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ABSTRACT OF THE DISSERTATION 

 

Using Knowledge Encoded in Graphical Disease Models to Support 

Context-Sensitive Visualization of Medical Data 

 

by 

 

William Hsu 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2009 

Professor Alex A.T. Bui, Chair 

 

Given the large quantity of diverse, heterogeneous data in a typical patient record, us-

ers spend much of their time and effort finding relevant information to help accom-

plish their tasks. One of the greatest problems in today’s healthcare environment is 

matching the increased capability of gathering patient data with a comparable ability 

to understand, analyze, and act rationally upon this information.  This dissertation at-

tempts to bridge this gap by presenting methods for creating context-sensitive visuali-
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zations using graphical disease models. Building upon past efforts in Bayesian belief 

networks and explanation generation, this work explores how the model’s variables, 

defined relationships, and probabilities are used to identify which data elements in the 

patient record are important and how the information should be presented for a partic-

ular context. A data model, called the visual dictionary, is used to integrate contextual 

information from graphical disease models and other knowledge sources (e.g., ontolo-

gies and user/task models) to generate instructions for laying out patient data in a 

graphical user interface. These concepts are implemented in two separate applications 

that demonstrate how context-sensitive visualizations can: 1) be applied towards help-

ing users query large biomedical repositories; and 2) generate an integrated, longitu-

dinal view of a multimedia patient record. The applications were used to evaluate the 

feasibility of using graphical disease models to retrieve relevant documents and to ob-

tain feedback on the adaptive interfaces through pilot usability studies. Initial results 

from the pilot studies were positive overall. Developing context-sensitive visualiza-

tions that facilitate users with querying these models and understanding the results is a 

significant step towards using collected data to improve patient care at the bedside. 
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  CHAPTER 1  
 

Introduction 
 

1. Overview 

Graphical models are becoming increasingly popular for modeling complex phenome-

na and reasoning under uncertainty in many domains, including medicine. In addition 

to being able to answer a wide range of probabilistic queries, graphical models can be 

used to explain how a certain conclusion is obtained, providing insight into how va-

riables in these models interact with each other. This dissertation expands upon expla-

nation generation with the purpose of identifying a subset of data that is relevant for a 

given situation (e.g., consultation with the primary care physician) and adapting the 

presentation of that data based on the changing context. Visualization is an important 

aspect of the medical decision making process because providing relevant patient in-

formation in a timely manner is critical to improving a physician’s ability to diagnose 

and treat a patient. This work exploits properties of the graphical model, such as its 

variables, encoded relationships, and parameters, to determine how data in a patient’s 

record can be integrated and presented in a clinical display. This process involves 

three steps: 1) determining what data elements from the patient record are relevant to a 

user for a given situation; 2) influencing how data elements are mapped to visual re-

presentations; and 3) dictating how multiple visual representations are combined and 
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laid out on the screen. The result is a context-sensitive display that tailors how infor-

mation is presented based on medical condition, user, and task. This introductory 

chapter provides the motivation for this dissertation research, outlines the aims of this 

work, and summarizes its contributions. 

1.1. Background and Motivation 

Medicine has benefited from improvements in diagnostic technologies that provide an 

unprecedented amount of data spanning a wide spectrum of types (e.g., clinical docu-

ments, medical images) and scales (e.g., molecular, cellular, tissue). For instance, gene 

microarray experiments enable the analysis of thousands of genes simultaneously, 

providing a detailed picture of a patient’s susceptibility to certain diseases. However, 

it remains a challenge to integrate and understand this data in the context of the entire 

patient record. Ongoing efforts to create an electronic medical record (EMR) that digi-

tally stores data collected during patient encounters will only increase the amount of 

information available [5]. However, having large amounts of data that are electronical-

ly accessible do not necessarily translate to improved physician efficiency, reduced 

costs, or ultimately, better patient outcomes. A challenge in today’s healthcare envi-

ronment is matching the increased capability of gathering patient data with a compa-

rable ability to translate this knowledge into improved care at the bedside. One hurdle 

is that much of the data does not lend itself to formal, automated analysis: additional 

steps are needed to abstract pertinent knowledge from the data. Along this front, new 

techniques for abstracting this data using statistical and probabilistic models have been 
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developed, allowing users to perform classification and prediction tasks based on a 

given individual’s data. 

In this work, I focus on a class of probabilistic models called graphical models, and a 

particular subset of graphical models called Bayesian belief networks (BBN). One 

drawback of using BBNs—and graphical models, in general—in clinical practice is 

the lack of an integrated and intuitive interface that assists users with querying the 

model and understanding the results. Currently, these models are commonly visualized 

as a graph where highlighted nodes correspond to selected variables. While a physi-

cian could be trained to manipulate and understand this representation, this interface is 

a departure from the traditional graphical user interface (GUI) of an EMR. Rather than 

visualize the graph directly, I use the BBN to influence how the EMR is displayed on 

the screen. My work leverages properties of the graphical disease model to identify 

influential nodes and paths in the model for a given context and then use a data model 

called the visual dictionary to translate this explanation into a visual display. 

1.2. Overview of Context-sensitive Visualization 

Given the wealth of patient data, visualization of the medical record is critical to help-

ing physicians understand and act on the available information. While different para-

digms (e.g., source-oriented, problem-oriented, time-oriented; see Section 2.4.1) have 

been suggested for integrating and laying out patient data, the strengths of each ap-

proach need to be combined into one truly comprehensive visualization of the medical 

record. One aspect of the user interface that has yet to be explored is the role that con-
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text plays in influencing how the data is displayed. Context is defined as information 

that provides a better understanding of an entity and the situation that it is in [6]. Here, 

I define an entity as a data element in the patient record. Context can therefore be 

represented as answers to questions such as why was the data element recorded; how 

was the data element recorded; what other entities is the element related to; and who 

should be able to access it? The utility of a user interface is dependent in its ability to 

provide the user with the tools not only for finding and viewing relevant parts of the 

patient record quickly but also for understanding the context that supplements the us-

er’s understanding of the situation. Taking a context-sensitive approach may help us-

ers identify cause-effect relationships that would not be apparent in information visua-

lizations alone. Bui et al. [7] first explored the concept of a context-sensitive visualiza-

tion in medicine; their interface, TimeLine, grouped multiple, simpler visualizations 

together and generated a new composite presentation based on how the user interacted 

with the system. 

The process of generating a context-sensitive visualization from patient data can be 

decomposed into several steps: characterizing the data that is available in the patient 

record and able to be displayed; identifying the data that needs to go into the display; 

prioritizing the data based on relevance to the user’s actions; relating the data ele-

ments; selecting the appropriate visual metaphor for the data; and finally, laying out 

the visual metaphors. This process is summarized in Figure 1.1. While context may be 

obtained from various sources (e.g., user interaction, task model, knowledge sources), 
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this work primarily explores obtaining context from graphical disease models by ex-

tending algorithms to analyze aspects of the model to generate rules that guide how 

information is presented on the screen. 

1.3. Aims of the Dissertation 

A patient record typically contains a large amount of diverse data collected over the 

course of a chronic illness or even a patient’s lifetime. While visualizations provide 

tools for viewing and interacting with this data, the task of filtering irrelevant informa-

tion and linking disparate pieces of evidence together remains the user’s responsibili-

ty. Much time and effort is spent searching through the data to find evidence that is 

relevant to diagnosing or treating a patient. My work attempts to address this problem 

by using context-sensitive visualization as a way to filter and adapt the presentation of 

patient data. This goal is accomplished through two subtasks: 

 
Figure 1.1: A framework for context-sensitive visualization. Patient data is first characterized using 
information extraction techniques and stored in a relational database. The structured data is used to 
generate graphical disease models, which provide information for tailoring the user interface based 
on changing contexts. As the user interacts with the interface, the context is re-evaluated, and the 
display is updated.  



   

6 

1. Using knowledge encoded in the structure and attributes of graphical disease 

models to determine the relevance of a given piece of information in the pa-

tient record; and 

2. Integrating knowledge from the model with characterizations of the data and 

available visualizations to influence how information is rendered on the dis-

play. 

The first subtask seeks to leverage domain knowledge in graphical disease models as a 

way to filter and relate data elements in the patient record. My dissertation explores 

several algorithms for traversing a graphical model and characterizing the relation-

ships that exist among variables. I also examine how other knowledge sources such as 

ontologies and user/task models may be used to further supplement the information 

provided by a disease model.  

The second subtask results in the development of a visual dictionary. The visual dic-

tionary is a data model that relates data elements with composition rules and graphical 

attributes (e.g., transparency, layering) to influence how data elements are prioritized 

and rendered on the screen. My work uses the visual dictionary to integrate knowledge 

from disease models and other knowledge sources and to match data elements with 

appropriate visualizations based on their characterizations. 

Two applications have been implemented to demonstrate the utility of context-

sensitive visualization in clinical practice: a visual query interface (VQI) [8], which 



   

7 

provides clinicians with the ability to query large repositories of biomedical imaging 

data; and an adaptive electronic health record (AdaptEHR) viewer, which selectively 

presents patient data in a longitudinal display based on context. In VQI, the user can 

search a large database of images and clinical data by posing queries using graphical 

metaphors that visually represent variables and states of the underlying disease model. 

The structure of the model is used to guide the user through the query formulation 

process. In AdaptEHR, the visual dictionary is leveraged to generate a summary dis-

play of patient data for a given medical problem, user, and task. The disease model is 

used to guide the identification of specific data elements (e.g., documents, test results) 

that are the most relevant to the selected disease, and the composition rules are used to 

combine and lay out related elements. 

1.4. Summary of Contributions 

The major contributions of this work are: 

 Algorithms for characterizing properties of the graphical disease model as quan-

titative measures of relevance and influence. Building upon previous work in ge-

nerating explanations from BBNs [9-12], I characterize disease models by examin-

ing their variables, structures, and parameters to determine how data elements in 

the patient record relate to one another and ultimately, how they are to be pre-

sented to the user. First, variables in the disease model are mapped to correspond-

ing data elements in the patient record using the process of query expansion; this 

process is used to identify the data elements that will be displayed. Then, the algo-
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rithms for computing paths of influence, influential evidence [11], strength of in-

fluence [9], and value of information [12] are applied towards filtering and priori-

tizing elements in the patient record based on changing contexts. Section 3.2 de-

tails the approach for using graphical models to determine relevancy and influence 

of variables for a particular context. 

 An approach for integrating disparate knowledge sources (e.g., ontologies, us-

er/task models) to provide additional context for customizing a display. Ontologies 

such as the Unified Medical Language System (UMLS) [13], National Cancer In-

stitute (NCI) Thesaurus [14], and RadLex [15], provide rich sources of knowledge 

about a concept and how it relates with other terms in a domain. My work uses the 

terms, semantic types, and relationships defined in these ontologies to relate data 

elements with one another. I also explore how user models help elucidate the us-

er’s information needs. Section 3.4 of this dissertation provides a discussion on 

how these knowledge sources are used to provide context. 

 A visual dictionary to translate contextual information into rules that influence 

how data is presented on the screen. The visual dictionary integrates contextual in-

formation provided by the graphical disease model and other knowledge sources 

into a set of rules that dictate how the display is generated. The visual dictionary 

first selects an appropriate visual metaphor for each data element that has been 

identified for display. A set of composition rules is then used to lay out visual me-
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taphors on the screen. The visual dictionary and composition rules are detailed in 

Section 3.5.  

 Two clinical applications that use graphical disease models and the visual dictio-

nary to adapt the presentation of the medical record based on context. Working in 

collaboration with radiologists, I have created two different applications that ad-

dress practical problems of information retrieval and visualization of multimedia 

patient records. The first application, visual query interface, demonstrates how the 

BBN can adapt the user interface to guide users with formulating complex queries 

to the underlying disease model and how the BBN is applied towards retrieving 

similar cases. The second application, an adaptive electronic health record viewer, 

demonstrates how the BBN can be used to highlight and spatially organize patient 

information based on how relevant it is to the user and task. These applications are 

discussed in Chapter 4. 

1.5. Organization of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 provides a brief 

tutorial on the theoretical foundations of graphical models and reviews related work in 

developing knowledge sources and medical visualization. Chapter 3 describes the al-

gorithms used to extract knowledge encoded in graphical models and discusses the 

visual dictionary. Chapter 4 details the implementation of two prototype applications: 

VQI and AdaptEHR. Results from a pilot evaluation are briefly presented in Chapter 
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5. Finally, Chapter 6 concludes with a discussion of the limitations of this work and 

future directions. 
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  CHAPTER 2  
 

Background 

 

2. Overview 

My work in context-sensitive visualization builds upon past work done in the areas of 

graphical models, knowledge representation, and information visualization; this chap-

ter surveys developments in each area. The first section lays a theoretical foundation 

for understanding graphical models. Section 2.2 surveys other sources of knowledge 

that can be used to provide context: ontologies and user/task models. Section 2.3 re-

views existing work on medical visualizations by expanding upon the object-oriented 

taxonomy described in [16]. Finally, Section 2.4 presents related efforts towards creat-

ing a longitudinal, integrated display for viewing the electronic medical record.   

2.1. Graphical Disease Models 

The creation of disease models poses several challenges [17]: 1) the uncertainties in-

herent to medical knowledge must be captured; 2) the models need to be sufficiently 

intuitive so that domain experts (e.g., physicians) can understand the explanations 

proposed by the system; and 3) the models must be practically analyzable by algo-

rithms to support querying. While systems using propositional logic (e.g., rule-based) 

are capable of encoding medical knowledge (e.g., if patient exhibits a seizure, then the 

patient may have a brain tumor), they are not able to handle exceptions that have not 
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been defined in the knowledge base (e.g., a seizure is not always a result of a brain 

tumor; it could be related to epilepsy). [17] discusses three approaches that have been 

explored to overcome this limitation: 1) augmenting the set of rules to handle excep-

tions; 2) replacing the hard truth value associated with each proposition with a genera-

lized numeric truth value that captures the confidence in the rule; or 3) approaching 

the problem from a perspective using probability theory. Among the available reason-

ing approaches, probability theory is particularly well-suited for modeling clinical ob-

servations because of its clear semantics in terms of beliefs or frequencies, and its abil-

ity to take advantage of a problem’s structure to reduce the computational burden of 

reasoning without giving up clarity and correctness. When coupled with graph theory, 

the resulting representation, called a graphical model, provides a qualitative language 

for probabilistic and causal notions that can be understood and manipulated visually 

rather than having to perform the equivalent algebraic calculations of probability dis-

tributions. Graphical models provide an intuitive way of representing and visualizing 

the relationships among many variables. While probabilistic models may be formu-

lated and solved using purely algebraic manipulation, the graph representation gives 

insight into the properties of the model, such as conditional independence relation-

ships between the variables. 
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A graph is comprised of nodes and connected by edges. Each node represents a ran-

dom variable, and each edge represents probabilistic relationships between nodes1

Definition: A graph G is defined by a collection X of nodes and a set E of edges be-

tween those vertices. 

.  

 

Two main types of graphical model are depicted in Figure 2.1: undirected (e.g., Mar-

kov random fields) and directed (e.g., Bayesian belief networks). 

Definition: An edge ( , )e i j=  connecting nodes i  and j  is undirected if it is symme-

tric with respect to i  and j  and ( , ) ( , )i j j i= . 

Definition: An edge ( , )e i j=  connecting nodes i  and j  is directed if it starts at i  and 

ends at j  and ( , ) ( , )i j j i≠ . 

                                                 
 
1 To differentiate between variable names and the concepts that they represent, variable names are writ-
ten in Arial. 

 
Figure 2.1: Two types of graphical models exist: (a) An undirected Markov random field. (b) A 
directed acyclic graph called a Bayesian belief network. 
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Definition: When there is a direct link iX   jX  from iX  to jX  then iX  is said to be 

the parent of jX  and jX  is the child of iX . 

Definition: A directed graph is said to be cyclic if it has at least one cycle, otherwise it 

is acyclic. 

The user may pose queries to the graph by selecting and specifying values to its nodes. 

A node becomes instantiated when the user sets the variable to a specific value. Nodes 

that have been selected by the user have special semantics; they can either be classi-

fied as an evidence node or a target node. 

Definition: Evidence nodes represent variables that have been instantiated by the user. 

For example, for the model depicted in Figure 2.2, the node smoking can be instan-

tiated as one of two states; true or false. When a user specifies that smoking = true, 

then the node is called an evidence node. 

Definition: Target nodes represent variables whose outcomes are of particular interest 

to the user. 

For instance, emphysema is a logical target node for users who desire to predict 

whether a patient has emphysema given whether or not he/she smokes, has a cough, or 

has asthma. 
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2.1.1. Bayesian belief networks 

A Bayesian network is an instance of a graphical model whose edges are directed. Ma-

thematically, a Bayesian network is a directed acyclic graph (DAG) whose nodes 

represent random variables and edges that represent associations, or in some cases, 

causal links between nodes. The edges in the DAG represent the probabilistic influ-

ences between the variables. The absence of links in the graph conveys interesting in-

formation about the properties of the class of distributions represented by the graph. A 

variable Xi is dependent on its parents and children in the DAG but is conditionally 

independent of any of its non-descendents given its parents, a property known as the 

Markov condition. 

 

Figure 2.2: A directed graphical model called a Bayesian belief network that represents the effects 
of smoking. 

 



   

16 

The structure of the directed graph represents a factorization of the joint probability 

distribution. Consider a joint probability distribution P(U) where U is a set of variables 

X1…Xn that are represented in the DAG. Each variable Xi in the DAG is specified by a 

set of conditional probability distributions: P(X | parents(X)). Each of these distribu-

tions describes the joint effect of a specific combination of values for the parents of Xi 

on the probability distribution over the values of Xi. These sets of conditional probabil-

ity distributions define a unique joint probability distribution that is factorized over the 

graph’s topology using the following equation: 

( ) ( | ( ))
X

P U P X parents X= ∏  

This equation is called the Markov factorization of P(U). Figure 2.3 illustrates an ex-

ample Bayesian network that models how the histological grade of a brain tumor re-

lates to other pathological features. When the conditional probability table of a single 

variable—in this case, multifocal lesion—is examined, only a subset of the probabili-

ties is shown. Nevertheless, if all of the conditional probability tables in the model are 

 

Figure 2.3: A Bayesian belief network with the conditional probability table for multifocal lesion 
shown. 
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multiplied together, the full joint probability distribution is obtained. This property 

enables the creation of computationally manageable models: without conditional inde-

pendencies, the full joint probability distribution requires O(2n) probabilities for n bi-

nary variables, but in comparison, the factorized model requires only O(n2k) where k 

is the maximum number of parents feeding into a node. 

The primary application of disease models is to answer clinically relevant questions 

using the patient’s data. Several different types of queries can be posed to a BBN: 

probability of evidence, posterior marginals, most probable explanation (MPE), and 

maximum a posteriori (MAP). The reader is referred to [18] for a comprehensive re-

view of these algorithms. In my work, two types of queries, MPE and MAP, are pri-

marily used and are described further below: 

 Most probable explanation (MPE): The objective of an MPE query is to identify 

the most probable instantiation of the entire network (i.e., the state of all evidence 

variables) given some evidence. For example, from Figure 2.2, an MPE query may 

ask the following: given that the patient is a smoker and presents with a cough, 

what is the most likely state of the remaining evidence variables (i.e., patient has 

emphysema, patient has asthma)? A specific statement of an MPE query is as fol-

lows: let X1, X2, …, Xn represent the evidence variables, and e the provided evi-

dence, then an MPE attempts to find an instantiation of x1, x2, …, xn such that P(x1, 

x2, …, xn | e) is maximized. Note that the most probable explanation cannot be ob-

tained directly from individual conditional probabilities: if x1, x2, …, xn are chosen 
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to maximize P(xi | e) rather than the global problem, then the choice of xi is not 

necessarily the most probable explanation. 

 Maximum a posteriori (MAP): Let M be some subset of variables in the belief 

network, and e some evidence; the objective of a MAP query is to find an instan-

tiation of m such that P(m | e) is maximized.  To illustrate, consider Figure 2.2 

again; a MAP query to this model would be: what the most likely state for emphy-

sema is given that the patient presents with a cough? Note that this query does not 

attempt to provide information on asthma or smoking. MPE is actually a special 

case of a more general type of query that attempts to find the most probable instan-

tiation for a subset of network variables (MPE, therefore, is simply the situation 

when the subset is the entire set of evidence variables in the network). 

 

 

Figure 2.4: Different ways that variables can be connected in a directed acyclic graph: (a) direct 
connection; (b) serial connection; (c) divergent connection; and (d) convergent connection. 
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2.1.2. D-separation 

The DAG structure of the BBN allows us to follow the flow of information from one 

variable to all other variables in the network. There are four ways that information is 

transmitted through a variable; these are illustrated in Figure 2.4. Each case is ex-

amined to determine whether any pair of variables is independent given the evidence 

entered into the model using a criterion called d-separation. The formal definition is 

as follows: 

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is 

said to d-separate X from Y, denoted <X | Z | Y>D, if there is no path between a node in 

X and a node in Y along which the following two conditions hold: 1) every node with 

converging arrows is in Z or has a descendent in Z; and 2) every other node is outside 

Z [12]. 

The following four cases exemplify how d-separation works: 

 Direct connection. If X and Y are connected by an edge, then X and Y are depen-

dent, under the empty condition. As illustrated in Figure 2.4a, knowing that the pa-

tient has been exposed to asbestos will increase the belief that he is at risk of lung 

cancer. 

 Serial connection. Given a series of nodes, X, Z, and Y, where X is connected to Y 

through Z, if Z is not observed, X and Y are dependent. In other words, evidence 

may be transmitted through a serial connection unless the state of the variable in 
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the connection is known. As in the previous example, knowing that the patient has 

been exposed to asbestos increases the belief that he is at risk of lung cancer. 

However, if it is already known that the patient has asbestosis, then knowing that 

he has been exposed to asbestos becomes redundant (Figure 2.4b). 

 Diverging connection. If Z is the parent node of X and Y, and Z is not observed, X 

and Y are dependent. In Figure 2.4c, knowing that the patient has a positive com-

puted tomography (CT) scan will increase the belief that he also has a positive 

needle biopsy. However, if it has already been confirmed that the patient has lung 

cancer, knowing that he has a positive CT scan will not increase the belief of a 

positive result from a biopsy. 

 Converging connection. In the case where Z is the child of X and Y, neither Z nor 

any of its descendants are observed, X and Y are independent. For instance in Fig-

ure 2.4d, if the patient is known to have lung cancer, knowing the patient has a 

cough will increase the belief that he also has dyspnea through a process called 

explaining away. Also, without knowing that the patient has lung cancer, if the pa-

tient has a positive CT scan, then this knowledge increases the belief that he has 

lung cancer and therefore makes the beliefs of cough and dyspnea dependent. 

The concepts of conditional independence and d-separation are important for deter-

mining whether an arbitrary node in the model is relevant to a specified target node. 

Based on this property, the disease model can be used as a source of determining 
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whether a data element is relevant for a particular context; Section 3.2 explores this 

problem in further detail. 

 

2.1.3. Markov blanket 

While the previous section describes a generalized rule for identifying conditional in-

dependencies in the model using d-separation, this section deals with a special case 

called the Markov blanket. A Markov blanket is a set of nodes comprised of the target 

node’s parents, children, and spouses. When instantiated, the Markov blanket isolates 

the target node from the rest of the network. Consider the example of a Markov blan-

ket depicted in Figure 2.5. If the selected node is necrosis, its Markov blanket, accord-

ing to the model, is comprised of: radiation therapy, tumor size (parents); rim contrast, 

midline shift (children); and contrast enhancement (spouses). When evidence is pro-

 

Figure 2.5: The Markov blanket of the node necrosis (dotted outline) consists of the node’s parents, 
children, and spouses (solid outlines). Given knowledge about the nodes in the Markov blanket, all 
other nodes in the network are conditionally independent of necrosis. 
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vided for all of the variables in necrosis’ Markov blanket, then necrosis is independent 

of steroids, edema, mass effect, and ventricular compression. 

2.1.4. Extensions of BBNs 

Extensions to the traditional Bayesian belief network framework have been explored 

to provide the ability to encode additional semantics. Two of them are reviewed here: 

annotated BBNs and influence diagrams. 

2.1.4.1. Annotated BBNs 

Additional metadata about the model may be stored about the model either as part of 

the file structure in which the model is saved or using external sources. Metadata can 

include information about assumptions made when the model was constructed, con-

straints for using the model, or links to published literature that support the structure 

and parameters specified in the model. For example, an annotated Bayesian belief 

network [19] provides a framework for appending additional contextual information to 

each variable. Annotations are useful for adding semantic knowledge such as encoding 

the concept unique identifier that links the variable to a standard concept in a medical 

lexicon. Additional information about the node color, position, and type can also be 

retained. Node color is a potential method for specifying user-defined groups of va-

riables, which can be used by an application to recall multiple related variables. This 

information is then used to determine how a variable is handled or classified. In my 

work, annotations are used to encode information that maps continuous values ex-
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tracted from the patient record to discrete states associated with each variable; annota-

tions are discussed further in Section 3.2.1.3.  

2.1.4.2. Influence diagram 

Influence diagrams are a generalization of Bayesian networks: not only do they en-

code knowledge about a domain, but they are also able to select a strategy that max-

imizes the chance of a desired outcome by weighing each choice with a cost. Influence 

diagrams permit different configurations of this model and potential choices to be con-

sidered in terms of quantifiable values supplied via a utility function, U(a), where a 

represents an action. The aim, therefore, is to identify the configuration and actions 

that maximize the utility functions that solve argmaxA∑U(x,a)P(x | e) where A 

represents a set of actions. Influence diagrams consist of nodes and edges as their 

graphical model counterparts but reclassify the nodes into three types: 

 Chance nodes, which appear as ovals, are random variables, similar to the evi-

dence variables in a BBN. Like evidence variable nodes, CPTs are associated with 

chance nodes. Chance nodes can have both decision and other chance nodes as 

parents. 

 Decision nodes, which appear as rectangles, represent those points in the 

state/process where a choice of actions can be made; the result of a decision is to 

influence the state of some other variable (e.g., a chance node). An influence dia-

gram must contain at least one decision node. 
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 Utility nodes, which are represented as diamonds, measure the overall “outcome” 

state, with the goal of optimizing the utility (i.e., maximizing) based on the contri-

buting chance, decision, and causal factors. 

 

Additionally, some influence diagrams include deterministic nodes (drawn as a double 

oval), which are defined as nodes with constant values or algebraically calculated from 

parent nodes’ states. Once the parent nodes are known, the child node’s state is defini-

tively assigned. The paths define the sequence in which decisions are made. An exam-

ple influence diagram is shown in Figure 2.6. 

Influence diagrams are a key representation used in evidence-based medicine (EBM). 

An underlying principle of EBM is that decisions take into consideration an individu-

al’s preferences (e.g., with respect to diagnostic and treatment options): by fixing the 

selection within a decision node, an influence diagram can view a patient’s prefe-

 

Figure 2.6: An influence diagram for determining whether a patient has a lung metastasis and what 
the optimal choice of treatment would be. The example is reproduced from [4]. 
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rences as an explicit constraint within the optimization problem. The utility node can 

be seen as being related to a patient’s quality of life (e.g., for decisions involving sub-

stantial risk, quality-adjusted life expectancy, QALE) in addition to considering cost 

and other factors. In my dissertation, influence diagrams are used to determine what 

piece of information in the patient record would have the highest utility for a desired 

outcome (verifying a diagnosis); this information is then brought to the user’s atten-

tion by highlighting elements of the UI that provide users with suggestions on what to 

do next.  

2.1.5. Generating explanations 

One shortcoming of early expert systems is that they are often a black box. Users input 

information, and the system outputs an answer. However, the user is never informed 

of how the system comes to a certain conclusion. An understanding of why the system 

reached a particular conclusion is arguably just as important if not more important 

than obtaining the result. An advantage of using BBNs is the ability to generate expla-

nations using properties of the network [20]. Explanations in graphical models have 

been used to understand how the model performs inference and what assumptions 

generate the returned outcome. Explanations are useful for: 1) determining what con-

figuration of unobserved variables provides the most probable outcome for the target 

variable; 2) eliciting what information is contained in a model; and 3) understanding 

the results of inference on a model and how that particular result was produced. A 

static explanation is generated based solely on the probabilities that are contained in 
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the model; it does not consider any inputted evidence. On the other hand, a dynamic 

explanation is one that takes into account the evidence inputted to the model. Given a 

set of evidence variables and a target variable, dynamic explanation tries to find an 

explanation for any changes in the posterior probability of the target variable due to 

the introduction of evidence. Dynamic explanations can be further classified as being 

either micro or macro. A micro explanation tries to justify the variations of the proba-

bility distribution of a certain node. A macro explanation examines the model as a 

whole and attempts to find the primary paths that link the inputted evidence with the 

target variable. 

Explanations have been presented as natural language statements that provide a textual 

description of the variables and parameters involved. Druzdzel [21] translates the qua-

litative and quantitative information of a BBN into linguistic expressions. Probability 

values are mapped to verbal expressions of uncertainty; for example, the range 0.25 – 

0.4 is mapped to the adjective “fairly unlikely.” These adjectives are then used in 

combination with the structure of the network to generate meaningful statements: for 

instance, given the model depicted in Figure 2.2, one statement would be “smoking 

commonly causes emphysema.” 

Visualizing explanations using the DAG have also been explored: [22] utilizes color 

coding and line thickness to support explanations in terms of weight of evidence and 

evidence flows. A system that combines both graphical and verbal approaches to ex-

plaining inference results is BANTER [23]. It provides an intuitive interface for graph-
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ically querying a model and understanding the results: the user first provides a scena-

rio by specifying known values for history and physical findings and the disease of 

interest using node monitors. The system then uses the model to validate which tests 

best determine whether the patient has the selected disease. Explanations are generated 

in natural language by: 1) identifying the evidence that have the greatest impact on a 

target variable using mutual information; or 2) finding the path between evidence va-

riables and target variable that maximizes the overall impact of evidence variables. 

Research has also been done to utilize the network topology to aid in the generation of 

explanations. Yap et al. [24] exploits the property of a Markov blanket to identify a 

subset of variables that result in a concise explanation of a target variable’s behavior. 

Their approach first restructures the BBN such that the target variable has its Markov 

nodes as its parents. Then, the target node’s conditional probability tables are con-

verted into decision trees. Explanations are generated by traversing the decision trees. 

Verduijn et al. [25] address the inability of traditional BBNs to provide updated prog-

nostic expectations based on new data that becomes available during the healthcare 

process. They describe a three-tier system: 1) the first tier is a BBN composed of a 

collection of local supervised learning models, which are recursively learned from the 

data; 2) the second tier is a task layer that translates the user’s clinical information 

needs to a query for the network; and 3) the third tier is a presentation layer that ag-

gregates the results of the inferences and presents them to the user using a bar graph. 

Their novel approach allows users to pose new queries at each stage of patient care 

(e.g., pre-treatment, treatment, post-treatment), and the model explains the changes in 
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the target variable based on the updated information at each phase. The variety of ap-

proaches described in this section demonstrates the versatility of BBNs to generate 

explanations using the model structure and parameters; the reader is referred to [26] 

for additional discussion. 

Methods for explanation generation provide a basis for my work in using the graphical 

disease model to enable context-sensitive visualization. Unlike past work, my ap-

proach leverages common visual metaphors used in the electronic medical record as a 

method of conveying which variables in the underlying model are relevant for a given 

query. I also translate user interaction with the EMR into a query that can be executed 

against the model and then use the results to update the display of patient data. Many 

of the approaches described in the methodology (Chapter 3) are based on past work in 

explanation generation. 

2.2. Other Knowledge Sources 

2.2.1. Ontologies 

An ontology is a formal representation of knowledge that provides a definitive and ex-

haustive classification of all entities in a domain and their relationships. Ontologies 

have been widely used to represent biomedical knowledge and have been applied to 

the areas of knowledge management, data integration, and decision support [27]. They 

serve as a method for representing a source vocabulary (i.e., list of names for the enti-

ties represented). Ontologies can also organize knowledge based on increasingly high-
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er levels of abstractions such as the International Classification of Diseases (ICD) and 

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT). In ICD-9, 

for example, a brain tumor in the temporal lobe is represented as the leaf node 191.2 - 

Temporal lobe, which has the parent 191 - Malignant neoplasm of the brain and the 

ancestor Neoplasms. Ontologies also enable decision support applications by provid-

ing the means to abstract a domain (e.g., brain cancer) and identify unique attributes 

for that domain (e.g., symptoms, findings, abnormalities). For instance, one applica-

tion uses the Foundational Model of Anatomy (FMA) to provide anatomical know-

ledge for predicting the consequences of penetrating traumatic injuries [28]. Know-

ledge about spatial relations between the path of injury and vital organs is provided by 

the FMA. I briefly survey three ontologies—UMLS, NCI Thesaurus, and RadLex—

which are used in my work to provide domain information for tasks such as query ex-

pansion. 

2.2.1.1. Unified Medical Language System (UMLS) 

The Unified Medical Language System (UMLS) [13] is a hierarchical ontology con-

sisting of two primary sources of semantic information: the Metathesaurus (META), 

which includes a large, multi-purpose, multi-lingual vocabulary with over 1.5 million 

unique biomedical and health-related concepts assembled from 150 source vocabula-

ries; and the Semantic Network (SN), which provides a method of categorizing and 

relating concepts within META using 135 semantic types and related to one another 

using 54 different semantic relationships. Each META concept is assigned to at least 
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one semantic type from the SN. The UMLS also includes a SPECIALIST lexicon, 

which contains general English terms with syntactic, morphological, and orthographic 

information recorded for each term. In this work, I used the 2008AB release of UMLS. 

2.2.1.2. NCI Thesaurus (NCIT) 

The NCI Thesaurus [14] is an ontology-like vocabulary that provides coverage of the 

cancer domain. Terms represented include cancer-related diseases, findings and ab-

normalities; anatomy; agents, drugs and chemicals; genes and gene products; and oth-

ers. The NCI Thesaurus combines terminology from numerous cancer research related 

domains, and provides a way to integrate or link these kinds of information together 

through semantic relationships. The Thesaurus currently contains nearly 60,000 con-

cepts. In this work, I utilized version 09.02d of the Web Ontology Language (OWL) 

format of the thesaurus. 

2.2.1.3. RadLex 

Radiologists have used a variety of terminologies and standards (e.g., American Col-

lege of Radiology (ACR) Index), but until recently, no single lexicon provided a com-

prehensive coverage of the field. To address the issue of coverage, RadLex [15] was 

developed to unify the representation of radiology terms; over 8,000 anatomic and pa-

thologic terms, many of which were not available in other sources. For example, Rad-

Lex supplements the anatomic and pathologic codes in the ACR Index with additional 

types of terms, including: 1) the devices, procedures, and imaging techniques used to 

acquire radiology images; 2) the perceptual and analytical difficulty of the interpreta-
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tion; and 3) the diagnostic quality of the images. RadLex has been applied towards 

standardizing radiology reporting and defining a set of keywords for indexing and re-

trieval of images. In this work, I use the frames version of RadLex 2.0. 

2.2.1.4. Applications of ontologies 

Ontologies have been applied towards helping users organize the available knowledge 

into semantically related groups: for instance, SemRep [29] uses the UMLS to deter-

mine how concepts extracted from a corpus of journal articles on a single topic are re-

lated and visually represents their relations using a directed graph. Medical Entities 

Dictionary (MED) [30], developed at Columbia University, is a semantic network 

based on UMLS that uses a directed acyclic graph to integrate terms from four hospit-

al systems (laboratory, electrocardiography, medical records coding, and pharmacy). 

Additional knowledge about each term is added as a semantic link, which assists in the 

integration and classification of disparate terminologies. MED has been demonstrated 

as an effective knowledge source for supporting the automatic generation of problem-

oriented views of patient data and finding relevant concepts. Other applications have 

developed visualizations to help users with viewing complex terminology systems. 

For example, TermViz [31] utilizes a graph visualization package called prefuse [32] 

that allows users to visually interact with the semantic network. Keywords can be spe-

cified to find relevant nodes in the network, called a focus set. Based on this focus set, 

all other nodes are assigned a degree-of-interest (DOI) value that decreases as the 
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number of steps from the focus set of nodes increases. This value allows users to ad-

just how many nodes are displayed based on their proximity to the focus set. 

2.2.2. User/task models 

User models contain a representation of characteristic information about the user. The 

model provides a description of the user’s information needs and goals; this informa-

tion can then be used to guide how information is integrated and presented to the user. 

User models can be characterized along three axes, as discussed in [33]: 

 Canonical vs. individual. Different models can be formulated for either an entire 

population of users (i.e., canonical) or individual users: canonical models are gen-

erated as part of the implementation of the system and do not change over time 

while individual models are built and maintained for each new user. In one popular 

approach, canonical models categorize users into basic groups (e.g., novice, inter-

mediate, expert) called stereotypes [34]. Each group has its own unique set of as-

sumptions that guide what interface elements are presented. Individual models 

adapt to the user’s preferences over time by learning how the user interacts with 

the interface. For example, if the user frequently accesses a particular function or 

needs a particular piece of information, the interface identifies and changes to 

make the function easier to perform or to automatically display the information. 

Many adaptive systems take a combined approach where the default settings are 

based on a canonical model but as the user interacts with the interface, an individ-

ual model is generated. 
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 Explicit vs. implicit. Models may also be classified as explicit or implicit. In ex-

plicit models, information about the user and task is provided manually by the sys-

tem designer or user. In implicit models, information about the user is collected by 

the system through the course of normal interaction. Explicit models allow users to 

customize aspects of the user interface such as changing the layout of the display 

by dragging and dropping elements on the screen or selecting specific preferences 

or stereotypes from a list of options. Implicit models try to learn the user’s prefe-

rences by observing and recording the user’s interactions with the system. 

 Short-term vs. long-term. Short-term characteristics are often associated with 

preferences or assumptions about a user that are valid over a single session. For 

example, during one session, a physician may want information about a patient’s 

cardiology reports and electrocardiogram (ECG) results, but during another ses-

sion, a physician may desire to view other information about the patient’s admis-

sions, discharge, and transfer data. Long-term characteristics tend to describe user 

preferences that do not change across multiple sessions of using the application. 

Aside from the user’s characteristics and preferences in using a system, there is also a 

description of the task that the user wants to complete. A task model informs the sys-

tem of the user’s intentions. For example, is a physician reviewing a patient’s history 

through the EMR for the first time, performing a follow-up examination, or document-

ing an encounter? In each situation, different intellectual and procedural goals are ac-

complished. A number of task model methodologies have been proposed over the 
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years [35] to structure task requirements from users. Such models can be used to iden-

tify possible usability problems with a system; to assess human performance (e.g., 

time, efficiency); and to design a user interface [36]. Some commonalities that are 

shared across different task modeling are noted below: 

 Task hierarchies. At the core of these models is a way to describe the end objec-

tive of the interaction with the system. Rarely are the specifications of tasks atom-

ic: usually several sub-tasks or steps comprise a single task. Thus hierarchical and 

object-oriented approaches are taken to organize this information, with higher-

level abstractions being aggregates of more elementary goals. These frameworks 

have an implicit constraint that prevents a given task from being completed with-

out all of its sub-tasks being performed.  

 Objects and actions. Objects are the entities that participate in the task and en-

compass the user with the resources required to complete the task (e.g., a database, 

another individual, the system GUI, etc.). Actions are the basic methods that an 

object is capable of performing. 

 Roles. A user may change behaviors given different tasks. For instance, a doctor 

reading a patient medical history may be acting as a physician diagnosing a pa-

tient, or may instead be looking at the record as a clinical researcher extracting in-

formation. The concept of a role is correlated with that of a user model. 
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 Operators and events. Although task hierarchies provide compositional rules, 

they do not impose any temporal ordering on (sub-)tasks. Hence, a task model in-

corporates some mechanism (i.e., operators) that provides relative sequencing be-

tween tasks. To describe these constraints, event descriptions are embedded within 

the model, specifying milestones and/or conditional dependencies. 

2.2.3. Evidence-based medical guidelines 

Clinical guidelines provide a method for standardizing how medical care is adminis-

tered to a patient; it specifies a set of plans at varying levels of abstraction for screen-

ing, diagnosing, or managing patients who have a particular medical problem, need, or 

condition. According to the Institute of Medicine, clinical guidelines are, “systemati-

cally developed statements to assist practitioner and patient decisions about appropri-

ate health care for specific clinical circumstances” [37]. Guidelines can be used to 

generate reminders or alerts for a single time point when the patient meets a certain 

criterion or for long-term plans that specify how patients should be treated over an en-

tire course of an illness. They have been demonstrated to improve the quality of medi-

cal care and in some cases, the overall survival of patients [38]. While not explicitly 

used in my work, they provide an alternative source of context that may be used to 

transform task models. However, one limitation is that they are currently only availa-

ble for common diseases. 

Most clinical guidelines are text-based and not easily accessible to care providers, who 

need to match them to their patients and to apply them at the point of care [39]. This 
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problem is compounded by the fact that computers have no means for utilizing this 

knowledge because the representation is not machine comprehensible. Efforts such as 

ONCOCIN [40], PROforma [41], GEM [42], and GLIF [43] are examples of structur-

ing guidelines into a uniform computer-interpretable language such as extensible mar-

kup language (XML). Hence, there is a need for automating the integration of guide-

lines into the existing infrastructure for presenting patient information to physicians. 

Here, we examine how PROforma may be used to provide context for displaying med-

ical data. 

 

PROforma. The PROforma language [41, 44] is represented as a type of graphical 

model: nodes represent concepts and the edges represent inference processes. Nodes 

collectively represent a task, which can individually or collectively represent a clinical 

guideline. Four types of nodes (representing a different type of task) can be defined: a 

plan, which is a container for other tasks with an ordering imposed to reflect temporal, 

 

Figure 2.7: Example of a workflow for managing patients with symptoms of breast cancer 
represented in the Triple Assessment and Diagnosis System [3]. The decision nodes are represented 
by circles and embedded at various points in the workflow. Diamonds represent points where pa-
tient data are acquired. 
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logical, resource, or other constraints; a decision, which is a set of argument rules de-

termining the options that should be chosen according to current data values; an ac-

tion, which is a procedure linked to a process that can be executed; and an enquiry, 

which is a request for more information that is needed to complete a procedure or 

make a decision. Each task can take on a number of properties; properties can be a 

scalar value, an expression, or an object that contains additional properties. All tasks 

and data items are associated with: a description, which provides an explanation of the 

intended purpose of a task; a precondition, which is a truth-valued expression that is 

true when a task is started; and task scheduling constraints, which are logical con-

straints that prevent one task from starting before another task.  

Creating a PROforma application is a two step process: 1) a high level description us-

ing a graphical model is created that depicts the clinical tasks along with their logical 

and temporal interrelationships; and 2) details (values) for each clinical task are de-

fined. An application of PROforma in the clinical environment is Triple Assessment 

and Diagnosis System (TADS), which is used to diagnose and assess the risk of wom-

en with symptoms of breast cancer [3]. The general workflow of TADS is depicted in 

Figure 2.7. The guideline utilizes three types of information to come to a decision: 1) 

clinical examination; 2) imaging (e.g., mammography, ultrasound, MRI); and 3) histo-

pathology (e.g., fine needle aspiration). The decision node decides whether the patient 

should be discharged or referred to a team for follow-up and treatment. The structure 
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of PROforma facilitates translation of its information into a task model that can be 

used to select relevant data elements for inclusion in a display. 

2.3. Medical Visualization 

Visualization is broadly defined as, “the act or process of interpreting in visual terms 

or of putting into visible form.” Information visualization is more specifically defined 

as the process of “transforming data, information, and knowledge into visual form 

making use of humans’ natural visual capabilities” [45]. The goal of information visu-

alization in medicine is to help physicians: 1) explore available data at various levels 

of abstraction; 2) engage the user through interactive techniques; 3) encourage discov-

ery of details and relations in the data that would be difficult to notice otherwise; and 

4) support the recognition of relevant patterns by exploiting the visual recognition ca-

pabilities of users [45]. Representations such as sparklines, Gantt charts, treemaps, and 

spiral graphs are a small sampling of the many information visualizations that have 

been used. This section presents a brief review of common visualizations being used 

in medicine; presented visualizations are organized based on the taxonomy proposed 

by Starren [16]. Visualizations are categorized based on the type of representation: the 

lowest level of sophistication involves the presentation of textual and numerical data 

in a relatively non-interpreted fashion; lists and tables represent this category of pres-

entation. Next, for quantitative and statistical information, understanding the data in-

volves comparisons and trending: visually, different types of plots and charts are used 

to emphasize relative values, with the manner of such displays largely influencing in-
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terpretation. Expounding more conceptual relations, graphs and trees provide a further 

degree of abstraction. Finally, the topmost level of this hierarchy comprises the visual 

abstractions brought about through pictograms, which collectively aim to be graphical 

surrogates for real-world entities and concepts seen in the clinical environment [33]. 

2.3.1. Lists and tables 

Text and numerical data are the predominant component of the patient record. The 

most familiar method of displaying sequences of related information, lists are enume-

rated or delineated sets of textual and/or numerical items. Typically, the entries in a 

list are short and concise, presenting a key point or summary that can be quickly read 

by the user. Examples from clinical practice include an individual’s medical problem 

list; physician worklists (e.g., imaging studies awaiting interpretation); and a patient’s 

set of current medications. Aside from a straightforward display of list items, today’s 

GUIs show lists in a number of different ways, imposing different modes of interac-

tion and selection. For example, combination boxes (combo boxes) enforce selection 

of a single item, while checkboxes allow for multiple items from a group of related 

entries. List entries can serve as hyperlinks, allowing a user to access further informa-

tion. Lists are generally univariate in that a single concept is being communicated per 

item. Tables (also referred to as grids) can be seen as extension of lists to present mul-

tivariate information, where each row in a table in a single entity, and each column is 

an attribute of the entity. An archetypal use of tabular views in medicine is the com-

parison of different lab panel values over a set of dates in flowsheets. Adaptations on 
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tables include colorization and re-orderable matrices. In the first variant, the range of 

values for a variable is mapped to a color spectrum so that cells are filled with a color 

rather than a number. The second variant enables the rows and columns to be sorted or 

arbitrarily arranged to facilitate pattern discovery. Heatmaps use both colorization and 

re-ordering [46] and are widely used to visualize large quantities of data such as in the 

analysis of expression data from DNA microarray hybridization experiments. 

2.3.2. Plots and charts 

Information presented within tables, although precise, fail to foster rapid interpretation 

of subtle trends, especially over a large number of data points. Thus, the next level of 

graphical abstraction seen with medical data involves plots and charts (the terms being 

used interchangeably), wherein the relative nature of numerical data is contrasted to 

illustrate changes in values or comparative differences. Data presented in tables can be 

transformed into a suitable chart to visually accentuate patterns. Elementary graphical 

charts include:  

 Line and scatter plots. A common graphical representation is the 2D line plot, 

wherein one axis (e.g., the y-axis) represents the quantitative value of interest (the 

dependent variable), and the second axis (e.g., the x-axis) is the space over which 

the value is sampled (the independent variable, e.g., time). For instance, an ECG is 

representative of a line plot, where the amplitude of an electrical signal is charted 

over time. Likewise, a given laboratory value (e.g., blood glucose) may be plotted 

to visualize increasing/decreasing trends. Scatter plots are a generalization of the 
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line plot, often used in research studies to find potential associations/correlations 

between two variables over a population; again, one variable is explanatory or con-

trolled, and the second variable is the response or observation. Dimensional scal-

ing techniques (e.g., principal component analysis, PCA) can be used to reduce the 

number of attributes involved, thereby mapping a multivariate visualization prob-

lem to 2D where patterns may be more evident. If no association exists between 

the variables, no discernible visual pattern or trend is seen in the scatter plot. 

 Bar charts and histograms. Another well-recognized type of plot is the 2D bar 

chart, where the length of a rectangle is used to proportionally depict the value of 

a given category; multiple categories are then compared. Additionally, parallel 

comparisons between datasets can be visualized in a bar chart, facilitating intra-

category comparison. To demonstrate, in a clinical trial for a drug a bar chart may 

be used to show side effects (i.e., categories) with the percent of individuals af-

fected. Parallel bars may then be placed adjacent to compare these individuals ver-

sus a control group (e.g., placebo). Histograms are a specific type of statistical bar 

chart, wherein the categories represent tabulated frequencies of a given value (or 

values over uniformly divided ranges). An image histogram, which plots the num-

ber of pixels with a given intensity value, is representative of this information 

graphic. For histograms, the choice of discretization can greatly change the under-

standing of the data. While variations of bar charts exist employing different 

graphical techniques (e.g., 3D bar charts, stacked bar charts), the overall complexi-
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ty of these presentations and a user’s ability to correctly interpret the data can out-

weigh their utility.  

 Pie charts. A pie chart aims to provide a sense of proportion by dividing a circle 

into wedges, representing an object and its constituent breakdown. One exception 

to the pie chart paradigm is a more complex variation, the polar area diagram: ra-

ther than use the angle of a wedge to convey percentage, the angles of each wedge 

are equal and the radius varies in proportion to the amount. The end effect of a po-

lar area diagram is that the pieces project outwards, making similar quantities easi-

er to relate and compare. 

 Radar charts. Less widespread are radar charts (also called circular or spider 

charts), which compare three or more quantitative variables along multiple axes. 

The axes radiate outwards from the center of the plot, along which the data values 

for each variable are drawn on a shared scale. However, variants of radar charts 

have been defined to take advantage of shape and area by connecting the plotted 

points. [47] introduced this concept for clinical labs, with normalized values for 

laboratory data charted as a shape. Ideally, if the lab values are balanced, the shape 

will conform to the overall geometry of the radar plot (e.g., for a lab panel with six 

tests, the overall shape should resemble an equisided hexagon); in contrast, skewed 

labs distort the overall shape, allowing the viewer to quickly identify which axis 

(i.e., lab) is discrepant and the direction of imbalance (low values gravitating to-

wards the center of the plot, high values being on the edge). Adaptations of the ra-
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dar graph also use area to compare different observational sets (e.g., two time 

points): the overlap of an area and trends can be seen. 

2.3.3. Graphs and trees 

Plots are intended to express numerical data; in contrast, graphs and trees are designed 

to demonstrate relations between concepts. In this section, the terms “graph” and 

“tree” refer to the formal constructs defined in computer science, as opposed to more 

generic pictorial constructs. 

Apart from their use in evidence-based medical guidelines as flowcharts illustrating 

decision pathways (e.g., eligibility criteria for a clinical trial, study design), graphs are 

generally not seen in clinical practice. Outside of the clinical arena, conceptual graphs 

and (probabilistic) graphical models have a longstanding history within medical in-

formatics, being used to represent ontologies and as a part of decision-support frame-

works (e.g., Bayesian belief networks (BBNs), hidden Markov Models, Petri nets, 

etc.). 

Trees are used to illustrate connections between entities where the entire structure of a 

hierarchy and its encompassing relations are relevant: parent-child relationships (e.g., 

is-a inheritance); siblings (objects at the same level in the hierarchy); and clusters are 

visually portrayed, usually with the root of the tree being the most general concept and 

levels further out (i.e., toward the leaves) becoming more specialized. Information ar-

ranged as nested lists are amenable to tree presentations; hence, controlled vocabula-

ries and clinical coding schemes are often shown as trees [48, 49]. Other clinical ex-
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amples of trees include: grouped medical problem lists (e.g., symptoms and diseases 

by anatomical region); composite lab tests (e.g., a metabolic panel); an imaging study 

and its constituent series; and structured reports, wherein a document section may con-

sist of multiple sub-parts. Dendrograms are a specific type of graphical tree used to 

envisage related groups; taxonomies and genomic analyses involving hierarchical 

clustering algorithms are indicative of this graphical element. 

2.3.4. Pictograms 

The highest level of visual conceptualization comes about in considering the use of 

pictograms to represent clinical concepts. A pictogram is defined as a graphical sym-

bol that represents a concept or entity. The use of pictograms with medical data can be 

seen in four different areas: 

 Icons. Icons are small pictograms, and are a familiar component of modern GUIs 

representing an action or data object. Pictograms can be linked to descriptive 

phrases and the numerical scale; one example uses a variant of the visual analogue 

scale (VAS) to present a patient with a spectrum of facial expressions as part of a 

health questionnaire. The goal is to assist patients with describing their level of 

discomfort. One limitation is that the interpretation of icons can be subject to per-

sonal and cultural biases [50, 51], thus making the use of icons across populations 

complex. In certain cases, the graphic is universally understood [52]; but in do-

main-specific scenarios, individuals may initially need assistance in understanding 

the suggested visual cue [53]. Icons can also be derived from an object’s content. 
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For instance, TileBar [54] takes in a set of documents and user-specified terms to 

generate multiple small bars that are divided into smaller, color-coded squares. 

Each square represents individual terms and indicates relative document length, 

query term frequency, and query term distribution. TileBar thus provides a quick 

pictorial representation of document content and relevance to keywords (e.g., dis-

ease name). 

 Maps. Maps are larger pictograms, being mainly concerned with a spatial frame-

work (e.g., an anatomical atlas). For instance, maps are used as surgical drawings 

to document the planned approach, and the pre- and post-operative state of the re-

gion of interest. Whole-body anatomical drawings are also used to quickly demon-

strate affected or symptomatic areas. Maps can also used to represent high dimen-

sional data, such as the contents of a clinical report. [55] abstracts a text document 

into a Kohonen’s feature map using visual cues such as dots, clusters, and spatial-

ly-related areas to represent the unique concepts (e.g., disease, drugs, chemothera-

py), the frequencies of word occurrence in titles and frequency of word co-

occurrence respectively. 

 Diagrams. Diagrams are illustrated figures that present an abstraction or concep-

tual metaphor (e.g., a timeline for a therapeutic regimen; a structural depiction of a 

medical device). Although a clinical diagram may also be anatomically based, the 

primary difference between a map and a diagram is the intended communication of 

a spatial vs. non-spatial relationship, respectively.  
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 Images. Lastly, medical images are a physical representation of the real-world 

based on either light (e.g., optical photography, such as seen with dermatology and 

post-operative surgical procedures); radiation (e.g., CT, nuclear medicine); or oth-

er physical value (e.g., hydrogen nuclei interaction/relaxation, such as under mag-

netic resonance). The rendering can be a 2D projectional or cross-sectional image, 

showing spatial relationships (e.g., between a tumor and normal tissue); a 3D re-

construction; or a 4D representation (e.g., an animated 3D visualization showing 

changes over time).  

The above categorization of clinical visualizations is only intended to provide insight 

into some widespread graphical elements used to communicate clinical concepts and 

data: it is by no means comprehensive. Several of these visualizations have been im-

plemented in my work to visualize different data elements that exist in the patient 

record; the process of matching data with visual metaphors is described in Section 

3.5.2.2. 

2.3.5. Interaction 

Users need tools to interact with visualizations to uncover new insights by posing que-

ries to the data and identifying patterns in the results. The variety of interactive me-

thods have been organized into taxonomies (e.g., organized by low-level techniques 

[56], interactive techniques [57]). Here, techniques are categorized into groups based 

on a combination of user objectives and the interaction techniques that accomplish 

them [33]: 
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 Selecting. The act of selection uniquely identifies a single data point by highlight-

ing it (e.g., using a different color) so that users may visually track the location of 

items of interest. Typically, selection occurs as the first step of a series of interac-

tion techniques as a method to identify a subset of data elements that the user is in-

terested in exploring further. 

 Exploring. The amount of information displayed is limited by the screen size and 

the user’s ability to perceive an array of presented information simultaneously. If 

the amount of data is too much to fit into a single screen, tools are needed to ex-

plore the data. Actions, such as panning and scrolling, allow users to intuitively 

move data across the screen and configure the display to show data of interest. 

 Reconfiguring. Sometimes a single perspective of the data is insufficient to fully 

understand any patterns or trends. Reconfiguring the dataset allows users to 

change how the data is presented by viewing the same data in different arrange-

ments. For instance, in multidimensional scatter plots, new views of the data are 

generated by changing the attributes presented on the axes.  

 Encoding. Compared to reconfiguring, encoding allows users to transform the re-

presentation of a data element from one form to another. For example, a pie chart 

may be a more effective display for a particular dataset than a histogram. Encoding 

may also involve reassigning visual attributes (e.g., color, size, shape) to better dif-

ferentiate clusters of data. 
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 Abstracting. Data may be viewed at varying levels of abstraction. A common 

technique is allowing users to zoom between broader and more detailed views. An 

overview may be used to obtain a general idea of the data; however, users will 

want to magnify specific regions in the data that is of interest to them and view 

additional information. 

 Filtering. When displaying large amounts of data simultaneously, users need tools 

to help identify and focus on the data relevant to their task. Filtering is a technique 

that allows users to conditionally hide or change the appearance of certain data 

points that do not fall within specified criteria. If a physician is examining a patient 

who has hypercholesterolemia, unrelated documents should be filtered (e.g., re-

ports on a broken leg), leaving only a subset of documents pertinent to the treat-

ment of high cholesterol. 

 Connecting. When multiple different visualizations are used to represent the same 

data, the correspondence between each view may be highlighted by linking them 

together. For instance, if a user selects a set of data points in one view, all of the 

views reflect the same selection in their own way. This process is called brushing. 

The aforementioned methods of interaction are typically used in combination to pro-

vide users with graphical tools for manipulating data and posing queries. Traditionally, 

users interact with a database by formulating textual queries using machine-

understandable languages such as structured query language (SQL), which features a 

non-intuitive and difficult syntax for non-programmers to learn. To address these is-
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sues, two categories of querying frameworks have been used in medicine: direct mani-

pulation and query-by-example. Both frameworks share several characteristics: 1) they 

provide graphical representations of real-world objects and actions; 2) they use a poin-

ter to select or identify an element; 3) they allow rapid, incremental, and reversible 

actions to be performed on the data; and 4) they provide immediate and continuous 

display of results. In particular, direct manipulation principles have been shown to as-

sist users with navigating large information spaces [58]. 

Direct manipulation. Direct manipulation interfaces model how people interact with 

objects in the real world by providing users with tools to interact with visual objects 

that represent the data elements [59]. Several benefits exist for applying direct mani-

pulation to data querying: 1) the user does not need to learn a complex query language 

in order to pose a valid query to the system; 2) the user does not need to worry about 

making syntax errors; and 3) the user obtains immediate feedback about the query 

posed and potential size of the results [60]. Many applications have been developed 

using diagrammatic visual data querying [60, 61]; a select few are reviewed here. 

ADVIZOR [62] is a commercial system that works with data cubes to query aggre-

gated data. The system is implemented using a relational model. Users select data us-

ing either a tool that makes predefined (e.g., rectangle, circle) or freeform shapes. The 

system allows new selection sets to be related with an existing set by using expres-

sions such as replace, add, and subtract. When an event occurs in a view, that view 

notifies the corresponding data table, which in turn updates its state. The data table 
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then notifies all visualizations using this data to update their representations. Another 

system is IVEE/Spotfire [63], which automatically creates a dynamic query applica-

tion from a given database schema. It has a collection of visualizations (e.g., histo-

grams, bar charts, pie charts) that are selected based on the attribute data types within 

the application’s data schema. Each visualization is tightly linked so that changes to 

one view affect how the others are presented. In the medical domain, TraumaSCAN 

[64] utilizes a three-dimensional model with which users interact to place entry and 

exit wounds for injuries from gunshots. In combination with inputted patient findings, 

the system performs reasoning on a Bayesian model to predict the most probable 

symptoms and conditions arising from the specified injuries. 

Query-by-example. This interaction paradigm asks a user to sketch or provide an ex-

ample object as the basis of a query and attempts to find all objects in the database 

with similar visual attributes. Seminal work in this area include systems developed by 

Chang [65] and Joseph [66]. Chang presents a relational query language introduced to 

simplify the usage and management of image data.  Joseph discusses a set of manipu-

lation operations that should be supported by an underlying pictorial database man-

agement system and a higher-level query language that carries out these operations. 

Dionisio [67] describes a visual query language called MQuery, which uses a single 

set of related query constructs to interact with data stored as time-based streams. The 

work presents a visual interface to interact with these streams in the context of query-

ing multimedia, timeline, and simulation data. Del Bimbo [68] presents methods for 
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translating sketches of object shapes into queries that find indexed icons; a similar sys-

tem, DOODLE [69], facilitates searching a database using pictures. These works lay 

the foundation for future applications to support pictorial querying. One such applica-

tion is geographical information systems (GIS), namely because geographic concepts 

are often vague, imprecise, little understood, and not standardized. Egenhofer et al. 

[70] discuss work on a spatial query-by-sketch system that automatically translates the 

spatial layout of query objects into a database-understandable query. Sketching pro-

vides an intuitive way for users to express the image-like representation of spatial con-

figurations that are in their minds. In medicine, visual querying has primarily been 

used in content-based image retrieval. Abate et al. [71] illustrate a system that allows a 

physician to query a collection of thoracic images using a combination of visual meta-

phors. By identifying abnormalities in an image using edge detection, the system then 

extracts spatial locations, opacities, shapes, and geometrical measures of the abnor-

mality and compares them against features indexed in a database. Sasso et al. [72] 

present a similar system that provides a user with tools to query a thoracic imaging 

database using a combination of template and user-drawn features. They evaluate their 

system using eight query images; for each query, they compare the system’s results 

with those selected by a group of radiologists. They found their system to have a 

97.5% and 91% recall and precision rates, respectively. 
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2.4. Integrated Display 

Researchers have long attempted to create a longitudinal, virtual patient record that 

seamlessly incorporates data elements from the patient record into a single display 

[73]. The NUCLEUS project [74] generates a customized, integrated multimedia 

record based on templates that dictate how data sources are hyperlinked from a single 

display. Puya [75] reduces the presented information by filtering out sentences in the 

medical narrative that refer to normal findings leaving only abnormal ones for the 

physician to see. QCIS [76] creates multiple views of the same data based on where 

the data is acquired (source-oriented), when the data was acquired (time-oriented), or 

how related the information is to a given medical problem (concept-oriented). Effort 

has also been directed towards temporal visualization of patient records; the principle 

of using timelines was first introduced by Weed [77] and then initially represented in 

graphical form by Cousins [78]. LifeLines [79] is a popular example of this type of 

display; in addition to using timelines to display chronologies of medical data, it color-

codes each event based on category (e.g., disease, laboratory value) and groups data 

elements based on type (e.g., notes, tests). LifeLines2 [80] adds a set of operators that 

allow users to dynamically reorganize the presentation of data based on a certain fea-

ture. For instance, all of a patient’s events (e.g., physician encounters, high blood pres-

sure) may be aligned based on the proximity to an event of interest (e.g., heart attack). 

Bui et al. [81] have developed TimeLine to reorganize patient data based on medical 

problems and dynamically render relevant data elements on a timeline. The novelty of 
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their work is its ability to filter data elements that are displayed so that only ones that 

are related to the selected disease appear on the timeline. Filtering in this work is ac-

complished using a predefined set of rules. 

[82] has shown that radiologists are increasingly in need of complete access to patient 

record in order to perform the appropriate diagnostic service. Diagnostic protocols are 

highly dependent on identifying trends and relevant events within the patient’s medi-

cal history and prior findings. The interpretation of medical images also requires a bet-

ter appreciation of how information from other parts of the patient record interplays 

with these findings. With the complexity and improved diagnostic performance of 

modern imaging techniques, being able to understand clinical context is essential for 

adequate image interpretation [83]. Hence, seamless integration of data from multiple 

information systems into a single display is critical. 

2.4.1. Organization of patient records 

The role of the modern patient record is multifaceted: to support patient care by pro-

viding a source of evidence for evaluation and decision making and for communicat-

ing among different care providers responsible for an individual; to be a legal record 

of medical actions; to support research; to educate physicians; and to streamline 

healthcare administration. As such, multiple methods for organizing the entire patient 

record has been proposed: 

 Time-oriented. In a time-oriented organization, all clinical observations are rec-

orded in chronological order. While making the record easy to maintain, clinicians 
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experience difficulty associating disease episodes that are scattered over time. This 

problem is compounded as the number of problems in the patient record increases: 

this organization provides no clear way of filtering or rearranging the data to show 

only data elements that pertain to a specific disease. 

 Problem-oriented. As first presented by Weed [84], a problem-oriented medical 

record utilizes each disease that is documented in the patient’s record as a classifi-

er, and all documents, labs, and images are clustered together based on whether 

they are related to that particular medical problem. For a patient with liver disease 

and a lung cancer, his data would be clustered around these two problems. Data 

elements such as CT images of the lung, pulmonary function test results, and lung 

needle biopsy results would be grouped under “lung neoplasms”. However, main-

taining a problem-oriented record is time intensive and may result in the creation 

of redundant data. 

 Source-oriented. In the source-oriented organization, data is sorted chronological-

ly by how they were obtained (e.g., department). For instance, all of the patient’s 

radiology reports are organized separately from his cardiology reports. While this 

organization may improve a clinician’s ability to quickly view reports generated 

by a particular department, it has the issue of fragmenting patient information 

across several sections. 
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2.4.2. Existing systems 

Earlier, we discussed different approaches that researchers have presented to address 

the problem of integrating patient data in a single view. It would be useful to describe 

the current state of medical record visualization by examining two systems that have 

been deployed in a patient care setting: the Veterans Health Administration’s Veterans 

Health Information Systems and Technology Architecture (VistA) and University of 

California, Los Angeles’ Patient-centric Information Management System (PCIMS). 

VistA. VistA was introduced in 1996 to support the day-to-day operations at local 

Veteran Affairs (VA) health care facilities. The system is built on a client-server archi-

tecture, tying together workstations and personal computers with graphical user inter-

faces. VistA is one of the world’s largest implementation of the EHR to date with over 

4 million veterans’ records in the system accessed by 180,000 medical personnel 

across 168 different sites. In addition, some private or community health networks 

have deployed an open-source version called OpenVista in their clinics. The goal of 

VistA is to provide a single interface for health care providers to review and update a 

patient’s medical record, and place orders such as medications, procedures, imaging 

studies, and laboratory tests. The interface is designed to display all information that 

supports medical decision making; a summary screen (Figure 2.8, top) provides timely 

information about the patient’s active problems, allergies, current medications, recent 

laboratory results, vital signs, hospitalization record, and outpatient clinical history. 

For instance, when a clinical document is selected (Figure 2.8, bottom), information is 
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displayed immediately with relevant images and attachments displayed along with the 

body of the report. The strengths of VistA are: 1) the system is scalable and provides 

integrated access to the multimedia patient record; 2) information is organized by 

source and time; and 3) physicians have access to graphical views of laboratory re-

sults. However, the system also has several limitations: 1) information is not filterable 

by problem; 2) the user interface is static for all users despite their different informa-

tion needs; and 3) the system does not incorporate any type of decision support tools. 

PCIMS. At UCLA, patient records are digitized and accessible through a secure web 

portal called PCIMS. The interface allows physicians to access a variety of textual da-

ta such as demographics, record of past encounters, clinical notes and documents, la-

boratory test results, ECG reports, operating room cases, and imaging studies. This 

information is integrated by a horizontal navigation menu displayed at the top of the 

screen that links out to individual resources (Figure 2.9a). PCIMS is an example of a 

source- and time-oriented patient record. After specifying a specific data type (e.g., 

documents) to view, a listing of all available data elements for that type appears; if the 

user selects documents, the entire list of patient documents appear, sortable by date, 

title, signing author, and type. The left-sided menu provides options for filtering sub-

sets of the documents by criteria such as “all documents without notes”, “progress 

notes”, and “oncology notes” (Figure 2.9b). If the user is interested in viewing labora-

tory test results, a separate page is loaded displaying all of the values using formatted 

text. Basic functionality is provided to filter results by group (e.g., metabolic panel), 
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and results are annotated with a ‘@’ symbol to denote any abnormal values. In the cur-

rent interface, users need an understanding of what type of information each source 

provides so that they can locate the appropriate document. The limitations of this de-

sign are that: 1) the results are presented in text so any temporal trends and meaningful 

patterns are not evident; 2) documents can only be sorted by certain fields (e.g., time-

stamp, data type) and not by semantic concepts (e.g., medical problem); and 3) users 

need to view laboratory, report, and imaging data individually. Features from each 

system are summarized in Table 2.1 and compared to one application that has been 

developed as a result of this work, AdaptEHR (Section 4.3). 

2.4.3. Context-sensitive visualization 

Up to this point, I have described the various sources of domain knowledge that are 

available and the different visualizations capable of representing medical data. How-

ever, these discussions have not yet addressed the problem of using the domain know-

ledge to adapt the user interface to a unique user’s needs. [85] finds that simply using 

a graphical technique to render all the data does not provide adequate support for a 

user’s task. Indeed, the user’s expectations and preferences play an integral part of the 

visualization process. Visualizations for large or complex datasets need to be aware of 

the context in which the data is being used and adjust the presentation to match the 

user’s preferences. An adaptive interface (or adaptive hypermedia) [86, 87] conforms 

to a particular user’s preferences by utilizing a model based on the user’s past expe-

rience with the system and uses this information to dynamically adjust the presentation 
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of data to conform to a user’s individual preferences. Debevc’s work [88] presents an 

adaptive toolbar that offers suggestions for adding or removing command icons, based 

on the frequency and probability of specific commands. The system uses a decision 

engine that takes into account the overall frequency of use for a particular command, 

recent frequency, successive frequency, and overall pattern of use over the entire pe-

riod. The decision engine decides whether a command icon is relevant solely on the 

number of times a user interacts with it; therefore, it can only passively suggest com-

mands based on previous use, rather than suggest commands that may be of use in 

real-time. Horvitz et al. [89] describe the construction of Bayesian models for reason-

ing about the time-varying goals of computer users from their observed actions and 

queries. The approach has been implemented in software such as Microsoft Office 

(e.g., office assistants) with limited success: while the system attempts to predict what 

functionality is useful to any user, in reality, suggestions are often misguided because 

the variation among users is too large. The system might have been more successful if 

it were customized for a specific subset of users. In the medical domain, Mars Medical 

Assistant [90] utilizes a combination of user, situation, and task to make automated 

suggestions about related topics that are of interest to a physician examining a particu-

lar disease. Cimino et al. [91] have developed a similar but more widely used system 

called an “Infobutton Manager”, which automatically provides links to related infor-

mation based on the information that the user is currently viewing. Adaptive interfaces 

continue to be an active area of research as applications become more complex and 

interfaces become more cluttered. 
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The idea of context-sensitive visualization is an evolution of adaptive interfaces. 

While adaptive interfaces focus on changing portions of the interface (e.g., toolbar, 

content pane), context-sensitive visualization is capable of changing not only the ap-

pearance of the user interface by altering the visualizations used to compose the dis-

play but also the content that is rendered by these visualizations. In medicine, different 

users can have unique information needs: a nurse may be interested at gauging the pa-

tient’s immediate vital signs while a primary care physician is more interested in the 

patient’s long-term outcome. Even within a single user group (e.g., physicians), in-

formation needs can vary based on task. Among physicians, for example, tasks can be 

summarized by three goals [92]: 1) they wish to become familiar with a new patient; 

2) they are looking for specific details; or 3) they are searching for evidence to support 

or discount a hypothesis. However, given time constraints and the desire to increase 

efficiency in the healthcare workflow, clinicians do not have the time to examine the 

entire patient record to complete these tasks. Rather, physicians often access informa-

tion efficiently and specifically, oftentimes only briefly looking at patient history to 

obtain context but focusing much of their time on specific data elements such as medi-

cations, vital signs, and laboratory tests. These studies demonstrate the importance of 

customizing the display of information for individual users and tasks. In the next chap-

ter, I show how the BBN, combined with other knowledge bases (e.g., user/task mod-

els), provide a mechanism for adapting the display. 
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Figure 2.8: Screenshots of OpenVista (courtesy of Medsphere, http://medsphere.org), an open 
source version of VistA, which is a health information system developed by the Department of 
Veterans Affairs. The screenshots highlight various features of how patient data is organized and 
presented to a clinician. 
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Figure 2.9: Screenshots of the UCLA PCIMS system: (a) Listing available documents in the pa-
tient record. (b) Showing laboratory results. 
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Table 2.1: A comparison between existing electronic medical record systems and the system de-
veloped as a result of this dissertation, AdaptEHR. N/A denotes that the item is not applicable/not 
available. 
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  CHAPTER 3  
 

Methodology 
  

3. Overview 

The crux of context-sensitive visualization is customizing the application’s GUI to 

adapt to the user’s needs in changing contexts of use. This chapter discusses methods 

that are used to obtain context by examining the variables, structures, and parameters 

of a graphical disease model: knowledge from the disease model is combined with 

other sources of context, such as user and task models, to influence how information is 

presented in the GUI by varying visual attributes such as position, size, layering, and 

opacity. The first part of the chapter (Sections 3.2-3.4) addresses four problems: 1) 

how variable names can be used to link variables in the disease model to elements in 

the patient record; 2) how the structure and parameters of the model can be used to 

quantify relatedness and strength of influence between variables; 3) how information 

from queries can be used to discern user needs; and 4) how other knowledge sources 

can be utilized to impose additional constraints on what information is displayed. The 

last part (Sections 3.5) explores how context obtained from the graphical model is 

translated into a set of composition rules that are used to visually combine, highlight, 

and lay out specific elements of the patient record. The visual dictionary is presented 

as a data model for incorporating disparate sources of context.  
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3.1. Example Queries 

The goal of developing context-sensitive visualizations is to assist users with answer-

ing a wide range of clinical questions using the available patient data. In this section, I 

provide several example queries as a basis for discussing how the adaptive display of 

patient data works. The purpose of posing these questions is threefold: 1) the queries 

demonstrate the wide range of questions that may be executed against a graphical dis-

ease model; 2) they illustrate how different users and tasks have diverse information 

needs; and 3) they provide a starting point for illustrating the differences in how pa-

tient data is rendered based on context. 

Query 1 What is the most probable range of the Karnofsky Performance score 

(KPS) for a 50-60 year old female with a right occipital lobe GBM imme-

diately following complete surgical resection? 

Query 2 What is the expected time to progression (TTP) at time of diagnosis for a 

> 60 year old male patient with GBM in the left temporal lobe if he is on 

the chemotherapy drug temozolomide? 

Query 3 Given that the patient has elevated total bilirubin and γ-glutamyl transpep-

tidase (GGTP) levels, what additional information is needed to conclude 

that the patient has primary biliary cirrhosis (PBC)? 
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Query 4 What document in the patient record provides the most information about 

the patient’s treatment history with respect to his glioblastoma multi-

forme? 

Query 5 Display all available data of interest to a radiologist collected during the 

same time period that the patient was on gemcitabine. 

Query 6 Which patient cases that are present in the database are similar to one with 

a lower left lobe stage III non-small cell lung cancer who has an Eastern 

Cooperative Oncology Group (ECOG) score of zero? 

Query 7 Has the patient experienced any abnormal laboratory values after being 

prescribed dexamethasone? 

Query 8 Is my non-small cell lung cancer patient eligible to participate in a study of 

that compares erlotinib to standard chemotherapy? 

3.1.1.1. Query processing: Overview 

Here, I examine how each query might be processed and how the results might be pre-

sented to the user.   

Queries 1 & 2 are examples of MAP queries (Section 2.1.1). The system is given a set 

of observations (e.g., gender, age, location of tumor) and asked to determine the most 

likely outcome for a target variable (i.e., KPS and TTP, respectively). Observations 

can be specified either automatically using information extraction techniques de-
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scribed in Section 3.2.1.3 or by having the user manually specify observations through 

the user interface, as discussed in Section 3.3. Upon executing the query, results can 

be visualized using a GUI component to display the most likely state. In addition, oth-

er variables in the model that influence the result may be identified by finding the 

paths of influence (Section 3.2.2.2) and highlighted. 

The goal of Query 3 is to identify variables in the liver disorder model (Figure 4.3) 

supporting the outcome that the patient has primary biliary cirrhosis (PBC) given ele-

vated bilirubin and GGTP levels. Answering this query involves examining the dis-

ease model structure to identify paths of influence (Section 3.2.2.2) where information 

flows between the observed variables (Total bilirubin, GGTP) and the target variable 

(PBC). The paths of influence are used to identify a subset of variables in the model 

that determine which data elements are displayed. In addition, strength of influence 

(Section 3.2.3.1) can be computed among the selected variables, which allow them to 

be ranked and highlighted based on how strongly they affect the target variable.  

Query 4 asks the Bayesian belief network to identify a single document in the patient 

record that best summarizes the patient’s treatment regimen (i.e., medications, sur-

gery) for glioblastoma multiforme. Semantic grouping and query expansion (Section 

3.2.1) are used to answer this query: 1) a subset of the disease model is selected by 

identifying variables that belong to the semantic groups Chemicals & Drugs, Devices, 

and Procedures; 2) the selected variables are then mapped to matching concepts that 

have been identified in the patient record; and finally, 3) each document is ranked 
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based on a term frequency inverse document frequency (tf-idf) weighting scheme. The 

top ranked document is distinguished by increasing the transparency of all other doc-

uments. 

Query 5 exemplifies how a user model (Section 3.4.2) can specify data elements that 

are relevant to a radiologist. Typically, radiologists are interested in viewing a pa-

tient’s past imaging studies, associated radiology reports, and other clinical documents 

to aid during interpretation tasks. A set of filters is generated based on the user’s pro-

file; these filters constrain what types of information are displayed (e.g., imaging stu-

dies, radiology reports). The query also specifies a temporal filter: only information 

that corresponds with the time period that the patient received erlotinib is displayed. 

The filter is translated into an instance of the “include based on recent activity” rule 

(Section 3.5.3.1), which is used to prevent data elements that occur outside of the spe-

cified time period from being rendered. 

Query 6 illustrates how a graphical disease model can be used to perform case-based 

retrieval. The user-provided observations (location, lung cancer type, ECOG score) are 

used to instantiate the model; the posterior probability distribution for this instantia-

tion is then compared to other cases in a database and assigned a similarity score (e.g., 

using Kullback-Leibler divergence). Cases are ranked based on how similar they are to 

the inputted case. Case-based retrieval is further described as part of the VQI applica-

tion in Section 4.2.2.3.  
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Query 7 demonstrates the utility of layering two types of information on a single dis-

play. The user first sets a temporal filter that removes all of the events that occur prior 

to the patient receiving dexamethasone. Then, leveraging the inclusion rules specified 

in the visual dictionary (Section 3.5.3.1), the “include based on value” rule is invoked 

to show only the laboratory values that are abnormal during this time period. The 

“compose by superimposing” rule (Section 3.5.3.3) is used to overlay the medications 

on top of the laboratory test results. 

Query 8 showcases how a BBN can be used to identify relevant data elements in the 

patient record. First, a model is generated that represents the different eligibility crite-

ria (e.g., staging, performance status, medical history) as variables in the network. 

Then, variables in the model are mapped to data elements in the patient record. Any 

matching data elements are given priority on the screen. This query is explored further 

in Section 4.3.4. 

3.2. Characterizing Graphical Disease Models 

Graphical disease models contain a wealth of knowledge embedded in their properties. 

The following sections discuss approaches for obtaining contextual information from 

each aspect of the model. First, the process of mapping variables in the disease model 

to data elements in the patient record and to other knowledge sources is examined. 

Next, attributes that characterize the structure of the model (i.e., node degree and path 

length, paths of influence, Markov blanket) are explored. Finally, two approaches (i.e., 
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strength of influence, value of information) for quantitatively measuring the influence 

that variables have on each other are described. 

3.2.1. Variables 

The initial step in constructing a BBN is to identify those variables that can be ob-

served and those intermediate and output variables that need to be inferred. Considera-

tions include: can the variable be practically measured as part of routine clinical care; 

and what are the possible values that the variable can take on? Models should be com-

prehensive in that they draw conclusions from an array of evidence. Selected variables 

should be carefully defined using standardized representations (e.g., UMLS, RadLex) 

whenever possible; this allows each variable to be mapped across different lexicons. 

Variables are represented as nodes in the graph. Three types of nodes exist: 1) nodes 

that represent an outcome, hypothesis, or values of interest (target nodes); 2) nodes 

that provide the ability to input information to the model (evidence nodes); and 3) 

nodes that summarize the effect of a subset of parent nodes on a child node (interme-

diate nodes). 

The goal of mapping is to identify all data elements in the patient record that relate to 

each variable in the model. The general process is depicted in Figure 3.1. Variable 

names are first mapped to standardized concepts represented in a medical lexicon. The 

lexicon is used to retrieve all descendants and synonyms of the variable name that are 

used to fully identify related variables in the patient record. For instance, if a variable 

represents the concept of tumor size, the process attempts to find all data elements that 
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explicitly or implicitly contain references to tumor size. Explicit references are those 

that directly mention the query term; for instance, a radiology report may contain ex-

plicit references to tumor size. Implicit references are those that indirectly refer to the 

term; tumor size may also be expressed by annotating an image with a measurement of 

the longest diameter of a lesion. The mapping process occurs in three steps: 1) variable 

names are first normalized; 2) the normalized names are then mapped to a medical 

lexicon where an expanded set of terms are generated through a process called query 

expansion; and 3) variable states are matched with corresponding attributes extracted 

from the patient record. The following sections describe each step in detail. 

3.2.1.1. Mapping variables to concepts 

The benefit of linking a disease model to the patient record is that it translates any ma-

nipulations done to the model into the identification of relevant data elements in the 

patient record. My approach utilizes the variable name; the name is typically descrip-

tive of the concept that the variable represents (e.g., disease name, finding, symptom, 

process, test). Intuitively, the process involves searching the entire patient record using 

 

Figure 3.1: The process of mapping variables in the disease model to data elements in the patient 
record using an ontology. 
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a variable name, and any matching instances found in the patient record are then 

mapped back to that variable. However, using a literal string search for the variable 

name to identify related terms in the patient record does not always result in sufficient 

or appropriate matches; a single concept can be expressed in multiple ways. In order to 

improve recall, a medical lexicon (e.g., Unified Medical Language System, UMLS) is 

used to identify all of the variable name’s synonymous and related terms. This ex-

panded set of terms is then used to search the patient record, and matches are mapped 

to that variable using a process called query expansion. 

Query expansion. Query expansion is the process of adding related search terms to 

the original query with the goal of improving the ability to recall of related, specia-

lized terms that may not have been exact matches to the original query. Query expan-

sion has been widely researched and applied [93]; in medicine, it has been used to im-

prove the retrieval of biomedical documents [94, 95] and to aid consumers with 

searching for health information [96]. Different types of query expansion exist: term 

expansion and concept expansion. Term expansion is used to extend a strict literal 

search of a word or phrase by including word variants for plurals, possessives, hyphe-

nation, compound words, and alternative spellings. In concept expansion, a medical 

lexicon is used to expand the query term to include descendents of the original term 

and synonyms. [97] illustrates one application that uses concept expansion for data 

retrieval: using a proprietary knowledge source called MED, the authors demonstrate 

how the original query term heart is expanded to include related disease terms (heart 
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diseases), laboratory tests (cardiac enzyme test), and radiology reports (chest x-rays). 

This expanded set of terms is used to query the patient record to identify any patient 

data that is relevant to heart. [95] demonstrates an approach for query expansion that 

utilizes the UMLS Metathesaurus to provide a list of related terms and the Semantic 

Network to define the relationships between these terms. The authors show that re-

trieval performance can be improved by expanding the original query using the term’s 

direct parents, children, and siblings as defined in UMLS. While my approach follows 

that of [95], it differs in two ways: 1) the focus of my work is on using the graphical 

disease model to generate the original query; and 2) query expansion is used as a tool 

to improve the performance of mapping variables to relevant data elements. The 

process of query expansion is summarized as follows: 

1. Variable names are first normalized. Term normalization converts singular and 

plural nouns to a standard form. It also converts words to a preferred spelling, 

stripped hyphens, stripped possessives, and the shortest form of compound 

words. All letters are lowercased and white spaces are converted to single 

blanks. 

2. Then, variants (e.g., plurals, possessives) of the normalized term that may exist 

in the patient record are found. 

3. The normalized term is mapped to a matching concept in a medical lexicon. 

Querying the lexicon provides information about synonymous terms, parent 

(broader) terms, child (more specific), and sibling (similar) terms. 
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4. The entire patient record is searched using this expanded set of terms. Text da-

ta are parsed to find any matches with the expanded set of terms. Header in-

formation stored as part of medical images can also be parsed to identify rele-

vant images. Metadata associated with laboratory values can be used to identi-

fy relevant test results. For all terms that are found in the record, the location of 

the term is retained in a data structure associated with that variable. 

While query expansion is not a new concept, I have applied it towards linking data 

elements in the patient record to variables in the disease model. This is an important 

initial step because once variables and documents are linked, manipulations to the dis-

ease model can be used to identify relevant subsets of data in the patient record. The 

precision and recall of using query expansion to map variables to documents in the 

patient record was measured in the context of retrieving relevant documents. The goal 

of this study was to determine whether UMLS was comprehensive enough to find all 

of the variable names represented in the model; results are discussed in Section 5.2.2. 

 

 

Figure 3.2: The result of concept expansion performed for the term Temodar.  
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Consider Query 3 from Section 3.1: to execute this query, a list of treatment-related 

terms is needed to aid in the identification of documents that discuss treatment history. 

First, query expansion is used to generate related terms to treatment-related variables 

in the disease model. If we examine the term Temodar as an example, UMLS can be 

leveraged to perform query expansion; the results are illustrated in Figure 3.2. Query 

expansion identifies four classes of terms: broader terms (i.e., temozolomide), parents 

(e.g., antineoplastic, alkylating agents), siblings (e.g., acivicin, bryostatin), and child-

ren (e.g., dosage amounts). This expanded set of terms is used to search and rank all of 

the clinical documents based on the number of matches. For Query 4, the document 

with the highest number of matches is returned to the user. 

3.2.1.2. Grouping variables 

The goal of grouping variables together is to identify subsets of variables in the model 

that have similar properties or meaning. Semantic groups facilitate tasks such as: 1) 

identifying all semantically-related variables and concepts (e.g., find all variables per-

taining to medications); and 2) finding all variables that pertain to a particular concept 

(e.g., disease). As in the case in query expansion, a medical lexicon can be used to as-

sign variables to a semantic group. UMLS includes the Semantic Network, which de-

fines the relationships between variables. Another source, Medical Subject Headings 

(MeSH), is a controlled vocabulary that is used to index biomedical articles from 

MEDLINE. In MeSH, terms are organized hierarchically from most general to most 

specific in structures called “MeSH trees.” The topmost level consists of fifteen topics, 
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each representing a unique area (e.g., anatomy, organisms, diseases, chemical and 

drugs). Increasingly specific terms are then placed as child or leaf nodes in the tree. 

Given its generalization-specialization organization, MeSH trees can be used to group 

related variables in the model. Variable names can be first mapped to corresponding 

MeSH terms; then, the MeSH tree is used to identify any common parents that terms 

share.   

In context-sensitive visualization, semantic grouping is used to identify subsets of re-

levant variables that can be visualized together. Based on context, groups of semanti-

cally related data may be placed in the same area of the screen or visually differen-

tiated from other data elements by using the same background color. For example, in 

VQI (Section 4.2), semantic groups are used to help a user query a disease model by 

suggesting semantically related variables based on the user’s current selection. If the 

user is formulating a query and is interested in inputting information about the pa-

tient’s age, the system can use the semantic group to suggest other variables (e.g., 

gender, ethnicity) that may be of interest to the user’s query. In addition, parts of the 

patient record that are semantically related can be displayed in the same area of the 

screen. A rule can be defined to specify that any data element associated with the se-

mantic group of demographics is always included in the EMR display and rendered at 

the top of the screen. 
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3.2.1.3. Assigning variable states 

The patient record provides information that can be used to instantiate variables in the 

model. First, the relations between terms and attributes need to be defined and ex-

tracted from the patient record. Information extraction techniques such as natural lan-

guage processing (NLP) may be used for this task. For example, the frame-based re-

presentation that is outputted by a NLP system provides a means for relating concepts 

and attributes. A frame-based output is an object-oriented representation of the infor-

mation extracted from the document. If the user has a laboratory result “serum glucose 

test, 32mg/dl”, the frame representation for this statement would be the concept serum 

glucose test with several attributes: 1) it is a lab test; 2) it measures glucose; 3) the 

specimen is a serum; 4) the units are “mg/dl”; and 5) the value is 32. The second step 

is to use the values in the frame representation to set the corresponding variable to a 

specific state. For example, information for instantiating tumor size can be found in 

radiology reports, which typically document the length of the longest diameter for tu-

mors seen in imaging studies. However, sizes are typically recorded as a value on a 

continuous scale while the states in the disease model are categorical (e.g., small, me-

dium, large). Therefore, instructions for mapping values to states are needed. My solu-

tion is to store a mapping attribute as an annotation in the disease model. The attribute 

specifies the ranges of continuous values that make up a particular state. For example, 

in tumor size, the “small” state could be instantiated if the value of the tumor size as 

reported in the clinical document is less than 1 cm. The mapping is generated at the 

time the continuous variables are discretized during the model creation process. 
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3.2.2. Structure 

The network topology of a Bayesian belief network captures the relationships that ex-

ist among variables in the model. The structure is comprised of a set of edges that 

connect variables together. These edges can be conceptually interpreted as linking 

causes to effects; for instance, an edge between age and time to survival can be inter-

preted as age has an effect on time to survival. The way variables are structured in a 

disease model often reflects the prevailing belief of domain experts or conclusions 

made in scientific literature. The network structure of a graphical model is a combina-

tion of probability and graph theories. From a purely graph theory standpoint, analysis 

can be done to examine how nodes are connected to one another; such work has al-

ready been explored in many areas including sociology, bioinformatics, and 

knowledge engineering [98]. Structural analysis can be performed on models to de-

termine node degree, path length, and clustering coefficients. In addition, because 

graphical models encode probabilistic dependencies between nodes, the flow of in-

formation between nodes can be quantified by examining the models’ associated prob-

abilities; this leads to the useful property of conditional independence. Using the 

available probabilities, analysis of the model can be done to determine which variables 

in the model become independent of (and irrelevant to) the target variable given a set 

of observations. 

In this work, I examine three approaches for quantifying how variables are related to 

one another through characterization of the model structure: the first approach 
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examines how a node is connected to all other nodes in the model. The second ap-

proach utilizes the notion of conditional independence and d-separation to identify 

when certain groups of variables are independent of other variables in the model. Fi-

nally, the third approach is a specialization of the second approach where a subset of 

variables is identified that provides all of the information to fully predict the behavior 

of a target variable. I illustrate these approaches in the context of Query 3 discussed in 

Section 3.1. A relevant subset of the liver disease model is presented in Figure 3.3. 

3.2.2.1. Node degree and path length 

Each node can be characterized by the connection it has with all of the other variables 

in the model. Here, two structurally-derived properties of the network are examined: 

node degree and path length. 

 

Figure 3.3: A subset of the multiple-disorder diagnosis version of HEPAR II [2]. Shaded (dark red) 
nodes represent output (disease) variables. 
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One basic measure is to identify variables that are clustered together through a high 

degree of connectivity and variables that are dependent on a large number of parents, 

or conversely, serve as a parent to a large number of other dependent variables. These 

relationships can be identified by computing the in-degree, which is the number of 

incoming edges, and out-degree, the number of outgoing edges for each variable. Cal-

culating the in- and out- degrees is done by counting the number of parents, children, 

and their combination for the node’s total connectivity. The node degree is used to 

change the size of the corresponding data element: the amount of screen space that the 

visual representation uses is proportional to the variable’s node degree (Figure 3.4a). 

In addition, filters can be used to specify whether to change the variable size based on 

the number of parents or the number of children. 

 

Figure 3.4: (a) A model representing the influences and effects of primary biliary cirrhosis. The 
size of each node is proportional to its in- and out- degrees. (b) Path lengths for nodes in the model 
based on their distance from primary biliary cirrhosis. More distant nodes from PBC are rendered 
with increasing levels of transparency. 
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The second measure for characterizing the relatedness of variables in a model is to 

compute the path length between the target variable and all other variables. Similar to 

distance analysis in social networks, the distance between two variables in a graphical 

model is measured by the minimum number of hops required to go from the origin 

node to the destination node. For example, examining the model depicted in Figure 

3.4b, the distance between primary biliary cirrhosis (PBC) and total bilirubin is one hop, 

but the distance between PBC and jaundice is two hops. Using the target variable as a 

starting point, all other variables in the model are assigned a quantitative value that 

measures their distance from that variable. In addition, thresholds may be defined to 

partition variables based on their path lengths. Scores above a certain threshold are 

categorized as irrelevant while scores below the threshold are categorized as relevant. 

The threshold is user definable, providing the user control over how much information 

is presented on the screen at one time. The path length for any given node can be used 

to filter out data elements. For instance, any variables that have a distance greater than 

a specified threshold (e.g., two hops) are rendered with increasing levels of transpa-

rency (e.g., for every hop, the opacity is reduced by 25% until the element is rendered 

as fully transparent). Path length is used to determine which GUI components are pre-

sented to a user in an application described in Section 4.2. 

To compute the shortest path between two nodes, Djiskstra’s algorithm [99] is used. 

Djikstra’s algorithm is a graph search algorithm that produces the shortest path tree 

between two nodes. To provide context of how Djikstra’s algorithm is used in this 



   

81 

work, let us refer back to Query 3. The query asks to find what information is needed 

to conclude that a patient has PBC. Djikstra’s algorithm can be used to rank every va-

riable in the liver disorder model based on how distant they are to the target variable, 

PBC. The algorithm is summarized below: 

 

1. Prior to running the algorithm, every edge between two nodes is assigned a 

distance value. While the default value is 1, this value can also be based on the 

inverse value of the strength of influence defined in Section 3.2.3.1. 

2. The initial node is set to zero and all other nodes are set to infinity. 

3. The user specifies the target (source) node; this node is used as the starting 

point for the analysis and is set as the current node. For Query 3, the source 

node is PBC. 

4. For the current node, consider all of its unvisited neighbors and calculate the 

distance from the initial node. If the distance is less than the previously record-
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ed distance, overwrite the distance. From PBC, its immediate neighbors (e.g., 

total bilirubin, platelet count, joint swelling) are visited; they all are assigned a 

value of one. The algorithm then iterates through the immediate neighbors 

(e.g., total bilirubin) and visits their neighbors (e.g., jaundice). For every hop 

that the algorithm takes, it increases the distance value. If the algorithm en-

counters a shorter distance between two nodes, the original distance is over-

written. 

5. When done considering all neighbors of the current node, mark it as visited. A 

visited node will not be checked again; its distance recorded is final and mi-

nimal. 

6. Set the unvisited node with the smallest distance from the initial node as the 

next current node and continue from step 4. 

The result of Djikastra’s algorithm is an array of distance values that represents the 

minimum distance (e.g., number of hops) that is required to go to every node in the 

model from the target node; this is illustrated in Figure 3.4b. Therefore, a results dis-

play for Query 3 would present results for ESR, total bilirubin, joint swelling, sex, 

GGTP, and platelet count most prominently because they are each a single hop from 

PBC. However, data that pertains to musculoskeletal pain, cirrhosis, or jaundice are 

displayed with lower priority (and increased transparency) because they are more dis-

tant from PBC given the model’s structure. 
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3.2.2.2. Paths of influence 

Network structure can also be used to determine whether any independencies exist be-

tween two nodes. Independence is an important notion; in a Bayesian network, every 

variable is conditionally independent of its non-descendents given its parents (Section 

2.1.1). From a computation standpoint, conditional independence assumptions enable 

the factorization of the full joint probability distribution, reducing the number of pa-

rameters that are needed to be assessed when performing inference. Qualitatively, 

conditional independence assertions can be used to determine what set of variables has 

influence on a target variable given some evidence. For the model depicted in Figure 

3.3, if we are given information that the patient’s total bilirubin value is significantly 

elevated above normal, then observing that the patient has jaundice is redundant; the 

jaundice variable becomes irrelevant because according to the model structure, it does 

not provide any new information that is not already provided by knowing the state of 

the total bilirubin variable. Hence, as the user interacts with the model by inputting in-

formation, the set of relevant variables dynamically changes based on what the current 

set of evidence and target variables that the user has specified.  

This work uses the properties of conditional independence to identify significant va-

riables and edges that contribute to the flow of information between the evidence and 

target variables. When a user poses a query to the model, the evidence and target va-

riables represent a small subset of the actual variables that are involved in the reason-

ing. All of the remaining variables that are not conditionally independent of these va-
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riables influence the result. Therefore, the approach discussed in [11] is used; it leve-

rages the properties of d-separation to identify the paths in a model that information is 

able to flow from the evidence variables to the target variable. The algorithms for 

identifying influential paths are summarized below: 

 

The Find_Influential_Paths algorithm takes the directed acyclic graph (DAG), a set of 

evidence nodes, and a target node as inputs. It first iterates through each evidence 

node and attempts to find any paths in the DAG from that node to the evidence node 

which are not d-separated using Find_Paths. The output of this algorithm is a list of 

paths that facilitate the flow of information between the observed and target variables 

and the variables that lie along these paths. The paths of influence can be used to de-
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termine which variables are of particular importance to a given query. As inputting 

evidence makes some variables redundant based on conditional independence, compu-

ting the paths of influence reduces the number of variables that are considered relevant 

for a given query and hence, lessens the amount of redundant data displayed on the 

screen. 

 

Let us consider an example using a subset of the liver disease model depicted in Fig-

ure 3.3. Assume that a physician wishes to determine whether a patient has a condition 

called hepatic steatosis. The physician has recently received the latest laboratory test 

results and notices that the patient’s alkaline phosphatase is abnormally elevated. Us-

ing paths of influence, the system can identify other variables in the model whose val-

 

Figure 3.5: Example of identifying the path of influence for the target variable hepatic steatosis 

when given evidence about alkaline phosphatase. Outlined variables and edges represent variables 
that are part of the path of influence; all other variables have been made semi-transparent.  
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ues change given that the target variable is hepatic steatosis. The result of the algo-

rithm is depicted in Figure 3.5: information can flow between alkaline phosphatase 

and hepatic steatosis through toxic hepatitis and history of alcohol abuse. Therefore, 

if information exists that is related to these variables in the patient record, it would be 

highlighted in the display. 

3.2.2.3. Markov blanket 

The Markov blanket provides a method for quickly identifying which variables in the 

model are necessary to be known before the target variable is fully characterized. It is 

used to select the initial set of variables that is presented in the GUI. Before the Mar-

kov blanket can be calculated, the user needs to select a target variable first; selection 

may be done by selecting a data element of interest that corresponds to a variable in 

the model. Once a target variable is selected, only variables in the Markov blanket are 

displayed on the interface; all other variables are made transparent. Referring back to 

the liver disease model, given that the user is interested in determining whether a pa-

tient has cirrhosis, an initial display can be generated using the target variable’s Mar-

kov blanket, which consists of gallstones, hepatic steatosis, chronic hepatitis, toxic 

hepatitis, total bilirubin, alkaline phosphatase, total proteins, and ascites (Figure 3.6). 

Therefore, data elements that correspond to these variables are initially highlighted in 

the GUI. As the user interacts with the interface, then additional variables are identi-

fied using methods such as paths of influence. 
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3.2.3. Parameters 

Each variable in the Bayesian network is associated with a conditional probability ta-

ble (CPT). The CPT specifies the probability for each possible value of the selected 

variable given information about the variable’s parents. These values are a reflection 

of beliefs expressed by a domain expert, published scientific literature, or data col-

lected from a population of patients. In this work, values in the CPT are used to de-

termine the strength of association between one variable and another. In conjunction 

with information from the network’s structure, parameters specified in these tables 

provide insight into the relative importance of data based on the relationships and as-

sociated joint probabilities (e.g., how does a change in X impact Y?). 

Sensitivity analysis [100] is used to understand the impact that changing one variable 

has on the entire network. Such analysis permits inspection of how other evidence va-

 

Figure 3.6: The Markov blanket for the variable cirrhosis. Variables outside of the Markov blanket are 
drawn semi-transparently. 
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riables are impacted. Sensitivity may be computed either analytically or by direct vari-

ation of a given variable’s parameters. In the analytic approach, partial derivatives of 

the model output are computed with respect to each of the model parameters [101]. 

These partial derivatives, called sensitivity values, measure the sensitivity of model 

outputs to local changes in parameter values. In the direct approach, model parameters 

are changed within defined limits, and the recomputed model outputs are compared to 

original outputs. However, the number of tests that need to be performed given the 

combinations of evidence is prohibitive; in this work, the analysis is based on two al-

ternative approaches: strength of influence and value of information.  

3.2.3.1. Strength of influence 

The strength of influence quantifies the amount of influence one node has on a neigh-

boring node as specified by the presence of an edge. In this dissertation, a dynamic 

approach originally presented in [9] is used. A dynamic approach accounts for any ob-

servations that have been inputted into the model. A difference exists whether the par-

ent or child node is observed: for example, if a physician determines that a patient has 

chickenpox, the patient more than likely exhibits skin rashes. If the physician only ob-

serves that the patient has skin rashes, a variety of causes may be hypothesized such as 

allergies, fungal infection, or eczema. Therefore, knowing that the patient has chick-

enpox greatly increases the probability of finding that the patient has rashes, but the 

probability of chickenpox given that the physician observes rashes would only in-

crease slightly because multiple explanations are plausible. A static approach would 
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not have taken these differences into account. The strength of influence is computed 

by first calculating the posterior probability distribution of a node for each possible 

state of its parents and children nodes. Then, using the posterior distribution for each 

state, the distance between distributions is computed using the Kullback-Leibler (KL) 

divergence [102]. KL divergence measures the difference between two probability dis-

tributions P(x) and Q(x) where x is a specific state in a set of all possible states X using 

the following equation: 

( )( , ) ( ) log
( )KL

x X

P xD P Q P x
Q x∈
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The strength of influence value is computed by averaging all of the KL values that 

have been calculated for each state of a variable. For every new observation that is in-

troduced into the model, the strength of influence for each variable is recalculated. 

Strength of influence is used to quantify which pairs of variables are relevant for dis-

play. In this work, I explored ways to assign different colors and levels of opacity to a 

visual component based on how strongly it relates to a particular target variable. Given 

a user-defined threshold, any pair of variables that has a value below the specified 

threshold is made increasingly transparent. For the liver disorder model, if a user is 

interested in determining which variables have the strongest strength of influence on 

the target variable toxic hepatitis, the strength of influence analysis shows that the va-

riable hepatotoxic medications has the strongest influence followed by alkaline phos-

phatase, and fatigue. If a user specifies a threshold of influence to be greater than 
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0.10, then for this example, the data elements that would be highlighted are related to 

hepatotoxic medications. All other variables are rendered with varying levels of trans-

parency as depicted in Figure 3.7. 

 

3.2.3.2. Value of information (VOI) 

When performing diagnosis, a physician typically gathers as much relevant informa-

tion as possible about the patient prior to making a final diagnosis regarding the pa-

tient’s condition. Gathering such information is associated with some cost and benefit. 

The goal is to reduce the uncertainty regarding the value of some random variables in 

the user’s decision model and thereby improve the quality of the user’s action. For ex-

ample, a physician may need to choose between obtaining a computed tomography 

(CT) scan versus a chest x-ray to screen patients for lung cancer; while CT scans are 

typically more accurate, they can cost much more than a chest x-ray. The question to 

 

Figure 3.7: Strength of influence calculated for a small subset of the liver disorder model with 
toxic hepatitis being the target variable. Variables with a strength of influence less than 0.10 are 
drawn with increasing levels of transparency. 
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ask this model is: would ordering a CT scan be worthwhile to check whether a patient 

with an extensive smoking history has lung cancer? Intuitively, the value of any in-

formation source is defined as the difference between the utilities of two strategies: in 

the first strategy, the user is able to change the course of action based on information 

that is available and in the other, the user cannot make changes to a decision given the 

same information [12]. 

Utility-based VOI. Influence diagrams (Section 2.1.4.2) are useful for finding the set 

of decisions that optimize the outcome of an objective (e.g., a patient’s life expectan-

cy). An influence diagram can be used to rank potential choices based on desirability 

using a utility function U(a) where a represents a decision. For instance, if a physician 

desires to select a treatment for a patient with GBM and needs to decide between or-

dering an MRI of the brain versus a biopsy, an influence diagram of this scenario can 

be used to determine the value of knowing the result of either the MRI scan or the bi-

opsy. VOI calculations permit the determination of which choice (MRI scan or biopsy) 

provides a greater value of information for deciding what treatment (i.e., radiation 

therapy or surgery) to choose. This calculation can be performed using the following 

utility function: 

( | ) ( ) ( | , , )
c

U a X x U c P c a X x= = =∑ e     

The variable c represents one configuration out of a collection of potential conse-

quences and e represents the set of observed evidence. The utility of a single state of 
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the unobserved variable X is computed by selecting the configuration that provides the 

maximum result: 

a
( ) argmax ( | )U X x U a X x= = =  

To compute the VOI of the variable, UX, the result of U(X = x) is averaged across each 

state in X and multiplied by P(X = x | e). Most value of information analyses are consi-

dered greedy, which means that the system determines the next best test by computing 

the value of information based on the assumption that the user will act immediately 

after seeing the results of the single test. 

Non-Utility-based VOI. In many cases, a model for decisions and utilities may not 

exist. While BBNs can be translated into influence diagrams by assigning additional 

semantics to each variable and specifying a utility function, alternative formalisms can 

be used to assess VOI in traditional BBNs. Conceptually, the motivation for acquiring 

more information is to decrease the uncertainty of a hypothesis close to zero. There-

fore, the goal is to assign more weight to probabilities close to zero or one when the 

uncertainty is low and assign less weight to probabilities in the middle area where un-

certainty is high; these constraints are captured by an entropy function. Using the for-

malism defined in [103], if P(T) is defined as the probability distribution for a target 

variable T, the equation to calculate the entropy of a distribution is: 

2( ( )) ( ) log ( ( ))
t T

En tP T P t P t
∈

= −∑  
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Then, the entropy-based value function V(P(T)) is: 

2( ( )) ( ( )) ( ) log ( ( ))
t T

V P T En t P T P t P t
∈

= − =∑  

VOI analysis has been successfully applied to the area of user modeling: Lumiere [89] 

has used VOI analysis towards tailoring the functionality of a user interface to a spe-

cific user. The system consists of a Bayesian user model that predicts the types of 

functions that a user would need for a given task. VOI is used as a way to evaluate the 

costs and benefits of determining previously unobserved variables in the model that 

would be most valuable to evaluate. My work uses VOI analysis as a method for: 1) 

determining what data element would be most relevant for the given context, and 2) 

ordering which data elements are to be displayed first. VOI analysis can be used to 

answer queries such as: given that a patient has a history of viral hepatitis, obesity, 

and an enlarged spleen, what would be the next best piece of information or test to 

obtain that would help rule out whether the patient has chronic hepatitis or cirrhosis? 

The optimal course of action can be presented in the GUI as suggestions to the user 

regarding what the next course of action might be. 

3.3. Query Specification 

The usefulness of a belief network is its ability to answer a wide range of clinical 

questions using the knowledge encoded in the model. The process of computing the 

probabilities of each variable based on evidence is called inference. Inference com-
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mences after the user instantiates the model by assigning one or more variables to a 

specific state. Common types of queries are reviewed in Section 2.1.1. 

3.3.1. Evidence nodes 

Part of the query process is specifying which nodes are observed; these nodes are then 

set to a specific state corresponding to the observed value. Depending on the types of 

information that the user selects, the observed nodes provide hints as to other related 

information that would be of interest to the user. For instance, if information is ob-

served about the patient’s symptoms and medical history, the system can identify 

which finding has the strongest effect on the outcome of the target node (e.g., time to 

survival of patients with brain cancer). In this section, I examine how to compute the 

effect of evidence and how to determine whether an evidence variable agrees or disa-

grees with the result of a query. These methods are adapted from [11, 104] and used to 

rank the importance of data elements in the patient record on a specific task. 

Mutual information measures how much knowing one of these variables reduces the 

uncertainty about the other. Consider a target variable, T, given evidence 

E={E1,…,En}. The influence of a piece of evidence Ei on T can be measured in terms 

of whether and to what extent the change in distribution from P(T) to P(T|Ei) com-

pares with the shift from P(T) to P(T|E). If the target variable has multiple states (i.e., 

not a binary variable), then evidence variables that feed into the target variable can be 

classified into varying degrees of agreement: ones which are in agreement with the 

target variable, ones which are in disagreement, and ones that have mixed influence. 
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If we assign a target variable T and evidence variable Ei to states ti and ei, respectively, 

the information provided about T = ti by E = ei can be computed as 

( | )
( ; ) log( )

( )
i j

i i
i

P t e
I t e

P t
= . If I(ti;ei) results in a large positive value, it means that ej 

strongly increases the probability of ti; a large negative value means that ej strongly 

decreases the probability of the target variable.  For any state ti in T, the probability 

shift produced by a single observation Ei can be classified as being either in agreement 

or disagreement with the shift produced by the set of evidence E by computing 

( ; ) ( ; )i i iI t E I t E⋅ . The overall effect of a piece of evidence on the target variable is the 

sum of influence values for each state in the target variable: 

influence( ; ; ) ( ; ) ( ; )
j

i j j i
t T

T E E I t E I t E
∈

= ∑  

Again, let us examine Query 3 as an example. Assume that the physician does not be-

lieve the patient has cirrhosis and wants to check what available evidence supports or 

dispels his hypothesis. He determines that the patient has a significantly higher level 

of ESR reported, but total bilirubin levels are only slightly above normal and total cho-

lesterol level is within normal range. The physician can compute the influence of evi-

dence to determine what information supports his belief: 

1. The liver disorder model is initalized without any variables observed. 

2. Each evidence variable (ESR, total bilirubin, total cholesterol) is instantiated 

individually and the posterior probability for cirrhosis is calculated for each. 
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3. Using the posterior probabilities obtained, the influence for each evidence va-

riable Ei is computed. 

4. If the influence result for that evidence instantiation is greater than zero, then 

add Ei to the agree list; otherwise, add to the disagree list.  

Each evidence variable is associated with an influence value, which can be compared 

against a threshold value to categorize variables into varying degrees of agreement: 

strongly agree, strongly disagree, or strongly mixed. In the past, this information has 

been visualized by varying the thickness of the edges in the DAG so that thicker edges 

represent a larger flow of information between variables. Also, changing the color of 

the edge has been explored such that nodes in agreement are assigned one color while 

conflicting nodes are assigned another. In this work, influence of evidence is used to 

identify how observed evidence extracted from the patient record relates to a given 

target variable. When the user specifies a target variable (either manually by user input 

or automatically by parsing a user model), influence of evidence is computed for each 

evidence variable in the model. The evidence is then rendered in a display with its size 

being proportional to how influential it is on the target. Different colors can also be 

used to denote whether the piece of evidence agrees or disagrees with the result of in-

ference. In our example, both the total bilirubin and cholesterol test would be placed in 

the agree list, but the erythrocyte sedimentation rate (ESR) result would be placed in 

the disagree list. Data elements that disagree with the hypothesis could be visually dif-

ferentiated by highlighted them in red. 
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3.3.2. Target nodes 

Target nodes represent variables in the model whose most probable state is of particu-

lar interest to the user. These variables are typically ones that represent the outcome or 

diagnosis of a patient: examples of such variables in the domain of neuro-oncology 

include staging (diagnosis), time to survival (prognosis), and extent of resection 

(treatment). Given these semantics, the target node provides insight into the task that 

the user is trying to accomplish. For instance, if the user specifies lesion type as the 

target variable, it can be deduced that the user is interested in diagnosing the patient. 

Therefore, GUI components that are related to diagnosis can be automatically pre-

sented. Specifying a target variable is also important for characterizing the properties 

of the BBN; many of the algorithms discussed earlier calculate relevance and influ-

ence measures based on the relation between observed variables and a target variable. 

Two ways exist for specifying a target node: 

1. The user manually specifies the target node by selecting a data element and as-

signing it as the target node. The GUI can provide tools that allow the user to 

highlight a data element as a target node or display a dialog box that prompts 

the user to specify one. 

2. The task model (e.g., clinical guideline) can be defined to automatically speci-

fy which node is the target node for a particular task. 
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3.4. Other Sources of Context 

Conceptually, context within healthcare can be thought of as being represented as a 

three-dimensional space with the axes defined by disease, user, and task [105]. A point 

in this space determines, for a given disease, user, and task, what set of constraints are 

used to customize the information that is displayed. Each point in this space specifies a 

unique instantiation of the composition rules (Section 3.5.3) that constrain how infor-

mation is displayed. Attributes extracted from the graphical disease model provide in-

formation for only a single dimension of this space (i.e., disease). In the following sec-

tions, I describe several other sources of knowledge are presented that can be used to 

either supplement or replace the graphical model. 

3.4.1. Ontologies 

Previous sections have detailed two roles that ontologies play in this work: 1) they 

identify related concepts through the process of query expansion (Section 3.2.1.1) and 

2) they are used to classify variables into semantically related groups. In this section, I 

discuss a third role: ontologies provide domain knowledge in situations when the 

graphical model is not available. Graphical disease models are difficult to construct 

accurately and efficiently. Most models are frequently constructed by eliciting proper-

ties of the model from domain experts based on their experience and beliefs; creating 

these models are not only time consuming, but they also may be susceptible to the 

domain experts’ biases. As a result, only a limited number of graphical disease models 

have been widely disseminated. It is in this context that I explore alternative sources 
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for domain knowledge, which can be used to characterize a disease and its associated 

attributes. 

An ontology is a declarative model of a domain that defines any concepts, attributes, 

and relationships between concepts. I use the NCI Thesaurus (NCIT) as an example. 

As described in Section 2.2.1.2, the NCIT is a controlled vocabulary that is organized 

in multiple parent-child is_a hierarchies along with 100 distinct role relationships pro-

viding 135,000 asserted and inherited logical links between pairs of concepts. The on-

tology can be used as a disease model because like a graphical disease model, it cap-

tures the relationships between a disease and other related concepts at the molecular, 

Relation Attribute 

Grade 

Is_Grade Grade 4 

Findings 

Excludes_Finding Neuronal differentiation, precise histogenesis 
unknown 

Has_Finding 
Nuclear atypia, necrotic change, mitotic activity, 
microvascular proliferation, infultrative growth, 
anaplastic lesion 

May_Have_Finding Unfavorable clinical outcome, seizure, headache 

Cell Type 

Has_Normal_Cell_Origin Astrocyte 

Has_Abnormal_Cel Malignant cell, poorly differentiated neoplastic 
astrocyte 

Anatomy 

Has_Primary_Anatomic_Site Central nervous system, brain, nervous system 

Molecular Abnormalities 

May_Have_Abnormal_Cell Fibrillary neoplastic astrocyte, gemistocytic 
neoplastic astrocyte 

May_Have_Cytogenetic_Abnormality 

Loss of Chromosome 10p, del(10q2-26), gain of 
Chromosome 7q, del(10q23), loss of Chromo-
some 9p, TP53 gene inactivation, PDGFRalpha 
protein overexpression, PTEN gene inactivation, 
PDGFRalpha gene mutation, MDM2 gene ampli-
fication, EGFR protein overexpression, EGFR 
gene amplification 

Table 3.1: Attributes and relations for the term brain glioblastoma (C4642) as specified in the NCI 
Thesaurus. 
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cellular, anatomic, morphological, and clinical levels. Consider the case of glioblas-

toma multiforme, which is represented as brain glioblastoma in NCIT. The concept is 

associated with multiple attributes and relations as listed in Table 3.1; two of the rela-

tionships, disease_has_primary_anatomic_site and disease_has_finding are graphically 

depicted in Figure 3.8. With an ontology, the same process of query expansion that is 

used to link variables in a graphical disease model to the patient record is now used to 

link concepts in the ontology. Ontologies and disease models can also be thought of as 

complementary: ontologies can supplement the knowledge in disease models by pro-

viding other important and related concepts that are not explicitly expressed in the 

graphical model. A major drawback to using the ontology is the lack of probabilistic 

values assigned to relationships between concepts. Therefore, ontologies cannot inhe-

rently quantify the strength of influence between two concepts; however, ongoing re-

search in probabilistic ontologies may provide methods for overcoming this limitation  

 
 

Figure 3.8: A subset of the NCI Thesaurus ontology depicting the concept glioblastoma and its asso-
ciated terms and relations. 
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[106]; implications of so-called probabilistic ontologies are discussed further in Sec-

tion 6.2. 

3.4.2. User models 

Context-sensitive visualizations require an understanding of a user’s preferences and 

information needs. This dissertation demonstrates how a user model can be applied in 

combination with a graphical disease model to enumerate the types of information and 

visualizations that are of interest to particular user groups. 

 PCP/Internist Radiologist Patient 
Task description Follow-up assessment Image interpretation Self-management 

Clinical data 
Demographics 

Medical history 
Vitals (BP, BMI) 

AST, ALT, liver 
Total cholesterol 

HBV-5 panel 
Imaging (abdominal) 

PCP reports 
Hepatology reports 

Radiology reports 
Medication history 

   
• •  
• •  
•   
•  • 
•  • 
•  • 
• •  
• • • 
• • • 
• •  
• • • 

Prioritization 1. Labs 
2. Medical history 
3. Medication history 
4. Demographics  
5. Vitals 
6. PCP reports 
7. Hepatology reports 
8. Radiology reports 
9. Imaging 

1. Imaging 
2. Radiology reports 
3. Hepatology reports 
4. Demographics 
5. Medical history 
6. Medication history 
7. Labs 

1. Labs 
2. Medication history 
3. PCP reports 
4. Hepatology reports 

Relationships Medications → Labs 
Imaging → Radiology report 

Imaging → Radiology report 
Medications → Labs 

Medications → Labs 

Visual 
metaphors 

Labs Line plot 
Medical history List 
Medication history Time-
line 
Demographics List 
Vitals Timeline 
Reports (all) Icon  
Imaging Icon 

Imaging Presentation states 
Radiology reports Full text 
Hepatology reports Full text 
Demographics List 
Medical history List 
Medication history List 
Labs Table 

Labs Line plot 
Medication history Time-
line 
PCP reports Icon 
Hepatology reports Icon 

Table 3.2: Example of a user model that is used to rank the types of data that would be of interest to 
each user group and the preferred visualizations that are used to present each data element. 
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My work employs a basic user model to capture the necessary information about a us-

er’s information needs: 1) what types of data sources are of interest to the user; 2) how 

should information be ranked on the screen; 3) which visual metaphors can be com-

bined; and 4) how should visual metaphors be assigned to data elements. The model is 

patterned after [33] and is comprised of four sections; an example is provided in Table 

3.2, which is used to illustrate each section: 

1. Clinical data. This section of the model specifies the types of data from the patient 

record that are to be included or filtered out of the display. In the example, the user 

model captures the fact that primary care physicians require the most data: all of 

the data available about the patient’s condition is displayed. On the other hand, for 

a radiologist, the model specifies that no laboratory data is to be displayed, only 

imaging data and clinical reports are to be shown.  

2. Prioritization. Individual users have a preference on how they desire to view pa-

tient data. For certain user groups, the patient record should be dominated by the 

clinical reports; for others, the contents of the medical images determine what oth-

er data elements are viewed. Data elements in the user model are ranked based on 

these preferences. Higher ranked data elements (e.g., laboratory values for primary 

care physicians, imaging studies for radiologists) are given a larger area on the 

screen in comparison to lower ranked data elements. 

3. Relationships. This section in the model links different data types together based 

on predefined associations. For example, when interpreting an image, radiologists 
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find having past radiology reports with images helpful for identifying previous 

findings and tracking changes over time. Defining relationships between data ele-

ments instructs the application which elements in the patient record should be dis-

played together. These rules are encoded in a set of presentation rules described 

later in this chapter to link disparate data elements together. 

4. Visual metaphors. This section specifies the mapping between data elements and 

visualizations. Each user has a unique requirement for viewing data: some users 

desire a quick overview of the available data while others desire a view showing 

all of the raw data. This section allows individual users are able to define the level 

of detail that is presented on the screen. 

In addition, the graphical disease model itself can be inherently tailored to different 

user groups. Different models may exist for modeling a single disease; each model 

contains different set of variables that characterize the same disease. For example, a 

disease model that primarily incorporates imaging feature-derived variables to predict 

patient outcome would suit the information needs of radiologists. On the other hand, a 

model that represents various finding and treatment-related variables to predict pro-

gression and survival of a patient would provide information useful for oncologists. In 

Chapter 4, I present two disease models for brain tumors, an imaging-centric model 

and a prognostic model for glioblastoma multiforme that are tailored for use by radiol-

ogists and oncologists, respectively. 
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3.5. Visual Dictionary 

Given that knowledge can be extracted from the graphical disease model (Section 3.2), 

the second objective of this dissertation is determining how to use this information to 

automatically filter patient data and generate a tailored display. The limitations of cur-

rent medical data presentations are that: 1) they are hard-coded to display information 

a certain way; 2) they generally do not adapt to the changing context of why a user is 

viewing the data; and 3) they are not designed to easily accommodate new data types 

or user tasks. This work proposes to create a framework, called the visual dictionary, 

which links these disparate pieces of information to generate an adaptive display that 

identifies which variables are important and how they can be organized and presented. 

The visual dictionary addresses the aforementioned issues by allowing applications to 

adapt their GUIs based on changing contexts of use. Initially, the database is populated 

with values based on the default instantiation of the graphical disease model. As the 

user interacts with the model and poses a query, the visual dictionary is updated to re-

flect the changes in user preferences. After each query is executed, the application 

sends a new request to the dictionary to obtain updated instructions on how to render 

the data.  

The visual dictionary performs three tasks: 1) it maps data elements to available visua-

lizations based on context (e.g., medical condition, user); 2) it changes the appearance 

of metaphors based on relevance; and 3) it incorporates multiple data elements into 

one display by following a set of composition rules that are defined by the disease 
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model and filters. Composition rules provide instructions to an application for filtering 

and laying out data elements on the display based on a given context. The process of 

querying the visual dictionary is summarized as follows: 

1. The entire patient record is pre-processed to identify and map relevant biomed-

ical concepts and their attributes to a controlled vocabulary. 

2. A user specifies a set of filters that define the context for viewing the data. 

These filters can be initialized based on the choice of medical problem, user 

group, and temporal window. 

 

Figure 3.9: Flow chart depicting how the composition rules are used to generate instructions for 
presenting data elements in the clinical display. The inputs of the visual dictionary are user-specified 
filters to instantiate the composition rules and data elements in the patient record. The dictionary 
outputs a list of matched widgets and their appearance based on the specified filters. 

 



   

106 

3. Given a specific context, the visual dictionary maps variables in the disease 

model to the concepts identified in the patient record using query expansion. 

4. Each concept is associated with a visual metaphor. Its appearance is dependent 

on the properties of the disease model and dictated by the composition rules. 

5. A summary display is generated by incorporating multiple visual metaphors 

together by following a set of composition rules that are influenced by the 

model and are in agreement with the parameters specified by the filters. 

The process flow is illustrated in Figure 3.9. 

3.5.1. Characterization of data elements 

Data elements represent an atomic unit of meaningful information that exists in a pa-

tient record. They are comprised of an entity and value. An example of a data element 

is gender, which can be assigned the value “male” or “female.” By themselves, data 

elements have little or no meaning. Knowing that the patient has been prescribed 10 

mg p.o. b.i.d. of lisinopril is not clinically meaningful without additional information 

that helps place this fact in context with other elements in the patient record (e.g., pa-

tient has a history of congestive heart failure). The process of data characterization 

helps provide context by linking individual data elements together that are semantical-

ly related. 

In much of the real-world clinical environment, relevant data elements tend to be hid-

den in unstructured representations and spread across multiple different sources. Such 
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data requires preprocessing to extract relevant elements along with any associated 

attributes from the unstructured data. In this section, I review approaches for characte-

rizing three sources of data: documents, images, and laboratory values. While many 

other types of data may exist in the patient record, a discussion about their implica-

tions is left to Section 6.2. 

3.5.1.1. Documents 

The first task is to identify which documents contain the most related information to a 

given concept (e.g., medical problem) or criterion (e.g., return all documented medica-

tions). This task can be accomplished by using the variables in a disease model as a 

way to identify relevant concepts to the disease that are in the document. As described 

in Section 3.2.1.1, variables in the model are mapped to terms in a clinical document 

through the process of query expansion. Once terms related to the variable are found 

in the document, a weighting scheme is used to rank how documents in a collection 

relate to a given concept or criterion. I use the term frequency-inverse document fre-

quency (tf-idf) weighting scheme to measure how relevant a document is to a subset of 

variables in the model. This approach is widely used in information retrieval and has 

been applied towards clustering related documents in MEDLINE [107]. First, a subset 

of variables is identified from the graphical model. For instance, if the user is interest-

ed in finding documents that relate to brain tumors, the entire set of variables in the 

brain tumor model is used. In comparison, if the user is interested in documents that 
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relate to the medications prescribed for the patient’s primary brain tumor, only a sub-

set of variables that are assigned to the semantic group Chemicals and Drugs is used. 

Calculating tf-idf proceeds as follows: suppose we have a clinical document and wish 

to determine which document is most relevant to the query terms edema, necrosis, and 

mass effect. The first step is to eliminate any documents that do not contain all three 

words. To further distinguish among the remaining documents, the number of times 

each term occurs in each document is counted and summed together; this value is the 

term frequency. The inverse document frequency is obtained by dividing the number 

of all documents by the number of documents containing those terms and taking the 

logarithm of the result. The inverse document frequency is used to diminish the weight 

of terms that occur very frequently in the collection and increases the weight of terms 

that occur rarely. 

The equation to compute the tf-idf weight for a given set of concepts, w, is: 

( , )tf-idf log
max ( , )w

v w

c w d N
c v d n

= ×  

where c(w,d) is the number of times term w is found in document d. Depending on the 

number of terms that are found in a document, the tf-idf weight takes on a positive 

value, where zero means that no terms were found in the document. Using tf-idf 

weighting, subsets of variables from the graphical disease model are used to identify 

and rank relevant documents in the patient record using knowledge provided by the 

disease model or ontology. 
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3.5.1.2. Medical images 

Medical imaging has become a predominant tool for objectively documenting patient 

presentation and clinical findings [108].  Patient care is largely dependent upon imag-

ing to understand disease processes and to establish tangible evidence of response to 

treatment (e.g., tumor getting smaller, aneurysm repaired, etc.). Thus, the effective in-

tegration of imaging data and related patient information is a necessity. Historically, 

the picture archiving and communication system (PACS) has limited users to query by 

certain keywords (e.g., unique patient identifier, fields in the image header). However, 

these keywords often may not capture valuable visual characteristics contained within 

the image, thereby limiting the power of posed clinical queries and reducing the over-

all usefulness of the data. As imaging data becomes more abundant, methods are 

needed to extract and index the content of medical images so that they may be applied 

towards information retrieval and disease modeling. The ability to identify significant 

features embedded within the image data through automated extraction or manual de-

lineation would provide a rich set of features that may be correlated with some out-

come (e.g., time to survival for cancer patients). 

Similar to clinical documents, the purpose of medical image characterization is to ex-

tract relevant features that are used to index and link relevant studies to concepts in the 

disease model. To accomplish this, three types of information can be extracted from 

images: 
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 Header information. The Digital Imaging and Communications in Medicine 

(DICOM) standard provides for a common set of fields that are included with all 

data acquired by compliant imaging devices. The headers provide information re-

lated to each series in a study such as fields for description, modality, accession 

number, study date, anatomical part, and others. The same procedures to link va-

riables with concepts in text documents are used to map variables to image 

attributes in a header file. 

 Image annotations. DICOM Presentation State contains information on how a 

particular image should be displayed and additional annotations such as labels, 

window/level and zoom factor. This information is used to automatically identify 

slices of the image that are relevant to the user: images that have been annotated as 

being a significant image can be automatically rendered as a thumbnail and pre-

sented to the user. Other annotations such as longest diameter and volume mea-

surements for tumors can be overlaid on the image to provide the user with context 

about how measurements in the radiology report are derived. 

 Image content. This work would benefit from the advances in image understand-

ing where methods are being developed to characterize images by color, texture, 

and shape. These features would allow the display to select properties such as tu-

mor burden, tumor size, and other features that may be of interest to the user but 

not explicitly captured in the DICOM header. 
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The goal of my work in medical images is to map relevant features that have been ex-

tracted from the header, annotations, and image content to variables in the disease 

model. Then, the same analysis may be done to image content as what has been dem-

onstrated with clinical documents to identify relevant subsets of imaging studies that 

are relevant for a given context. An application that uses the DICOM header to filter 

images is described further in Section 4.3.2.2. 

3.5.1.3. Laboratory values 

Clinical laboratory tests provide crucial data for a wide variety of medical decision 

making activities. Laboratory data is typically aggregated across laboratory and pa-

thology departments and is used to assess chemistry, hematology, immunology, mi-

crobiology, genetic, and other histopathologic markers. Laboratory results are typical-

ly presented as numerical tables organized by name or date. Interpretation of laborato-

ry data requires a comparison between temporal patterns in clusters of consecutive 

values within the same test and relationships between patterns across multiple tests. 

Result displays, as evidenced in Section 2.4.2, provide little assistance with either in-

terpretation or decision-making. 

While test results are an important piece of evidence in the medical record, when 

viewed alone, they do not provide the sufficient context to gauge how changes in re-

sult values affect the overall patient. Given other parts of the medical record, changes 

in test values may be associated with a particular clinical event (e.g., the administra-

tion of a new drug). 
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Laboratory values are summarized in several ways: 

 Change in values. A sudden increase or decrease in a laboratory value may signal 

underlying problems. Rate of change can be quantified by calculating the slope of 

change between values at two time points. 

 Abnormal values. Results that are abnormal may provide insight into problems. 

Abnormal values can be categorized by degree. To identify abnormal values, the 

measured value of the test result is compared to the upper or bottom bounds of the 

normal range. The normal range is defined as values that are two standard devia-

tions from the mean, covering values that have been attained by 95% of the normal 

population. Values that are over or under the normal bounds are considered ab-

normal; the degree of abnormality may be quantified as a percentage over or under 

the bounds of the normal value. 

 Recent values. Physicians who are following up with a patient typically may not 

be interested in viewing the entire history of patient’s laboratory values. Rather, 

they may only be interested in values that have been measured in the last month or 

since the last encounter. A temporal filter can be specified by the user such that 

any time points outside the specified window are not be rendered in the display.  

These attributes directly correspond to the inclusion rules specified in the visual dic-

tionary (Section 3.5). In this work, each test result is considered as an individual data 

element. Using hierarchical data clustering described in the next section, tests are 
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grouped into panels that have semantically related meaning: for example, low density 

lipoprotein (LDL), high density lipoprotein (HDL), and total cholesterol measure-

ments belong to the lipid panel. Laboratory results are also presented depending on 

where they are mentioned in other parts of the patient record. For example, in outpa-

tient consultations, the physician often summarizes the important laboratory results. 

These values can be hyperlinked to the actual test results. 

3.5.1.4. Hierarchical data clustering 

Data elements are clustered together using a common attribute through a process 

called hierarchical data clustering, which groups data (e.g., contents of a patient’s 

medical record) into increasingly specific categories. For instance, at the highest level 

of abstraction a patient record contains three types of data: documents, labs, and im-

ages. Further granularity is obtained by enumerating attributes within each type. For 

instance, clinical documents come in different forms (e.g., letter, consult, pre-op/post-

op), generated by different departments (e.g., radiology, pathology), and written by 

various physicians (e.g., radiologist, oncologist). Attributes are defined based on: 1) 

classification codes associated with a data element such as those published in ICD-9 

(International Classification of Diseases) or SNOMED (Systematized Nomenclature 

of Medicine); 2) metadata encoding the constraints and characterizations of the data 

for a given medical entity (e.g., biopsy and staging results from pathology); and 3) 

content-based features that are obtained through natural language processing and im-

age understanding (e.g., textual description of tumor border; size and texture of tumor 
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extracted from a computed tomography (CT) image). By hierarchically grouping data 

elements across multiple levels, the visual dictionary accommodates the depth and va-

riety of information captured in clinical data. Data types have a generalization-

specialization relationship, as illustrated in Figure 3.10. Under the lab data type, vari-

ous panels are available (e.g., chemistry, liver). Each panel is comprised of specific 

values (data elements) obtained from various tests (e.g., amount of alanine amino-

transferase (ALP) in the bile ducts), and each test may include several values (e.g., 

bilirubin test results in two values: total and direct). The ability to organize data ele-

ments hierarchically is a key element in generating a tailored visualization. Higher-

level abstractions are used to summarize the patient’s data, while lower-level abstrac-

tions provide the details. 

3.5.2. Mapping data elements to visual metaphors 

For each selected data element, a visual metaphor is chosen with the goal of facilitat-

ing a user’s understanding of the underlying trends and the importance of the informa-

 

Figure 3.10: An illustration of the generalization-specialization relationship among attributes asso-
ciated with laboratory results. 
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tion in relation to the rest of the patient record.  For instance, users who are presented 

with a large table of numerical values related to laboratory test results would be better 

served if they had a time series plot that allowed them to see the trends graphically and 

understand when values were increasing, decreasing, and abnormal. 

 

3.5.2.1. Visual metaphors 

As discussed in Section 2.3, medical data may be represented in different forms, de-

pending on what type of information is to be conveyed and the context in which they 

are being shown. Table 3.3 summarizes these metaphors. Individual visual metaphors 

can span across multiple categories; for instance, tables and trees may be combined 

into a treetable, which organizes the rows in a table into a hierarchical tree. Because 

medical data is inherently temporal, the visualization of medical data can also be clas-

sified into one of two categories: point-based or interval-based. Point-based metaphors 

Visual Metaphor Types Examples 

Plots and charts Line and scatter plot EKG 

 Bar chart Histogram 

 Radar chart Comparing normal and abnormal clinical labs 

Graphs and trees Graph Directed acyclic graph 

 Flowchart Medical guideline 

 Tree Ontology (e.g., ICD-9) 

 Dendrogram Phylogenetic tree 

Pictograms Icons Emoticons 

 Maps Anatomical atlas 

 Diagrams Velocity field for hemodynamic analysis 

 Images MRI 

Table 3.3: A summary of the primary visual metaphors for presenting medical data. 
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are best used to summarize static information. They only allow the user to view the 

contents of an individual data element at a single point in time. When considering data 

collected at multiple time points, interval-based metaphors are necessary to summarize 

information visually across all time points. For instance, a time series plot is used to 

present trends for laboratory value results that are collected over the period of a year. 

For each selected data type, a decision is made to present either a point-based or inter-

val-based metaphor. The selection is made based on information in the user model and 

whether the user has selected a temporal window (interval) or a specific time point. 

3.5.2.2. Matching data elements to visual metaphors 

The next step is to match data elements to appropriate visual metaphors. This section 

briefly describes the properties that are considered in this matching process. 

User. The primary criterion that determines what visual metaphor to use is the user 

group. Depending on the user, different views on the same data may be required. In 

addition, users may desire different levels of detail, discussed below, depending on the 

type of data. A primary care physician may only be interested in knowing what imag-

ing studies have been completed, so a thumbnail view of the images will suffice; how-

ever, a radiologist who needs to interpret these images requires a full image view with 

manipulation tools to aid them in reading the images. 

Task. Each user group performs a unique set of tasks that have their own information 

requirements. A radiologist presenting a case to a tumor board would require different 

tools and set of information compared to one who is interpreting a patient’s case and 
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dictating a report. The user model described in Section 3.4.2 provides a discussion of 

how the unique information requirements of each user is encoded in a knowledge base 

that is used to filter the types of information presented on the screen. 

Data type. As discussed earlier, this work deals with three primary types of data ele-

ments: documents (textual), imaging (pictorial), and laboratory (numerical). The type 

of data places a constraint on the representations that may be used. For instance, imag-

ing data will primarily be represented using a pictorial representation; laboratory data 

will likely be represented as a table, plot, chart, or graph. Knowing the data type re-

stricts the types of associations that the visual dictionary can create between the data 

and available visual metaphors. 

Dimensionality. The dimensionality of data reflects the number of variables that are 

included in a single visualization. Visualizations are typically limited in their ability to 

support multiple dimensions. Therefore, a method for determining whether a visual 

metaphor can support the number of variables to be visualized is necessary. For exam-

ple, a list of patient medical problems represents a one-dimensional type of informa-

tion; therefore, a list would suffice. On the other hand, for laboratory results that con-

tain an array of dates and values, a two-dimensional representation such as a table or 

chart would be needed. 

Level of detail. Depending on the user, data may be presented as either an overview 

or detailed view. An overview provides a summarization or abstraction of the informa-

tion contained in a data element. For instance, rather than showing the user a full im-
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aging study, which may consist of dozens of image slices, a thumbnail image of a rep-

resentative slice maybe displayed. Another example would be laboratory results: ra-

ther than using a flowsheet to display laboratory values, the information may be sum-

marized using a radar plot. In addition, level of detail specifies whether the point-

based or interval-based representation is used. If the user is viewing static data, a 

point-based view is sufficient; but if the user is interested in finding trends in the data, 

an interval-based view would be necessary. 

3.5.2.3. Common visual attributes 

Visual metaphors are implemented as self-contained object-oriented components that 

render and provide methods for interacting with the data. While they contain all of the 

necessary instructions to execute and perform the necessary transformations from raw 

data to visual representation, all visual metaphors share a set of attributes that allow 

the user and application to modify their appearance and placement on the screen. 

Opacity. The opacity of a metaphor can be changed based on how relevant the under-

lying data is to the user. For instance, data elements that are not at all related to the 

target variable may be made fully transparent and therefore not visible to the user. 

Other data elements that have varying levels of relevancy may be made proportionally 

less transparent therefore enhancing the user’s ability to see the data. The goal is to 

make data elements that are highly relevant more visible to the user while other pieces 

of information are rendered in the background to some context but do not take the us-

er’s attention away from the primary evidence. 
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Layout. Each metaphor can be placed at a unique spatial coordinate on the screen. 

The position allows semantically related metaphors to be placed closer together while 

less relevant elements are further apart. 

 Temporal layout. Data that has an associated timestamp may be laid out on a time-

line display where the horizontal axis corresponds with the date and the vertical 

axis corresponds to different subclasses of information. A non-linear scale may be 

used to reduce any large gaps in time between data points (e.g., if the patient has 

not seen the doctor in a long period of time). 

 Graph layout. A multi-dimensional scaling algorithm called spring-embedding can 

be used to lay out widgets on the screen [109]. This algorithm accepts a matrix of 

weights that represent how closely or distantly related each data element is. Using 

this information, it attempts to create a set of points in a Euclidean space such that 

the distances between the points are proportional to how strongly the data elements 

influence each other. Each data element is connected by springs; the spring con-

stant is set to be proportional to the strength of influence that one variable has on 

the other (e.g., larger strength of influence values translate to higher spring con-

stant). Attractive and repelling forces can also be specified by examining whether 

the evidence agrees or disagrees with a selected target outcome. The forces are 

then allowed to oscillate until it reaches a state with “minimum energy”. The result 

of the algorithm is a set of points in space, where each point represents a data ele-
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ment and the inter-point distances are a visual measure of relationships among the 

elements. 

Layering. Visual metaphors may take advantage of the z-axis, allowing multiple me-

taphors to be overlaid on top of one another. For instance, laboratory values are typi-

cally uninformative when viewed by themselves, but placed in the context of the other 

data elements in the patient record (e.g., clinical events, medications) the values take 

on additional meaning (e.g., the abnormal rise in blood pressure is due to the adminis-

tration of an anti-inflammatory drug). A combination of layering and opacity allows 

multiple metaphors to be combined, providing some reference for associations to be 

made between the two data elements. Layering is further addressed in the context of 

combining metaphors in Section 3.5.4. 

3.5.3. Composition rules 

Composition rules specify how a group of visual metaphors is presented to the user 

based on characteristics of the underlying data and graphical model. They define the 

boundaries that dictate when a data element is presented to the user and how its cor-

responding graphical representation is combined with others to generate a display. The 

purpose of composition rules is to constrain how visualizations are selected and com-

bined in a display based on properties of the underlying data. Consider a scenario 

where a neuro-oncologist is interested in monitoring the progression of her patient’s 

brain tumor. After the patient’s medical record has been characterized, each extracted 

data element is then processed using the composition rules. Three types of composi-
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tion rules are defined. Inclusion rules specify when a data element should be presented 

based on the values and trends in the data. If the patient recently had a blood test, 

those results would be presented, but results from a panel done two years ago would 

not. Relevancy rules use semantic information extracted from the model to determine 

what elements are considered relevant. Given that the oncologist is interested in the 

patient’s brain tumor, only data elements pertaining to the tumor is displayed. Once 

the set of elements is defined, presentation rules generate a display by: 1) grouping 

similar data elements together based on similar characteristics; 2) layering and supe-

rimposing elements based on the relative importance of a data element compared to 

others; and 3) assigning a level of opacity. 

3.5.3.1. Inclusion rules 

Inclusion rules specify whether a particular data element is displayed given the charac-

teristics of the data or contextual information about other variables being displayed. 

Bui et al. [81] proposed four initial rules: 

 Always include, where values for a given data type are always presented. For in-

stance, a patient’s demographical profile (e.g., age, gender, ethnicity) are standard 

pieces of information that are consistently displayed as part of the patient record; 

therefore, this data type is specified in the visual dictionary to be always included 

in the display. 

 Include based on recent activity, where timestamps that are associated with data 

elements are used to determine whether a type of data is presented. Recent activity 
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is defined by the temporal filters that are specified by the user: the visual dictio-

nary examines the timestamps associated with each data element and determines 

whether the data falls within the specified time range. For example, if the user de-

sires to examine events related to the patient’s GBM for the two months leading up 

to the first tumor progression, then only related data elements that fall within the 

specified time period are presented. 

 Include based on data value, where the value of a given type of data determines 

whether it is presented. This rule is based on filters specified by the user to display 

any values that are above or below a certain threshold that correspond to a signifi-

cant event. For instance, users can instruct the application to show only laboratory 

results with values that are above the normal range. Filtering data elements by val-

ue provides a tool for highlighting the results that are relevant for identifying ab-

normal events which may point to more serious underlying problems.  

 Include based on trend, where changes in a series of values determine whether 

the type of data is presented. This rule is based on filters that compare the values 

of data elements over time and compare their rates of change. Physicians are 

commonly interested in noticing how values change over time; for example, a con-

sistent rise in LDL and HDL values may indicate atherosclerosis. For changes that 

are characterized quantitatively (e.g., tumor size, laboratory test value), a slope of 

change can be calculated; any sudden changes as denoted by a large slope may be 

brought to the attention of the user. 
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3.5.3.2. Relevancy rules 

This work introduces additional relevancy rules that utilize the dependency knowledge 

extracted from the model structure to determine whether a data type is presented: 

 Include based on relation, where variables that are closely related based on paths 

of influence or Markov blanket, are presented. If a physician wants to know 

whether tumor progression is the cause behind a measured increase in the patient’s 

intracranial pressure based on relationships defined in the brain tumor example 

(Figure 2.5), any references in the patient record to mass effect, ventricular com-

pression, and midline shift are identified and highlighted in the patient record. 

 Include based on significance, where variables that are strongly influenced by 

each other based on the strength of influence or value of information, are pre-

sented. According to the liver disease model [2], hepatic fibrosis (excessive buil-

dup of connective tissue in the liver) has a stronger strength of influence on 

whether the patient has cirrhosis compared to hepatic steatosis (excessive buildup 

of fat in the liver). Therefore, if the user is interested diagnosing patients with cirr-

hosis, the clinical display would emphasize references to hepatic fibrosis by using 

a combination of layering and highlighting. 

3.5.3.3. Presentation rules 

These rules, based on those originally proposed in [110], govern how multiple meta-

phors are combined into a single display: 
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 Compose by merging, where multiple data elements that have been determined to 

be relevant are displayed in the same presentation. For example, if the patient had 

values for potassium levels and calcium levels measured over time, these values 

should be plotted and rendered together in the same area of the display. 

 Compose by superimposing, where multiple data elements are visually layered 

based on their strength of relation. Data elements corresponding to variables of 

stronger relevance are placed in the front while elements of less relevance are dis-

played in the back. If tumors have been segmented from images to track their 

changes in size, the contours could be superimposed on top of the image to assist 

users who are not experts at interpreting images with identifying the location of the 

tumor. 

 Compose by union, where all data elements regardless of their values are ren-

dered in the display. Composition by union may be performed on data elements 

that are semantically related; for example, data elements that correspond to the 

semantic type of Finding are grouped together by union and displayed using the 

same metaphor. 

 Compose by transparency, where multiple data elements are rendered with an 

opacity that is proportional to their relevancy (as defined by the relevancy rules). 

For example, data elements that are more important to a certain disease based on 

the measures described earlier in this chapter have higher opacity than values that 
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are not as important; a more recent measurement may be displayed more opaquely 

than an older measurement. 

 Compose by intersection, where the values of similar data elements are first 

compared with each other; only matching values are displayed. To illustrate, when 

matching the patient’s symptoms with those common to a given disease, only the 

diseases that match the patient’s symptoms are displayed while all other possible 

diseases are made transparent. 

3.5.3.4. Application programming interface 

Each presentation rule corresponds to a filter that can be selected by the user through 

the application programming interface. The following methods are defined for the vis-

ual dictionary: 

 Widget setAlwaysInclude(DataElement element, Boolean isEnabled) 

 Widget setIncludeRecent(DataElement element, Date startDate, Date 

endDate) 

 Widget setIncludeValue(DataElement element, Criteria criterion) 

 Widget setIncludeTrend(DataElement element, Threshold threshold) 

 Widget setIncludeRelation(DataElement element, Node[] source, 

Graph g, Integer threshold) 

 Widget setIncludeSignificance(DataElement element, Node[] target, 

Graph g, Integer threshold) 
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Once a data element has been assigned a visual metaphor (here, the implemented ver-

sion is called a widget), then the presentation rules are used to combine and place wid-

gets with respect to each other: 

 Widget merge(Widget firstWidget, Widget secondWidget) 

 Widget superimpose(Widget topWidget, Boolean isTop) 

 Layer union(Widget widget, Point position) 

 Widget transparency(Widget widget, float alphaValue) 

 Widget intersection(Widget widget, Criteria criterion) 

Common functions: 

 Array<Widget> sort(Array<Widget> list) 

3.5.4. Layers of the display 

The display is comprised of multiple layers that are overlaid one another. Layering the 

display provides an additional dimension to convey information and relationships. 

Each layer is associated with a specific data type and ordered based on priority. Prop-

erties of the layered display are summarized in Figure 3.11. 

Bottom layer. The bottom (or background) layer is the largest displayable area and is 

always fully opaque. It provides a common background and shared axis for all of the 

elements that are overlaid. For medical data, a typical background layer would be a 

timeline, providing a background for all other elements to be overlaid based on their 
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associated timestamp. However, depending on application, other types of backgrounds 

may be used. For instance, in VQI (Section 4.2), the bottommost layer consists of a 

normalized atlas of an anatomical region (e.g., the brain); the atlas provides users with 

spatial context for formulating queries such as drawing and overlaying hypothetical 

tumors over the surrounding anatomical structures. 

Middle layers. The middle layers may consist of different data types, depending on 

how data elements are prioritized for the display. Each layer is generated by combin-

ing metaphors together using the “compose by union” rule defined in the visual dictio-

nary.  

Top layer. The top layer contains metaphors that correspond to the data elements that 

have the most priority. These data elements are related to the variables that have the 

highest significance to a given context: for instance, if a physician is trying to deter-

mine the prognosis for a patient with lung cancer, the topmost layer would display me-

taphors that have the highest significance (as measured by strength of influence) in 

 

Figure 3.11: The display consists of multiple layers, each containing a specific type of data. Layers 
provide a means to use visual cues such as layering, opacity, and position to convey importance. 
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terms of prognostic value (e.g., staging, extent of resection, biological findings, metas-

tases). 

3.5.5. Integrated display 

As touched upon in Section 1.2 and described in [33], the process of combining data 

elements into an integrated display in a context-sensitive manner can be summarized 

as the following steps: identifying the data that needs to go into the display; relating 

the data elements; prioritizing the selected data; selecting the appropriate visual meta-

phor for the data; and finally laying out the visual metaphors. Each stage is shapeable 

by context. To ground this discussion, consider the following data for patient with 

non-small cell lung cancer (NSCLC): 1) imaging studies including chest radiographs, 

CTs, and magnetic resonance (MR) images; 2) free-text and structured reports from 

physicians, including radiologists, thoracic oncologists, and the patient’s primary care 

physician; 3) cytologic and histological analysis of a biopsy taken from the patient; 

and 4) the course of treatment during this period, including all medications and inter-

ventions. 

Identifying data. In a medical display, the selection of data is dictated by the va-

riables defined in a disease model that outlines the (clinical) information relevant to 

the condition’s diagnosis and treatment. These models are typically all-encompassing; 

the scope of information needs to be honed by filters based on the inputs provided by a 

user and available knowledge sources. Different knowledge bases such as the graphi-

cal disease model can be used to steer the selection and filtering process. Similarly, 
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user models pinpoint elements of information needed to complete a task. In our exam-

ple, identifying the data involves using knowledge about NSCLC that is provided by a 

graphical disease model or medical ontology to select data elements in the patient 

record that are related to variables or concepts in these models. For instance, if the 

model specifies that the drug gemcitabine is relevant to treating lung cancers, any ref-

erence to this drug in the patient’s record is identified. 

Prioritizing the data. Not all data elements are of equal importance in a diagnostic or 

treatment task. By ascertaining what is important, the amount of visual space allocated 

and prominence given to a graphical component can be gauged. The relative priorities 

do not necessarily correlate with the order in which data is accessed, but with where 

users’ focus will linger most in the display. Context can help reveal clues as to what a 

given user or task may deem important. In my dissertation, a user model is employed 

to identify what concepts are relevant to the user and task. Revisiting Query 5 in Sec-

tion 3.1, the query specifies that only information relevant to a radiologist should be 

displayed. Based on the user model in Table 3.2, data elements related to the imaging 

studies and radiology reports would be most relevant. Therefore, data elements are 

rearranged based on whether they are classified as either of these two data types; data 

that match these two types are displayed more prominently. 

Relating the data. To facilitate physicians with the task of interpreting trends and pat-

terns of interest within the patient’s data, a display of clinical information should ex-

press a range of spatio-temporal and causal interactions. Being aware of the interplay 
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between data elements, an interface can better highlight potential relationships. Se-

mantic relations available expressly (e.g., rules encoded for a given medical problem) 

and indirectly (e.g., relationships derived from the structure and parameters of the dis-

ease model) can be used to establish these linkages. From these connections, shared 

visual cues can then be used to demonstrate associations. Conventional cueing ap-

proaches include color coding of related data elements; spatial proximity (e.g., over-

lapping, tooltips); similar line styles, etc. Continuing our example, a primary care phy-

sician viewing the lung cancer patient’s data may be interested in seeing which medi-

cations (e.g., erlotinib, gemcitabine) that the patient currently on and what affect they 

have on the patient (e.g., by viewing the imaging studies). Based on the user model in 

Table 3.2, the user is presented relevant laboratory results alongside medications be-

cause adverse reactions to drugs can be detected by sudden changes in laboratory test 

results. In addition, imaging data is paired with their radiology reports to provide an 

interpretation of what is displayed in an image.  

Selecting the appropriate visual metaphor. For each selected data element, a graph-

ical representation is chosen that optimizes the viewer’s ability to comprehend and 

interact with the data. Choosing the appropriate visual metaphor for a given set of data 

can be thought of as generating a sentence from a graphical language [111]: how do 

we best communicate the information to a given user? In Section 3.5.2.2, I described a 

set of attributes that can be used to determine which visual metaphor best represents a 

given data element. In addition, my work addresses how visual cues can be used to 
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highlight data elements in Section 3.5.2.3. For a radiologist interpreting a CT study to 

check whether new nodules are present in a lung cancer patient, the visual metaphor 

used to present the imaging study would provide all of the necessary tools to manipu-

late the images (window/level, zoom, annotate) and utilize DICOM Presentation 

States. On the other hand, when a patient views the imaging data, she is only presented 

with a simple overview (e.g., detail-in-context view) of the data. 

Laying out the data. The last step in integrating the data elements together is to spa-

tially organize the information in the display. Here, the composition rules defined 

from the disease model and visual dictionary are helpful in guiding layout, with the 

intent of creating a visual/focal flow to the presentation and interaction with the data. 

The layout of the data takes into account possible visual interactions to exploit user 

search behaviors. The basic guideline of every layout follows Shneiderman’s frame-

work of overview, zoom/filter, and details on demand [112]: primary data in the dis-

play can be visible in a synopsis state, allowing for selection and augmentation with 

additional data (e.g., but of lesser priority). Importantly, the ultimate source of infor-

mation should accessible to the user. Layout not only comprises arrangement in the x-

y plane, but also layering of the visual metaphors (i.e., z-order), allowing for juxtapo-

sition of graphical elements. In the case of the NSCLC patient, visual metaphors can 

be collated and combined into a single layered view that facilitates a user’s ability to 

see relationships. Data elements from different sources are overlaid using a combina-

tion of transparency and interaction to spatially relate information and support details-
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on-demand behavior. For example, if a physician obtains results from the patient’s his-

tological study, then the results are overlaid with data from the patient’s current thera-

py regimen to determine whether changes in chemotherapy is needed to better target 

the patient’s specific grade of cancer.  
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  CHAPTER 4  
 

Applications 
 

4. Overview 

In the previous chapter, I described methods for characterizing graphical disease mod-

els to identify and select data elements from the patient record based on context. I also 

presented the visual dictionary as a data model for integrating information from these 

models with other knowledge sources to generate a set of composition rules that define 

how the graphical user interface (GUI) appears to a user. In this chapter, I describe 

how these concepts are implemented in two prototype applications. The first applica-

tion, visual query interface (VQI), supports visual manipulation of the underlying 

graphical disease model and facilitates the user’s understanding of the interplay be-

tween variables. The fundamental components for representing patient data and posing 

queries are called graphical metaphors [113], which correspond to interactive, visual 

representations of variables specified in the disease model. Interaction with the 

workstation is a closed-loop process: the underlying model influences what data ele-

ments are relevant and presented to the user. Continued user interaction with the 

graphical metaphors defines a new subset of variables in the model that guide the user 

with formulating queries. The second application, the adaptive electronic health record 

(AdaptEHR) viewer, is an integrated, longitudinal presentation of a patient record that 

dynamically filters data elements. The underlying knowledge sources are also used to 
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drive the adaption of the UI to specific users and tasks. I first ground the discussion 

with examples of graphical disease models in the domains of neuro-oncology and he-

patology. Then, each application is introduced along with a brief review of related 

work. I discuss the primary components of each application followed by details of 

how the application is implemented. The results of user evaluations on these applica-

tions are described in Chapter 5. 

4.1. Disease Model Examples 

While the construction of disease models is not a focus of this dissertation, three dis-

ease models are described to provide a basis for understanding the application and 

evaluation of my work. The first model is a brain tumor prognostic model that incor-

porates variables derived from patient demographics, imaging data, and treatments. 

The outcome variables are time to progression (TTP), time to survival (TTS), and Kar-

nofsky performance status (KPS). The second model captures the effect that magnetic 

resonance (MR) imaging features have on outcome variables. The final model is a 

probabilistic diagnostic model of liver disorders, called HEPAR II [2]. Variables are 

primarily obtained from medical history, physical examination, and laboratory results. 

The model diagnoses multiple liver-related diseases based on inputted evidence: he-

patic steatosis, hepatic fibrosis, carcinoma, toxic/chronic/reactive hepatitis, cirrhosis, 

primary biliary cirrhosis (PBC), and hyperbilirubinemia. 
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4.1.1. Prognostic models of brain tumors 

According to the National Cancer Institute, in the United States, over 21,810 patients 

are estimated to have been diagnosed with brain or nervous system-related tumors in 

2008. Although there have been several decades of intense clinical and basic science 

research aimed at improving the survival of these individuals, life expectancy remains 

between 8-12 months. The practical reality regarding patients with primary brain tu-

mors, particularly glioblastoma multiforme (GBM), is that managing this disease re-

mains an enormous challenge given the tumor’s aggressive nature. Researchers have 

begun to prospectively compile databases on brain tumor patients in the hope of im-

proving both the understanding of the disease process and outcomes. The modeling 

effort utilized in this work draws upon data from the UCLA Neuro-oncology Clinic, 

which maintains a database of over 1,000 patients diagnosed with brain tumors. The 

database includes a variety of variables from sources such as the hospital information 

system (HIS), oncology and radiology reports, pathology results, imaging studies, and 

consultations. 

Two models have been developed for predicting the time to survival of patients. In the 

first model (Figure 4.2 and Table 4.2), several types of brain tumors are modeled using 

features derived from MR images and from pathology to predict a patient’s time to 

survival. In the second model (Figure 4.1 and Table 4.1), a subset of patients with 

GBM is used to capture the types of variables that a neuro-oncologist would examine 

and attempt to predict the progression and survival of a patient given this information. 
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Variables for both models are obtained from multiple sources: 1) oncology, radiology, 

pathology, and surgery reports; 2) expert opinion; and 3) reputable information 

sources (e.g., Cochrane Collaboration, published literature). Variables can be grouped 

into five categories: 

 Demographics. Past studies have shown that brain tumors occur more frequently 

in males than females and are slightly more common in Caucasians than other rac-

es [114]. These relationships have been modeled as the variables age, gender, and 

ethnicity. 

 Pathology. The presence of certain pathological features such as multifocality and 

oligo component has been shown to be correlated with prognosis. Hence, these va-

riables are represented in the model. 

 Imaging variables. Imaging variables can be either quantitative (e.g., tumor size) 

by characterizing features identified in the data or inferential based on descriptions 

provided by a domain expert (e.g., as part of the radiology report for the clinical 

imaging study). 

 Treatments. A select number of treatment variables have been modeled. Several 

popular chemotherapy treatments are represented: the primary drug is temozolo-

mide (Temodar), which has its own node with states that represent common do-

sage amounts. Other chemotherapy drugs are represented in a single variable that 

represents the common combination of these drugs: PCV (procarbazine, lomustine 
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[CeeNu], vincristine), and carmustine. The model includes a variable that 

represents whether the patient has undergone radiation therapy including confor-

mal and stereotactic radiotherapies. 

 Outcome variables. The goal of the model is to predict the following outcome 

variables (shaded in dark red): TTP, KPS, and TTS. 

The imaging-centric brain tumor model was parameterized using a set of 152 patients 

from the neuro-oncology database. These patients were chosen because they had the 

most complete collection of image features documented. To parameterize the GBM 

model, a separate subset of 200 patients from the neuro-oncology database was used. 

While some overlap exists between the two patient populations, the GBM model fo-

cuses exclusively on patients that have been diagnosed with GBM and received at 

least one dose of the chemotherapy drug temozolomide. The resulting models are illu-

strated in Figure 4.1 and Figure 4.2. 

4.1.2. Diagnostic model of liver disorders 

Cirrhosis is a chronic liver disease that is characterized by the replacement of liver tis-

sue with fibrous scar tissues. This damaged tissue progressively leads to the loss of 

liver function. While alcohol is one of the primary causes of liver disease, other causes 

can include chronic hepatitis C, which causes inflammation and damage to the liver 

over time, hepatitis B and D, fatty liver disease, and autoimmune hepatitis.  
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HEPAR II [2] is a probabilistic diagnostic disease model for liver disorders. Common 

symptoms include the yellowing of the skin, liver enlargement, portal hypertension, 

buildup of fluid in the abdominal cavity, liver encephalopathy, and liver failure. 

Therefore, the diagnosis of liver disease typically requires a combination of data 

sources including the patient’s history, results of a physical examination and laborato-

ry tests, imaging studies using modalities such as computed tomography (CT) and 

MR, and a liver biopsy. From the collected information, 71 different variables were 

extracted and represented in the disease model. These variables can be categorized in-

to five categories: 

 Patient history. Several factors in the patient’s medical history can influence 

whether a patient suffers from liver disease. These factors include past hospitaliza-

tions, surgeries, transfusions, injections, and alcoholism. In addition, other diseases 

such as diabetes can have an effect. 

 Physical exam. As part of a routine exam, physicians record information such as 

whether the patient experiences upper abdominal pain, fatigue, or yellowing of the 

skin. 

 Laboratory tests. Lab tests are important in gauging liver function. The liver pan-

el includes tests that measure alanine aminotransferase (ALT), alkaline phospha-

tase (ALP), and total protein. Other tests such as the lipid panel and antibody tests 

(e.g., Hepatitis A Virus Antibody IgM) are also helpful in narrowing a diagnosis. 
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 Imaging variables. MR imaging is particularly well-suited to evaluate liver pa-

thology due to its ability to generate contrast (e.g., gadolinium) to see fat perfusion 

or iron accumulation. From these images, features such as irregular liver edge and 

edema can be extracted and used to differentiate between different liver disorder 

diagnoses.  

 Outcome variables. The goal of the model is to predict whether the patient has 

one of seven liver disorders: hepatic steatosis, hepatic fibrosis, carcinoma, tox-

ic/chronic/reactive hepatitis, cirrhosis, primary biliary cirrhosis (PBC), or hyperbili-

rubinemia. 

The complete liver disorder model is illustrated in Figure 4.3. 
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Figure 4.1: A Bayesian belief network for predicting the progression and survival of glioblastoma 
multiforme patients. 

 
Evidence variable Source Evidence variable Source 

Gender 
(Male. Female) HIS 

Time to progression 
(< 2 mo, 3-6 mo, 6 mo-1 yr, 1-2 
yr, >2 yr) 

Oncology report 

Race 
(White, Asian, Hispanic, Middle 
Eastern, Black, Other) 

HIS 
Overall tumor status 
(Worse, Marginally worse, No 
change, Marginally better, Better) 

Oncology report 

Age 
(17-50, >50) HIS Temodar dosage 

(6 states) Oncology report 

Edema 
(Worse, Marginally worse, No 
change, Marginally better, Better) 

MR imaging study Other chemotherapy 
(6 states) Oncology report 

Contrast region 
(Worse, Marginally worse, No 
change, Marginally better, Better) 

MR imaging study Time to survival 
(< 6 mo, 6 mo-1yr, 1-2 yr, > 2 yr) Oncology report 

Noncontrast region 
(Worse, Marginally worse, No 
change, Marginally better, Better) 

MR imaging study Tumor location 
(8 states) Radiology report 

Karnofsky performance status 
(<60, 60-69, 70-79, 80-89, 90-99, 
100) 

Oncology report 
Mass effect 
(Worse, Marginally worse, No 
change, Marginally better, Better) 

Radiology report 

Steroids 
(6 states) Oncology report Resection 

(None, Biopsy, 20-90, 90-99, 100) Surgical report 

Radiation therapy 
(None, Regional, Stereotactic) Oncology report   

Table 4.1: List of variables incorporated in the glioblastoma multiforme prognostic model. States (or 
number of states) for each variable are specified in parenthesis. 
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Figure 4.2: Bayesian belief network for predicting the progression and survival of brain tumor pa-
tients using variables derived from pathology and radiological features. Nodes shaded in red 
represent outcome variables. 



   

142 

 

  

Evidence variable Source Evidence variable Source 

Sex 
(Male, Female) HIS Parietal Lobe 

(Present, Absent) MR imaging study 

Age 
(17-50, >50) HIS Necrosis 

(Present, Absent) MR imaging study 

Outside Edge 
(Smooth, Irregular) MR imaging study Lesion Size 

(S, M, L, XL) MR imaging study 

Midline Shift 
(Present, Absent) MR imaging study Noncontrast Enhancement 

(Present, Absent) MR imaging study 

Thalamus 
(Present, Absent) MR imaging study Cyst 

(Present, Absent) MR imaging study 

Edema 
(None, Mild, Moderate/Severe) MR imaging study Cerebellum 

(Present, Absent) MR imaging study 

Rim Contrast 
(None, Thin, Thick) MR imaging study Satellites 

(Present, Absent) MR imaging study 

Tumor Extension X Midline 
(Yes, No) MR imaging study 

Progression 
(< 2 mo, 3-6 mo, 6 mo-1 yr, 1-2 
yr, >2 yr) 

Oncology report 

Corpus Callosum 
(Present, Absent) MR imaging study TTS 

(< 6 mo, 6 mo-1yr, 1-2 yr, > 2 yr) Oncology report 

Side 
(Left, Right) MR imaging study Karnofsky performance status 

(< 60, 60-80,80-90,100) Oncology report 

Occipital Lobe 
(Present, Absent) MR imaging study Oligodendroglioma  

(None, Minor, Major) Pathology report 

Temporal Lobe 
(Present, Absent) MR imaging study 

Lesion Type 
(Anaplastic Astrocytoma, Anap-
lastic Glioma, Oligodendrogli-
oma, Glioblastoma Multiforme) 

Pathology report 

Mass Effect 
(None, Mild, Moderate/Severe) MR imaging study Multifocal 

(Yes, No) Pathology report 

Contrast Enhancement  
(None, Partial, Solid) MR imaging study Edema Extension X Midline 

(Yes, No) Radiology report 

Frontal Lobe 
(Present, Absent) MR imaging study 

Resection 
(None, Biopsy, 20-90, 90-99, 
100) 

Surgical report 

Table 4.2: List of variables incorporated in the imaging-centric model of brain tumors. States for 
each variable are specified in parenthesis. 
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Figure 4.3: The variables and structure of HEPAR II [2]. Shaded nodes (dark red) represent out-
come variables. 
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4.2. Visual Query Interface 

The first application, called the visual query interface (VQI), facilitates inference on a 

disease model using a graphical paradigm. This system is designed for radiologists and 

other physicians who are interested in using image features (e.g., color, texture, shape) 

to find other similar studies in a large repository (e.g., picture archiving and communi-

cation system, PACS), such as in applications for medical content-based image re-

trieval. An example of a query is: retrieve all related patient cases that have nodules 

with a speckled appearance in the right lower lobe of the lung. Given the nature of 

medical images, a visual query-by-example interface is well-suited to the task of query 

composition: spatial (e.g., right lower lobe of the lung) and morphological attributes 

(e.g., speckled appearance) are naturally described by a graphical representation. In 

support of visual querying paradigms, one usability 

study showed that when asked to specify complex que-

ries, users found visual queries to be more intuitive and 

expressive than traditional text query languages [115]. 

In VQI, the user manipulates a pictographic representa-

tion of BBN variables, referred to as graphical meta-

phors. Two types of graphical metaphors exist: 1) a free-

hand metaphor that allows the user to sketch a query object (e.g., a tumor) and its en-

vironment (e.g., surrounding anatomical structures); and 2) a component metaphor that 

prompts the user to input numerical or categorical values based on fields in the patient 

 
Figure 4.4: VQI’s relationship 
between user interaction and 
the underlying BBN. 
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record. By combining graphical metaphors in different ways, a variety of diagnostic, 

prognostic, and treatment-related questions may be posed. For imaging-based va-

riables, graphical metaphors take on the properties of their image feature counterparts, 

allowing users to alter their sizes, locations, relative geometrical positions, and shapes 

to obtain the desired query. The metaphors bridge a user’s knowledge of a familiar 

domain (e.g., a radiologist’s expertise in image interpretation) with an exploratory 

framework that incorporates variables from other domains (e.g., lab test result). A 

unique aspect of VQI is that the application guides the user through the query formula-

tion process using the structure of the underlying disease model. The selection of 

graphical metaphors is context-specific: as the query is built, different metaphors are 

made available (or removed) to enable the user to draw a logically permissible query. 

A feedback loop exists between the user and the underlying graphical model, as illu-

strated in Figure 4.4: given a disease model, contextual information provided by the 

variables, defined relationships, and user interaction with the model influence what 

graphical metaphors or functions are the displayed to the user. As the user selects me-

taphors to formulate a query, the inputs provide some context about the types of va-

riables that are of interest to the user and in turn can be used to identify the subsets of 

variables in the model that are directly related and relevant for the query. This loop 

provides a form of relevance feedback: as the user chooses a set of variables to be a 

part of a query, the system uses this information to refine which metaphors are pre-

sented next to the user. 
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4.2.1. Adaptive interfaces using BBNs 

To dynamically adapt the interface, the BBN is used to perform two tasks: 1) capture 

knowledge about a disease in a probabilistic manner so that inference may be per-

formed by instantiating the model with patient information; and 2) map variables to 

graphical metaphors and determine when a metaphor is pertinent to the user’s query. 

Attributes of the model are hence used by VQI to determine when a given variable is 

relevant as described subsequently: 

 Variables. In constructing a disease model, a select number of variables are cho-

sen and modeled to characterize a disease process. Each variable is mapped to a 

unique graphical metaphor. By way of illustration, an age variable would map to a 

component graphical metaphor that prompts the user to specify a numerical value. 

In addition, each variable has a set of states; these states dictate what properties a 

graphical metaphor can have. For a variable that models the percentage of tumor 

removed from a patient, the states may be specified by a range of percentage val-

ues (e.g., 90-100% resection); the graphical metaphor is responsible for transform-

ing a user’s numerical input and assigning it as one of the variable’s states. Varia-

ble names can also be mapped to a broader knowledge source, such as an ontolo-

gy, that allows the variable to be defined and placed into the context of other re-

lated variables. For example, if a disease model includes the variable word blind-

ness that represents a loss of the patient’s ability to read written text, the variable 

can be mapped to the term alexia in the UMLS Metathesaurus and assigned to the 



   

147 

semantic type T047 - Disease or Symptom. After mapping all of variables to 

UMLS, variables with identical or similar semantic types are grouped and pre-

sented together in the query interface. 

 Model structure. The network topology encodes information about the condition-

al independencies that exist in the model. Based on the Markov assumption, condi-

tional independencies allow the model to be decomposed into smaller subgroups 

given evidence about certain variables. A variable, given its Markov blanket, can 

be fully explained and therefore isolated from the rest of the network. VQI leve-

rages this property to identify those subsets of variables in the model related to a 

given variable of interest. When a variable of interest is selected, VQI examines 

the variable’s Markov blanket to identify additional graphical metaphors to be pre-

sented in the interface. Also, the in- and out-degrees of a variable help to deter-

mine its relative importance: highly connected variables can be considered more 

crucial to a disease process than variables that are sparsely connected. Variables 

that are highly connected are placed in an initial grouping that is presented to the 

user when no prior metaphors have been selected. 

 Query. Information about the user’s goals can be gleamed from the query itself. 

The variables that the user selects to be a part of the query elucidate the types of 

information that the user is seeking from the model. As an example, if the user se-

lects several imaging-related variables, the probability that the user is interested in 

determining how imaging features affect the outcome of the patient is increased. 
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Therefore, the model increases the weight of other imaging-related variables in the 

model so that they are visually highlighted or presented prior to other metaphors in 

the interface. 

The adaptive presentation of relevant graphical metaphors not only simplifies the 

process of creating a query by reducing visual (selection) clutter, but it also enforces 

logical rules regarding the order that metaphors are selected to formulate a query. For 

instance, in neuro-radiology, contrast enhancement, if present, appears around certain 

image features of a tumor, such as a cyst or necrosis. Therefore, the option to add a rim 

contrast metaphor is only applicable when a cyst or necrosis metaphor is already 

present in the query.  

 

4.2.2. System framework 

The overall system is comprised of three components, as depicted in Figure 4.5 [116]: 

1) a disease model specifies the relationships among variables; 2) an adaptive query 

 

Figure 4.5: A flow diagram showing the components of the visual query interface: disease model, 
query interface, and query engine. 
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interface based on a query-by-example paradigm enables users to pose a query picto-

rially; and 3) an engine instantiates the model, executes the query, and presents the 

results. 

4.2.2.1. Graphical disease model 

Central to this framework is the graphical disease model that quantitatively describes 

the relationships among variables. The framework is designed to accommodate a va-

riety of probabilistic models that represent a wide range of diseases, but in this in-

stance, the Bayesian belief network of a brain tumor is used. 

4.2.2.2. Query interface 

The user interface, depicted in Figure 4.6, consists of three panes that enable the user 

to find available metaphors (adaptive toolbar), pose queries using these metaphors 

(visual editor), and review/execute queries (query panel). 

Adaptive toolbar. The adaptive toolbar (Figure 4.6a) is located at the top of the appli-

cation and presents available metaphors that can be used in a query. Metaphors are 

presented based on context: as the user selects structures (e.g., white matter) or meta-

phors (e.g., edema metaphor) in the visual editor, related metaphors are presented in 

the toolbar while unrelated metaphors are removed. The determination of whether a 

metaphor is related (or unrelated) is influenced by the relationships among variables 

defined in the disease model, as described in Section 4.2.1. Each metaphor is mapped 

to a corresponding variable in the model. Based on conditional independencies  



   

150 

expressed by the structure of the model, subsets of variables and their corresponding 

metaphors are presented to the user. 

Visual editor. The visual editor (Figure 4.6b) is an area in the interface where users 

pose queries to the disease model using a combination of graphical metaphors. The 

primary component of the editor is an image viewer that displays slices from a three-

dimensional digitized atlas of the region of interest. The labeled atlases provide spatial 

information about anatomical structures. For example, when the user overlays a tumor 

metaphor atop a representative slice from an atlas, the anatomical information encoded 

 

Figure 4.6: A screenshot of VQI. (a) The adaptive toolbar displays available graphical metaphors 
that can be used in a query. (b) The visual editor provides space for combining and overlaying me-
taphors over a labeled atlas to formulate a query visually. (c) The query panel translates the visual 
query into model variables and states. (d) The case-based retrieval ranks all patient records in ada-
tabase based on their similarity to the query. (e) The results of the prognostic query are displayed 
as a bar graph showing which state is most probable. 
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in the atlas is used to determine the location of the metaphor and whether the metaphor 

affects any surrounding structures (e.g., mass effect on the right ventricles). 

The user first selects an orientation (axial, sagittal, or coronal) and then chooses a rep-

resentative image from a set of slices to depict the location of the tumor. The editor 

provides the user with functionality to select, draw, and customize graphical meta-

phors. The intent is to allow users to compose and overlay metaphors that pictorially 

represent a set of image findings on a single, representative slice of the atlas. 

The process of posing a visual query is as follows: from a normal or patient imaging 

study, the user selects a representative slice or location to pose the query; the user ite-

ratively constructs a query by drawing upon the available set of presented metaphors 

to represent visual features of the disease; and the final query is translated into an ob-

ject representation that is used to set the states of variables in the BBN as the basis of a 

maximum a posteriori (MAP) or most probable explanation (MPE) query. Figure 4.7 

demonstrates how VQI’s adaptive interface works in the context of posing a query in 

the domain of neuro-oncology: users are presented with a normal brain atlas 

(ICBM452 [117]), from which axial, coronal, or sagittal slices can be selected. As the 

user selects metaphors in the visual editor (e.g., contrast enhancement), related meta-

phors are presented in the toolbar (e.g., define border appearance) while unrelated me-

taphors are removed (e.g., gender). For instance, when the contrast enhancement me-

taphor is selected, the user is prompted to define whether the border is thick or thin. A 
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user progressively composes a visual query, which is automatically translated to val-

ues that can be used to instantiate the BBN. 

 

4.2.2.3. Query execution 

VQI supports two classes of queries: prognostic reasoning and case-based retrieval. 

Prognostic queries. Executing queries against the BBN is accomplished by using an 

inference engine (e.g., SamIam [118]). A wide range of clinically-relevant questions 

 
Figure 4.7: Demonstrating query formulation using VQI and how the adaptive interface uses the 
model to determine the presentation of graphical metaphors [1]. (a) The user initially selects a repre-
sentative slice from an atlas to place a tumor object. (b) After drawing an edema metaphor in the 
query; the model then identifies which metaphors to present next based on the structure of the model. 
(c) After adding a necrotic metaphor, the next relevant metaphor is contrast enhancement. (d) The 
user specifies properties of the contrast enhancement based on the states defined in the variable. 
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can be posed to the disease model using a combination of metaphors. One possible 

query would be: what are the states of all other evidence variables in the model, given 

symptoms of severe edema with noticeable mass effect and midline shift? (Figure 4.8a) 

This question is an example of an MPE query where the most probable states of all the 

variables within the network are calculated. The user can then use this information to 

pose new queries to determine which combination of treatments can be administered 

that best improves the patient’s outcome given his current state. 

Additionally, the user may pose questions that relate to prognosis of a patient given a 

set of characteristics. An example of a prognostic query is Query 1 posed in Section 

3.1, which asks: what is the most probable range of the Karnofsky Performance status 

for a 50-60 year old female with a right occipital lobe GBM immediately following 

complete surgical resection? (Figure 4.8b) In this query, five metaphors (age, gender, 

lesion type, location, and resection) are used. First, the user selects the age and gender 

metaphors to specify the age range and sex of the patient, respectively. Then, the le-

sion type metaphor is used to specify an area of the brain that is infiltrated by GBM. 

The system automatically translates the location where the user places the lesion type 

metaphor using information provided by the atlas; this information is used to instan-

tiate the location variable. Finally, the resection metaphor is used to specify the per-

centage of the tumor that was removed. Because the query is seeking the most proba-

ble state of a particular variable, a MAP query is executed, and the most probable 

Karnofsky performance status interval is returned. 
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Case-based retrieval. VQI supports case-based retrieval by using the Kullback-

Leibler (KL) divergence (DKL) [119]. As introduced in Section 3.2.3.1, the KL diver-

gence assesses the difference between two probability distributions (over the same 

event space). In VQI, KL divergence is used to measure the similarity between the 

query and cases in a patient database. Based on the imaging features (e.g., size, loca-

tion, geometric relationships between objects, etc.) and other non-imaging values spe-

cified in the query, the posterior probability distribution for this combination of evi-

dence variables is computed; this value is assigned as P(x). Next, the posterior proba-

bility distribution is then calculated for all of the cases in the database using the same 

variables, but now, each variable is instantiated using the state specified in each case; 

the resulting value is assigned as Q(x). The KL divergence is iteratively calculated for 

each case in the database, and the results are ranked from lowest to highest. The case 

associated with the lowest KL divergence value is the “closest” matching case (with a 

 

Figure 4.8: Examples of queries that may be posed using VQI. (a) A query that depicts a tumor 
with a severe area of edema that caused a midline shift. (b) Another query that utilizes component 
metaphors to define gender and age and freehand metaphors to define an area of GBM in the right 
occipital lobe and the area removed during resection. 
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KL divergence of 0 being a perfect match). The benefit of using this approach is that 

unlike traditional case-based approaches, combinations of variables that have not pre-

viously been inputted in the database can still be supported: the model will attempt to 

find the next best combination of features that result in a posterior probability distribu-

tion closest to that of the query. 

4.2.3. Implementation 

VQI is written in Java using the Java Development Kit version 1.6. The anatomical 

atlases are loaded using the Java Image I/O package using special handlers provided 

by the LONI Image I/O package to open medical image files (e.g., DICOM). The user 

interface is implemented using Java Swing with the Substance package providing the 

look and feel. SamIam [118] is used as the inference engine; it provides an application 

programming interface that allows external applications to execute various queries 

(e.g., MAP, MPE) against the model and perform related computations (e.g., calculate 

KL divergence). Patient case files can be read either from a comma separated file or 

queried directly from a relational database using a Java database connectivity driver 

(e.g., MySQL Connector/J). Once the patient data is loaded, the user is presented with 

an interface for mapping values in the database to variables and states in the disease 

model. This information is used to index the patient cases. 

4.3. Adaptive Electronic Health Record Viewer 

The use of the visual dictionary is demonstrated in an application that provides an in-

tegrated, longitudinal view of the patient record called AdaptEHR (Adaptive Electron-
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ic Health Record). AdaptEHR dynamically changes how patient data is presented to 

the user based on composition rules that are generated based on properties and filters 

defined in the graphical disease model and other knowledge sources. This section 

starts by providing motivation for this application, followed by a brief review of re-

lated work. It also discusses how AdaptEHR differentiates itself from another context-

sensitive visualization, called TimeLine [81]. Finally, basic details on implementation 

are provided; results from a pilot usability study are provided in Chapter 5. 

4.3.1. Background and motivation 

Visualization of the patient record is an important part of helping clinicians understand 

and act on the available data. Clinician tasks can be broadly categorized into three 

types: 1) what is wrong with the patient; 2) how severe is the problem; and 3) what is 

the best course of treatment? Answering these questions require a comprehensive un-

derstanding of the patient’s history and available data types. Visualizations are useful 

because they transform raw data into visual patterns that are much easier to interpret. 

A large number of visualizations have been proposed for medical data; Section 2.3 

reviews many of these approaches. 

This section addresses the issue of combining multiple data elements and visualiza-

tions to generate a single display. Such displays provide tools to view and explore the 

entire patient record from a single interface. However, the sheer amount of data makes 

displaying all of the available patient data simultaneously impractical to the user. To 

address this issue, work has been done to generate custom views that display only a 
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subset of the patient record based on predefined criteria. Zeng [76] and Tange [120] 

have both explored the area of automatically generating concept-oriented views of 

medical data. In Zeng’s work, a concept-oriented view was generated by using an on-

tology called Medical Entities Dictionary (MED) [30] to perform concept expansion to 

identify all data elements in the patient record that is related to particular concept. Re-

levant concepts were then identified in the patient record. A streamlined page that 

provided links to departments where related concepts were found was generated; when 

a user clicked on a particular department, relevant clinical data from the department 

was shown. Zeng’s work is tightly integrated with MED, which provides relational 

information to link four common medical areas (laboratory, electrocardiography, med-

ical records coding, and pharmacy). On the other hand, AdaptEHR integrates multiple 

knowledge sources to determine when a data element is relevant to the user: it is not 

tied to a specific data model. In addition, Zeng describes visualizing the relevant data 

to fit the look and feel of their institution’s electronic medical record. However, pit-

falls of that approach are: 1) it is constrained to simple text-based presentation of pa-

tient data; and 2) the display cannot display multiple data types simultaneously (e.g., 

only one type of data can be viewed at a given time). On the other hand, AdaptEHR 

draws upon a library of visualizations to display information to the user. Multiple vi-

sualizations can exist for displaying a single data element: depending on the context, 

the visualization that best meets the user’s information needs and task is selected. My 

work also attempts to address some of the concerns of concept-oriented organizations 

of medical data: Bossen [121] argues that such an organization fragments the patient 
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record across different screens and hence the clinician cannot get a “big picture” of the 

patient’s medical condition. AdaptEHR addresses this issue by displaying patient data 

through a single interface: users are provided the ability to set filters that determine 

how much information is displayed based on their information needs. Based on these 

filters, quantitative values derived from the model’s structure and parameters are used 

to determine whether a given data element is above the threshold and hence, should be 

displayed. 

TimeLine [81] is a problem-centric, time-based visualization of medical data that uti-

lizes a rule-based knowledge base to integrate information from the patient record and 

presents them to the user based on a set of inclusion rules and available visual meta-

phors. The goal of the work is to automatically instantiate the display of patient data 

by providing seamless integration between different heterogeneous clinical data 

sources, reorganizing the data to create disease- and condition-specific views, and cus-

tomizing the visual presentation of this data based on user goals and preferences. The 

system utilizes the International Classification of Diseases (ICD-9) and Medical Sub-

ject Headings (MeSH) to provide categories for diseases and associated findings. 

These diseases then drive the generation of the remainder of the interface: only data 

elements related to a particular disease is displayed. This dissertation complements 

and improves upon TimeLine in several ways: 1) relationships between data elements 

are defined using probabilistic graphical models; 2) unlike ontologies, which encode 

knowledge as a set of semantic relations, graphical models encode probabilities that 
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can be used to determine how strongly one variable influences another; this informa-

tion is used to alter the appearance of data elements (e.g., size, proximity, layering); 3) 

the inclusion rules originally proposed in TimeLine have been augmented to include 

information provided by the disease model; and 4) user input is now taken into ac-

count to dynamically determine what additional information is presented on the 

screen. AdaptEHR is not meant to be a replacement of TimeLine; rather, it is a generic 

visualization framework that can be used to generate interfaces such as TimeLine.  

4.3.2. System description 

Three components have grown out of the development of AdaptEHR, facilitating dif-

ferent aspects of the system: 1) an information extraction component identifies data in 

the medical record that are relevant to a condition’s diagnosis and treatment; 2) a pri-

oritization and relation component that uses the graphical disease model to link and 

rank data elements based on how relevant they are to a given query; and 3) a visualiza-

tion component that selects the appropriate visual metaphor for the data being dis-

played and how the data is laid out on the screen. To ground the discussion, I first in-

troduce the visualization component to provide context for understanding the other 

parts of AdaptEHR that are used to change the display. 

4.3.2.1. Display 

The user interface for AdaptEHR, depicted in Figure 4.9, is comprised of three com-

ponents: 
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Figure 4.9: Screenshots of AdaptEHR. (a) The main interface is comprised of 1) the filter panel, 
2) timelines, and 3) temporal filter. (b) The data viewer provides a detailed view of the patient 
data. 
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Data filters. The left side of the display (Figure 4.9a-1) presents all of the configura-

tion options that may be used by the user to customize the interface using the filters 

enumerated in Section 4.3.2.3. Users can select the necessary checkboxes, radio but-

tons, and sliders to change the types of information displayed in the other parts of the 

interface. 

Timelines. Time is delineated along the horizontal (x-axis) with months and years 

marked off accordingly. The timeline display acts as a canvas, allowing graphical 

elements corresponding to different pieces of information from the patient record to be 

overlaid. Upon opening a patient’s record, three timelines are initially presented: the 

documentation history, imaging history, and encounter history. Selecting a problem 

from the filter panel adds additional timelines to this view based on the problem se-

lected, data available, and user. These visual cues are modeled after the TimeLine sys-

tem presented in [122]. Events representing patient data are denoted along the time-

lines by iconic links: 

 Document icons are color-coded by source or data type. 

 Quantitative clinical lab values are plotted; the normal value is indicated by blue 

points while abnormal values are plotted in red. 

 Medications and treatments are visualized by bars that span the duration of the 

event. Interventions are visualized as icons that convey the type of intervention. 

 Imaging procedures are represented by thumbnail images indicative of the exam. 
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Data viewer. Data in the patient record is accessed through the timeline display. Once 

a user selects a specific data element (e.g., an icon for a particular document), the raw 

data from the patient record is loaded in a generic viewer that allows users to examine 

documents, images, and labs in more detail. The viewer can be split either vertically or 

horizontally to allow comparisons between the same data type or to view different data 

types that relate to one another (e.g., medical images and their associated radiology 

report). Different visualizations (e.g., point-based, interval-based) are used to present 

the data based on the user model and user-specified filters. The visual dictionary se-

lects a visualization to use given a data element and its context. 

Interaction with AdaptEHR can be summarized in the following steps: 

1. The user selects a particular medical problem that has been mined from the pa-

tient record. 

2. The corresponding knowledge bases (e.g., disease model) for the selected con-

dition are loaded. 

3. The visual dictionary is initialized with seed variables identified based on the 

user/task models, and the initial display is generated. 

4. The user interacts with the model by specifying a set of filters provided. 

5. The filters are translated to a set of associated variables and states that are used 

to instantiate the model. 
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6. Based on variables that the user specifies as part of the query, influential find-

ings and paths of influence are identified. 

7. The system determines the highest ranking documents and data elements and 

displays the data using appropriate visual metaphors. 

8. An updated display is generated. 

9. As the user continues to interact with the system, steps 4-8 are repeated, adding 

and removing metaphors from the display depending on their relevance to the 

user defined concept. 

4.3.2.2. Information extraction 

Information extraction is the process of identifying and extracting relevant events, ent-

ities, and relationships from unstructured clinical data that have significance to patient 

care. AdaptEHR works primarily with three types of medical data: clinical documents, 

medical images, and laboratory values; methods for characterizing them are discussed 

in the following sections. 

Clinical documents. Unstructured free-text documents contain large amounts of use-

ful medical information; however, free-text is not amenable to analysis by a computer. 

A natural language processing (NLP) system [123] is used to identify relevant bio-

medical concepts from free text and perform semantic interpretation to associate 

attributes to related concepts. Concepts that are extracted include: 
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 Temporal concepts. Time is an essential component to making an accurate and 

complete clinical diagnosis. The date of when a particular problem or finding is 

present conveys temporal information that provides historical context for a given 

medical problem. Clinicians would be able to easily determine whether a particular 

disease is a recurrence or a newly discovered problem, all in relation to the other 

events in the patient’s medical history. 

 Spatial concepts. Anatomic (spatial) descriptions of findings are fundamental to 

disease understanding, as symptoms are often the result of changes caused by the 

disease to surrounding regions. Mapping anatomical descriptions extracted by 

NLP from clinical documents to spatial representations (e.g., standardized atlas-

es/anatomical reference frames) provide both improved visual depiction of how 

the problems are distributed in a patient and a common reference frame for facili-

tating spatial reasoning related to patient outcomes. Anatomical phrases identified 

in the patient record are mapped to standardized concepts found in controlled vo-

cabularies. 

 Existential concepts. In medical reporting, physicians often qualitatively assess a 

level of certainty for the existence of a given problem. Existence describes whether 

a problem is observed in the patient at a given time. Existential values may in-

clude: definitely exist, likely, possibly, less likely, cannot be ruled out, no evidence 

of, and does not exist. These values can also be examined globally across various 

documents to determine how an instance of a problem relates to other occurrences. 
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For example, given that a problem is mentioned in several clinical documents, 

each instance may be labeled as one of four categories: new, recurrent, old, or re-

solved. Existence of a problem or symptom implies the existence of a disease or 

conversely, its resolution. 

 Causal concepts. The notion of “causality” and clinical medicine are inherently 

intertwined. Patient care is driven by causal considerations: symptoms manifest 

due to underlying etiology, which in turn are the result of some (abnormal) biolog-

ical phenomena. An important aspect of organizing clinical information is to cap-

ture the cause-effect relationships among variables of interest, such as treatments, 

exposures, preconditions, and outcomes. In conjunction with existential informa-

tion, causality is the basis by which a physician can determine the existence of a 

disease: diagnosis is a conclusion that is arrived at by analyzing the symp-

toms/problems of a patient. NLP may be used to identify causal links between 

concepts (e.g., problems to findings, medications to disease response); this infor-

mation is used to influence how data elements are positioned on the screen (e.g., 

causally related concepts are positioned close together). 

The input to an NLP system is an unstructured body of a clinical document that is 

written by a physician; the output is logical frames that identify concepts within the 

text and their associated attributes. An example of a frame-based output is shown in 

Figure 4.10 for the sentence: there is a large well-circumscribed 5cm mass in the left 

upper lobe consistent with adenocarcinoma. The frame representation enables several 
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types of manipulations: 1) the representation facilitates mapping relevant concepts in a 

document to a disease model; 2) specific attributes that modify a particular concept are 

used to instantiate the appropriate state in the model; and 3) the extracted attributes 

can be translated into a visual summary thus eliminating the need for users to browse 

through entire documents to find relevant information. 

Medical images. Methods for image understanding are necessary to make sense of the 

pixel data and identify any relevant features using texture, color, and shape analysis. 

In addition, metadata provided by the header file can be used to help categorize im-

ages and relate them to documents. AdaptEHR utilizes a subset of tags and elements, 

which are presented in Table 4.3 to help categorize and associate imaging data with 

other parts of the patient record. The tags provide context about how the image was 

acquired and the content that the image depicts. The study and series descriptions pro-

vide an idea of the sequence used; the body part examined provides information about 

 

Figure 4.10: An example of a frame output for the sentence: there is a large well-circumscribed 
5cm mass in the left upper lobe consistent with adenocarcinoma. 
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the anatomical region that is depicted. The accession number is used to link images to 

related radiology reports that were dictated by a radiologist; corresponding images and 

reports can be retrieved and displayed at the same time. Medical images are visualized 

in AdaptEHR using one of the following ways: 

 Thumbnail. In the overview display, medical images are represented by a thumb-

nail image that provides a snapshot of the type of data contained within the imag-

ing study. 

 Context-in-detail. Users who desire an overview of the entire imaging study can 

use the context-in-detail view, which displays medical images in a film-strip view-

er. Individual slices are displayed in a grid; users can scroll through the images or 

hover over a single image and view a larger version of the selected slice. 

 Detailed view. For users who wish to manipulate the image (e.g., add annotations, 

change window/level), clicking on a specific image will initialize a fully functional 

image viewer that provides a host of functionality to modify and annotate the im-

age. Different imaging studies for a given medical problem can be viewed simul-

Tag Name Purpose 
0008,0032 Acquisition Time Used to generate time-oriented view 

0008,0050 Accession number Used to link DICOM image series with availa-
ble radiology reports 

0008,0060 Modality Used to filter images by modality 

0008,1030 Study Description Used to filter studies based on keywords in 
field 

0008,103E Series Description Used to filter images based on keywords in 
field 

0018,0015 Body Part Examined Used to filter images based on anatomical 
region based on keywords provided in field 

Table 4.3: A summary of the DICOM header fields that are extracted and used to filter medical im-
ages. 
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taneously, allowing the user to view changes in image features over time. Such 

comparison would be useful in evaluating whether a particular treatment is effec-

tive. 

Laboratory values. Laboratory data is typically organized hierarchically in a genera-

lization-specialization manner as described in Section 3.5.1.3. In AdaptEHR, this hie-

rarchical organization is visualized using a GUI tree component that allows the user to 

“drill down” to a group of tests or the specific test of interest. When selecting individ-

ual test results, each result can be visualized in four ways: 

1. Tabular display. Lab values are displayed numerically in a table. Abnormal values 

are highlighted in red. The degree of abnormality (number of standard deviations 

from the normal range) is shown by coloring the cell with varying shades of red. 

2. Graph display. Lab values are plotted on a time series graph. Values that are ab-

normal are colored in red. The rate of change between each data point is calcu-

lated; the stroke color changes based on the calculated slope. Sudden changes in 

test results in a short period of time can be denoted with a vibrant color while pro-

gressive changes are presented using more muted colors. 

3. Mixed display. This presentation format combines tabular and graph presentations 

in a single display. The interfaces are linked: clicking on a specific cell in the tabu-

lar display highlights the corresponding point in the time series plot.  
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4. Radar chart. While the aforementioned visualizations are designed for a detailed 

view of trends in the data, the radar chart is a way of summarizing changes be-

tween normal and abnormal lab values. As first presented in [47], the radar chart 

allows users to compare lab results using the shape of the chart. For instance, a 

panel with five tests can be represented as a pentagon if all of the test results are 

normal. However, when any of the test results are abnormal, the pentagon becomes 

skewed based on how abnormal the test result is. This visualization provides a 

quick method for determining which panels among all laboratory tests have ab-

normal results. 

In general, the AdaptEHR GUI follows the “overview, zoom and filter, and details on 

demand” approach [112]. Users are initially presented with an overview abstraction of 

the data: data elements are presented using icons or thumbnails. As the user selects 

individual elements or poses a query to the system, the user interface dynamically 

changes to reveal additional details within the patient record that are relevant to the 

user’s query. 

4.3.2.3. Prioritization and relation 

One of the primary features of AdaptEHR is its ability to prioritize and relate data 

elements in the patient record based on the relationships defined in a graphical disease 

model or ontology. This section describes several of the key filters that permit users to 

change the criteria by which data is filtered and prioritized on the screen. These filters 

specify the parameters that are used to instantiate the composition rules; hence, vary-
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ing the settings on these filters affects how patient data is displayed. Five different 

types of filters have been developed: 

Problem filter. The problem list is the primary filter that determines which data ele-

ments are presented to the user. A patient’s problem list can be generated by: 1) using 

billing codes (e.g., ICD-9) that are assigned to each data element for billing purposes; 

or 2) using automated methods to extract reported conditions from medical reports 

(e.g., discharge summaries) such as NLP [124, 125]. Selecting one or more conditions 

invokes all knowledge sources that have information about the selected problem: 

graphical disease models and medical ontologies are analyzed to determine the types 

of data elements that are relevant to the selected problem; these methods are discussed 

in Chapter 3. Given this information, all of the data elements in the patient record are 

presented using one of the following methods: 

 Relevant clinical documents are ranked and displayed on a timeline interface. 

Ranking is performed using the tf-idf weighting method that is discussed in Sec-

tion 3.5.1.1. 

 Thumbnails of relevant medical imaging studies are rendered on the timeline. For 

radiologists, selecting a thumbnail loads up the entire image either along with the 

radiology report or with a set of manipulation tools (e.g., window/level, magnifica-

tion) that can be used to further explore the image. For all other users, selecting a 

thumbnail will load the context-in-detail view, providing the user with a quick way 

to view all of slices in the study. 
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 A list of medication, interventions, and laboratory tests that are related to the prob-

lem is overlaid and displayed on the timeline. 

User filter. As discussed in Section 3.4.2, user models play an important role in pro-

viding information about the user’s information needs and preferences. A simple rule-

based user model has been implemented in AdaptEHR that specifies: 1) which data 

types are presented to the user and 2) how data is prioritized. Table 4.4 illustrates the 

types of information that are stored in the user model. All of the data types found in a 

patient’s record are enumerated in the model; for each user group, the model specifies 

when a data type is to be presented. For example, demographics would be shown to 

both the primary care physician (PCP) and radiologist but would not be presented to 

the patient. In addition, each data type is also prioritized based on how important the 

data is to a user. For instance, laboratory results are the most important to both the 

PCP and patient, but on the other hand, imaging studies are more important to the ra-

diologist. 

 Primary Care Physician Radiologist Patient 
Clinical data 

Demographics 
Medical history 
Vitals (BP, BMI) 

AST, ALT, liver 
Total cholesterol 

HBV-5 panel 
Imaging (abdominal) 

PCP reports 
Hepatology reports 

Radiology reports 
Medication history 

   
• •  
• •  
•   
•  • 
•  • 
•  • 
• •  
• • • 
• • • 
• •  
• • • 

Prioritization 1. Labs 

2. Medication history 

3. Medical history 

1. Imaging 

2. Radiology report 

3. Hepatology report 

1. Labs 

2. Medication history 
3. PCP reports 

Table 4.4: A table depicting the information that is contained in a user model for AdaptEHR. 
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Temporal filter. Concepts and data elements can be filtered based on when the event 

occurred or based on a time stamp respectively. Dates are important for determining 

patterns that may occur over the course of a chronic illness or treatment. Patients with 

large patient records (e.g., data documented over a long period of time) can be filtered 

so that only a small portion of the data is displayed. The temporal filter affects all 

views in AdaptEHR; setting the temporal filter removes any data elements that do not 

occur within the specified time period from the display. 

Semantic filter. These filters define the types of information that are used to rank pa-

tient data. Semantic filters are driven by the groupings described in Section 3.2.1.2; 

they are used to rank data elements based on the subsets of patient data that are created 

by these groupings. For example, when Therapeutics is selected from a list of seman-

tic groups, only variables that map to terms in MeSH with the group heading Thera-

peutics (e.g., chemotherapy drugs, surgical procedures) are used to rank the docu-

ments. In [126], the authors propose fifteen high-level semantic groups that reduce the 

conceptual complexity of the large domain covered by the UMLS; AdaptEHR leve-

rages this work to cluster individual semantic types defined in the UMLS to broader 

semantic groups. For example, given that a disease model contains variables such as 

necrosis, headache, Carboplatin, and entire left ventricle, these variables can be cate-

gorized into disorders (necrosis, headache), medications (Carboplatin), and anatomy 

(entire left ventricle). 
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Relational filter. The final filter exploits the probabilistic information encoded in the 

disease model. Unlike the other filters, which could be driven by an ontology or rule-

based knowledge source, the relational filter utilizes the probabilities to weigh how 

strongly variables are related to one another. Data elements are then reorganized based 

on how strongly they influence one another. Influence among data elements is quanti-

fied by computing measures such as the strength of influence, value of information, 

path of influence, or influence of evidence. Visually, this filter is represented as a slid-

er bar UI component, which allows users to specify a threshold value. Any data ele-

ment whose relationship is determined to be below the set threshold from a given tar-

get variable is removed from the display. Filtering occurs dynamically; as the user 

slides the value to higher or lower thresholds, data elements are added or removed. In 

addition, the user can specify whether to lay out the data based on how strongly re-

lated data elements are to each other. For example, using the spring-embedded layout 

discussed in Section 3.5.2.3, visualizations are placed closer or farther from each other 

based on the spring constants assigned to each edge. Variables that have larger 

strengths of influence will have a higher spring constant (therefore displayed closer 

together) while less-related data elements are displayed further apart (repelled).  

4.3.3. Implementation 

AdaptEHR is written in Java using Java SDK 1.6. The user interface is built using Ja-

va Swing; the look and feel is provided by the Substance package. The SwingX pack-
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age provides several advanced UI components such as date selection, custom painters, 

and transparent panels. 

Clinical documents are characterized using the MII NLP toolkit [127]. The system 

takes a sentence as input and produces a set of logical frames based on a rule-based 

semantic interpreter, which is modeled for the radiology domain. The system has pre-

viously been applied towards the automated generation of a patient problem list [125]. 

Medical images are rendered using an image viewer package [128] that is capable of 

reading both DICOM and Analyze data formats and outputting their header informa-

tion. The image viewer is integrated into AdaptEHR and provides the advanced mani-

pulation functionalities such as zoom/pan, window/level, annotations, and image 

layout. Charts (e.g., timelines, time series, bar graphs, radar plots) are generated using 

the JFreeChart package. 

To create the visual metaphors, various packages are used. The prefuse toolkit [32] is 

used for graphs and trees. Tables are generated using the default Java table component 

and the GlazedLists package to provide methods for sorting columns, highlighting 

rows, and dynamically filtering content. Calculating the strength of influence and val-

ue of information is performed using SMILE, a programming interface for the infe-

rence engine GeNIe [129]. Indexing of the text, such as concepts extracted from clini-

cal documents and header files, is done using an open source search engine called Lu-

cene. 
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4.3.4. Example Query 

One of the contributions of AdaptEHR is its ability to prioritize and relate data ele-

ments in the patient record based on the relationships defined in a graphical disease 

model or ontology. The result is the ability to filter and rank data based on constraints 

defined by the user’s query. To provide an example of how AdaptEHR adaptively dis-

plays patient information based on a query, I revisit Query 8 that was posed in Section 

3.1: is my non-small cell lung cancer patient eligible to participate in a study that 

compares erlotinib to standard chemotherapy? 

To be eligible, the patient must have either Stage IIIB or IV non-small cell lung can-

cer, have an ECOG performance status of 2 or less, Karnofsky Performance Status of 

greater than 70%, serum calcium < 12 mg/dl, and a clinically or radiologically mea-

surable disease based on Response Evaluation Criteria in Solid Tumors (RECIST). 

Patients must not have existing gastro-intestinal abnormalities, any concurrent anti-

cancer therapy, prior treatment with EGFR inhibitors, other active malignancies, brain 

metastases, several abnormalities of the cornea, or significant cardiac disease. 

To answer this query, the system needs to have prior information about the eligibility 

requirements and how they relate to the overall disease of lung cancer. If a model that 

includes variables representing different aspects of the eligibility criteria exists, it can 

be used to obtain information about how variables relate to one another and in the con-

text of the disease as a whole. AdaptEHR uses the provided information to dynamical-

ly present the patient data by highlighting the parts of the patient record that pertains 
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specifically to these criteria. For example, any mention of the patient’s lung cancer 

stage, ECOG performance status, and past treatments are extracted and highlighted 

since they map to corresponding variables in the model. In addition, any CT or MR 

imaging studies that have been acquired that are related to the patient’s lung cancer are 

also displayed; this information is used to determine whether the patient has a measur-

able disease based on RECIST. The treatments panel shows the duration and dosages 

of chemotherapy that patient has received, if any. Finally, the laboratory test panel 

displays recent measurements of serum calcium; if the patient had any measurements 

that were above the eligibility criteria ( > 12mg/dl), those values would be highlighted 

in red. The display is depicted in Figure 4.11. 
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Figure 4.11: Screenshot of the AdaptEHR interface showing how the display is tailored to answer 
Query 8. (a) User specifies the context used to tailor the display. (b) The selected filters are used 
to instantiate the composition rules. (c) The display highlights concepts in documents that are 
relevant to the eligibility criteria. Phrases with terms that match variables in the model are ex-
tracted and presented to the user. All other documents are rendered transparently. (d) Related im-
ages are enlarged and highlighted. (e) Information regarding the patient’s past treatments is ex-
tracted and highlighted. 
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  CHAPTER 5  
 

Evaluation 
 

5. Overview 

A goal of this dissertation is to use graphical disease models as a way to generate con-

text-sensitive visualizations of patient data. In preceding chapters, various approaches 

have been described for using properties of a graphical disease model and other know-

ledge sources to determine whether elements in the patient record are relevant and 

how they are presented to a user. In this chapter, these approaches are evaluated using 

a pilot study to ascertain whether they meet the original goals of this project. Similar 

works, such as Zeng et al., have presented methodologies that measure precision and 

recall for identifying relevant patient information [97]. The evaluation of this work is 

described in two parts: first, components are assessed quantitatively using measures 

such as precision, recall, and information reduction to gauge their efficacy; second, 

user acceptance is appraised by soliciting opinions from a target group of users 

through a usability survey after each user has completed a series of tasks using VQI or 

AdaptEHR (Chapter 4). The organization of this chapter generally follows that of 

[130], which divides the task of evaluation into three parts: verification (Section 5.1), 

validation (Section 5.2), and assessment of human factors (Section 5.3). 
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5.1. Test data 

The evaluations were performed using de-identified patient medical data that have 

been acquired from the UCLA Ronald Reagan Medical Center with prior institutional 

review board (IRB) approval. Patient data was acquired from the hospital information 

system (HIS) to a research database using a web-based application framework called 

DataServer [41]. Available data included radiology reports, discharge summaries, sur-

gical reports, radiological imaging studies, chemistry results, encounter information, 

microbiology, blood, and pathology findings. Protected health information as defined 

by the Health Insurance Portability and Accountability Act (HIPAA) was automatical-

ly removed from the data as part of the acquisition process. Results of de-

identification were manually validated for all patient cases that were presented to test 

participants during the usability studies. 

5.2. Verification 

Verification is the process of testing whether individual components of the system 

have been implemented correctly and perform as expected. In this work, two compo-

nents are evaluated: 1) the accuracy of the underlying graphical disease model, and 2) 

the process of mapping variables in the disease model to concepts represented in a 

medical ontology. 
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5.2.1. Model validation 

A key factor that determines the utility of this work is the accuracy of the underlying 

graphical model in representing knowledge about a disease. Historically, BBNs have 

been evaluated by measuring their predictive power. First, a set of test cases is com-

piled and used as ground truth. Then, after the BBN has been trained, values from the 

ground truth are used to instantiate the model and predict the value of a target variable. 

Results provided by the model are compared with the known answers to determine the 

accuracy of the model. A second approach gauges the impact of a disease model in 

providing decision support to target users. Study participants are first asked to provide 

answers to a set of clinical queries drawing solely upon their knowledge and expe-

rience. Next, they are given an opportunity to change their answers based on informa-

tion provided by the model. The user makes a final judgment whether or not to change 

their original answers based on the new information. This test measures any improve-

ment in diagnostic accuracy that the user experiences when aided by the model. Final-

ly, model performance can be compared to other types of diagnostic/prognostic mod-

els that represent a baseline approach, such as a decision tree or logistic regression 

model. Using the aforementioned techniques, I discuss the evaluation of the disease 

models used in my work. 

Glioblastoma multiforme (GBM) model. A ten-fold cross validation was performed 

to measure the accuracy of the prognostic GBM model. The entire dataset of cases 

(200 patients) was divided into ten equal parts; nine of the ten parts (180 cases) were 
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used for training, and the remaining part (20 cases) was used for testing. This process 

was repeated ten times by swapping the part that was held out for testing; the overall 

accuracy was computed by averaging the results across all ten tests. The prognostic 

model achieved an average accuracy of 72% when trying to predict the variable time 

to survival (TTS). To provide a baseline comparison, a stepwise multivariate logistic 

regression model was created using the same set of variables as the BBN; it predicted 

TTS with an accuracy of 86%. Several factors may explain why the baseline model 

performed better than the BBN: 1) in the baseline model, every variable is represented 

using only two states underscoring the sensitivity of the BBN model to discretization, 

and 2) the BBN model is a static model that does not represent how the disease varies 

over time. Another limitation of the current study is the limited patient population. Fu-

ture work would include: 1) experimenting with different discretization technique, and 

2) generating a model that draws upon data from multiple institutions, which would 

the address the issues of sample size and bias. 

Imaging-centric brain tumor model. Similar to the GBM model, a ten-fold cross 

validation study was performed to measure the predictive power of the imaging-

centric brain tumor model. A different subset of 152 patient cases was identified from 

the neuro-oncology database and used to train and test the model. This subset of pa-

tients was selected because they contained a variety of brain tumor cases outside of 

GBM, and they had the most complete information about imaging features. Each pa-

tient case was tested with a set of queries. Sample queries included (with the model’s 
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performance for that query in parenthesis): 1) given the age, gender, and lesion type, 

what is the most likely values for necrosis and lesion size (60.2% accuracy); 2) given 

the MR findings of edema, lesion size, and necrosis, what is the most likely lesion type 

(75.66% accuracy); and 3) given the MR findings of edema, lesion size, and necrosis, 

compute the most likely scenario for the remaining network nodes (62.91% accuracy). 

A key issue of this model was the sparseness of the conditional probability tables due 

to the limited patient population used to generate the model; as in the GBM model, 

this model would benefit from an increased study population size that is drawn from 

multiple institutions. 

5.2.2. Mapping variables to an ontology 

The first experiment measured the completeness of mapping variables in disease mod-

els to an existing medical knowledge source (e.g., Unified Medical Language System, 

UMLS). In [131], the authors extracted 2,268 distinct concepts from 24 clinical docu-

ments using a custom noun phrase detection algorithm. They attempted to map ex-

tracted concepts to the 1999 UMLS Metathesaurus resulting in the successful mapping 

of 76% of the concepts. In this study, a similar experiment was attempted using varia-

ble names rather than terms extracted from clinical documents. This experiment 

sought to answer the following questions: 

1. What is the percentage of variable names that are successfully mapped to con-

cepts in the UMLS? 

2. What types of variable names are not mapped successfully? 
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Variable names were parsed from the disease models and mapped to UMLS using Me-

taMap Transfer application [132]. The GBM model contained a total of 17 variables; 

the imaging-centric brain tumor model had 30 variables; and the liver disorder model 

contained 71 variables. The results of mapping are reported in Table 5.1. 

On average, MetaMap Transfer was able to find the correct concept as one of the top 

candidates for 86% of the variables. However, the system was not able to perform ful-

ly automated concept matching; manual inspection was still needed to identify which 

of the top candidates was indeed the correct match for a given variable. Additionally, 

while the coverage of terms in the UMLS has improved since [131] was published, 

improvements in representing variants for each unique concept and capturing addi-

Model Matched Variables (Percen-
tage) Unmapped Variables 

GBM Model 14 / 17 (82.4%) 

Time to survival 

Time to progression 

Overall tumor status 

Imaging-centric 
brain tumor model 24 / 30 (80%) 

Edema crosses midline 

Rim contrast 

Tumor crosses midline 

Contrast enhancement 

Noncontrast enhancement 

Time to survival 

Outside edge 

HEPAR II 68 / 71 (95.7%) 

Hepatotoxic medications 

Total triglycerides 

Yellowing of the skin 

Table 5.1: A listing of variables that do not have matching concepts in the UMLS. 
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tional concepts from specialized domains are still needed. Variables that were not 

mapped to a concept may be grouped into two categories: 

 Phrases. Matching term variants to concepts remain a challenge. In particular, 

phrases used to describe a phenomenon are often difficult to map to a specific 

term. For instance, while the phrase yellowing of the skin cannot be found in the 

Metathesaurus, the term yellow skin is found and is mapped to the term jaundice. 

Users cannot expect the UMLS to include every type of variant that may exist to 

describe a specific concept; one solution would be to standardize the way variables 

are named based on a common set of data elements. 

 Domain-specific terms. The 2009AA release of the UMLS Metathesaurus incor-

porates 129 knowledge sources that represent terms from different domains and in 

various languages. Despite the growing coverage, some domains are still poorly 

represented. Other medical lexicons may be used to supplement existing UMLS 

sources. For example, the term time to progression is not represented in the UMLS 

but is represented in the NCI Metathesaurus (NCI-M).  The NCI-M is an extension 

of the UMLS Metathesaurus that is tailored to meet the needs of the cancer re-

search community by excluding irrelevant terminologies and adding others par-

ticular to biological and oncological research. Other sources of terms include the 

Foundational Model of Anatomy (for anatomical and spatial terms), RadLex (for 

radiological terms), and Gene Ontology (for genomic terms). 
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Improvements in the mapping process can be made by: 1) standardizing how variables 

are represented in the model by utilizing a set of common data elements, and 2) im-

proving the algorithms that match phrases with concepts in the medical ontology. 

Common data elements (CDEs) have grown increasingly popular as a way to integrate 

data acquired across multiple clinical trial sites [133]. The NCI has spearheaded ef-

forts to develop a dictionary of CDEs that clearly define: 1) how data elements are 

named; 2) how data elements are collected; 3) the values and states that each data ele-

ment can be assigned; and 4) the data type. However, creation of CDEs requires a 

team of domain experts to decide on each of the four attributes; while this process is 

time consuming, as progress is made on making new CDEs available, CDEs can be 

applied towards standardizing the representation of variables in a disease model and 

facilitating the creation of models that utilize data from multiple institutions. The 

second improvement addresses the need for different algorithms that map phrases to 

UMLS concepts. While this dissertation utilizes MetaMap Transfer, which is a popular 

tool for performing the mapping task, alternative approaches have been proposed to 

address the perceived performance issues of this tool: [134] provides a reference on 

different approaches for word sense disambiguation. [135] presents a concept mapping 

application that creates a of consistent concepts graph using relations defined in the 

Semantic Network; the graph is then used to infer how ambiguous terms should be 

mapped to concepts. 
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5.3. Validation 

Validation determines whether the implemented framework meets the original design 

objectives. As outlined in Chapter 1, the goals of context-sensitive visualization are to 

assist users with identifying relevant data elements in the patient record given some 

context (e.g., medical problem, task) and reducing the amount of patient information 

that is displayed.  This section describes the design and execution of two experiments 

that measure recall, precision, and percentage of information reduction. 

5.3.1. Gold standard 

To evaluate the system’s ability to identify relevant documents, a test set of 1,299 pa-

tient documents was created. The documents were retrieved from the HIS using the 

process described in Section 5.1. Documents were primarily composed of radiology 

reports that had been annotated with an ICD-9-coded diagnosis. A subset of docu-

ments that specifically pertained to brain tumors (all problems that are children of 

ICD-9 subgroup 191) and cirrhosis (571.x) were identified. However, in multiple in-

stances, documents that may have pertained to brain tumor or cirrhosis were not la-

beled as such. This discrepancy was due to the fact that the ICD-9 codes for each doc-

ument were sometimes assigned based on the primary diagnosis of a patient, not by 

the content of individual documents. As a result, all of the documents were manually 

inspected to ensure that the assigned ICD-9 code correctly reflected the contents of the 

document. A total of 50 documents pertained to brain tumors; 26 documents pertained 

to cirrhosis in the test set. 
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5.3.2. Information retrieval 

First, variables in the disease model were mapped to concepts in the UMLS Metathe-

saurus. Query expansion was used to find concepts in the Metathesaurus that were 

synonyms, parents, children, and siblings of each variable. The expanded set of terms 

was then employed to search the entire document corpus. The number of matches for 

each term was saved; a weight for each variable using tf-idf was computed from these 

values. To rank documents, the weights of each variable were summed together for 

each document. Documents that had higher weights were considered to be more rele-

vant to a given context than ones with lower weights. To compute the recall and preci-

 

Figure 5.1: A recall-precision graph that summarizes the results of ranked retrieval for cirrhosis-
related and brain tumor-related documents from a large corpus of 1,299 documents. 
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sion of the ranked results, the ICD-9 annotations were used to determine how many of 

the top ranked results were indeed classified as being relevant to the disease of inter-

est.  

Unlike unranked retrieval which measures an algorithm using a single set of recall, 

precision and F-score values, ranked retrieval requires the definition of a spectrum of 

relevance. Hence, precision is measured at different levels of recall and is best pre-

sented in a recall-precision graph (Figure 5.1). The graph illustrates that the approach 

performs well: of the 50 documents that pertained to brain tumor in the test set, 41 of 

them were ranked in the top 50 documents. In addition, 25 of the 26 documents per-

taining to cirrshosis were returned in the top 30 results of the retrieval. The experiment 

validates that the process of query expansion can be used to identify relevant docu-

ments in the patient record. In this experiment, all of the variables in the model were 

used to rank the documents. A future test could be done to determine whether docu-

ments can be accurately ranked given only a subset of the variables in a model. For 

example, if the user is specifically interested in viewing documents that relate to Signs 

and Symptoms associated with cirrhosis, then only the subset of variables in the liver 

disorder model that are associated that semantic type are selected, expanded, and used 

to search the patient data. The test would determine whether this approach is sensitive 

enough to identify documents with desired content based on the selected variables. 
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5.3.3. Information reduction 

The second validation test determined the degree of reduction of the amount of infor-

mation that was presented to the user using the knowledge sources. The evaluation 

procedure followed one that was performed in [97]; the percentage of information re-

duction was calculated by comparing the amount of relevant information determined 

using the graphical disease model and the amount of information available in the pa-

tient record. In this evaluation, only laboratory values were considered. The liver dis-

ease model described in Section 4.1.2 was used. Thirteen different lab tests are 

represented in the model; these tests are presented in Table 5.2. Because the number of 

laboratory tests may vary significantly across different patients and diseases, a sample 

of 116 patient records were used. Each patient case included in the study was seen at 

Test Name LOINC Description 

ALT 1742-6 Measure of cell liver death from inflammation. 

AST 1920-8 Measure of cell liver death from inflammation. 

GGTP 2324-2 Elevated activity indicates abnormal bile flow or bile duct disease. 

Alkaline Phosphatase 6768-6 Elevated activity indicates abnormal bile flow or bile duct disease. 

Total Bilirubin 1975-2 Elevated levels are proportional to the amount of liver dysfunction. 

Albumin 1751-7 Decreased levels are an indicator of cirrhosis. 

INR 6301-6 Related to Prothrombin Time (PT), blood clotting, indicator of liver 
function. 

Amylase 1798-8 Lower values indicate liver dysfunction; related to increases in 
bilirubin levels. 

Cholesterol 2093-3 Elevated levels implicated in fatty liver disease. 

Triglycerides 2571-8 Elevated levels implicated in fatty liver disease. 

ESR 18184-2 Measures inflammation, indicator of liver disease. 
Hepatitis Panel (HA-Ab-
IgM) 13950-1 Indicate recent infection with hepatitis A virus. 

Platelet Count 13056-7 Lower values are measured typically after the onset of cirrhosis. 

Table 5.2: Laboratory tests represented in the diagnostic liver disorder model. 
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the hospital for at least three months and had at least one laboratory test performed. 

Variables in the graphical disease model were then used to identify a subset of labora-

tory tests that would be relevant for a user to examine if he/she were interested in di-

agnosing a patient with liver problems. On average, 9 tests were determined to be re-

levant out of an average of 64 tests that were performed on each patient. Using the 

graphical disease model to filter out data resulted in an 85.9% reduction in the number 

of tests that would have been displayed to the user. Historically, laboratory values are 

grouped and displayed together based on a predefined hierarchical organization (e.g., 

lipid panel contains measurements of cholesterol, HDL, LDL). Traditional approaches 

to filter test results based on these hierarchical groups (e.g., display only test results 

that are obtained through the lipid panel) may not provide all of the necessary tests; 

other lab tests outside of the selected group may be relevant for diagnosing and gaug-

ing the severity of a patient’s problem. For instance, a physician diagnosing a patient 

with liver disease may want to see not only results from the liver panel, but also results 

from the lipid panel and antibody tests as well. This work thus demonstrates how the 

graphical disease model can be used to reorganize available lab tests into semantically 

related clusters, filtering out ones that are irrelevant regardless of their position in the 

hierarchical grouping. Additional reduction can also be achieved by filtering at more 

granular levels; for instance, the inclusion rules such as “include based on data value”, 

“include based on trend”, and “include based on recent activity” can be used to filter 

out specific data points within each test. For example, a user could request to show 

only abnormal values within each of the tests relevant to diagnosing hepatitis C.  
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5.4. Evaluation of Human Factors 

Usability studies assess how well a system meets the needs of its target users. This 

process is especially important in medicine because systems need to complement ex-

isting clinical workflows. These studies assist with identifying potential issues in an 

application that might disrupt or impede the delivery of patient care. While many 

evaluation techniques exist, the two preliminary studies that are used to evaluate the 

applications described in Chapter 4 are based on the principles of formal usability test-

ing. Users were provided with a set of tasks modeled after real-world clinical ques-

tions; they were asked to use the applications to complete these tasks. A usability sur-

vey was then administered to determine the user’s overall impressions of each system. 

The following sections discuss the evaluation procedure and results in detail. 

5.4.1. Visual Query Interface 

Test subjects. The evaluation of VQI involved the participation of four users who 

were either radiology residents or radiologists with over five years of experience. 

Study participants were invited to join the evaluation by e-mail using a convenience 

sample. The shortcoming of this recruitment technique is that it introduces a potential 

sampling bias because no guarantees are made to obtain an accurate representation of 

the target user group. Given that the aim of this study is not to compare different user 

groups, convenience sampling is sufficient for the task of soliciting general impres-

sions of the system. However, a random sample of study participants would be neces-



   

192 

sary to fully determine whether users with different backgrounds (e.g., cardiologist) 

have significantly different reactions to using VQI. 

Experimental design. Each user was asked to sit in front of a simulated clinical 

workstation that was running a prototype version of VQI. Prior to the start of the eval-

uation, the user was given a brief training tutorial on how to use the system. During 

the tutorial, the functionality of the system was introduced (e.g., main components of 

the interface, functionality of buttons, instructions on posing a query), and a sample 

task was given to the user that encouraged him/her to explore the interface and be-

come acquainted with the visual query paradigm. Once the user indicated that he/she 

was ready to proceed, the user was instructed to use the interface to answer a set of 12 

questions. These questions represented different clinical and research tasks that asked 

the user to perform prognostic queries using the underlying disease model or find 

similar patient cases from a large repository. The total set of questions was divided 

into two sets: for the first set of six randomly selected questions, the test subject was 

asked to use VQI with the adaptive toolbar enabled to generate the queries. After the 

user had completed the initial six questions, he/she was asked to disable the adaptive 

toolbar (e.g., which forced all of the metaphors to be shown simultaneously) and an-

swer the remaining six questions. Tasks that were asked as part of the study include: 

 How many patients in the database are males diagnosed with anaplastic astrocyto-

ma? 
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 Are there one or more patients in the database that are male who present with 

anaplastic glioma, mild edema found in the parietal lobe, and a mild oligocompo-

nent? 

 Predict the time to survival for a patient with an anaplastic astrocytoma, irregular 

outside edge, and moderate area of edema. 

Data collection. Users were asked to write down their responses to each query and 

rate their answer on a Likert scale of 1 to 5, where 5 represents highest level of confi-

dence. Following the completion of the tasks, a short usability survey modeled after 

the Questionnaire for User Interaction Satisfaction (QUIS) [136] was administered to 

each user. 

Results. The primary categories measured in the usability survey are summarized in 

Figure 5.2. Overall, VQI scored above average on all measures with the area of inter-

preting results having the lowest value. Posing queries, which include functions such 

as selecting graphical metaphors, customizing metaphors, and formulating a visual 

query, received the highest positive response. Users found the interface to be intuitive 

and easy to learn. While three users found the adaptive toolbar to be helpful and intui-

tive in posing queries, one user felt that the constant addition and removal of meta-

phors from the toolbar was distracting and made formulating a query difficult. As evi-

denced in Table 5.3, all of the test participants preferred using the VQI over the tradi-

tional graph (DAG) interface of BBNs when posing imaging-related queries. While 

the users were split in preference when posing simple queries, most users preferred 
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VQI for queries that involved more than five variables. On average, users answered 

83% of the questions correctly and reported a confidence level of 4.1. Their confi-

dence and accuracy in answering the questions was negatively affected by difficulties 

with interpreting the results. 

 

Figure 5.2: Results of the VQI user interaction questionnaire. Overall impression rates the general 
satisfaction of the user when using the system; it factors in the effects of the application’s perfor-
mance (i.e., reliability, speed). Being a prototype application, the application’s responsiveness and 
stability were suboptimal therefore lowering the user’s overall impression. 

 
Survey Question # chosen out of 4 subjects 

Select the query interface (VQI or DAG) that you would prefer to use for each of the following tasks: 

Posing queries that involve imaging features VQI: 4 / DAG: 0 

Posing simple queries that involve less than five variables VQI: 2 / DAG: 2 

Posing queries that involve more than five variables VQI: 3 / DAG: 1 

Table 5.3: Responses to a survey question asking for the user’s interface preference for specific 
querying tasks. 
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Users found several issues with the prototype user interface. Two users noted that set-

ting the desired size of a metaphor was difficult using the visual querying paradigm. 

Users generally had difficulty estimating the size of metaphors drawn on the screen: 

particularly when sizes were mapped to ambiguous states in the model (e.g., small, 

medium, large), users often had to draw metaphors multiple times using a trial-and-

error approach before they were able to obtain the desired size. One solution would be 

to provide real-time information about the size of a metaphor as the user draws it. 

Another would be to provide UI components for modifying the size of a metaphor us-

ing an input field or drop down menu after it has been drawn. With respect to inter-

preting the results, users found that the visualizations used to display the most relevant 

cases and most probable state of a variable were difficult to read. When a case-based 

retrieval query is executed, a tabular display of patient cases is re-sorted based on the 

calculated distance between indexed cases and the query case; results are color-coded 

(as cases become more distant, they become proportionally darker in color) to visually 

represent their distance with respect to the query case. While users found identifying 

the highest ranking results straightforward, they had difficulty determining how well 

the top matches fit the query case. Users suggested that the application initially show 

only columns that match the variables used in the query case but provide users with 

the option of viewing all of the other columns. In addition, the result of the prognostic 

queries was difficult to interpret particularly when the probabilities of individual states 

were close together. A user suggested highlighting the most probable state with a dif-

ferent color to help users clearly differentiate it. 
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Limitations. The results represent a pilot evaluation that consisted of four participants 

who shared similar backgrounds and experience level. As VQI targets a variety of user 

groups, a broader study is need to determine the differences among the performance of 

various user groups (e.g., neuro-radiologists versus thoracic radiologists). In future 

studies, VQI could be used alongside an existing radiology workstation; this setup 

may be used to measure whether the diagnostic efficiency of participants who use VQI 

is significantly different than those who do not have access to VQI. In addition, time 

required to answer each question will be recorded. Future evaluations of VQI should 

answer: 1) whether the adaptive toolbar reduces the time required to pose a query; 2) 

how easily the interface can be used by users with different levels of domain know-

ledge; and 3) whether the proffered answers are deemed “acceptable” to end users.  

5.4.2. AdaptEHR 

Test subjects. The evaluation of AdaptEHR involved the participation of six users: 

four informatics students who were relative novices to medicine but had an under-

standing of the underlying algorithms and two experienced physicians who had over 

five years of experience. As in the case of VQI, a convenience sample was used to re-

cruit the study participants. 

Experimental design. The objective of this study was to use the filtering and visuali-

zation capabilities of AdaptEHR to explore, relate, and present data elements in the 

patient record given a specific context (e.g., medical problem, task). In this study, each 

test subject was asked to interact with a simulated clinical workstation and interpret a 
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patient’s medical record using the AdaptEHR viewer. Users were first given a short 

tutorial on the functionality of the system. A sample patient case was used to demon-

strate the primary features: 1) how to filter data by medical problem; 2) how to use the 

temporal filters; 3) how to use the semantic filters; 4) how to view the imaging and 

laboratory data; and 5) how to pose queries to the system. Following the guided tutori-

al, users were given time to familiarize themselves with the interface by experimenting 

with the sample patient case. Once participants were ready, they were provided with a 

set of 14 tasks generated from two patient cases. A subset of the tasks is provided be-

low: 

 What is the overall trend of the patient’s Karnofsky performance score? 

 How many documents reference the patient's problem of osteoarthritis? 

 In July, 2005, there was concern whether the patient had pneumonia. Was it con-

cluded that the patient had pneumonia? 

 When was the patient’s last dose of the drug temozolomide administered? 

Tasks can be categorized into three types: diagnoses, prognostic predictions, and the-

rapeutic management decisions. Participants were asked to use the AdaptEHR inter-

face to answer each of the questions. 

Data collection. Users wrote down their answers for each clinical query. Once all of 

the tasks were completed, they were asked to complete a short usability survey mod-

eled after QUIS. 
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Results. The results of the AdaptEHR user survey were averaged and compiled into 

the bar graph depicted in Figure 5.3. On average, users were able to answer 86.9% of 

the questions correctly. They also responded with an overall positive response to the 

application. In particular, users appreciated the tools for filtering the information 

(problem list filter, semantic filter, and temporal filter), the ability to access informa-

tion (e.g., search and highlight functionality), and the integration of different parts of 

the patient record into a single display. Issues regarding AdaptEHR centered on the 

large amount of functionality available: several users were initially confused with how 

to use the filters to find relevant information. One user noted that while the UI 

provided multiple approaches for performing the same task, it did not provide the user 

 

Figure 5.3: Results of the AdaptEHR user interaction questionnaire. 
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with any assistance on deciding which approach would be the most optimal. Two us-

ers also raised the issue with screen clutter on the timeline display. Despite the filter-

ing mechanisms, some patient records had dense clusters of documents and images 

corresponding to periods of hospitalization or the initial diagnosis of a medical condi-

tion. In generating the display, AdaptEHR plotted the visual metaphors close together 

based on their timestamps, which resulted in metaphors overlapping on top of one 

another to the point where some documents were visually hidden underneath others. 

Further research into the area of graph layout mechanisms (e.g., spring-embedding 

layout) would be helpful in laying out visual metaphors on the display in a more effec-

tive way. Additionally, users noted that the ability to define and customize user mod-

els was very limited. Advanced UI controls are needed to enhance user models with 

features such saving user-defined layouts and capturing information about most fre-

quently accessed functions and data elements. In addition, techniques for learning user 

preferences through relevance feedback [137] need to be explored. 

Limitations. Given the small sample size of users, only general conclusions may be 

drawn from this pilot evaluation of AdaptEHR. Similar to the evaluation of VQI, a 

larger pool of participants would allow users to be stratified into groups based on spe-

cialty (e.g., radiologist versus primary care physician) and expertise (e.g., resident ver-

sus attending physician). In addition, participants would be assigned to use either the 

existing health information system (e.g., PCIMS, VistA) or AdaptEHR to view patient 

data. The expanded study would measure whether significant differences exist be-
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tween current systems and AdaptEHR in the time needed to answer clinical queries 

and the accuracy of interpreting the information. 
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  CHAPTER 6  
 

Conclusion & Future Work 
 

6. Overview 

This chapter summarizes the findings and contributions that were made as a result of 

this dissertation. Potential avenues of research resulting from this work are also pre-

sented.  

6.1. Summary & Results 

This dissertation addresses the need for tools that assist users with finding, viewing, 

and understanding large quantities of medical data collected during routine patient 

care. My approach was to develop a method of context-sensitive visualization that uti-

lizes various knowledge sources—graphical models in particular—to relate and pri-

oritize data elements in the patient record for a given user and task. The specific con-

tributions of this dissertation are as follows: 

 Characterization and integration of different knowledge sources to provide con-

text. I explored methods for extracting properties of the Bayesian belief network 

(BBN) by examining its variables, defined relationships, and parameters as a way 

to relate and prioritize elements in the patient record. I used query expansion to 

map variables in the model to relevant data elements in the patient record. I also 

described how other knowledge sources (i.e., medical ontologies and user models) 
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can be used to supplement the information provided by the graphical model to fur-

ther constrain the types of information that are displayed in the user interface. 

 A visual dictionary to translate contextual information into rules that influence 

how data is presented on the screen. I created a visual dictionary to perform three 

tasks: 1) map data elements to available visual metaphors based on context (e.g., 

medical condition, user); 2) change the appearance of metaphors based on proper-

ties extracted from the knowledge sources; and 3) incorporate multiple data ele-

ments into one display by following a set of composition rules that are defined by 

the disease model. I examined how visual cues can be used to denote the relation-

ships between data elements by altering the size, opacity, spatial location, and 

layering of their visual metaphors. 

I performed a review of existing knowledge sources, medical visualizations, and clini-

cal information displays to compare my approach with existing research and to vali-

date the originality of my contributions. I demonstrated the feasibility of my approach 

through two clinical applications: VQI and AdaptEHR. These applications implement 

the principles of context-sensitive visualization and demonstrate how adaptive user 

interfaces assist users with querying underlying disease models and understanding the 

results in the context of a patient’s record. Pilot evaluations were performed to gauge 

the effectiveness of using graphical models to identify relevant parts of the patient 

record and reduce the overall amount of information presented to the user. A prelimi-

nary usability study was completed to solicit initial impressions from target users 
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about the two applications. Results of the pilot study were positive and supported the 

work’s usefulness and innovation.   

6.2. Future Work 

While a substantial amount of work has been done to implement the algorithms and 

methodologies described in Chapter 3, additional work is needed to refine these ap-

proaches. My work would benefit from progress in the areas of disease modeling and 

information extraction. Traditional Bayesian belief networks require clinical data and 

disease processes—which are intrinsically temporal in nature—to be condensed and 

represented using a single node. Dynamic Bayesian networks (DBNs) [138], an exten-

sion of BBNs that model time-variant states, hold promise in addressing this short-

coming; however, more research is needed to create clinically useful disease models 

using DBNs. In addition, disease models need to become increasingly modular and 

extensible so that new variables may be easily incorporated into existing models. Al-

gorithms for performing inference or characterizing medical data must be capable of 

handling the increased quantities of data. Improvements are also needed in the way 

underlying disease models are generated; models should be constructed using common 

data elements so that mapping between different knowledge sources become 

straightforward. Using a common representation for variables also has the added bene-

fit of being able to support data from different clinical sites that follow the same stan-

dards; usage of common data elements is critical to enabling the creation of popula-

tion-based disease models. With respect to other knowledge sources such as ontolo-
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gies, as discussed in Section 3.4.1, one of their limitations is that they do not encode 

probabilistic relationships in their structures. A growing body of work addresses this 

issue by presenting approaches for automatically generating and annotating ontology 

models with values that represent uncertainty. Ding [106] describes one approach that 

uses a BBN as the underlying representation for capturing probabilities between con-

cepts; the concepts, structure, and probabilities encoded in an ontology are translated 

into a BBN using a set of predefined rules. 

In addition, fully automated methods are needed to identify and extract features from 

patient data because manual or semi-automated algorithms are too costly and time 

consuming to generate meaningful amounts of data for population-level modeling. Re-

cent developments in screening and diagnostic techniques have resulted in improved 

resources for characterizing diseases and its causes. Non-invasive medical imaging, 

histological analysis, and gene expression profiling have shed new light on the etiolo-

gy of a variety of diseases. These procedures have generated large quantities of meas-

ured data that have neither been fully explored nor translated into improved clinical 

care of patients [139]. In particular, genomic data has yet to be closely integrated with 

the patient clinical record so that the data may be viewed and understood within the 

context of the patient’s symptoms and medical history [140]. My belief is that context-

sensitive visualizations will be critical for applying the large amounts of data acquired 

using high throughput gene sequencing technologies towards improved care at the 

bedside. Current applications of information visualization in bioinformatics [141] have 
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primarily been designed for researchers who are experts in the area of genomic analy-

sis. A new generation of visualizations is needed to guide lay users with finding and 

understanding relevant parts of these large dataset to answer questions such as: can 

gene expression data be used to identify which drug therapies would be most effective 

for a patient; or which therapies would have an adverse effect? 

Finally, improvements can be made to the work presented in this dissertation. The vis-

ual dictionary is implemented as a simple flat file that defines the relationships be-

tween data elements and visualizations. More sophisticated methods for representing 

this information as a relational database or a probabilistic relational model should be 

explored. With respect to user evaluation, expanded user studies are needed. Im-

provements include: 1) recruiting additional participants for each user group using a 

random sample; 2) comparing the prototype applications with similar existing systems 

to determine whether any significant differences exist; and 3) performing a time-

motion study to measure whether the applications significantly reduce the amount of 

time required to perform a task. 

6.3. Concluding Remarks 

The need for context-sensitive visualizations to facilitate exploration of the patient 

record is growing: as patient data becomes more accessible, different user groups will 

need a tailored visualization to navigate and understand this data. One example is the 

growing popularity of personal health records (PHRs). With patient data becoming 

more accessible by multiple parties such as patients, physicians, and administrators, 
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the number of users necessitates the development of unique views on the same data for 

each user group to meet each of their information needs. A potential extension of this 

research is the development of a patient-centric medical record visualization that edu-

cates a layperson on how to understand his/her medical record and how to act upon 

this information. Compared to current EMRs, which are primarily designed for use by 

health professionals, patient-centric interfaces need to provide clear and understanda-

ble access to patient data. Not only does the system need an intuitive interface for col-

lecting patient information for the purpose of showing data to a primary care physi-

cian, but also, systems should use this information to help the patient understand 

his/her medical conditions better. For instance, rather than display lists of clinical doc-

uments, laboratory results, and medical images as would be the case in traditional 

EMR interfaces, a patient-centric interface would identify subsets of this data that 

would be of greatest pertinence to the patient: 1) generate reminders regarding when to 

take medications or make an appointment with a primary care provider; 2) list all of 

the current active medical problems and provide links to external resources (e.g., Med-

line Plus) to learn more about them; 3) download self-reported information (e.g., from 

sources such as Microsoft HealthVault, Google Health) or data collected by personal 

health devices and determine whether any trends are of concern given the patient’s 

medical problems; and 4) highlight any laboratory test and diagnostic procedure re-

sults that are abnormal or are of concern to the patient. With the growing popularity of 

PHRs, patient data is becoming increasingly rich in data types and accessible; patient-

centric medical records would be a significant step towards empowering the patient in 
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becoming more involved in their own care. The contributions of this dissertation 

would provide a foundation for enabling the creation of such interfaces.  
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