the model of Jukes and Cantor (1969)
was a simple, equal-rates model, but it served as a starting point; later models
incorporated violations of the equal-rates assumption, such as the transition-
transversion rate ratio; eventually an entire family of models was produced, and
model selection procedures are now used routinely pick the best substitution

models and to improve phylogenetic inference as a result (Posada & Crandall 2001).
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The optimistic view is to note that through utilization of multiple models and model
selection tools, we may finally begin to get at the crucial question of causal
processes in historical biogeography, in a statistically rigorous way. A great many
island biogeographers have thought for a very long time that jump
dispersal/founder-event speciation is a crucial process in the historical
biogeography of island taxa. On the other, for just as long, the vicariance
biogeography wing of the field has disagreed with such dispersalist interpretations,
even for oceanic islands (Heads 2012). Probably most readers have found the
generations-long vicariance-versus-dispersal debate interminable at times. The
major problem has been that adherents of each approach have been stuck in the rut
of simply assuming, as a starting point for analysis, that vicariance or dispersal will
be used as the explanatory process. The vicariance biogeographers provide the
most spectacular examples. For example, Heads (2012) writes, “Most modern
biogeographers follow Mayr...in accepting that allopatry can be found by vicariance
(dichopatry) or by founder dispersal (peripatry), but only vicariance is accepted
here.” (Heads 2012, p. 15) He writes elsewhere that “founder dispersal...is

controversial and may not exist.” (p. 12)

Such seemingly dogmatic a priori assumptions may strike many readers as unwise
or even unscientific, but the statements of Heads do have the important virtues of
honesty and clarity. Clarity may be lacking in other parts of the field, however,

particularly when it comes to computational methods being employed in inference.
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For example, molecular dating often returns dates too young for classic vicariance
explanations (Wood et al. 2013 is one of the few exceptions). Heads dismisses
molecular dating methods wholesale precisely because they seem to falsify classic
vicariance. He is reacting against the dominant view in biogeography, which is that
the dating is approximately correct, and that therefore biogeographers should
conceptually adopt a dispersalist approach unless the dating supports vicariance.
Strangely, though, the methods that are most commonly used in historical
biogeography, namely DIVA and LAGRANGE DEC, only allow dispersal in the sense
of range expansion, one of the two processes (along with vicariance) that Heads, the
vicariance biogeographer extraordinaire, accepts! (Heads 2012, pp. 11-13).
Nevertheless, Heads associates DIVA and DEC so strongly with his dispersalist
opposition that he writes, (p. 311), “ancestral area analysis (using programs such as
DIVA and Lagrange), is also based on center of origin/dispersal theory (as shown by
Santos, 2007) and, in particular, endorses the key concept of speciation by
dispersal.” As we have seen (Figure 1; see also Ronquist & Sanmartin 2011), this is

not the case.

If we consider for a moment the “phylogeny” of the methods, DEC descends from
DIVA (Webb & Ree 2012), and DIVA descends from maximum-vicariance methods
(Ronquist 1996; Ronquist 1997) popular in the heyday of vicariance biogeography.
As a result of this historical contingency, neither of them ever incorporated founder-
event speciation. However, because the methods work on phylogenies, and because

they are almost the only methods available (apart from single-state character
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mapping methods, the properties of which, as a biogeographic method, have not
been sufficiently studied either), the most common situation today is that modern
historical biogeographers happily mix a dispersalist conceptual and dating
framework with a nondispersalist, vicariance- and sympatry-heavy inference

method. No wonder historical biogeography sometimes seems so confusing!

[ suggest that the situation would be vastly improved, both conceptually and
practically, if model selection were instituted as a regular procedure in historical
biogeography analyses, just as it is already is with DNA substitution models in
molecular phylogenetics. Obviously this should not be restricted merely to the DEC
and DEC+] models. Within the framework of BioGeoBEARS, it is a relatively trivial
matter to convert the DEC model into a DIVA-like model (Ronquist 1997; Ronquist &
Sanmartin 2011), or a BayArea-like model (Landis et al. 2013), and from there to
create, for example, DIVA+] and BayArea+] models. Additional models, as-yet
unnamed, can be implemented by, for example, fixing y, s, or v to 0 or other values,
or allowing them to vary independently and see if the improvement in likelihoods
warrants the increase in model complexity. One particularly obvious modification to
the extant models that should be explored concerns the e parameter. As it appears
that the likelihood surface for e is usually very flat, there may not be much
difference in likelihoods for e=0, or e=d, compared to leaving e as a free parameter.
These options are all readily accessible in BioGeoBEARS and should be fully

explored.
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Phylogenetic biogeography has always been dominated by a focus on inferring the
history of individual taxa, usually assisted by some strong a priori assumptions
about the processes that may be invoked in histories. While estimating the
biogeographic history of individual clades is a worthy goal, another, higher goal of
historical biogeography has always been to tease out the dominant causal processes
behind observed phenomenon. Inference of cause gives rise to a fundamental
understanding of a subject, and the histories of individual clades then may be seen
as realizations of the underlying processes. However, the goal of inferring cause has
been much more elusive, as successful inference of cause from pattern requires
sophisticated modeling. Now that this has become accessible, rather than simply
assuming which processes will be allowed up front (Heads 2012), we may let the
data tell us which models are to be preferred (Huelsenbeck 1995; Huelsenbeck et al.

2001).

When causal processes where subject to inference in this study, a huge signal for
founder-event speciation was discovered. How general are these results likely to
be? Itis difficult to extrapolate from the unusual situation of oceanic islands to the
much more complex biogeography within and between continents. However,
simulation results showed that there are data configurations for which DEC+] will
not outperform DEC. Investigation of these simulated ranges (data not shown)
indicates that whereas DEC+] realizations tend to have tip species with ranges of
single areas, often allopatric, DEC realizations tend to have more species that are

widespread, and a fair degree of overlap and sympatry. Therefore, study systems
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with many species that are widespread and in sympatry may support the DEC model
over DEC+]. Intracontinental clades in the tropics, for example, may fit the bill. On
the other hand, studies that treat continents as areas, with few species widespread

across multiple continents, may be fit better by the DEC+] model.

Given that the importance of founder-event speciation has long been conventional
wisdom amongst many island biogeographers, some readers might consider the use
here of elaborate modeling and statistical techniques to confirm conventional
wisdom to be a case of beating a dead horse. However, the categorical dismissal of
founder-event speciation still seems to be popular amongst certain biogeographers.
Heads was quoted above; another recent and colorful statement may be found in
Santos (2007): “The resurrection of dispersalism, as de Queiroz (2005) has
envisioned, is reactionary and with little (or even no) empirical foundation.” I
conclude that the old advice of Zuckerkandl & Pauling (1965) may still be worth
following: “Some beating of dead horses may be ethical, when here and there they

display unexpected twitches that look like life.”
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Table 1. Comparison of the cladogenesis models for the DEC model (as
implemented in LAGRANGE or BioGeoBEARS) and the DEC+] model (as
implemented in BioGeoBEARS). These transition tables assume a study system of 3
areas and a maximum range size of 3 areas; analyses with a different number of
areas will have different transition matrices (see Supplemental Material and the
BioGeoBEARS package). Abbreviations: y, sympatric range-copying speciation; s,
sympatric-subset speciation; v, vicariance; j, jump dispersal or founder-event
speciation. In LAGRANGE, the cladogenesis model is fixed, and all allowed events
have weight 1. Each allowed cladogenesis event has a probability of 1/(number of
cladogenesis events possible from that ancestor). l.e,, for an ancestor of range size 3
(ABC), there are 12 possible cladogenesis events under the model, thus, each is
assigned a probability of 1/12. In BioGeoBEARS, the per-event weights, y, s, v, and j,
can all be fixed, or made into free parameters, according to user preference. Here,
for simplicity, all events have been given equal weight. The right side of each table
shows counts of each type of event under DEC and DEC+], and the total number of
possible events, conditional on the ancestral range.
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is model for 3 areas. Transition probabilities are event weight / count of events. Blank cells have 0 probability.
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Table 2. Study clades, data sources, and constraints settings (maximum range size, dispersal matrices, time-stratification, areas-allowed matrices, etc.). In total, 13 cladesand
53 constraints models were run.

# tree max#
Region Clade Dataset source Modifications taxa age Abbreviation # areas areas Constraints model
19 52 MO 4 4 unconstrained
19 52 M1 4 2 2areasmax
Hawaii psychotria Ree & Smith {2008) None 19 52 M2 4 2 2areas+ eastwardsdispersal only
phylo & geog 19 52 M2b 4 4 4areasmax, eastwards-only dispersal
19 52 M3 4 4 time-stratified dispersal matrix
19 52 M3B 4 4 time-stratified areas allowed & dispersal matrix
Hawaiian Kambysellis et al. None; digitized from 42 20 MO 5 5 unconstrained
Hawaii . paper; time-scaled 42 20 M3areas 5 5 stratified dispersal & areas
Drosophila  (1995) phylo & geog N N . .
with r8s, LF option 42 20 M3areas 5 5 stratified dispersal & areas, w. Z
49  12.4 MO 4 4 unconstrained
49 124 M1 4 2 2areasmax
49 12.4 Mla 4 2 2areasmax; adjacentareasonly
49  12.4 M2 4 2 2areasmax; eastwards dispersal only
. Hawaiian Lapoint etal. (2013) None; digitized by 49  12.4 M3b_stratified_w_areas 4 4 stratified t'jnspersal & areas
Hawaii Scaptomyza  phylo & geo; M 49 12.4 MO 5 5 unconstrained, w. Z
coptomyza phvio & geog 49 124 ML 5 2 2areasmax,w.Z
49  12.4 Mla 5 2 2areasmax; adjacentareasonly, w. Z
49 12.4 M2 5 2 2 areasmax; eastwardsdispersal only, w. Z
49  12.4 M3b_stratified_w_areas 5 5 stratified dispersal & areas, w. Z
49  12.4 M3c_stratified_w_areas 5 5 stratified dispersal & areas, w. Z, low. prob.
Hawaiian - 19 578 MO 4 4 unconstrained
Hawaii Honey- 'L):;ng;::;gu(u” al;ne, digitized by 19 578 M3_strat 4 4 stratified as with Psychotria (Ree & Smith 2008)
creepers 19 578 M3a_strat 4 4 sratified dispersal + areas
34 96 MO 4 4 unconstrained
34 9.6 M1_2areas 4 2 2areasmax
34 9.6 Mla_2areas 4 2 2areasmax; adjacentareasonly
34 9.6 M2_2areasEastOnly 4 2 2areasmax; eastwards dispersal only
. 34 9.6 M3b_stratified_w_areas 4 4 stratified dispersal & areas
" . Jordan et al. (2003) None; digitized by N
Hawvaii Megalagrion phylo &geog NIM 34 96 MO 5 5 unconstrained
34 9.6 M1_2areas 5 2 2areasmax
34 9.6 Mla_2areas 5 2 2areasmax; adjacentareasonly
34 9.6 M2_2areasEastOnly 5 2 2areasmax; eastwards dispersal only
34 9.6 M3b_stratified_w_areas 5 5 stratified dispersal & areas
34 9.6 M3c_stratified_w_areas 5 5 stratified dispersal & areas; low prob Z
198 3.2 M1(UM-2) 6 6 unconstrained
198 3.2 M1(UM-2) 6 2 2areasmax
198 32 M3_6max (T5-Ua) 6 6 unconstrained, but lime—s(rafiﬁed dispersal
- (nonzero) AND areas constraints
None; digitized by 2 areas max; time-stratified dispersal (nonzero)
" Bennett & O'Grady NJM; leftout area 198 3.2 M3_2max (TS-2) 6 2 ’ .
Hawaii Nesophrosyne {2013) phylo & geog 47, Orosius (from AND areas constraints
Au’slralia) 198 3.2 M3_6max (TS-U) 6 6 uncons(rained., but tim?-s(ra(iﬁed dispersal
198 32 M3_2max(Ts-2) 6 2 2 areas.max; time-stratified dispersal AND areas
constraints
198 32 M3_6max(Ts-U) 6 5 unconstraine(li, but time-stratified dispersal AND
areas constraints
Hawaii Orsonwelles Hormiga etal. (2003)  None; digitized by 12 435 MO 5 5 unconstrained
phylo & geog NJM
R 16 51 MO 5 5 unconstrained
Hawvaii Plantago E:;ilﬁzgmm xjo'\r;le, digitized by 16 51 M3_strat 5 5 stratified as with Psychotria (Ree & Smith 2008)
16 51 M3_strat 5 5 stratified dispersal and areas
Silversword Baldwin & Sanderson  Digitized by NJM; 29 6.84 MO 5 5 unconstrained
Hawaii . (1998) phylo, Gillespie some polytomies stratified as with Psychotria (Ree & Smith 2008),
alliance . PR 29 6.84 M3_strat 5 5 s
& Baldwin (2010) geog arbitrarily resolved. - with areas
geography data and MCC tree
Caribbean Anolis date priors from regenerated from 190 98.9 MO 12 3 unconstrained
Nicholson et al. {2012) BEAST analysis
Pacific Cyrtandra Clark et al. phylo & None; digitized by 59 41.5 MO 7 7 unconstrained
geog NJM 59 41.5 MO 7 4 4areasmax
Galapagos Microlophus Benavides et al. {2009) None; digitized by 9 375 M1 10 2 2 areasmax; otherwise unconstrained
phylo & geog NJM
SEAsa Vireya Webb & Ree (2012) None; used 11 mya 65 11 M1 20 2 2areas, no other constraints
phylo & geog root 65 11 Ml+cc 20 2 2 areas + constrained connectivity
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Table 3. Validation of the BioGeoBEARS implementation of the 2-parameter DEC model against the various versions of
LAGRANGE. The full precision output by each program is included to allow detailed comparison.

Program Taxon Model Description LnL d e Dataset
Python LAGRANGE (2012) _ Psychotria MO 3454 003505 002831  ___ .
Python LAGRANGE (2013)  Psychotria MO 3454 0.03505  0.02831

. unconstrained (2008) phylo &
C++ LAGRANGE Psychotria MO 34542 0.0350117 0.0282904
BioGeoBEARS DEC model  Psychotria MO 345 0.0351 0.0285 geog
Python LAGRANGE (2012)  Psychotria  MO_strat unconstrained -35.36 0.03818 0.04079 Ree & Smith
Python LAGRANGE (2013)  Psychotria  MO_strat with null ' -34.54 0.03505 0.02831 (2008) phylo &
C++ LAGRANGE Psychotria  MO_strat M 34542 00350117 0.0282904
BioGeoBEARS DEC model  Psychotria MO_strat  SUatiication ¢ 0.03506479 0.02833348 8€°8
Python LAGRANGE (2012)  Psychotria M1 35.21 004271 004305 o
Python LAGRANGE (2013)  Psychotria M1 paremsmax 352 004271 004305 oo
C++ LAGRANGE Psychotria M1 352111 0.0427272 0.0429474
BioGeoBEARS DEC model  Psychotria M1 35.2 0.04270405 00427981 5°°8
Python LAGRANGE (2012)  Psychotria M2 5 arcas + 31.92 0.1228 000000055 oo
Python LAGRANGE (2013)  Psychotria M2 e 3192 0.1228 000000055 -0 o &
C++ LAGRANGE Psychotria M2 dispersalonly 3192 0122073 A7A16E07
BioGeoBEARS DEC model  Psychotria M2 -31.9 0.1227461 1E-15
Python LAGRANGE (2012)  Psychotria M3 ) . 398 0.03687  7.233E-08 )
Python LAGRANGE (2013)  Psychotria M3 Eg:éi:;‘—’l't'f'ed 39.83 003645  4.495E-08 ?;;02‘)11‘;2 e
C++ LAGRANGE Psychotria M3 o 366318 00342543 1148807
BioGeoBEARS DEC model Psychotria M3 -39.8 0.03643885 1E-15
Python LAGRANGE (2012) Cyrtandra MO -46.43 0001251 4285609 .
Python LAGRANGE (2013)  Cyrtandra MO . -06.43 0.001251  4.285E-09 :

unconstrained (2008, 2009)

C++ LAGRANGE Gyrtandra MO -46.4624  0.00110037 29021E-05 ' " ~
BioGeOBEARS DEC model  Gyrtandra MO -46.42506  0.00125161 1E-15 phylo & geog
C++ LAGRANGE Qyrtandra M1 daressmax 472735 000144745 3.06556-05 Clarketal.
BioGeoBEARS DEC model  Cyrtandra M1 473 0.00153  1E-15 (2008, 2009)
Python LAGRANGE (2012) Lonicera MO 125 0.005812 0.001049  Smith &
Python LAGRANGE (2013)  Lonicera MO unconstrained -125 0.005812  0.001049  Donoghue
C++ LAGRANGE Lonicera MO -124.977  0.00581186 0.00111119 (2010) phylo &
BioGeoBEARS DEC model  tonicera MO -125 0.00581059 0.00104781 geog
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Table 4A. Comparison of DEC and DEC+J on Hawaiian Psychotria, for various models. Models M0O-M3
as described in text. M2b is M2 (eastwards-only dispersal) but with maximum rangesize set to 4
rather than 2. M3B is the M3 model (time-stratified with a changing dispersal matrix), but with the
addition of a time-stratified "areas allowed" matrix, restricting not only dispersal to but also
occupancy of submerged islands.

Const- max# Parameter estimates Likelihood Ratio Test
Model _ LnL

raints areas num d e j LnlLalt LnLnull D pval
DEC MO 4 -34.5 2 0.035 0.029 0
DEC+) MO 4 -20.9 3 1E-15 1E-15 0.114 -20.95 -34.54 27.19 2E-07
DEC M1 2 -35.2 2 0.043 0.043 0
DEC+) M1 2 -21 3 1E-15 1E-15 0.114 -2096 -35.21 285 9E-08
DEC M2 2 -31.9 2 0.123 1E-15 0
DEC+) M2 2 -16.7 3 1E-15 1E-15 0.285 -16.67 -31.92 30.49 3E-08
DEC M2b 4 -31.4 2 0.115 0.009 0
DEC+) M2b 4 -16.7 3 1E-15 1E-15 0.285 -16.67 -31.41 29.47 6E-08
DEC M3 4 -39.8 2 0.036 1E-15 0
DEC+) M3 4 -28.3 3 1E-15 3E-09 0.187 -28.32 -39.83 23.03 2E-06
DEC M3B 4 -41.7 2 0.075 0.075 0
DEC+] M3B 4 -32.8 3 0.024 0.041 0.194 -32.78 -41.71 17.85 2E-05
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Table 4B. AIC and AICc results for Hawaiian Psychotria, as well as the resulting model weights, and the ratio of the
weights (DEC+) probability : DEC probability).

Model Const- max # L Akaike Information Criterion 2nd Order Inf. Criterion (AICc)
ode . n

raints areas AIC1 AIC2 wtl wt2 ratio AlCcl AICc2 wtl wt2 ratio
DEC MO 4 -34.5
DEC+] MO 4 -20.9 479 73.1 1 3.4E-06 294895 495 73.83 1 5.2E-06 191951
DEC M1 2 -35.2
DEC+] M1 2 -21 479 744 1 1.8E-06 566941 49,52 75.17 1 2.7E-06 371386
DEC M2 2 -31.9
DEC+] M2 2 -16.7 394 67.8 1 6.5E-07 1537750 40.94 68.59 1 9.9E-07 1009534
DEC M2b 4 -31.4
DEC+] M2b 4 -16.7 394 66.8 1 1.1E-06 924075 4094 67.57 1 1.6E-06 606220
DEC M3 4 -39.8
DEC+] M3 4 -28.3 62.6 83.7 1 2.7E-05 36882 64.24 84.41 1 4.2E-05 23979.6
DEC M3B 4 -41.7
DEC+] M3B 4 -32.8 71.6 87.4 1 0.0004 2771 73.16 88.17 1 0.00055 1816.11
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Table 5. False positive rates (A) and false negative rates (B) for the Likelihood
Ratio Test applied to the DEC and DEC+J models, on 2000 biogeographical
histories simulated on the Psychotria phylogeny using the parameters inferred
under DEC and DEC+J ML estimation.

A.
True Inference # sims mean  mean LnL OZI?J: in False
model model LnL difference P LRT Postive Rate
DEC DEC -22.055
DEC DEC+) 1000 91.805 0.247 43 0.043
B.
True Inference i mean mean LnL #fte.xlse X N Falst(.e
model model sims LnL difference negatives in cgative
LRT Rate
DEC+) DEC -24.401
1000 7.86 59 0.059
DEC+) DEC+) -16.542
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Table 6. Model selection statistics comparing DEC and DEC+] on 13 island clades, for 53 constraints scenarios. The interpretation of the p-values is as follows: *, p<0.05; **, p<0.01;
*** p<0.001. Abbrevigtions: strat., time-stratified; disp., manual dispersal probability multiplier matrix; w. Z, analysis wasrun with “Z”, an old, ancestral area outside of the extant
Hawaiian high islands; nz, zerosin the manual dispersal probability multiplier matrix have been replaced with a small nonzero value.

- tree - " T~ DEC+) DEC . AICweight AlCcweight
Clade region age Hiips Constraints model ID  Description oL WRTRval e o o
Psychotria Hawaii 52 19 MO unconstrained -209 345 18E-07 *** 294895 191952
Psychotria Hawaii 52 19 M1 2 areasmax -21.0 352 9.4E-08 *** 566941 371387
Psychotria Hawaii 52 19 M2 2 areas + east disp. only -16.7 319 3.4E-08 *** 1.5E+06 1.0E+06
Psychotria Hawaii 52 19 M2b 4 areas max, east-only disp. -16.7 314 5.7E-08 *** 924075 606221
Psychotria Hawaii 52 19 M3 strat. disp. -283 39.8 1.6E-06 *** 36882 23981
Psychotria Hawaii 5.2 19 M3B strat. disp. & areas -32.8 417 2.4E-05 *** 2771 1817
Hawaiian Drosophifa Hawaii 20 42 MO unconstrained -59.5 971 4.6E-18 *** 7.3E+15 6.2E+15
Hawaiian Drosophifa Hawaii 20 42 M3areas strat. disp. & areas 2249 -226.2 0.11 ns 1.3 11
Hawaiian Drosophila Hawaii 20 42 M3areas strat. disp. & areas, w. Z 547.6 -551.2  0.0068 ** 143 11.5
Hawaiian Scaptomyza Hawaii 124 49 MO unconstrained 619 -103.0 12E-19 *** 2.6E+17 2.3E+17
Hawaiian Scaptomyza Hawaii 124 49 M1 2 areas max -62.2 -102.3 3.4E-19 *** 9.4E+16 8.5E+16
Hawaiian Scaptomyza Hawaii 12.4 49 Mla 2 areas max; adjacency 62.4 -121.7 1.4E-27 *** 2.0E425 1.7E425
Hawaiian Scaptomyza Havwvaii 124 49 M2 2 areas max; east disp. only -116.4 -133.1  7.6E-09 *** 6.5E+06 5.7E+06
Hawaiian Scaptomyza Hawaii 12.4 49 M3b_stratified_w_areas strat. disp. & areas -218.9 -224.0 0.0013 ** 64.83 52.7
Hawaiian Scaptomyza5  Hawaii 124 49 MO unconstrained, w. Z -68.8 -108.9 3.4E-19 *** 9.5E+16 8.3E+16
Hawaiian Scoptomyza5  Hawaii 124 49 M1 2 areasmax, w. Z -69.2 -108.1 12E-18 *** 2.7E+16 2.4E+16
Hawaiian Scaptomyza5  Hawaii 12.4 49 Mla 2 areas max; adjacency, w. Z 69.5 -128.5 1.7E-27 *** 1.5E4+25 1.3E+25
Hawaiian Scaptomyza5  Hawaii 124 49 M2 2 areas max; east disp. only, w. Z -106.9 -119.6 4.9E-07 *** 1.1E4+05 1.1E+05
Hawaiian Scaptomyza5  Hawaii 12.4 49 M3b_stratified_w_areas strat. disp. & areas, w. Z 273.2 2735 0.41 ns 0.5 0.4
Hawaiian Scoptomyze5  Hawaii 12.4 49 M3c_stratified_w_areas strat. disp. & areas, w. Z, low prob. -505.6 -510.4 0.002 ** 44.4 39.0
Hawaiian Honeycreepers Hawaii 578 19 MO unconstrained -431 552 8.6E-07 *** 67028 43695
Hawaiian Honeycreepers Hawaii 578 19 M3_strat strat. disp. -59.9 645 0.0026 ** 348 2238
Hawaiian Honeycreepers Hawaii 578 19 M3a_strat strat. disp. + areas -66.9 787 12E-06 *** 49078 32048
Megalagrion Hawaii 9.6 34 MO unconstrained -43.4 695 51E-13 *** 7.8E+10 6.3E+10
Megalagrion Hawaii 9.6 34 M1_2areas 2 areas max -43.6 720 4.9E-14 *** 7.8E+11 6.3E+11
Megolagrion Hawaii 9.6 34 Mla_2areas 2 areas max; adjacency 440 777  2.3E-16 **= 156414  12E+14
Megalagrion Hawaii 9.6 34 M2_2areasEastOnly 2 areas max; east disp. only -46.4 704 42E-12 *** 9.8E+09 8.0E+09
Megalagrion Hawaii 9.6 34 M3b_stratified_w_areas strat. disp. & areas -79.9 90.0 7.4E-06 *** 8518 6930
Megalagrion Hawaii 9.6 34 MO unconstrained -43.4 695 51E-13 *** 7.8E+10 6.3E+10
Megalagrion Hawaii 9.6 34 M1_2areas 2 areas max -43.6 720 4.9E-14 *** 7.8E+11 6.3E+11
Megaiagrion 9.6 34 Mla_2areas 2 areas max; adjacency -44.0 777 2.3E-16 *** 1.5E+14 1.2E+14
Megalagrion 9.6 34 M2 areasEastOnly 2 areas max; east disp. only 464 704  A2E-12 *xx 9.8E+09  8.0E+09
Megatagrion 9.6 34 M3b_stratified_w_areas strat. disp. & areas -79.9 90.0 7.4E-06 *** 8518 6930
Megaiagrion 9.6 34 M3c_stratified_w_areas strat. disp. & areas, w. Z -136.0 -145.3 1.5E-05 *** 4303 3273
Nesophrosyne 3.2 198 M1(UM-2) unconstrained 2557 -371.6 2.4E-52 *** 8.0E+49 7.7E+49
Nesophrosyne 3.2 198 M1(UM-2) 2 areasmax 2558 -376.9 13E-54 *** 1.5E+52 1.4E+52
Nesophrosyne 3.2 198 M3_6max(TS-U) unconstrained, strat. disp. 360.5 -434.8 3.4E-34 *** 7.0E431  6.6E+31
Nesophrosyne 32 198 M3_2max(TS-2) 2 areas max; strat. disp. & areas 497.4 -528.1 A4.9E-15 *** 75412 7.7E+12
Nesophrosyne 3.2 198 M3_bmax (TS-U) unconstrained, strat. disp. & areas -500.2 -537.2 83E-18 *** 4.1E+15 4.2E+15
Nesophrosyne 3.2 198 M3_6max (TS-Ua) unconstrained, strat. disp. (nz) & areas -506.1 -543.4 57E-18 *** 5.9E+415  S5.6E+15
Nesophrosyne 32 198 M3_2max(TS-2) 2 areasmax; strat. disp. (nz) & areas ~ 499.8 -534.3 1.0E-16 *** 356414 3.4E+14
Orsonwelles 435 12 MO unconstrained -131 158 0.019 * 5.7 2.5
Plantago 51 16 MO unconstrained -15.8 232 1.0E-04 *** 625 366
Plantogo 51 16 M3_strat strat. disp. 220 253 0.01 * 9.8 58
Plantago 51 16 M3_strat strat. disp. and areas -41.5 -44.7 0.012 * 8.7 51
Silversword alliance 684 29 MO unconstrained -489 513 0.027 * 4.2 33
Silversword alliance 6.84 29 M3_strat strat. disp., with areas -53.5 579 0.0032 ** 288 22.4
Anolis Caribbean 98.9 190 MO unconstrained 2420 -275.9 18E-16 *** 1.9E+14 1.9E+14
Cyrtandra Pacific 4.5 59 MO unconstrained -42.5 473  0.0019 ** 44.3 40.4
Cyrtandra Pacific 4.5 5 M1 4 areas max -42.5 473 0.0019 ** 44.8 40.4
Microlophus Galapagos 3.75 9 M1 2 areas max -20.5 348 8.2E-08 *** 6.5E+05 1.6E+05
Vireya SE Asia 1 65 M1 2 areas, no other constraints 2141 -250.9 1.0E-17 *** 3.3E+15 3.2E+15
Vireya SE Asia 11 65 Ml+cc 2 areas + constrained connectivity -199.7 -219.4 3.6E-10 *** 1.3E+08 1.2E+08
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Figure 2. Global ancestral state estimates under MO (unconstrained) for the DEC
and DEC+] models run on Hawaiian Psychotria. Left: the single most-probable
ancestral range. Right: pie charts show the relative probability of all 16
states/possible geographic ranges. Two important notes in interpreting these
graphics: (1) These depict the best estimates of the ancestral range at each node and
each “corner” (the corner positions are used to represent the geographic range
immediately after a cladogenesis event). The best estimate at each node is not
identical with the single best joint history (Felsenstein 2004), so in some instances,
the ancestral ranges cannot be read naively as a joint history. (2) Unlike
LAGRANGE, BioGeoBEARS by default estimates ancestral states under the global ML
model; LAGRANGE estimates ancestral states by conducting an ML search for the
best model, conditional on fixing each possible state at each node in the tree. The
resulting ancestral states tend to be highly similar, but they are not necessarily
identical. Key: Kauai, K, blue; O, Oahu, yellow; M, Maui-Nui, green; H, Hawaii Big
Island, red. Ranges that are combinations of these four areas have a color that is a
mix of the component area colors. A range of all areas (KOMH) is white.
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Figure 3. The log-likelihood advantage of DEC+] inference over DEC, when the true
model is DEC (top) or DEC+] (bottom).
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Figure 4. Histograms of the accuracies of ancestral state inference for each pair of
simulation and inference under DEC and DEC+]. Accuracy equals the fraction of
time that the most probable inferred ancestral state matches the true, simulated
ancestral state.
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Figure 5. Mean S for each node age, plotted against node age. S equals mean
similarity to truth, i.e. 1-(mean absolute difference in probability between inference
and truth). The x-coordinates for the same node have been jittered to reduce
overlap.
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Figure 6. Accuracy of parameter inference under DEC and DEC+], when the history
was simulated under each of these models. The true parameter used in the
simulations is shown by the dashed line. These parameter values were the ML
estimates in the original MO analysis of Psychotria under DEC and DEC+].
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Figure 7. The ratio of probabilities of DEC+] to DEC, calculated from AICc weights.
The probability ratio is presented for ease of interpretation; AAICc or AAIC plots
look very similar. Note that the probability ratio is plotted on a log scale. Under the
likelihood ratio test, all comparisons of DEC and DEC+] reject DEC at the p<0.05
significance level, except for “Hawaiian Drosophila: strat. disp. & areas” and
“Hawaiian Scaptomyza5s: strat. disp. & areas”. See text for details. Abbreviations:
strat., time-stratified; disp., manual dispersal probability multiplier matrix; w. Z,
analysis was run with “Z”, an old, ancestral area outside of the extant Hawaiian high
islands (Scaptomyza5 refers to adding this fifth area; “low prob.” refers to an
extremely low, but nonzero, dispersal probability; see Supplemental Files); nz, zeros
in the manual dispersal probability multiplier matrix have been replaced with a
small nonzero value.
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Psychotria: unconstrained

Psychotria: 2 areas max

Psychotria: 2 areas + east disp. only

Psychotria: 4 areas max, east-only disp.
Psychotria: strat. disp.

Psychotria: strat. disp. & areas

Hawaiian Drosophila: unconstrained

Hawaiian Drosophila: strat. disp. & areas

Hawaiian Drosophila: strat. disp. & areas, w. Z
Hawaiian Scaptomyza: unconstrained

Hawaiian Scaptomyza: 2 areas max

Hawaiian Scaptomyza: 2 areas max; adjacency
Hawaiian Scaptomyza: 2 areas max; east disp. only
Hawaiian Scaptomyza: strat. disp. & areas
Hawaiian Scaptomyza5: unconstrained, w. Z
Hawaiian Scaptomyza5: 2 areas max, w. Z
Hawaiian Scaptomyza5: 2 areas max; adjacency, w. 2
Hawaiian Scaptomyzab: 2 areas max; east disp. only, w. z
Hawaiian Scaptomyzab: strat. disp. & areas, w. Z
Hawaiian Scaptomyza5: strat. disp. & areas, w. Z, low pro
Hawaiian Honeycreepers: unconstrained

Hawaiian Honeycreepers: strat. disp.

Hawaiian Honeycreepers: strat. disp. + areas
Megalagrion: unconstrained

Megalagrion: 2 areas max

Megalagrion: 2 areas max; adjacency

Megalagrion: 2 areas max; east disp. only
Megalagrion: strat. disp. & areas

Megalagrion: unconstrained

Megalagrion: 2 areas max

Megalagrion: 2 areas max; adjacency

Megalagrion: 2 areas max; east disp. only
Megalagrion: strat. disp. & areas

Megalagrion: strat. disp. & areas, w. Z
Nesophrosyne: unconstrained

Nesophrosyne: 2 areas max

Nesophrosyne: unconstrained, strat. disp.
Nesophrosyne: 2 areas max; strat. disp. & areas
Nesophrosyne: unconstrained, strat. disp. & areas
Nesophrosyne: unconstrained, strat. disp. (nz) & areas
Nesophrosyne: 2 areas max; strat. disp. (nz) & areas
Orsonwelles: unconstrained

Plantago: unconstrained

Plantago: strat. disp.

Plantago: strat. disp. and areas

Silversword alliance: unconstrained

Silversword alliance: strat. disp., with areas

Anolis: unconstrained

Cyrtandra: unconstrained

Cyrtandra: 4 areas max

Microlophus: 2 areas max

Vireya: 2 areas, no other constraints

Vireya: 2 areas + constrained connectivity
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Figure 8. ML parameter estimates under DEC and DEC+] for parameters d (grey), e
(white), and j (black). For each parameter, results are plotted in the same order as in
Figure I and Table ]. The * represents a bar that has been cut off for display
purposes; the true value for this bar is j=3 (the taxon is Galapagos Microlophus),
DEC+] analysis; a value of j=3 means that for this taxon, ML inference estimated that

founder-event speciation events receive 100% of the probability at cladogenesis,
and the other types of events (sympatric-range copying, sympatric-subset, and
vicariance) receive 0%.
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DEC Model DEC+J

d: rate of dispersal/
range expansion

e: rate of extinction/
range contraction

[

j: weight of jump dispersal/
founder—event speciation
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Figure 9. Global ancestral state estimates under MO (unconstrained) for the DEC
and DEC+] models run on Hawaiian Honeycreepers. Left: the single most-probable
ancestral range. Right: pie charts show the relative probability of all 16
states/possible geographic ranges. For important notes about interpreting these
figures, see the caption for Figure 2. Key: Kauai, K, blue; O, Oahu, yellow; M, Maui-
Nui, green; H, Hawaii Big Island, red. Ranges that are combinations of these four
areas have a color that is a mix of the component area colors. A range of all areas
(KOMH) is white.
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Figure 10. Global ancestral state estimates under M1 (10 islands, maximum range
size = 2 areas) for the DEC and DEC+] models run on Galapagos Microlophus. Left:
the single most-probable ancestral range. Right: pie charts show the relative
probability of all 16 states/possible geographic ranges. For important notes about
interpreting these figures, see the caption for Figure 2. Although j=3 and d=e=0, the
fact that there is a single tip with a wider range (M. albemarlensis) is explained by
the model as putting some probability on ancestors with that range, with the
widespread species regularly budding new species via founder events. Thisisan
example of how the single most-probable states (left side) cannot always be read
naively as the best joint estimate of the history (Felsenstein 2004). The pie charts
(right side) are more informative of how the probabilities are combining down the
tree. Key: A, Espanola; B, San Cristobal; C, Santa Cruz; D, Pinzon; E, Floreana; F,
Pinta; G, Santiago; H, Isabella; [, Marchena; ], Fernandina. Ranges that are
combinations of these 10 areas have a color that is a mix of the component area
colors.
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Figure 11. The hypothesized explanation for improved data likelihoods under the
DEC+] model, for island taxa. Waiting times to get, and keep, the “correct” ancestor
at uncorrelated cladogenesis events reduce probabilities, whereas under DEC+] with
d=e=0, the probability of no change along branches is 1, and dispersal is perfectly
correlated with speciation.
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Supplementary Figures 1: Bayesian Analysis

Supplementary Figure 1.1. Inference of parameters for the Psychotria M0 dataset,
under the DEC model, using random-walk Metropolis MCMC.

Supplementary Figure 1.2. Trace and histogram of the log-posterior probabilities
(LP) of the DEC model, using random-walk Metropolis MCMC.

Supplementary Figure 1.3. Inference of parameters for the Psychotria M0 dataset,
under the DEC+] model, using random-walk Metropolis MCMC.

Supplementary Figure 1.4. Trace and histogram of the log-posterior probabilities
(LP) of the DEC+] model, using random-walk Metropolis MCMC.

Supplementary Figure 1.5. Inference of parameters for the Psychotria M0 dataset,
using reversible-jump MCMC to sample both the DEC and the DEC+] model.

Supplementary Figure 1.6. Trace and histogram of the log-posterior probabilities

(LP) when using reversible-jump MCMC to sample both the DEC and the DEC+]
model.
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Chapter 3: Model selection reveals differences in cladogenesis processes
operating in island versus continental clades

Structured Abstract

Aim. To compare the three major cladogenesis models used in the historical
biogeography inference programs LAGRANGE, DIVA, and BayArea, to test the effects
of adding founder-event speciation to these models, and to test for differences in
cladogenesis processes between island clades and non-island (continental and

oceanic) clades.

Location. Clades are sampled globally, but the regions emphasized are the Pacific
islands, especially Hawaii; clades from sand-dune systems in the desert Southwest

of North America; and clades from the Neotropics.

Methods. Likelihood versions of the DEC, DIVA, and BayArea cladogenesis models
were implemented in the R package BioGeoBEARS, along with “+]” versions of these
models. These six models were run on 63 clades/constraints combinations. Models

were compared using the likelihood-ratio test and AICc model weights.

Results. Almost all analyses, including continental clades, strongly favored the “+]”
models over the models without founder-event speciation. However, founder-event
speciation was measurably less frequent in non-island analyses, being 2-4 times
weaker than in analyses of island clades. One clade was found (“Taygetis clade”

butterflies from the Neotropics) which favored the DEC model over all others.
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Main conclusions. Formal model selection procedures can be applied in
phylogenetic inferences of historical biogeography, and the relative importance of
different processes can be measured. These techniques have great potential for

strengthening quantitative inference in historical biogeography.

Keywords (6-10, alphabetical order)

Historical biogeography, LAGRANGE, DIVA, BayArea, cladogenesis, founder-event

speciation
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Introduction

It is a commonplace that the biogeographical processes operating on continents
tend to be different than those operating on oceanic islands (Gillespie & Baldwin
2010; Lomolino, Lomolino & Lomolino 2010). Oceanic islands are geologically
recent, of small area, and extremely isolated, and these facts likely restrict the
processes that might be important. With few exceptions (e.g., Heads 2012)
conventional wisdom is that oceanic islands are dominated by the effects of long-
distance dispersal (Darwin 1859; Carlquist 1965; Cowie & Holland 2006; Gillespie et
al. 2012). In particular, founder-event speciation (Paulay & Meyer 2002; Templeton

2008) seems to be fundamental on islands.

The historical biogeography of islands has received a great deal of attention, in part
due to the relative tractability of analysis and geological reconstruction in these
systems. The fact that significant generalizations, such as the progression rule
(Hennig 1966), are often confirmed, gives the subject a degree of predictability
unusual in historical evolutionary research. Islands have thus been extremely
influential in historical biogeography (Lomolino, Lomolino & Lomolino 2010).
However, given that continents are opposite from islands in the above-described
traits (geologically ancient, large area, connected now and/or in the past), it is an
open question whether or not the processes important in the historical
biogeography of island clades will prove important in continental clades. The prior

expectations of researchers on this question would probably correlate strongly with
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their positions in the dispersal-vicariance debate. The debate is massive and cannot
be reviewed here; readers are referred to recent surveys of the issue from both
sides (de Queiroz 2005; Santos 2007; Heads 2012; Waters et al. 2013). Clearly,
statistical methods that measure the degree of support that the observed data gives

to each of the hypothesized processes would be valuable.

Parametric historical biogeography is a new analytical paradigm (Ree & Sanmartin
2009; Sanmartin 2012) that has great potential for advancing the discussion of the
biogeographical processes important on islands versus continents. However, it has
not yet been applied to this question. Parametric historical biogeography is based
on probabilistic event-based models of how geographic ranges evolve
anagenetically and cladogenetically. These models allow the likelihood of the
geographic range data at the tips of the tree to be calculated under different model
parameters, and the maximum likelihood (ML) estimate of the parameters made
(Ree & Smith 2008). With the application of formal model-testing procedures to
these models (Matzke 2013d; Matzke 2013a), numerous new questions can be
asked. For example, Matzke (2013d) compared the Dispersal-Extinction-
Cladogenesis (DEC) model implemented in the program LAGRANGE (Ree et al. 2005;
Ree & Smith 2008; Smith 2010; Ree 2013) with a new model, DEC+], which added
founder event speciation as an additional cladogenetic process. Thus the
computational tools now exist to ask questions such as, “What is the relative

importance of founder-event speciation in island clades versus continental clades?”,
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and to obtain an answer that is quantitative and objectively repeatable by other

analysts. This is one of two major questions addressed in this paper.

Another important use of model selection procedures is to assess inference methods
that are in use or newly proposed. Any computational method for inference of
ancestral states on a phylogeny, including states such as geographic range, is
generating an event-based (Sanmartin 2007) model that makes a variety of explicit
assumptions about what kinds of events will be allowed when estimating history.
This is true whether the inference machinery is parsimony, maximum likelihood, or
Bayesian. It is also true whether or not the user in question correctly understands
what has been implemented in the computer code, and whether or not the
assumptions in the code match the assumptions users are making in their
conceptual model of the system (Matzke 2013d). Without model testing
procedures, the best researchers can do is run the different available methods, note
where results differ, and either conclude with the bare fact that when models differ
the results differ, or reach a qualitative conclusion about which models are
preferable, based on data or assumptions outside of those used in the computational
analysis. (Examples might be fossil data, or assumptions about how widespread
ancestral ranges may be.) Such studies are certainly worthwhile, but generalizing
from them to make broad conclusions about which methods should be preferred is
difficult. The results of any one study may be clade-specific, and usually there are

few additional “ground truth” data about the true ancestral states, beyond that put
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into the analysis in the first place. Examples of method-comparison studies include

Clark et al. (2008), Buerki et al. (2011), Springer etal. 2011, and Ali et al. (2012).

Existing methods in historical biogeography

Perhaps because of the difficulty in objectively choosing the best methods,
computational methods in historical biogeography are proliferating rather than
being whittled down. The three most popular methods are probably Dispersal-
Vicariance Analysis (DIVA; Ronquist 1996; Ronquist 1997), Likelihood Analysis of
Geographic Range Evolution (LAGRANGE; Ree et al. 2005; Ree & Smith 2008; Smith
2010; Ree 2013)), and treating biogeographic range as a simple unordered
morphological character under parsimony, ML, or Bayesian inference (discussed in
Matzke 2013a). The last of these is not really a biogeographic model, and in any
case it is often not useable in biogeography, as it requires all operational taxonomic
units (OTUs) in the phylogeny to have a range size of a single area. In addition to the
above approaches, a variety of pseudo-Bayesian methods run DIVA or LAGRANGE
on the posterior distribution of trees output by a Bayesian MCMC analysis (Nylander
etal 2008; Yu, Harris & He 2010; Buerki et al. 2011; Ali et al. 2012; Wood et al.
2013). SHIBA (Webb & Ree 2012) uses a LAGRANGE-DEC-like model, but adds ideas
inspired by the theory of island biogeography (MacArthur & Wilson 1967), for
example, the hypothesis that dispersal varies inversely with distance, and that
extinction varies inversely with area size. The inference method is similar to
approximate Bayesian computation (ABC) in that the model is used to generate

forward simulations from the root of the phylogeny to the tips, and the simulations
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that, by chance, produce tip species with ranges matching those of the real, observed
species ranges are treated as samples from the posterior distribution. This method
is naturally very inefficient and may only be used on a small number of areas (Webb

& Ree 2012; Landis et al. 2013).

Another new program is RASP (Yu, Harris & He 2013), which re-uses the DIVA and
LAGRANGE libraries to allow these algorithms to be run on a collection of trees from
the posterior sample of a Bayesian phylogenetic analysis. However, RASP also
implements a new biogeographic inference method, Bayesian Binary MCMC (BBM).
BBM has been used (Ali et al. 2012) but is not yet described in a publication (a
submitted manuscript is mentioned but not available at the RASP website). From
the software manual (Yu, Harris & He 2013), BBM appears to encode geographic
range as a series of presences and absences in each discrete area, i.e., binary
character encoding with multiple characters (Springer et al. 2011), also known as
presence coding ((Hardy & Linder 2005). Each area is then treated as an
independent presence/absence character, and the history of each is estimated
separately. This method of coding complex characters like biogeography has a long
history in parsimony studies of highly polymorphic characters (Mickevich & Mitter
1981) but has always been plagued by the fact that the independence assumption
means that impossible ancestors (i.e., an ancestor that is absent everywhere) may
be reconstructed at nodes on the tree, depending on the configuration of the tip data
(Hardy & Linder 2005). RASP attempts to deal with this by adding two “virtual

outgroups” to the study phylogeny, and giving these artificial taxa one of several

125



suggested ranges. Possible ranges for artificial taxa include (1) a special null range
(absent everywhere, perhaps interpretable merely as a lineage being absent from
the study region, rather than extinct), (2) present everywhere, which would
minimize the chance of impossible ancestors, or (3) the user-specified known
ancestral range. Each of these options has obvious difficulties, the greatest being
that researchers rarely or never know the ancestral range; rather, the goal is usually
to attempt to infer it. Another difficulty is that the concept of using outgroup states
to fix the states of the ancestor is derived from older parsimony studies, where the
outgroup was sometimes used as a stand-in for the ancestral states. Whatever its
merits in parsimony inference, it is not applicable in an ML or Bayesian framework,
unless the branch lengths of these outgroups are effectively zero. The RASP authors
note in the manual that choices about the geographic range of the virtual outgroups
have a large impact on ancestral range estimates, which is not desirable behavior in

an inference method.

The main advantage of presence coding is that the independence assumption allows
inference on a virtually unlimited number of areas, whereas the other methods are
tightly constrained because of the exponential growth of the transition matrix with
increasing number of areas (Matzke 2013a). A new method incorporating the best
of both is BayArea (Landis et al. 2013), which samples branch histories as well as
parameter values during MCMC sampling, using stochastic mapping (Nielsen 2002;
Huelsenbeck, Nielsen & Bollback 2003). Histories are proposed under the

independence assumption, but are evaluated under a dependence model (inspired
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by Robinson et al. 2003), where probability of dispersal is a function of distance
between areas, and where the null range is disallowed. This technique allows
inference on a large number of areas, without the need to enumerate all of the
possible ranges in computer memory, or to explicitly calculate the probability of all

start and end states on branches with matrix exponentiation.

While revolutionary, the initial version of BayArea assumes a purely continuous-
time model where all of the changes in geographic range occur via dispersal and
extinction events along branches. Consideration of the cladogenesis process is left
out; incorporating range evolution at cladogenesis may be possible, but it requires
sampling possible range histories at cladogenesis, and this will require sophisticated
proposal mechanisms. For example, to enable switching from a vicariance history at
a node, to a sympatric history, will require proposal mechanisms to allow the MCMC
algorithm to move between each possible histories; this is much more complicated
than the proposal mechanisms required for sampling branch histories. As a result,
for the moment, BayArea’s cladogenesis “model” is, de facto, perfect sympatry: at
every speciation event, the ancestral geographic range, whether narrow or

widespread, is exactly copied to both daughter branches with probability 1.

Thus, BayArea’s cladogenesis assumption differs strongly from the assumption
made by the LAGRANGE DEC model, which assigns equal probability to several
allowed cladogenesis events, namely, (1) sympatric range-copying only for ancestral

areas of size one, (2) sympatric-subset speciation (one daughter species starts in
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one area inside the ancestral range, the other daughter inherits the full ancestral
range), and (3) vicariance, where one daughter occupies a single area, and the other
daughter occupies the remainder. The cladogenesis models of BayArea and
LAGRANGE are both different from the cladogenesis model assumed by DIVA, which
disallows sympatric-subset speciation, and allows vicariance, but with no
constraints on the range size of the daughters; DIVA allows equal splitting of ranges
(e.g., ABCD - AB, CD), but LAGRANGE DEC does not (allowing only e.g. ABCD = A,
BCD). Finally, the BioGeoBEARS (Matzke 2013d; Matzke 2013a) model option DEC+]
allows

founder-event speciation to be added to any of these models. Further discussion of
these models, with graphical depictions, is available elsewhere (Ronquist et al.

2012; Matzke 2013d; Matzke 2013a).

Graphical depictions of the cladogenesis events allowed by LAGRANGE DEC, DIVA,
BayArea, and the “+]” model option of BioGeoBEARS are shown in Figure 1. Between
them, these cover the range of cladogenesis models that are currently in use. SHIBA,
RASP, etc., essentially re-use one of these cladogenesis models (RASP’s BBM model
makes the same cladogenesis assumption as BayArea). Which is the correct model?
Or, more carefully stated, since all models are wrong -- paraphrasing George Box
(Box & Draper 1987) -- which models are most useful for explaining the geographic

range data of various clades?
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Here, this question is assessed by implementing the DEC, DIVA, and BAYAREA
cladogenesis models in BioGeoBEARS, and using the “+]” option to also implement
DEC+], DIVA+], and BAYAREA+] models. These six models are then run on the
sample of island taxa used in a previous study comparing just DEC and DEC+]
(Matzke 2013d). To these taxa is added a sample of continental clades, to enable the
islands-versus-continents comparison, in order to assess (1) the relative importance
of jump dispersal in these two categories, and (2) the relative quality of DEC, DIVA,

and BAYAREA cladogenesis models, with and without jump dispersal added.

Materials and Methods

The implementation of the DEC and DEC+] models in BioGeoBEARS has been
described previously (Matzke 2013d). The BayArea cladogenesis model is trivial
and is described above. However, the DIVA cladogenesis model (Ronquist 1996;
Ronquist 1997; Ronquist & Sanmartin 2011) has only been implemented in a

parsimony framework.

Implementation of DIVA-like cladogenesis in BioGeoBEARS

Here, I develop a probabilistic interpretation of the DIVA model, essentially by
taking the DEC model and modifying it to allow only the cladogenesis events
allowed by DIVA. Strictly speaking this is a “DIVA-like” model; exact duplication of

all of the features of parsimony inference in terms of probabilistic models is very

129



involved (Huelsenbeck, Alfaro & Suchard 2011) and is not attempted here. In
addition, as DEC and other probabilistic models of geographic range evolution use
the important information found in phylogeny branch lengths (Donoghue & Moore
2003), and DIVA, as a parsimony method, does not, a likelihood implementation of
DIVA may return different inferences than a parsimony implementation. (A close
approximation could be made by taking all branch lengths to the exponent zero,
rendering all branches of length 1 and discarding time information; this is an option
in BioGeoBEARS; Matzke 2013b). However, here we are interested just in the
cladogenesis model of DIVA; the anagenetic portion of the DIVA model will be
identical with that of DEC, using two free parameters, d and e, to control the

probability of dispersal (range expansion) and extinction (range contraction).

One of the goals in the programming of BioGeoBEARS (Matzke 2013b; Matzke
2013a) was to implement model assumptions as functions of parameters, rather
than simply hard-coding assumptions into the computer code. Such hard-coded
assumptions, although they may allow highly efficient calculations, can be difficult
to change later, and can make it difficult for researchers to recognize, assess, or
modify the models they are using, as they are usually in the poorly-document guts of
the source code. This difficulty contributes to a research culture in which a single
fixed model, being the only model available, gets naively applied to all situations and
study systems; this practice is dangerous because of what might be being missed, as

Matzke (2013d) demonstrated.
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In BioGeoBEARS, the cladogenesis model is controlled by four parameters, y, s, v,
and j, which control the relative per-event weight of each of the four cladogenesis
processes, respectively, sympatry (range-copying), sympatry (subset speciation),
vicariance, and jump dispersal/founder-event speciation. The details are described
in Matzke 2013d. BioGeoBEARS users may fix any of these parameters, or to set
them to be free parameters that are subject to inference. When y=s=v > 0, and j=0,
the DEC model of LAGRANGE is reproduced, and each of the non-jump events is
given equal probability, conditional on a particular ancestral range. To produce the
BayArea cladogenesis model, j, s and v are set to 0, and y is set to 1, meaning that the

only cladogenesis process allowed is sympatric speciation through range-copying.

To produce the DIVA cladogenesis model, then, one step is to start with the DEC
model (y=s=v=1; j=0), and then set s=0, as DIVA does not allow subset speciation
(Ronquist & Sanmartin 2011). However, this is not the only required modification,
as DEC requires that one daughter species always have range size 1 during
vicariance, and DIVA allows any daughter range sizes. Here, we interpret this to
mean that, in our DIVA-like likelihood model, every possible vicariance result for the
two daughter species receives equal probability, conditional on some ancestor. This
maximizes similarity to the LAGRANGE-DEC assumption that each possible range-

inheritance scenario has equal probability (Ree & Smith 2008).

Although allowing equal probability for every vicariance scenario could simply be

hard-coded as an option, future research is enabled if the equal-probabilities model
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is made to be the result of inputting some parameter value into some function. Many
possible parameterizations could be imagined, including having a separate
parameter describing the relative weight of each possible combination of (left
daughter range, right daughter) given a particular ancestral range. However, given
that the amount of data available in the form of tip ranges on a phylogeny will

always be quite limited, efficient parameterizations should be sought.

In BioGeoBEARS, a single parameter, my, is used to control the relative probability, r,
of the range size of the smaller daughter. (Once the range size of the smaller
daughter has been established in a particular range inheritance scenario, the range
size of the larger daughter species is just the remainder of the ancestral range.) The
number of areas in the ancestor, for a particular range-inheritance scenario (i.e., a
particular combination of ancestor range, left descendant range, and right
descendant), is denoted by N. When vicariance occurs in an ancestor of range size N,
the maximum range size of the smaller daughter species is L. L must equal
floor(N/2). l.e., for ancestral range sizes of 2, 3, 4, 5, 6, and 7, L for the smaller
daughteris 1, 1, 2, 2, 3, 3, respectively. The actual range size of a particular

daughter, I, thus may take a value from 1,...,L.

The problem is thus how to use the single parameter, m,, to determine ry,..., 1, for
any L, as L will vary throughout the rows of the cladogenesis transition matrix. It
would be desirable if, when m,is near 0, all of the weight is placed on cladogenetic

range inheritance scenarios where the daughter has range size I=1. This would
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replicate the assumption in LAGRANGE DEC. On the other handed, when m,
approaches 1, all of the probability mass should be placed on range inheritance
scenarios where [=L. Finally, when [=0.5, the probability mass should be evenly

spread across all daughter range sizes, such that r; is equal for all L

A natural function that can be used to satisfy these requirements is the maximum
entropy discrete probability distribution of a series of ordered integers (Harte 2011,
equations 6.3 and 6.4), given the mean value, p. This distribution is often used to
characterize the probability of the difference faces of a die. For example, for a 4-
sided die, with faces numbered 1-4, and a known p of 2.5, the maximum entropy
distribution of the probability of each of the 4 die faces is flat, with each integer
having a probability of 0.25, indicating a fair die. If p is lower or higher than 2.5, the
die will be biased towards lower or higher values, respectively. In BioGeoBEARS, m,
is converted to p by the following formula: p = my(L+1). The resulting probability
distribution on 1,...,L is used to weight the relative probability of different vicariance
cladogenesis events given a particular ancestral range size, based on the range size

of the daughter with a smaller area.

Implementation of BAYAREA-like cladogenesis in BioGeoBEARS

For the other three classes of cladogenesis, BioGeoBEARS implements a similar
parameterization of the relative probability of different range sizes for the smaller

daughter. This is done so that BioGeoBEARS users may alter the DEC assumption
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that one daughter species always has a range size of 1 for a particular class of
cladogenesis events. The only difference in the meaning of the m parameter comes
with range-copying sympatric events. Here, there is only one possible cladogenesis
event for a given ancestral range, and the question is whether or not sympatric
range-copying will be allowed for an ancestral range of that size. The parameter m,
controls the per-event weight of a range-copying event at a particular range size
(rather than the weight amongst events of that class). When my, is close to zero,
range-copying is allowed only for ancestral ranges of size 1. When m, is close to 1,
range-copying is allowed for ancestral ranges of any size without penalty. Notably,
this means that when my=1, and s=v=j=0, the BayArea cladogenesis model, which
allows only range-copying at cladogenesis events, is reproduced. Only BayArea’s
implied cladogenesis model is being used in this paper; other features of the
BayArea inference are either not implemented in BioGeoBEARS (MCMC sampling of

histories) or are not used here (dispersal probability as a function of distance).

Graphical representation of the cladogenesis weight matrix is difficult due to its size
(Matzke 2013d; Matzke 2013a), but Supplementary Table 1 gives examples of the
full matrix for a 4-area analysis for DEC, DIVA, and BAYAREA cladogenesis models,
and with the “+]” versions of these models, with counts of the number of allowed

events from each type of cladogenesis event.

Biogeography Datasets
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The collection of island clades and constraint models is the same as in Matzke
(2013d). To this dataset was added a sample of continental or marine clades from
the literature for which a time-scaled phylogeny and geographic range data was
available. The collection procedures were the same as in Matzke (2013d). As in that
paper, when a constrained or time-stratified LAGRANGE analysis was conducted in
the source study, it was re-implemented in BioGeoBEARS, along with an
unconstrained version. Terrestrial clades included the Old World snake superfamily
Elapoidea (Kelly et al. 2009) and the plant genus Lonicera (honeysuckles),
distributed across the Northern Hemisphere (Smith & Donoghue 2010). In addition,
four continental clades were added with centers of distribution in South and Central
America. These were specifically the euglossine orchid bees (Ramirez et al. 2010),
the wasp genus Notiospathius (Ceccarelli & Zaldivar-Riveron 2013), Matos-Maravi et
al. 2013, the “Taygetis clade” (Matos-Maravi et al. 2013) of butterflies, a taxon
consisting of Taygetis and related genera (Matos-Maravi et al. 2013), and the bat
genus Sturnira (yellow-shouldered bats, Velazco & Patterson 2013). Each of these
four Neotropical clades is widely distributed across South and Central America,
sometimes including Caribbean islands. Possibly important biogeographical events
in all the clades include the orogenesis of the Andes and the Great American Biotic
Interchange with the formation of the Panamanian isthmus (Hoorn et al. 2010). The
four source studies are comparable in that they use similar discrete regions and
sometimes dispersal constraints, and in that all the clades are fliers. The analyses

also all used LAGRANGE (Ree & Smith 2008), thus assuming the DEC model.
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Two marine clades were included. The first was Cardiidae (cockles and giant clams;
Herrera 2013), a bivalve family with global distribution and a center of diversity in
the tropical Indo-Pacific. Herrera’s time-stratified dispersal matrix was also
replicated and compared to an unconstrained model. The other marine clade was
the wrasse genus Thalassoma (Bernardi et al. 2004 ), distributed across tropical

coral reefs worldwide.

To achieve additional sampling of clades with continental distributions, seven taxa
from sand dune fields of the desert southwest of North America were added to the
analysis. The dated phylogenies were produced using BEAST (Drummond et al.
2012) by Ph.D. student Matt Van Dam for his dissertation (Van Dam 2013, used with
permission), based on a combination of GenBank sequences and his own
sequencing. These datasets were developed as part of a collaborative project (Van
Dam & Matzke 2013, in preparation) to use a multiclade analysis to test the
hypothesis that clades from the desert southwest show similar biogeographical
structure (Riddle 1996) due to (a) common constraints on connectivity between
dune regions (e.g., during Pleistocene flooding events) and (b) common constraints
due to path distance between dune regions. In the present paper, these clades are
only being used to compare the six different cladogenesis models described above,

all in geographically unconstrained analyses.
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The island clades and their various constraints models are summarized in (Matzke
2013d); the additional oceanic and continental clades employed in the present

analysis are described in Table 1.

Historical Biogeographical Analysis

Six models for the evolution of geographic range, dubbed DEC, DEC+], DIVA, DIVA+],
BAYAREA, and BAYAREA+], were run on all datasets in R 2.15 (R Core Team 2013)
using the R package BioGeoBEARS (Matzke 2013b) and its accessory packages
rexpokit (Matzke 2013c) and cladoRcpp (Matzke 2013c). BioGeoBEARS relies on
two other phylogenetics packages for basic phylogeny manipulation (Paradis 2012;
R Hackathon et al. 2012). The package optimx (Nash & Varadhan 2011; Nash &
Varadhan 2012) was used to conduct the maximum likelihood search, using the
quasi-Newton method with box constraints (Byrd et al. 1995). The maxent function
of the package FD (Laliberté & Legendre 2010; Laliberté & Shipley 2011) was used
in the above-described calculation of descendant daughter range size weights. The
package parallel, now part of the R base distribution, was used to speed calculations

via parallel processing.

Model comparison

Each model including founder-event speciation contains the non-founder-event

speciation model nested inside of it (by setting j=0). For these pairs of nested
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models, the likelihood-ratio test (Burnham & Anderson 2002) was used to test the
null hypothesis, namely that the two models are equally good explanations of the
geographic range data. However, the other model comparisons (DEC vs. DIVA,
DIVA+] vs. BAYAREA+], etc.) are not nested. For these, AIC and AICc (Burnham &
Anderson 2002) were used to quantify how well each explained the data. These
were used to calculate model weight and relative probabilities of each model.
Depictions of relative model probabilities were graphed in R using bar plots,
following similar depictions in previous publications (Harmon et al. 2010; Gong et
al. 2012). In order to assess the relative importance of founder-event speciation in
island versus non-island systems, histograms of the ML estimates j were plotted,
and the null hypothesis of no difference in the mean of j between island and non-
island analyses was tested using Welch’s two-sample t-test. As the distributions of j
estimates across clades and analyses were non-normal, the Komogorov-Smirnov
test was used to test the null hypothesis of identical distributions. In order to assess
whether or not the degree of support for the “+]” models tended to be larger in
analyses of island clades, linear models were fit that predicted AAIC (the AIC
advantage of the “+]” model) as a function of number of OTUs (since analyses with
more data will tend to have more resolving power) and of the clade category (island
versus non-island). The parameters of these regression models were tested for

significance using the standard analysis of variance tools in R.

Results
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The results of 378 BioGeoBEARS runs are shown in Supplementary Table 2. These
constitute the result of running the 6 cladogenesis models on each of 63 clade-
constraints combinations. The table reports the log-likelihood of the data on each
model, the parameter estimates, and the p-values of the likelihood-ratio test.
Overall, the major result is that the addition of founder-event speciation is a
statistically significant improvement for almost all clades and models. Under the
likelihood-ratio test, the “+]” models were significantly better, at the p<0.05 level,
for 131/135 analyses of island clades, and for 58/69 analyses of non-island clades.
The exceptions to the common finding of significant improvement are revealing.
One of the Hawaiian Drosophila analyses and two of the Hawaiian Scaptomyza
analyses failed to reject DEC, and DEC and DIVA, respectively. However, these
clades are much older than the currently extant four Hawaiian high islands
(Kambysellis et al. 1995; Lapoint, O’Grady & Whiteman 2013), and these failures
occurred in time-stratified analyses in which only the four extant high islands were
used; when a fifth area was added, namely “Z”, which existed before the eruption of
the volcanoes that created Kauai, DEC and DIVA were again rejected for these
groups (this outcome is shown for the clade names for which “5” has been appended
to the clade name; see Supplementary Table 2, and Matzke 2013d). Therefore, for
island clades, the only exception to the rule that +] models outperform standard
models occurred with the time-stratified analysis of Plantago, where DIVA was not

rejected in favor of DIVA+] (p=0.41).
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The exceptions for non-island clades are more numerous and more interesting. For
the Uma clade (fringe-toed lizards of the desert southwest), DEC and DIVA could not
be rejected in favor of their respective +] models, although BAYAREA was rejected in
favor of BAYAREA+] (p=0.0015). However, the Uma phylogeny had only 5 OTUs, and
with these few data, failure to distinguish models is to be expected. Another
exception was the clam clade Cardiidae, for which DIVA could not be rejected in
favor of DIVA+] for either the unconstrained analysis (p=0.49) or the time-stratified
analysis (p=0.50). For the euglossine bees (Neotropical orchid bees), DEC and DIVA
could not be rejected under a time-stratified analysis (p=0.37 and 0.44,
respectively), although rejections were obtained under the unconstrained analysis
(p=0.0014 and 0.035), and BAYAREA was decisively rejected in both cases (p=~0).
The Neotropical Taygetis butterfly clade was similar in that neither DEC nor DIVA
could be rejected (p=0.085, p=0.17) in unconstrained analysis, although BAYAREA
was rejected (p=0.033); furthermore, in the Taygetis analysis with time-stratified
constraints, none of the models lacking founder-event speciation could be rejected.
Notably, the clades in which DEC and DIVA fair well against the +] versions of these
models are those which have many OTUs that have widespread and sometimes
overlapping ranges. Even most continental and marine clades sampled in this
analysis have OTUs that are usually restricted to single areas, but the Cardiidae,
Taygetis clade butterflies, and euglossine bees are exceptions (Ramirez et al. 2010;

Herrera 2013; Matos-Maravi et al. 2013).

Model selection with only three models
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Use of the likelihood-ratio test and p-values as the sole tool for model testing has
been criticized due to the frequentist assumptions that must be made for such tests
(Link & Barker 2009); in addition, the likelihood-ratio test can only be used to
compare nested models. Here, the DEC, DIVA, and BAYAREA models are nested
within their “+]” counterparts, but they do not have nested relationships with each
other. Model selection with AIC and AICc obviates these difficulties, allowing
comparison of all models regardless of nesting relationships. Below, the results for
AlCc results are shown, as AlCc contains a correction for small sample size; the AIC

results are very similar (data not shown).

Figure 2 presents, for analyses of island taxa, the relative probabilities calculated
from AICc when just the three models lacking founder-event speciation are
compared. Of the 45 comparisons of the three models for island clade/constraint
combinations, AICc favors DEC for 15 comparisons, DIVA for 26 comparisons, and
BAYAREA for only 4 comparisons. Figure 3 presents the same comparison for non-
island taxa. Of the 23 comparisons of the three models for island clade/constraint
combinations, AlCc favors DEC for 7 comparisons, DIVA for 8 comparisons, and

BAYAREA for 8 comparisons.

Model selection with all six models
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It is tempting to highlight the decrease in support for the DIVA model among non-
island clade analyses, and the corresponding increase in support for the BAYAREA
model, particularly because when BAYAREA is favored, it usually favored
overwhelmingly (7 of 8 cases; Figure 3). However, it is well-known that model
selection procedures do not tell the researcher what the true model is; they only
allow selection of the best model among the models under consideration (Burnham

& Anderson 2002).

This fact is emphasized by Figures 4 and 5, where the “+]” models have been added,
resulting in the relative probabilities of all 6 models for each clade/constraints
combination for island taxa (Figure 4) and non-island taxa (Figure 5). For island
clade analyses, some “+]” model is almost always overwhelmingly favored. One
exception is the stratified analysis of Hawaiian Scaptomyza using only the 4 extant
Hawaiian islands (discussed above) where models lacking founder-event speciation
total approximately 15% of the total model probability. The other exceptions are 4
analyses from these clades: the Hawaiian Orsonwelles spiders, and the Hawaiian
plant groups Plantago and the silversword alliance. In each of these analyses, DEC
receives 10-20% of the total model support. This is likely partially explained by the
fact that these are all relatively small clades, with 12, 16, and 29 species,

respectively (Supplementary Table 2).

In contrast, analyses of the non-island clades (Figure 5) do not show univocal

support for “+]” cladogenesis models. For two analyses (Uma lizards and the
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stratified analysis of Taygetis clade butterflies), the model gathering the most
support is a non-J] model, namely DIVA and DEC, respectively. The Uma result can
be chalked up to the small size of this clade (5 species), a conclusion supported by
the fact that 5 of the 6 models have approximately equal support in the Uma
analysis. However, the Taygetis clade has 61 species, and DEC receives about two-
thirds of the model probability, with DIVA increasing AICc support for non-] models
to over 80%. The unconstrained analysis of the Taygetis clade supports

BAYAREA+], but BAYAREA without | attracts about 20% support.

Nevertheless, most analyses of non-island clades strongly or overwhelmingly
support models that include founder-event speciation (Figure 4). Notably, addition
of founder-event speciation also influences which model classes are most dominant.
For example, while BAYAREA was favored in only one-third of analyses in
comparisons between the three models lacking founder-event speciation, in non-
island clade analyses, BAYAREA+] wins the most support in the majority of analyses
(14/23). Often this is overwhelming support (in 7 of the 15 analyses, BAYAREA+]
beats other models by 10:1 or more). DEC+] wins in only 5/23 analyses, and DIVA+]

in 2/23.

In comparisons of the six models in analyses of island clades, DEC+] is the most
common winner (23/45 analyses), followed by DIVA+] (15/45) and BAYAREA+]
(7/45). Unlike the situation in analyses of non-island clades, here it is uncommon

for a particular model to gather overwhelming support. In 31/45 analyses, no
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model gathers over two-thirds of the total model probability, typically because
DEC+], DIVA+], and BAYAREA+], while usually favored in that order, all have very

similar amounts of support.

Results

An important caution in the above discussion is that, due to the diversity of clades
and constraints models available in the island and non-island samples, no universal
significance should be attributed to the counts of how many analyses support a
particular model. The different analyses are not necessarily independent - for
example when several analyses are done on the same clade -- and some study taxa
have more constraints models available than others, and thus more analyses were
performed for these clades. These difficulties can be ameliorated by comparing only
one unconstrained analysis from each clade, but unfortunately in some clades,
unconstrained analyses are not available, because the large number of areas used in
the original source study necessitates that the maximum range size be constrained,
in order to reduce the number of possible geographic range states to a
computationally manageable level. Therefore, the counts are reported, but they
should be regarded as only heuristics to indicate major tendencies in the analyses of
island and non-island clades. Consultation of the figures and labels is recommended
for a full assessment of the results, and the best statistical comparisons of the island

and non-island analyses will remove non-independent analyses.

The average importance of founder-event speciation in island versus non-island clades
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From the above, it is clear that models including founder-event speciation are
generally strongly favored in both island and non-island clades, under a variety of
constraints scenarios. However, it is still interesting to ask whether or not there is
typically a difference in the relative importance of the founder-event speciation
process in island versus non-island clades. This can be simply assessed by
comparing the ML estimates of j for the two groups (Figure 6). As j represents the
per-event weight of founder-event speciation at each cladogenesis event, it, unlike

the d and e parameters, is not influenced by phylogeny branch length or root age.

The mean j across all analyses of island clades was 0.22, and across all analyses of
non-island clades the mean j was 0.092. The non-island mean j was calculated after
removing Uma, which likely gave unreliable results due to the extremely small size
of the clade; however, the difference in mean j calculated with Uma is minimal

(j=0.089). Uma is removed from further analyses below.

A statistical test of the null hypothesis that the mean j estimate is different between
island and non-island analyses is complicated by the fact that the distribution of
these estimates is strongly non-normal (Figure 6). Here, this results in a large
standard deviation in the distribution, increasing the chance of non-significant
results. As the mean value of j gives an easily-interpretable measure of the relative
importance of founder-event speciation, the means were compared with statistical

tests (Welch’s two-sample t-test) despite the non-normality; non-parametric tests
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that do not make the normality assumption were also performed and are given
below. The difference in means is significant at the p<0.05 cutoff (p=7.1e-6). Due to
the non-independence of some analyses, the test was repeated using just one
unconstrained analysis per clade, even though this meant excluding some clades;
the means remained similar and the null hypothesis was again rejected (mean j for

island clades: 0.21; for non-island clades: 0.062; p=0.0040).

As the j estimate is correlated between the DEC+], DIVA+], and BAYAREA+]
inferences for a particular clade/constraint combination (data not shown), the
significance tests were repeated for just DEC+] inferences between island and non-
island clades. This reduces the size of each sample by a factor of 3, and although the
means are similar (for all constraints analyses, j=0.25 for island analysis and 0.13
for non-island analyses; the corresponding mean j estimates are 0.23 and 0.071
when comparing only unconstrained analyses), the t-test no longer returns
significant results (p=0.072 and p=0.13, respectively). However, taking the natural
log of each j estimate under the DEC+] model produced approximately normal
distributions, and when Welch’s two-sample t-test is applied (formally appropriate
in this case), the difference in mean log(j) is again significant for both all
clade/constraint combinations (mean log(j)=-2.1 for island analyses and -3.2 for
non-island analyses, p=0.0094), and for only unconstrained analyses (mean log(j) =
-2.3 for island analyses and -3.6 for non-island analyses, p=0.017). In summary, the
ML estimate of j is on average much lower in analyses of non-island clades, with the

mean value of j being only 25-50% of the mean estimate for island clades,
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depending on the specifics of which models and constraints are used to test for

differences between island and non-island analyses.

The Komogorov-Smirnov test for differences in distribution was also performed on
the non-log-transformed distributions of j. The more conservative one-sided test
(null hypothesis: the cumulative distribution function of island j estimates is not
higher than the CDF of non-island j) was used. In all cases, the null hypothesis was
decisively rejected. Comparing all analyses, p=5.2e-6. Comparing all unconstrained

analyses, p= 1.9e-15. Comparing just unconstrained DEC+] analyses, p=3.4e-7.

Finally, if it is true that founder-event speciation is a more important process in
island clades than in non-island clades, it should be true that the model selection
advantage of the “+]” models, as measured by AAIC, is higher in island clades than
non-island clades. Testing for this difference is complicated by the fact that the AAIC
for the “+]” model will also be influenced the details of the constraints used in each
analysis of each clade, and by the number of OTUs in the phylogeny. The latter is
problematic as the non-island clades sampled in this study typically have more
OTUs than the island clades. A linear model was estimated that predicted AAIC
across all DEC+] analyses as a function of number of OTUs, and of the geographical
category (island versus non-island). Analysis of variance under this model
supported the influence of number of OTUs on AAIC (p=0.0019), as well as a weaker
influence of the categorical predictor (p=0.044), the latter indicating that the +]

model has a positive, nonzero advantage in AAIC model support in island systems. A
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test for differences in the relationship between number of OTUs and AAIC showed
no difference in slope (p=0.99). These tests yielded similar results when repeated
for linear models fit to other combinations of models and constraints (data not
shown). A plot of AAIC versus number of OTUs for the DEC+] analyses (Figure 7)
confirms the general impression that island clades on average give higher model
support to the +] model, for a given number of OTUs, although there is much

variability.

Discussion

The first important result of this study is that founder-event speciation is shown to
be a crucial explanatory process, not just in island clades, but in most non-island
clades as well. The general importance of founder-event speciation will not come as
a surprise to biogeographers with dispersalist tendencies, but it should be
disturbing to those who favor a maximum-vicariance model for inference in
historical biogeography (reviewed by Matzke 2013d). Furthermore, while the
importance of founder-event speciation for clades inhabiting oceanic islands has
long been well-accepted amongst island biogeographers (de Queiroz 2005; Cowie &
Holland 2006; Gillespie et al. 2012), no similar consensus has existed about the
processes important for explaining the distributions of continental clades. This
study indicates that founder-event cladogenesis must be included as a likely process
in studies of the biogeography of continental clades. It should be noted that this is

not the same thing as claiming that founder-event speciation is the only process, or
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the most important process, in explaining the distributions of continental clades.
The DEC+] and DIVA+] models both include vicariance, and in some cases these

models received the most support.

While support for founder-event cladogenesis is an important result, the fact that
the methods employed here allowed measurement of the relative importance of
founder-event speciation may be even more important. The study confirmed that,
while founder-event speciation is an important process in most analyses of both
island and non-island clades, the j parameter, measuring the per-event weight of
founder-event speciation, is 2-4 times higher in island clades than in continental

clades.

Another encouraging result is the fact that the “+]” models were not always the best
models. For the time-stratified analysis of Taygetis clade butterflies, DEC was
identified as the best model, confirming that in the original study (Matos-Maravi et
al. 2013), which used LAGRANGE in a time-stratified analysis, the best model was in
fact employed. This supports simulation studies (Matzke 2013d) indicating that DEC
and DEC+] are easily distinguishable, and that the usual preference of the data for
DEC+] over DEC is not universal, nor an artifact. A clue as to the reason that DEC is
preferred in the Taygetis clade can be found by examining the geographic ranges at
the tips of the tree: the Taygetis clade is unique amongst the studies sampled in that
a majority (37/61) of the OTUs had geographic ranges larger than a single area

(Matos-Maravi et al. 2013). The other clades for which support for the “+]” models
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was relatively weak, and where sample size was large, also had many OTUs with
widespread ranges, namely Cardiidae and euglossine bees (Ramirez et al. 2010;
Herrera 2013). It appears that these results can be summarized with a simple rule: if
the OTUs of a clade mostly or entirely inhabit single areas, then models including
founder-event speciation will be heavily favored. Clades with many OTUs with
widespread ranges will tend to give weaker support to “+]” models, or support
models completely lacking founder-event speciation. This is in accord with common
observation of the importance of range-expansion (or geodispersal) in explaining

the distributions of widespread fossil taxa (D. Jablonski, personal communication).

Comparison of model probabilities in island and non-island analyses (Figures 4 and
5) revealed another interesting pattern. Many of the island clades gave almost equal
support to DEC+], DIVA+], and BAYAREA+] models. This pattern was absent in non-
island clades. My interpretation of this pattern is that these clades are ones where
most or all 0TUs are single-island endemics, and the dominant cladogenesis
processes are just two: founder-event speciation, and within-island sympatric
speciation. When these two processes are all that is required to explain
distributions, there is very little difference between the likelihood of the geographic
range data under DEC+], DIVA+], and BAYAREA+] models; these models each allow
processes in addition to founder-event speciation and within-island sympatric
speciation, but if they are never needed to explain the data, these models are all
approximately equivalent. This hypothesis could be tested in more complex model-

testing exercises, wherein each cladogenesis process is turned on or off; if my
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hypothesis is correct, models allowing only within-island and between-island

speciation will receive the most support for many island taxa.

A final interesting result is the surprising strength of the BAYAREA+] model in non-
island clades (Figure 5). The cladogenesis models of DEC and DIVA were inspired by
intuitions about the biological processes likely to operate during speciation. In
contrast, the cladogenesis model in the BayArea program, which consists merely of
copying the ancestral range unchanged at speciation events (Figure 1), was not
inspired by any intuition about biological processes. Rather, it was just assumed as a
simple starting point for a new computational technique that focused on the
anagenetic processes of geographic range evolution (Landis et al. 2013). Two
explanations of this result are possible. First, it may be the case that, contra the
argument of Ree and Smith (2008), sympatric speciation of a widespread ancestor
actually is a common occurrence, at least in some non-island clades. This seems
particularly plausible in Neotropical clades with large ranges, overlapping sympatric
ranges, and a great deal of specialization. Alternatively, it is possible that the fact
that molecular phylogenies are missing many speciation events - those which led to
species that are extinct or unsampled - somehow favors the BAYAREA+] model.
(Sampling is an important consideration, e.g., for cardiids, many narrow-ranging
species are missing, e.g. from the Central Pacific; D. Jablonski, personal
communication.) For example, it might be the case that the true cladogenesis
process resembles the DEC+] model, but that daughter species with small ranges

have a high rate of extinction, such that both daughter lineages tend to survive to
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the present only when they are the product of rare widespread sympatric events, or
when a daughter with a small range rapidly expands to approximate sympatry with
its sister species. The problem of missing speciation events might be particularly
salient in relatively old, speciose clades with intracontinental distributions. This
conceptual model explicitly links the evolution of geographic range with
macroevolutionary processes of lineage diversification and extinction. Pioneering
studies have produced probabilistic models that may be used to model geographic
range evolution jointly with unobserved speciation and extinction events, however
these models currently only exists for two-area (GeoSEE; Goldberg, Lancaster & Ree
2011) and three-area (ClaSSE; Goldberg & Igi¢ 2012) systems. Addition of such
models to BioGeoBEARS and other inference packages is clearly a priority, as it

would enable the testing of the hypotheses described above.

A caveat should be mentioned. All inferences using the approach described here
study depend on the discretization of biogeographic range into a relatively small
number of regions. These regions are therefore usually quite large, such as entire
islands, ecoregions, or continents. Thus, when “cladogenesis” processes are
discussed and modeled within this framework, all statements about process are
relative to the discretization scale of the biogeography. There is no guarantee, for
example, that “sympatric” speciation or “founder-event” speciation within the
framework of a coarse discretization of biogeography corresponds exactly to the
detailed population-genetic mechanisms that might be described in a textbook.

Speciation “sympatric” within one large area might be allopatric at a finer scale.
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Conclusion

This study demonstrates that founder-event speciation is important not only in
island clades, but in continental and oceanic clades as well. This conclusion across a
broad sample of island and non-island clades, under a variety of constraints
scenarios, and for each of the three main cladogenesis models currently in use in the
historical biogeography literature (DEC, DIVA, and BAYAREA). The latter finding
further supports the conclusions of Matzke (2013d). It also applies to both intra-
continental and inter-continental clades, as well as globally-distributed oceanic
clades. Future multiclade analyses should work to expand the representation of the
latter two categories (represented by only four clades in the present analysis), but it
appears that a confident prediction can be made that in most clades, founder-event

speciation will play an important role.

While the qualitative result that founder-event speciation is more important in
island clades than in non-island clades will likely match the intuitions of many
dispersalist biogeographers, the ability to convert this intuition into a quantitative
result of formal statistical inference is extremely useful. The fact that the relative
importance of founder-event speciation in island versus non-island systems can be
measured, and that founder-event speciation is 2-4 times more important in island

systems, indicates that inferences of biogeographical history on phylogenies need
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no longer be governed by fixed starting assumptions. With the probabilistic
modeling framework in place to enable quantitative inference of the importance of
different processes, advocates of different approaches and processes in
biogeography now have a common method by which hypotheses may be applied to

data and their relative importance assessed in statistically repeatable fashion.

It is easy to imagine the expansion of the approach presented here. For example,
different clades almost certainly operate by different rules; terrestrial amphibians,
for example, have much more limited long-distance dispersal capabilities than flying
birds. While this has been known since Darwin, the limited methods available to
historical biogeographers have forced a “one size fits all” approach when inferring
biogeographical histories on phylogenies. Clearly the time has come to assemble
large samples of phylogenies in clades with contrasting traits, and thereby measure
the relative importance of founder-event speciation and other processes in

explaining their biogeography.

Another avenue worthy of exploration is improvement in vicariance models. In this
study, following the assumption made in LAGRANGE’s DEC model (Ree et al. 2005;
Ree & Smith 2008), all traditional cladogenesis events (sympatry and vicariance)
are given equal probability of occurrence, regardless of the configuration of areas.
This is surely a crude model, although arguably not any worse than the similar
assumptions that are made, in unconstrained analyses, for anagenetic dispersal and

local extinction processes, or for founder-event speciation. Biogeographers who are
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convinced that vicariance dominates over founder-event speciation as an
explanatory process, or at least those who wish to test such hypotheses, are
encouraged to demonstrate this by putting forward vicariance models and datasets
that statistically favor these models over the models currently available. Given the
early stage of probabilistic model building in biogeography, there are surely better

models out there, waiting to be found.
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Table 1. Clades and data sources for non-island clades.

# tree island/ max # Constraint
Common Clade Larger taxon taxa age region continent Datasetsource  #areas areas Constraints Model Abbr.
assimineid ) iminea Assimineidae 12 197 Southwestern Intra- Van Dam (2013) 11 4 unconstrained MO
snails North America continental phylo & geog
y . . N Southwestern Intra- Van Dam (2013) .
pupfish Cyprinodon  Cyprinodontidae B 71 merica continental phylo & goog 11 4 unconstrained MO
N " . - Southwestern Intra- Van Dam (2013) .
I I Hydrobiid: 100 22 11 4 t d MO
spring snails  Pyrgulopsis ydrobiidae North America continental phylo & geog unconstraines
iant fl - Southwest: Intra- Van Dam (2013
BN oW o ophiomidos Mydidae 26 pz7 OUthwestern dntra an Dam (2013) 11 4 unconstrained MO
loving flies North America continental phylo & geog
sand fiune Trigonoscuta Curcu.llomdae((rue 25 146 Sou(hwes(e.m Inlrav- Van Dam (2013) 1 4 unconstrained MO
weevils weevils/snout beetles) North America continental phylo & geog
th I Southwest Intra- Van D 2013
e_rma " Tyronio Hydrobiidae 38 116 outhwes e_’" " ra. an Dam ( ) 11 4 unconstrained MO
spring snails North America continental phylo & geog
fringetoed Phrynosomatidae 5 147 Southwestern Intra- Van Dam (2013) 11 4 unconstrained MO
lizards North America continental phylo & geog
; ) .
vid bees  Eusloss " odee 1" south/central ntra- Ramwezetal Qot0) o ureomstiotied MO0
orehid bees uglossines ymenoptera: Apidae 137 413 America continental phylo & geog |'me—s ratitie M1
dispersal
142 40 8 unconstrained M0
unconstrained,
Neotropical 1240 South/Central Intra- Ceccarelli & Zaldivar- 2 but 2 areas max M1
wasps Notiospathius Braconidae: Doryctinae 142 20 America continental Riverson {2013) phylo 8 g tl_me—stranﬁed M3_stratified
& geog dispersal
142 40 y  timestratfied s atifieda
dispersal
61 219 8 trained MO
Neotropical . Nymphalidae: South/Central Intra- Matos-Maravi et al. u.ncons ra!r!e
" Taygetis clade . . N . 8 time-stratified
butterflies Satyrinae: Euptychiina 61 21.9 America continental (2013) phylo & geog 8 dispersal 2
ellow- 22 134 8 unconstrained MO
‘/h \dered  Sturni Chiroptera, South/Central Intra- Ramirez et al. (2010) 8 4 areas max,
;;:Su ere urnira Phyllostomidae 22 13.4 America continental phylo & geog 4 adjacency M2
constraint
He 2013) phyl tratified as i
cockles Cardiidae Veneroida {bivalves) 119 134 global ocean &eé:r;*( I phylo 11 3 iien:r:e: 1;(;1‘;) M3
B dietal. (2004]
wrasses Thalassoma  Labridae 28 10.5 global oceanic ernardiet al. { ) 8 2 2areas max M1
phylo & geog
snake . ™ inter- Kelly et al. {2009) N
superfamily Elapoidea Caenophidia 45  5.58 global continental phylo & geog 7 7  unconstrained MO
honeysuckles Lonicera Caprifoliaceae 59 415 Nort!\ern mter.— Smith & Donoghue 7 7  unconstrained MO
Hemisphere  continental {2010)

* Herrera's analysis was changed in that the maximum # of areas was set to 3, rather than 4.
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Figure 1. The types of cladogenesis events allowed (gray) and disallowed (white)
under the DEC, DIVA, and BAYAREA cladogenesis models. The “+]” version of each
model adds founder-event speciation, as illustrated for DEC+].

Figure 2. Island clades, relative probabilities of the three standard cladogenesis
models: DEC (dark blue), DIVA (dark green), and BAYAREA (orange). The relative
probabilities were calculated from AICc weights. The “+]” models are not included in
this comparison. The clade/constraint combination is labeled at bottom, and the
best model among the three is labeled at top.

Figure 3. Non-island clades, relative probabilities of the three standard
cladogenesis models: DEC (dark blue), DIVA (dark green), and BAYAREA (orange).
The relative probabilities were calculated from AICc weights. The “+]” models are
not included in this comparison. The clade/constraint combination is labeled at
bottom, and the best model among the three is labeled at top.

Figure 4. Island clades, relative probabilities of all six models: DEC (dark blue),
DIVA (dark green), BAYAREA (orange), DEC+] (light blue), DIVA+] (light green), and
BAYAREA+] (yellow). The relative probabilities were calculated from AICc weights.
The clade/constraint combination is labeled at bottom, and the best model among
the six is labeled at top.

Figure 5. Non-island clades, relative probabilities of all six models: DEC (dark blue),
DIVA (dark green), BAYAREA (orange), DEC+] (light blue), DIVA+] (light green), and
BAYAREA+] (yellow). The relative probabilities were calculated from AICc weights.
The clade/constraint combination is labeled at bottom, and the best model among
the six is labeled at top.

Figure 6. Histograms of the maximume-likelihood estimates of j for analyses of
island clades (top) and non-island clades (bottom).

Figure 7. Scatterplot of the number of tips in the phylogeny of each clade, versus
AAIC, the AIC advantage of the “+]” model, for all DEC/DEC+] analyses. Open
triangles represent analyses of island clades; filled dots represent analyses of non-
island clades.
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Figure 1. The types of cladogenesis events allowed (gray) and disallowed (white)
under the DEC, DIVA, and BAYAREA cladogenesis models. The “+]” version of each

model adds founder-event speciation, as illustrated for DEC+].
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Chapter 4: Incorporation of fossils in likelihood analyses of historical
biogeography using models for imperfect detection

Abstract

Likelihood analyses of geographic range evolution have become increasingly
popular as analysis tools in historical biogeography. However, the models and
software available have not had documented features allowing for fossils, or would
allow the use of fossils but only in special circumstances. In addition, no methods
have taken into account the fact that detection of presence and absence in regions
will often be imperfect for fossil taxa. Here, both of these problems are addressed in
the software BioGeoBEARS, and an example application to North American fossil
Equinae and Canidae is presented. The NEOMAP database is used to provide
occurrence data for both clades of interest, and for taphonomic control groups that
are used to measure relative sampling effort in each region and time bin. The two
clades are found to prefer different models for cladogenesis, a result found both
with and without usage of the model for imperfect detection. Ironically, in test data
chosen because of their high-quality fossil record, the record was so good that the

model for imperfect detection had little impact.
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Introduction

Fossil data are fundamental to increasing our understanding of evolution, as they
constitute our most direct information about what existed, where, and when in
evolutionary history (Smith 1994; Raff 2007; Sepkoski & Ruse 2009). Despite the
various imperfections of the fossil record, themselves the subject of extensive study
(e.g., Donovan & Paul 1998; Kidwell & Holland 2002; Benton 2009), “the inescapable
conclusion is that the fossil record is an invaluable repository of information
relevant to most of the major concerns of biological science” (Paul 1998).
Furthermore, the neontological record has its own extreme imperfections, including
the fact that most species that have ever lived are extinct (Nee & May 1997), and
that the fossil record reveals morphologies that would never have been suspected or

predicted solely from consideration of extant taxa (Edgecombe 2010).

The fossil record is similarly considered fundamental to our understanding of
historical biogeography. No shortage of publications may be found voicing support
(Jablonski, Flessa & Valentine 1985; Rosen 1988; Lieberman 2002; Lieberman 2003;
Lieberman 2004; Roy, Jablonski & Valentine 2004; Lieberman 2005; Stigall Rode &
Lieberman 2005; Stigall & Lieberman 2006; Fortey 2009; Lomolino, Lomolino &
Lomolino 2010; Peterson & Lieberman 2012. Given this, it is peculiar that published
analyses using the most-advanced, model-based, probabilistic methods for the
inference of geographic range evolution on a phylogeny (Ree & Sanmartin 2009;

Ronquist & Sanmartin 2011) typically leave out fossils. For example, out of
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hundreds of published historical biogeography analyses using the most popular
program, LAGRANGE (Ree et al. 2005; Ree & Smith 2008), only two incorporate
fossils (Nesbitt et al. 2009; Wood et al. 2013). While many studies exist that use
undated cladograms and parsimony-based methods (e.g., DIVA, Ronquist 1997; or
Brooks’ Parsimony Analysis and its relatives, Lieberman 2004) to include fossils in
historical biogeography analyses on cladograms, these do not take time explicitly
into account in the inference procedure. This is a major oversight which can lead to
problems such as pseudo-congruence between clades, and inference of vicariance
events which are falsified by dating analyses (Upchurch & Hunn 2002; Donoghue &

Moore 2003).

The problem of putting fossils in dated phylogenies

Much of the problem has stemmed from fact that, until recently, it was quite difficult
to include fossils in phylogenies dated with explicit statistical methods. First, of
course, many extant taxa lack fossil representatives, and thus all inference must be
done on phylogenies of living taxa. Second, even for groups with a fossil record, it is
often difficult to place fossils in the phylogenetic tree, due to limited character data
or incomplete specimens (Jablonski, Flessa & Valentine 1985). In this situation, the
role that fossils play in an analysis is often limited to providing calibrations for
dating internal nodes on a phylogeny (even though the best practice is to only use
fossils as dating calibrations after their position in a phylogeny has been determined

in a combined analysis; Parham et al. 2012). Third, even when sufficient characters

172



and specimens have been described to enable the inclusion of fossils in a phylogeny
- either in a morphology-only analysis, or in a “total evidence” analysis combining
morphological data with molecular data from living taxa -- until very recently, these
studies were only conducted within the framework of undated phylogenetic
analyses. Here, parsimony (Swofford 2007; Goloboff, Farris & Nixon 2008) or
Bayesian (Ronquist & Huelsenbeck 2003) methods are used to infer the undated
topology of fossil relationships, and if a dated tree is required, some ad hoc method
is applied to scale the tree to time. The most common time-scaling method is to use
the stratigraphic distribution of fossil species in the tree to set minimum ages for
the clades containing these species. This always results in a ghost lineage for
whichever member of a sister pair has the more limited stratigraphic range, and
also often results in the compression of many cladogenesis events into an
implausibly short period of time, with nodes separated by branches of length zero
or some arbitrarily small value. If the result of minimum-age dating is treated as an
inference result, rather than a merely a graphical display not meant to be taken
literally, dramatically different interpretations of evolutionary history may result
(O'Leary et al. 2013). Alternatives to pure minimum-age dating exist, for example
evenly spacing out the branches below minimum-age constraints ((Nesbitt et al.
2009), and these are presumably improvements, but they do not constitute formal,

probabilistic inference of a dated tree under an explicit model.

Recently, however, such models have become available in the form of Bayesian “tip-

dating”, a total evidence analysis of molecules and morphology, where fossils are

173



included as dated terminal taxa (Pyron 2011; Ronquist et al. 2012). The dates of the
fossil tips inform the dates of the nodes through a relaxed clock model applied to
morphological character data; traditional node-based dating calibrations may be
included if desired, but they are not required to produce an estimated dated tree.
Traditional dating based on node calibrations had a number of significant
weaknesses. In previous dating approaches, e.g., in the program BEAST (Drummond
& Rambaut 2007), an undated phylogenetic analysis was conducted first in order to
determine the phylogenetic position of fossils; these fossils were then converted
into prior distributions on the dates of calibration nodes in a molecules-only dating
analysis. Production of the node date calibration distribution was usually subjective
(Parham et al. 2012), fossils could not be used if their phylogenetic position was
uncertain (ironically, a particularly likely situation when “transitional fossils” found
near the branch points of major living clades are discovered), and after the date
calibration was produced, all additional fossil information (e.g., morphological
branch lengths and character data) was “thrown away” in subsequent dating
analysis. Worse, for purposes of estimating biogeographical history, the result of a
node-dating analysis was a dated tree with no fossil taxa. Tip-dating solves all of
these problems at once: subjective node calibrations are not required, fossil
character data and branch lengths are retained throughout the analysis, the
uncertainty in fossil relationships is directly factored into the joint estimation of
topology and divergence dates, and the result of a tip-dating analysis is a dated tree
which includes fossils. Tip-dating has already successfully been used to separate the

timing of genome duplication and the evolution of anadromy in salmonid fishes

174



(Alexandrou et al. 2013), and to demonstrate that the divergence of Palpimanoid
spiders is ancient enough to coincide with the breakup of Gondwanaland (Wood et
al. 2013), a rare exception to the common finding across many clades that
divergence times are too young to be explained by the breakup of continents before
the Cenozoic (de Queiroz 2005). Tip-dating as it currently exists certainly does not
solve all problems involved with the inclusion of fossils in phylogenies; notably, it
neglects the information that stratigraphic range and sampling frequency through
time may provide, and it, like almost all phylogenetic inference methods, does not
explicitly allow for species to be direct ancestors, even though we almost certainly
have sampled some direct ancestors in the fossil record (Foote 1996), and direct
ancestors may appear as short branches on the tree. For steps forward on these
issues, a recent special issue of Methods in Ecology and Evolution is recommended

(Bapst 2013; Ezard, Thomas & Purvis 2013; Hunt 2013; Slater & Harmon 2013).

The problem of imperfect geographic range data

Even once a dated tree including fossils has been obtained, additional difficulties
remain for the inclusion of fossil data in the estimation of biogeographic history on a
phylogeny. The primary difficulty is that the available fossil specimens
corresponding to an operational taxonomic unit (OTU) on a phylogeny may not
constitute a complete record of the geographic range of the taxon at the time point
or stratigraphic time-bin occupied by the OTU. Presence of a specimen is

informative (assuming accurate identification, although this cannot always be
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assumed), but, as Rosen (1988) noted, “absence of a taxon from a particular time
and place is ambiguous, and cannot be used as constructive or falsifying evidence”
(p- 441). Specimens of an OTU may be missing from a particular region because the
taxon really was absent from that region, but they may also be missing because
sedimentary rocks of the appropriate age, type, and paleoenvironment are missing
from the region, or are not exposed, or have not been explored for political or
economic reasons. In addition, even if relevant fossils exist and have been
discovered, they may not be known to the researcher, perhaps because they have
not been published in an accessible journal, or not been entered into whatever
database the researcher is using. Alternatively, the fossils might be available, but
under a taxonomic name different than the one the researcher is searching for in the

literature or database.

Some of these problems might be improved by the hard work of taxonomists and
paleontologists - visiting museum collections, revising taxonomies, adding new field
collections, etc. But some problems (unavailable rocks, political blockages) are
completely beyond the power of hard scientific work to solve. And in any event,
human limitations, the global nature of the research community, and the fact that
taxonomy, museum records, the literature, and databases are all continuously
moving targets mean that perfection will always be impossible, and thus

biogeographic range data for fossils will always have the risk of gaps and errors.
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[ suggest that we will improve analysis and inference if we expand parametric
historical biogeography (Ree & Sanmartin 2009) to include parameterized,
probabilistic models of the imperfect detection process that produces our range
data. Below, I propose a simple model, which is intended as a starting point for
future research, and compare inferences made with and without the detection

model.

Study system

In order to provide a proof-of-concept of the method, and to give an example of how
it may be used for hypothesis testing, two study clades were chosen for which the
basic requirements of an imperfect detection model were available, namely: (1)
well-resolved, time-scaled species-level phylogenies; (2) abundant fossil occurrence
data in several different regions and time-bins; (3) similarly abundant fossil
occurrence data on taphonomic control groups with approximately equal
detectability; and (4) a standardized database containing the data which could be
downloaded and then queried via R scripts. The taxa chosen were Canidae (dogs
and relatives) and Equinae (horses), both from the well-studied Cenozoic of North
America. Both of these clades predominantly evolved in North America, and were

speciose for much of their history (although both are much less so in at present).

A biogeographical analysis of fossil Equinae was previously conducted by Maguire

and Stigall (2008). They used Lieberman-modified Brooks Parsimony Analysis (BPA,
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an area cladogram approach; Lieberman 2000; Lieberman 2003; Lieberman 2004)
on a time-scaled cladogram assembled from the literature in order to assess the
relative roles of vicariance, dispersal, and climate in explaining the biogeography of
Equinae. They divided North America into four discrete regions (Southwest, Great
Plains, Gulf Coast, and Southeast). They mapped presence and absence in each area
onto the phylogeny, and from this area cladogram coded a vicariance matrix and a
geodispersal matrix, with gains and losses of areas in particular clades being
recoded as characters in these matrices. These matrices were then subjected to
parsimony inference, producing trees representing the best-supported relationships
between the four areas. The vicariance tree and geodispersal tree were largely
congruent, indicating that both processes had similar spatial structure, which the

authors suggested was due to fluctuations in climate influencing both processes.

The purpose of this paper is not to make a detailed assessment of the methods and
conclusions of BPA, which is an entirely different analysis paradigm than likelihood
inference of geographic range evolution. However, the general question of what
cladogenesis mechanisms are most important for explaining the biogeographic
ranges of North American fossil taxa can be addressed by the likelihood method, and
it would be useful to know if the conclusions reached depend upon whether or not
the likelihood method is making use of a model for imperfect detection of fossils.
This question is addressed in this paper by assessing the fit of a number of different

cladogenesis models (Matzke 2013e) to the Canidae and Equinae data, and
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assessing how model selection results different with and without the inclusion of a

model for imperfect detection.

Methods

Fossils and imperfect detection: previous work

Regarding the inclusion of fossils in likelihood analyses of historical biogeography,
the original team of authors of LAGRANGE (Ree et al. 2005) did consider the use of
fossils as constraints on ancestral ranges. The source code of the Python and C++
versions of LAGRANGE (Smith & Ree 2010; Ree 2013) contains brief references to
use of fossil constraints; these features however remain undocumented at present.
However, a manuscript (Moore et al. 2006) describing the use of fossil constraints in
an early, Java-based version of a likelihood-based historical biogeography program,
AreA, has been available online since 2006. The manuscript is apparently
unpublished but is nevertheless an important contribution and has been cited
multiple times in the literature (Moore & Donoghue 2007; Havill et al. 2008;
Nylander et al. 2008; Niirk 2011; Harris, Wen & Xiang 2013). The AreA program, as
with the first version of LAGRANGE (Ree et al. 2005) used a simulation approach to
measure the probabilities of changes in geographic range along branches. For each

branch, a large number of simulations were run under a set of model parameters,
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and the distribution of resulting ranges was used as a probability distribution. Using
these distributions, the likelihood of the data under the model could be calculated.
Within this framework, use of fossils is relatively straightforward: if a fossil is placed
as a tip on the tree, and the available geographic range for that fossil OTU is thought
to represent the complete range, then only simulations which produce the observed
range are kept. If the fossil is to be considered only as a positive constraint,
indicating presence in the regions where it is observed, but indicating nothing about
presence or absence in regions where it is not observed, then simulations which
produce the observed presences are retained in the probability distribution,
regardless of whether the simulations have the OTU present or absent in regions

where the fossil has not been observed.

AreA also implemented use of fossils when a fossil could only be placed within a
clade, rather than on a specific branch. In this case, the model effectively assumed
that the fossil had an equal probability of being on any branch within the clade at
the time point in question, and simulations which failed to produce at least one
lineage occupying the area occupied by the fossil were penalized by a scaling factor
according to the number of branches. This “clade-specific” model of a fossil reduces
to the “lineage-specific” model described above, in the case when a fossil is found on

only one branch (Moore et al. 2006).

The simulation approach to calculation of likelihoods is computationally

cumbersome, and was superseded by the much more efficient matrix
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exponentiation, pruning algorithm approach (Felsenstein 2004) in later versions of
LAGRANGE (Ree & Smith 2008). Nevertheless, a method treating fossils as positive
constraints on ancestral ranges is relatively easy to implement within the
framework of matrix exponentiation calculations of the data likelihood, at least for
the lineage-specific method. The situation is very similar to that of ambiguous base
calls in DNA sequencing (Felsenstein 2004 ). In maximum likelihood and Bayesian
phylogenetics packages, likelihood calculation begins by declaring the data
likelihoods under each of the 4 possible bases (A, C, G, and T) at each tip in the tree.
[f the base at a particular site for a particular OTU is known to be “A”, then the input
likelihood for that site at that tip is (1,0,0,0). If the base is “R”, indicating a purine (A
or G), then the input likelihood is (1,0,1,0). In other words, the probability of the
sequence data is 1 under the hypotheses that true state is A or G, and 0 otherwise. If
the base is a “?”, meaning total ambiguity, then the likelihood at the tip is (1,1,1,1),
i.e., the probability of the data is 1, under any hypothesis about the true identity of

the base.

The same approach can be used when the discrete states are geographic ranges,
rather than DNA bases. Consider a biogeographic analysis with two areas, “A” and
“B”. There are four possible geographic ranges, if the null range, @ (indicating
absence in all regions) is included. The four possible geographic ranges are @, A, B,
and AB. If a fossil is observed in region A, and this is taken to represent the
complete, true range, then the likelihood of the fossil data under each hypothesized

true state is (0,1,0,0). If the fossil observation in region A is taken as merely a
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positive constraint, then two possible ranges are equally good explanations of the

fossil data: A and AB. The data likelihoods are thus (0,1,0,1).

The R package BioGeoBEARS implements both of the above options (Matzke 2013b;
Matzke 2013a). However, treatment of fossil range data as either complete range
data, or as merely positive constraints which say nothing about geographic ranges
where the fossils are unobserved, are positions at the two extreme poles,
representing maximum confidence, and maximum agnosticism. There is a large,
interesting grey area in-between these poles, where fossil geographic range data is
partial and incomplete, but where absence of a fossil OTU from a region can be

evidence of absence, if there has been sufficient sampling.

Modeling imperfect detection in historical biogeography

Models for imperfect detection have recently become popular in ecology
(MacKenzie et al. 2002; MacKenzie et al. 2003; Mackenzie 2005; Royle, Nichols &
Kéry 2005; Bailey et al. 2007; MacKenzie et al. 2009) and conservation biology
(Kéry & Schmidt 2008; Link & Barker 2009). Species occupancy at a study site is
important data for studying diversity, population size, conservation importance, etc.
Many species will only be detected in a proportion of visits to the site, because they
are only seasonally visible, or they migrate between habitat patches, or they are rare
on the landscape. Information about the frequency of sampling over repeated visits

can be used to estimate the parameters of a detection model, the key parameter of
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which is the probability of sampling the species of interest on a per-visit or per-

observation basis (Link & Barker 2009).

However, in historical biogeography, the “sites” are actually large, discrete regions -
usually islands, ecoregions, continents, or ocean basins. Obviously, biogeographers
and paleontologists do not usually conduct repeated visits to a large region and
count how many times they detect a particular taxon. Furthermore, unlike many
ecological or conservation applications, which may be focused on single species or
on a community of unrelated taxa, biogeographers are interested in a collection of
taxa that are all members of a monophyletic clade and placeable on a phylogeny.
The data source is therefore usually some disparate collection of fossil observation
records gathered over decades by many different researchers. The records usually
refer to specimens, each collected at a particular fossil locality with some age or age
range. The specimens are deposited in museums, sometimes described in a
publication, and through one or both of these avenues, may (or may not!) make their
way into a database, either one assembled for a research project by specialists, or a
more general database built from the literature or museum records. This database
therefore represents some imperfect, partial sample of the fossil specimens that
have been discovered. These in turn are some imperfect, partial sample of fossils
that are discoverable at exposed localities, and these are some partial, imperfect
sample of all the fossils that exist. And, of course, the fossils that exist are some
partial, imperfect sample of the original, true distribution of biodiversity in time and

space.
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One could imagine building a complex model that attempts to take separately into
account each of these individual sampling processes, with parameters controlling
each, but such a highly parameterized model would almost certainly lack sufficient
data to estimate all the parameters, and undoubtedly many of the parameters would
interact with each other and thus lack identifiability. In any event, usually the only

data available is the database.

The key to building a model for imperfect detection is to have some measurement of
sampling effort. Here, in the paleontological context, I use “sampling effort” to refer
not only to the amount of sampling done by paleontologists, but also to the
“sampling effort of Nature”, due to the geological processes that preserved fossils,
produced rock exposures of the correct age and type, placed these exposures in

countries and on property where paleontologists can access them, etc.

A reasonable attempt to measure sampling effort — at least relative sampling effort -
can be made through use of the concept of taphonomic control groups. Taphonomic
control groups were originally defined by Bottjer and Jablonski as “higher taxa with
ecological, morphological, and mineralogical properties similar to those of the group
under study” (Bottjer & Jablonski 1988; see also Bottjer, Droser & Jablonski 1988).
They noted that use of a taphonomic control enables the researcher to assess the
significance of negative data - i.e., the observation of “a taxon’s absence from a

particular time and environment” (p. 540). Bottjer and Jablonski were concerned
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with macroevolutionary patterns of the persistence of invertebrate taxa in onshore
versus offshore environments. However, the concept can be repurposed for
likelihood-based inference on phylogenies with a model that, given parameter
values and hypothesized geographic ranges, allows the probability of the

observations of the OTU of interest to be calculated.

The model is set up as follows. We start with a crucial assumption, one which is
definitely arguable, but which at least provides a reasonable starting point for
building models for imperfect detection. Imagine that a fossil species of interest, S, is
a member of a clade of interest, C. A dated phylogeny exists for C, and the researcher
plans to infer the history of geographic range evolution down the phylogeny, but the
researcher wishes to include the possibility of imperfect detection. The researcher’s
database contains counts of occurrences of S in each discrete region of interest, in
each time bin of interest. These occurrences could be presence/absence records at
each of many fossil localities, or they could be actual counts of individuals at each
locality, e.g. minimum number of individuals (MNI; Klein & Cruz-Uribe 1984). The
database also contains counts of observations of many other species, both from
clade C, and from D, a paraphyletic assemblage of many other clades. The crucial
assumption is that, when S is present in a region, individuals from species S are
approximately equally detectable as non-S individuals from clades C and D. Note
that this assumption of approximate equal detectability is made about individuals,
not about species; in all probability, there are many fewer individuals of the single

species S than there are individuals of all of the other species in C and D. Obviously,
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the taphonomic control groups in D should be chosen so as to maximize the
plausibility of this assumption - i.e., approximately similar body size, preservational

environments, etc.

The other assumption that must be made is that the database-derived counts of S
and non-S individuals in each region of interest approximately reflect the true
relative abundance of S and non-S in each region and time-bin of interest. With these
two assumptions in place, as the counts of non-S individuals increase in a particular
region and time bin, then the probability of counting an individual from species S
will increase as well, if S is truly present in a region. If S continues to fail to be
detected as the count of non-S increases, then this is evidence of absence. All thatis
required to make the probability calculations explicit is a value for the parameter f,

the relative abundance of S.

How plausible are these assumptions? At first glance they may seem overly
ambitious, but several considerations make them arguably valid, at least as a first
approximation. First, there is a rich literature comparing species abundances in
fossil and living assemblages (e.g., Kidwell 2001; Kidwell 2002; Kidwell & Holland
2002; Vermeij & Herbert 2004; Moore, Norman & Upchurch 2007; Terry 2010;
Turvey & Blackburn 2011); if a summary may be hazarded, it is that abundances in
fossil assemblages often are correlated with living abundances. In one well-known
case, it has been shown that the time-averaging in death assemblages of marine

molluscs may actually better reflect the long-term average community abundances
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than short term samples of the living community (Kidwell 2001; Kidwell 2002).
Another study, comparing recent and Holocene fossil abundances from the avifauna
of Sweden, found that fossil species abundances were a good measure of the true
abundances within a particular size class, although not between them (Turvey &
Blackburn 2011). It is true that individual fossil localities can have any number of
site-specific taphonomic biases, due to local depositional environment, regional
climate, local physical features, sorting and trapping mechanisms, etc. (Moore 2012)
Even organism behavior can play a role - a famous instance is the prevalence of
carnivores in tar-pit sites. However, when we are dealing with very large, discrete
regions, as we are in historical biogeographic inference on phylogenies, and when
the stratigraphic time bins are also large, covering millions of years, it is reasonable

to hope that many of the biases of individual localities will average out.

Likelihood calculations

If the above assumptions are accepted for purposes of a particular study - especially
if the C'and D taxa have been selected to maximize the chance that the above
assumptions are decent approximations, and the discrete regions and time bins
chosen for the analysis are large, encompassing hundreds of taxa and localities -

then the likelihood of the data can be calculated as follows.

For a particular species S in a discrete region R during time bin ¢, a database query

provides ns, the count of observations of S across all databased localities in Ry It
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also provides nss, the count of the taphonomic controls, i.e. the non-S§ from all of the
other species in C and D. This query is repeated for all species in C, for all regions

and time-bins within the domain of analysis.

We are interested in the likelihood of the observation data in R; under the
hypotheses that the species is truly present (T) or truly absent (F) from R;. The

likelihood under hypothesis T is:

P(data|T) = f"s(1— f)™s (1)

where f is the fraction abundance of S individuals in Ry, when S is present. Under

hypothesis F the likelihood of the observations is:

P(data|F) = 0"s(1)™s (2)

In other words, under the hypothesis F that a species S is absent from Ry, the
likelihood of the data is 0 if S has in fact been observed, and 1 otherwise. This is
implicitly assumes that there are no false positives, i.e. that every databased
occurrence of S was correctly identified and the identification was correctly
transferred to the database. It is not difficult to construct a more complex model

with parameters controlling probability of false positives and false negatives; such a
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model is implemented in BioGeoBEARS (Matzke 2013b; Matzke 2013a). However, it
will take further study to determine what sort of data is required to make such

parameters identifiable and subject to inference.

With the ability to calculate the likelihood of the observation data for a particular
species S in a particular region R, under hypotheses T and F, all that is required to
calculate the likelihood of the data for a particular hypothesized geographic range,
Gy, is to atomize the range into a series of presences and absences, where Ry, = T if S

is hypothesized to be present in Ry, and F if absent:

Gy = {Rm=1,tJ ey RM,t} (3)

where M is the number of discrete areas being used in the analysis, and m is the
index identifying a particular area. The likelihood of the count data for a particular

G is then:

M
P(datag,|G,) = 1_[ P(datag,, ,|Rm=1.) (4)

m=1

In a standard likelihood analysis of geographic range evolution on a phylogeny,
likelihood 1 would be assigned for the known correct range at each tip on the tree,
and likelihood 0 would be assigned for all other possible ranges. However, with the

above model for imperfect detection, the likelihood of database count data is

189



calculated for each possible geographic range for each tip on the tree. These
likelihoods are then input into the likelihood calculations as in the standard
analysis. Equation 4 is implemented in the function calc_obs_like in BioGeoBEARS

(Matzke 2013b).

In the above, we have assumed that every species S in the clade of interest C has the
same fraction abundance f compared to non-S when it is present in a region.
Obviously this is a large simplification, as species have different relative
abundances, and furthermore as relative abundances may vary across time and
space. However, if C and D are chosen such that there is a diverse pool of non-S
species, and no S in C ever dominates the relative abundance distribution in the
broad region/time bin Ry, then it may be a fair approximation to say that the
abundance of each species S in C has the same, small, fractional abundance f. Again,
more complex models can be envisioned, but they could require many more
parameters (e.g., a different ffor each species in each region and time-bin) and
therefore should explored in future studies about the data required for
identifiability and inference. The simple model presented here can also serve as a

null model against which to test more complex models.

The only issue remaining is to determine an appropriate value for the parameter f.
There are three options. First, a researcher could pick a fixed value for f, based on
ancillary data about the typical abundance of species in clade C. Alternately, the

researcher could make a reasonably good estimate of f from the data before
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conducting the likelihood analysis. An obvious option is for every species S in C, take
each region Rn in which S is observed to be present and calculate the empirical
fraction of individuals that are S versus non-S. The mean of all of these empirical
fractions would constitute a decent approximation of f. However, this strategy
ignores that there is some information about the abundance of species even in
regions where they have not been observed, because there is some probability that
they were truly present, but were not sampled in the database. It also ignores the
fact that the phylogenetic relationships and the biogeographic model will confer
some information about the true presences and absences of each species.

Therefore, the final alternative is to make f a free parameter that is jointly estimated
along with the d, e, and j parameters of the DEC+] model (dispersal-extinction
cladogenesis, with founder-event speciation added; Matzke 2013d) or any other

model during maximum likelihood optimization of the model on the data.

A graphical representation of a traditional likelihood-based inference of historical
biogeography is shown in Figure 1. A depiction of the modification that occurs when

a model for imperfect detection is added is also shown.

Empirical demonstration

The time-scaled phylogeny of Equinae used by Maguire and Stigall (2008) was
obtained in Newick format from K. Maguire (personal communication). The Canidae

phylogeny was assembled by digitizing and merging the time-scaled trees published
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by Wang et al. (1999) and Tedford et al. (2009) on Borophagines and Caninae,
respectively. Digitization was conducted with GraphClick (Arizona Software,

http://www.arizona-software.ch/graphclick/) and TreeRogue (Matzke 2013f) as

previously described (Matzke 2013d). The phylogenies for both Equinae and
Canidae are of unusual quality, in that they combined cladograms derived from
parsimony analysis of character data with expert knowledge on the stratigraphic
range and geographic distribution of species; thus, unlike most parsimony analyses,
directly ancestral species are considered to be known in many cases, and the branch

lengths in time can be considered meaningful.

The source of occurrence data for the two clades was the NEOMAP database

(http://www.ucmp.berkeley.edu/neomap/) of North American fossil mammal

occurrences from the late Oligocene to the present. NEOMAP consists of the merged

FAUNMAP (FAUNMAP Working Group 1994; Graham & Lundelius 2010;

http://www.ucmp.berkeley.edu/faunmap/) and MIOMAP (Carrasco et al. 2005;

http://www.ucmp.berkeley.edu/miomap/) databases. NEOMAP was also used as

the data source for taphonomic control groups, which were other medium and large
mammal taxa present in North America during the Neogene. These were families
Agriochoeridae, Amphicyonidae, Antilocapridae, Bovidae, Camelidae, Canidae,
Cervidae, Chalicotheriidae, Dichobunidae, Entelodontidae, Equidae, Felidae,
Feliformia, Gelocidae, Gomphotheriidae, Hyaenodontidae, Hypertragulidae,

Hyracodontidae, Mammutidae, Moschidae, Mustelidae, Nimravidae, Oreodontidae,
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Oreodontoidea, Palaeomerycidae, Procyonidae, Protoceratidae, Rhinocerotidae,

Ruminantia, Tapiridae, Tayassuidae, and Ursidae.

The four regions used in this study (Figure 2) were defined during preliminary
collaborative studies with K. Maguire (Maguire & Matzke 2009; Matzke & Maguire
2011), and are somewhat different than those used in Maguire and Stigall (2008).
This decision was made due to the better sampling in the NEOMAP database
compared to the Paleobiology Database used by Maguire and Stigall (2008),
particularly in the intermountain West (K. Maguire, personal communication). The
four regions are the Western U.S., the Rocky Mountains, the Great Plains, and the

Gulf Coast (including the Southeast and Florida).

GIS shapefiles containing the outline of the four discrete regions were obtained from
K. Maguire (personal communication) and loaded into the R programming
environment (R Core Team 2013) for reprojection and analysis with the geospatial

data analysis package rgdal (Keitt et al. 2012).

The time bins used in the analysis were North American Land Mammal Ages
(NALMAs) utilized by NEOMAP. The time-scaled trees were linked to the NEOMAP
database data as follows. First, the midpoint of each NALMA was calculated. Then,
for each midpoint, each phylogeny was searched for branches crossing that time
point. Where branches were present, “hooks” - arbitrarily short branches -- were

digitally added to the tree, and given names identifying the species to which they
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belonged, or a code if no name was available (i.e., ghost lineages). The hooks
represent the existence of a species in a particular time bin, and the points at which

geographic occurrence data may be attached to the phylogeny.

Each hook in the resulting trees was henceforth treated as an OTU, i.e., a species
sampled at a particular timepoint. For each OTU, the NEOMAP database was
searched for occurrences within the appropriate NALMA, using the MNI (minimum
number of individuals) field. For localities containing occurrences of the species, the
locality latitude and longitude were extracted, and a GIS point-in-polygon operation
was used to place the occurrences in a region. The result was that every hook for
which data was found contained a count of occurrences of the OTU. In addition, for
every NALMA, a count was done in each region of all of the occurrences of the
taphonomic control groups. Finally, the phylogeny was pruned to remove all
original phylogeny tips, and also to remove any remaining hooks for which no
occurrences were found in the database within the study area. R scripts performing

these operations are available upon request.

Using the occurrence counts of each OTU and the total counts of taphonomic
controls, maximum likelihood (ML) inference of ancestral ranges and model
parameter values was conducted for each of the six cladogenesis models described
in Matzke (2013e): DEC, DEC+], DIVA, DIVA+], BAYAREA, and BAYAREA+]. These six
models were run under two different detection models: (1) model MO, with no

detection model, i.e., each OTU is treated as present where occurrences were found,
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and absent where not; and (2) model D1, where the detection model was used, with

festimated as a free parameter.

All models were run in the R package BioGeoBEARS (Matzke 2013b; Matzke 2013a)
making use of the required accessory packages rexpokit and cladoRcpp (Matzke
2013c; Matzke & Sidje 2013) as well as the dependencies APE (Paradis 2012) and
phylobase (R Hackathon et al. 2012). ML optimization was conducted with optimx
(Nash & Varadhan 2011; Nash & Varadhan 2012). One important feature of
BioGeoBEARS not introduced previously, but important in the present analysis, is
the capability of turning the cladogenesis process on and off for certain nodes. In
particular, OTUs that are “hooks” in a tree represent direct ancestors, not sister
species (of course, during the pruning process described above, the terminal hooks
at the end of pruned branches are converted into standard tips). Direct ancestors
are not connected to the tree via a cladogenesis event, instead, they directly
represent the ancestral state. Therefore, BioGeoBEARS was set to treat remaining

hooks in the pruned phylogenies as direct ancestors in the likelihood calculations.

Models were compared with the likelihood ratio test, AICc, and AICc model weights
(Burnham & Anderson 2002), as in previous studies (Matzke 2013d; Matzke 2013e).
Ancestral state estimates were plotted on the time-scaled phylogenies for visual

comparison.

Results
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In the pruned phylogeny linked to the geographic occurrence data, 52 OTUs were
retained in the Equinae phylogeny, resulting in a tree spanning 17.2 Ma. In the
larger Canidae phylogeny, 93 OTUs were retained in a tree spanning 34.9 Ma. An
empirical estimate of the fractional abundance of individual OTUs against the
background counts of taphonomic control occurrences, averaged across all OTUs,
yields an empirical fof 0.031 for Equinae, and 0.0086 for Canidae. This suggests
that a typical species from Equinae is about four times more abundant than a typical
species from Canidae. This is in accord with the common observation that

herbivores are usually much more abundant than carnivores.

Table 1 shows the likelihood scores and parameter inferences for the different
models and clades. Interestingly, unlike all but a few clades in previous analyses of
cladogenesis models (Matzke 2013e), both Equinae and Canidae fail to reject DEC
and DIVA in favor of DEC+] and DIVA+] in likelihood ratio tests with a significance
cutoff of 0.05. This was true for both the standard MO0 analysis (p=0.33 and 0.48 for
Equinae, and p=0.17 and 0.12 for Canidae) and the D1 analysis with imperfect
detection (p=0.43 and 0.64 for Equinae, and p=0.13 and 0.32 for Canidae). However,
in all analyses, the BAYAREA cladogenesis model was rejected in favor of
BAYAREA+] (for Equinae, p=0.012 under M0 and 0.0096 under D1; for Canidae,

p=0.0009 under MO and 0.0036 under D1).
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Table 2 shows the AICc scores for the different models and clades. Note that the
“data” is actually formally different between the M0 and D1 analysis - MO used
simple OTU presence and absence as the data, where as D1 uses counts of
occurrences and taphonomic control occurrences. Model likelihoods and AICc can
be directly compared on the same dataset, but are not meaningfully compared
between different datasets. However, the relative model probabilities (Table 3) may
be directly compared, and the result appears to be high consistency in the weight
assigned to each cladogenesis model under M0 and DO. For Equinae, BAYAREA+] is
the strongly favored model, with BAYAREA without founder-event speciation
trailing. For Canidae, both DEC and DEC+] receive approximately equal support,
which in effect means that the DEC+] model has converged closely on the DEC

model, with the j parameter close to zero and supplying only a slight advantage.

Although model choice is highly consistent, the two clades tell somewhat different
stories in terms of parameter inference (Table 1; Figure 3). For Equinae, all
parameter inferences are very similar between M0 and D1 (R?=0.90 for d, R?=0.97
for e), with the exception of the inference of j under DIVA+] discussed below.
However, for Canidae, there is more difference in the parameter estimates under M0

and D1 (R?=0.74 for d, R?=0.89 for e).

The inference of j is also usually similar, with the major exception of DIVA+] under
detection model D1. Here, optimx diagnostics warned of convergence problems, and

jjumps to over 10 times the value estimated with other models. A hint about what is
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going on is shown by examine the inference under DIVA without founder-event
speciation under D1. Here, the f parameter is elevated by an order of magnitude or
more over either the empirical estimate, or the ML estimate under the other models.
[t appears that the average relative of abundance of OTUs interacts strongly with the
DIVA cladogenesis model and with the founder-event speciation process in DIVA+].
The issue needs further exploration; until then, usage of DIVA-derived models in
combination with this model for imperfect detection is discouraged. In any event,
DIVA and DIVA_] are consistently the lowest-scoring cladogenesis models in all
analyses. This is an important result, as the DIVA program, being a parsimony
method not requiring a time-scaled tree, has been one of the most popular programs

for inference of historical biogeography on cladograms that include fossils.

It appears that inference of j and f interact in most analyses (Table 1); when j is a
free parameter, f tends to be much lower, and closer to the empirical estimates of f.
This is reminiscent of one of the results of a detailed comparison of DEC and DEC+]
models (Matzke 2013d), namely, when founder-event speciation is a real process,
but is left out, the model is more likely to infer a positive value for e, even though the
true value is 0. Increasing the value of f means that the chance of failing to sample an
OTU, when the OTU is in fact present, is lower. This means that the model will take
absence data more literally as strong evidence of true absence. Perhaps with the
jump dispersal process added to the cladogenesis models, there is less phylogenetic
conservation of geographic range, and thus it is more difficult for the model to be

confident that an absence of occurrences represents a true absence.
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Discussion and Conclusion

The fact that Equinae strongly favor the BAYAREA or BAYAREA+] model, and that
Canidae favor DEC or DEC+] (Table 3) suggests that different processes were
important in the biogeography of the two groups. Notably, the BAYAREA model
completely excludes vicariance, only allowing complete sympatric speciation, where
the entire ancestral range is copied to both daughters. This should raise concerns
about Brooks’ Parsimony Analysis and similar area cladogram-based methods,
which rely on a strong prior assumption of the importance of vicariance for
explaining distributions. Founder-event speciation does add an allopatric form of
speciation to the cladogenesis process in Equinae, but one fundamentally different
than vicariance. The founder-event speciation process in the Equinae analyses,
while a statistically significant improvement, is much weaker than in most of the

island and non-island clades surveyed in previous work (Matzke 2013e).

Canidae, on the other hand, fits traditional models much better, favoring the DEC
model used by LAGRANGE (Ree & Smith 2008). It is tempting to suggest that the
different models favored by the Equinae and Canidae datasets mean that different
cladogenesis processes dominate. [t seems plausible that horses in the Miocene and
Pliocene could be interpreted as experiencing a large amount of sympatry, due to
wide ranges and specialization on different feeding niches (MacFadden 1999).

However, fossil Canidae also often exhibited widespread ranges, a large amount of
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sympatry, and niche differentiation based on body size and feeding specialization
(Wang, Tedford & Taylor 1999; Tedford, Wang & Taylor 2009), so this explanation
is not entirely satisfactory. Inspection of Figures 4 and 5, which show the estimates
of ancestral ranges for Equinae and Canidae under their respective best models, give
somewhat more guidance. The Canidae phylogeny (Figure 5) has a large number of
nodes where direct ancestors (“hooks”) had widespread ranges with occurences in
all areas (a geographic range of ABCD), and later descendants had a mixture of
widespread and narrow descendants. This is a pattern expected from simulations
under the DEC model, where sympatric-subset speciation is an important process
(Matzke 2013d; Matzke 2013e). The horses (Figure 4), on the other hand, rarely had
such widespread ancestors, often occupying only 2 or 3 areas. This may indicate
that horses were more restricted by area-specific habitat (e.g. grasslands versus
forest), where as the carnivorous canids were effectively more generalist in habitat

preferences, finding prey or scavenging opportunities in all habitats.

In conclusion, this study has demonstrated several points. First and most
importantly, we have shown that fossil geographic range data may be incorporated
into likelihood inferences of geographic range data in much the same way that living
species are currently used, as long as the computational implementation includes
methods to distinguish terminal OTUs and direct ancestor OTUs. Inclusion of fossils
could already be done in LAGRANGE, but only if each fossil OTU was a terminal
taxon and not a direct ancestor, and only if the analysis was not time-stratified.

BioGeoBEARS accounts for both contingencies. Second, we have demonstrated how
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a simple model of imperfect detection can be used in likelihood analyses of fossil
data, and its influence on inference of parameters and models assessed. In the
Equinae and Canidae, the effect of an imperfect detection model was minimal in
terms of model choice and ancestral range estimation. These groups were chosen
primarily because of their extremely good fossil record and taxonomic status, out of
the concern that weaker groups would lack sufficient data to reliably infer
parameters and true presence and absence. Ironically, this choice may have meant
that the data were “too good”, resulting in little difference between inference under
the assumption that a face-value reading of occurrences gave the true range, and
inference under a model of imperfect detection. If the fossil data are good enough,
imperfect detection models are not needed! An obvious future study would apply
this method to groups with weaker fossil records, or alternatively, take the Equinae
and Canidae and progressively down-sample their occurrences to assess when a

detection model is useful, and where reliable inference breaks down completely.
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Table 1. Parameter inferences and likelihoods for cladogenesis models with and without the
model for imperfect detection.

Det. #

Clade Model Model #tips LnL params d e j f
Equinae DEC MO 52 -146.9 2 0.13 0.10 0 NA
Equinae DEC+J MO 52 -146.4 3 0.12 0.09 0.03 NA
Equinae DIVA MO 52 -153.9 2 0.18 0.14 0 NA
Equinae DIVA+) MO 52 -153.7 3 0.17 0.13 0.03 NA
Equinae BAYAREA MO 52 -142.2 2 0.12 0.23 0 NA
Equinae BAYAREA+) MO 52 -139.1 3 0.09 0.15 0.04 NA
Equinae DEC+f D1 52 -139.9 3 0.13 0.10 0 0.07
Equinae DEC+J+f D1 52 -139.6 4 0.13 0.09 0.02 o0.01
Equinae DIVA+f D1 52 -146.4 3 0.18 0.12 0 0.10
Equinae DIVA+J+f D1 52 -146.4 4 0.19 0.15 046 0.01
Equinae BAYAREA+f D1 52 -135.3 3 0.12 0.22 0 0.01
Equinae BAYAREA+J+f D1 52 -131.9 4 0.09 0.13 0.04 o0.01
Canidae DEC MO 93 -252.6 2 0.12 0.06 0 NA
Canidae DEC+J MO 93 -251.7 3 0.11 0.05 0.05 NA
Canidae DIVA MO 93 -261.4 2 0.14 0.06 0 NA
Canidae DIVA+] Mo 93 -260.2 3 0.13 0.05 0.06 NA
Canidae BAYAREA MO 93 -265.2 2 0.13 0.19 0 NA
Canidae BAYAREA+) MO 93 -259.7 3 0.11 0.14 0.09 NA
Canidae DEC+f D1 93 -155.4 3 0.19 0.04 0 0.32
Canidae DEC+HI+f D1 93 -154.2 4 0.16 0.01 0.10 0.01
Canidae DIVA+f D1 93 -161.4 3 0.23 0.05 0 0.24
Canidae DIVA+J+f D1 93 -160.9 4 0.24 0.07 1 0.01
Canidae BAYAREA+f D1 93 -160.5 3 0.20 0.18 0 0.11
Canidae BAYAREA+J+f D1 93 -156.2 4 0.14 0.11 0.17 o0.01
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Table 2. AlCc values for each model.

Clade: Equinae  Equinae Canidae Canidae
Detection: MO D1 MO D1
DEC 298.1 286.4 509.4 317.1
DEC+] 299.3 288.1 509.7 316.9
DIVA 312.1 299.4 527.0 329.1
DIVA+] 313.9 301.7 526.7 330.3
BAYAREA 288.7 277.2 534.6 327.3
BAYAREA+) 284.7 272.7 525.7 320.9

Table 3. Relative model probabilities, based on AlCc.

Clade: Equinae  Equinae Canidae Canidae
Dispersal: MO D1 MO D1
DEC 0% 0% 54% 43%
DEC+J 0% 0% 46% 50%
DIVA 0% 0% 0% 0%
DIVA+] 0% 0% 0% 0%
BAYAREA 12% 9% 0% 0%
BAYAREA+) 88% 91% 0% 7%
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CAPTIONS

Figure 1A. Traditional inference procedure in likelihood analyses of historical
biogeography on a phylogeny.

Figure 1B. DAG (Directed Acyclic Graph; Link and Barker, 2009) for the model of
imperfect detection implemented in BioGeoBEARS. DAGs provide simple graphical
representations probabilistic models, e.g. for hierarchical likelihood or Bayesian
modeling. In a DAG, fixed data (grey) is hypothesized to be a function (arrows) of a
model with unknown parameters (white).

Figure 2. The discrete geographic regions used in this analysis.

Figure 3. The ML estimates of parameters under the MO model (x-axis) and D1
model of imperfect detection (y-axis).

Figure 4. BioGeoBEARS graphical output, showing the Equinae phylogeny and
most-probable ancestral ranges (4A) or pie charts of all ancestral states (4B). These
are the most-probable ancestral ranges under the global ML model parameters,
under the best model for Equinae, BAYAREA+], using the D1 detection model.
Regions are as follows A (blue): Western United States; B (green): Rocky Mountains;
C (yellow) Great Plains; D (red) Gulf Coast. Combinations of areas are represented
by mixing colors, and white represents a range of all areas (ABCD). The x-axis
actually depicts millions of years before the mid-point of the Blancan NALMA, where
the latest-occurring OTU in the analysis is found.

Figure 5. BioGeoBEARS graphical output, showing the Canidae phylogeny and most-
probable ancestral ranges (5A) or pie charts of all ancestral states (5B). These are
the most-probable ancestral ranges under the global ML model parameters, under
the best model for Equinae, BAYAREA+], using the D1 detection model. Regions are
as follows A (blue): Western United States; B (green): Rocky Mountains; C (yellow)
Great Plains; D (red) Gulf Coast. Combinations of areas are represented by mixing
colors, and white represents a range of all areas (ABCD).
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