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Abstract of the Dissertation

Bayesian Approaches for Instrumental Variable

Analysis with Censored Time-to-Event Outcome

by

Xuyang Lu

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2014

Professor Gang Li, Chair

The method of instrumental variable (IV) analysis has been widely used in eco-

nomics, epidemiology, and other fields to estimate the causal effects of interme-

diate covariates on outcomes, in the presence of unobserved confounders and/or

measurement errors in covariates. Consistent estimation of the effect has been

developed when the outcome is continuous, while methods for binary outcome

produce inconsistent estimation. In this dissertation, we examine two IV meth-

ods in the literature for binary outcome and show the bias in parameter estimate

by a simulation study. The identifiability problem of IV analysis with binary

outcome is discussed. Moreover, IV methods for time-to-event outcome with

censored data remain underdeveloped. We propose two Bayesian approaches

for IV analysis with censored time-to-event outcome by using a two-stage linear

model: One is a parametric Bayesian model with normal and non-normal ellip-

tically contoured error distributions, and the other is a semiparametric Bayesian

model with Dirichlet process mixtures for the random errors, in order to re-

lax the parametric assumptions and address heterogeneous clustering problems.

Markov Chain Monte Carlo sampling methods are developed for both paramet-
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ric and semiparametric Bayesian models to estimate the endogenous parameter.

Performance of our methods is examined by simulation studies. Both methods

largely reduce bias in estimation and greatly improve coverage probability of the

endogenous parameter, compared to the regular method where the unobserved

confounders and/or measurement errors are ignored. We illustrate our methods

on the Women’s Health Initiative Observational Study and the Atherosclerosis

Risk in Communities Study.
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CHAPTER 1

Introduction

1.1 Introduction to Instrumental Variable Analysis

In statistical analysis, estimating the causal effects of covariates on outcomes

are often of interest. For example, in epidemiological studies, the causal effect

of a modifiable phenotype or exposure on a disease outcome is usually more

important than the mere association between the two variables. However, a

randomized control trial (RCT), which offers the best ability to make a causal

inference, is not always possible due to ethical or other reasons, whilst inferring

causation from an observational study is often difficult. Moreover, the problem of

unobserved confounders is very common in observational studies: the presence of

unknown or unmeasured confounders could lead to a spurious association between

the covariate and the outcome. Furthermore, the covariates could be subject to

measurement errors, which could bias the estimated association towards the null.

Instrumental variable (IV) analysis is a statistical tool that has been exten-

sively used by economists, epidemiologists, and others to provide an alternative

approach to the following three objectives: (1) To estimate the causal effect of co-

variates on outcomes; (2) To address the bias caused by unobserved confounders;

(3) To account for measurement errors in the covariates. It involves using an extra

variable, the instrumental variable or instrument, that satisfies certain criteria.

As shown in Figure 1.1, the primary variables in an IV analysis are: outcome
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variable Y ; true value of intermediate covariate W , which could be unobserved

due to measurement errors; observed surrogate X of the covariate W ; observed

confounders Z; unobserved confounders U ; and instruments G. The primary

aim is to estimate the causal effect of W on Y , indicated by the dotted line in

Figure 1.1. The instrument vector G is selected based on three criteria: (1) G is

independent of U and measurement errors in W ; (2) G is associated with W ; (3)

G is independent of Y given W , i.e. G is associated with Y only through W .

Figure 1.1: Directed acyclic graph of instrumental variable analysis

IV analysis has a long history dated back to early 20th century. An exten-

sive literature has been developed in the field of economics for IV analysis with

continuous outcomes (for example, Wright, 1928; Haavelmo, 1943, 1944; Theil,

1958; Goldberger, 1972; Bowden and Turkington, 1984; Heckman and Robb, 1985;

Heckman and Hotz, 1989; Morgan, 1991). The covariate X is called an endoge-

nous variable especially in economics, meaning that it is correlated to the error

term in the model regressing outcome Y on X. IV analysis became popular in

the field of epidemiology in the past two decades, especially with the special case

of Mendelian Randomization (MR), where genetic markers are used as the instru-

ment G (e.g. Davey Smith and Ebrahim, 2004; Thomas and Conti, 2004; Didelez

and Sheehan, 2007; Lawlor et al., 2008; Wehby et al., 2008). The term was first

used by Gray and Wheatley (1991), though its meaning has evolved over time

(Davey Smith and Ebrahim, 2003). It refers to the similarities between random

assortment of genes following the Mendel’s law of independent assortment and
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random treatment allocation in a randomized control trial (Nitsch et al., 2006).

In MR analysis, Y is usually a disease related outcome, X is usually a modifiable

exposure or phenotype, G is a vector of genetic instruments. Therefore, MR is

also known as IV analysis using genetic instruments (Wehby et al., 2008). Ge-

netic markers arise as a natural choice of instrument due to the fact that they are

generally independent of typical confounders such as behavioral and environmen-

tal factors. The selection of genetic instruments is mostly based on biological and

clinical information, since IV assumptions (1) and (3) are difficult to be validated

directly. It is worth noting that for IV assumption (2), G does not have to be

causal in the association between G and W to be an IV: The association could be

due to a mediator variable that affects both G and W (e.g. when there is linkage

disequilibrium between G and another genotype) (Ogbuanu et al., 2009).

The classic IV analysis estimates the endogenous parameter indirectly, by es-

timating the association between G and Y and the association between G and

X. This is usually done by using a two-stage least squares (TSLS) estimation

in a simultaneous equation model (Wright, 1928; Theil, 1958, among others).

Variance estimation of IV estimates were derived based on the TSLS procedure,

including the Murphy-Topel estimator (Murphy and Topel, 1985) and the Hu-

ber/White/Sandwich estimator (Huber, 1967; White, 1980). Specific forms of the

two variance estimators in IV analysis were given by Hardin (2002) and Hardin

and Carroll (2003). Details of variance estimation are presented in section 2.1.3.

An alternative way to draw inference on variance is to use posterior variance and

credible interval from a Bayesian model. Bayesian IV methods were developed

for continuous outcomes, based on a more general form of the IV model and the

assumption that the error terms follow a bivariate normal distribution (Kleiber-

gen and Van Dijk, 1998; Hoogerheide et al., 2007). Nice reviews of Bayesian

approaches for normal linear IV models, as well as their advantages and disadvan-
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tages compared to the classical frequentist approaches, are given by Kleibergen

and Zivot (2003) and Lancaster (2004). Conley et al. (2008) further developed a

semiparametric Bayesian approach using Dirichlet process prior and showed that

it is more efficient when the error terms are non-normal.

Causal inference, deconfounding and measurement error correction are the

three main objectives of IV analysis, which have been well-established for contin-

uous outcome. Angrist and Imbens (1995) and Angrist et al. (1996) showed that

the TSLS can be used to estimate the average causal effect of the covariate, and

that the IV estimand can be embedded within the Rubin Causal Model, which

is a well-established framework of causal inference with observational data (Ru-

bin, 1974, 1978; Holland, 1986). Didelez and Sheehan (2007) presented a formal

framework for causal inference based on the MR approach. More comprehen-

sive illustrations on causal inference based on IV analysis can be found in Pearl

(2000), Heckman (2008) and the references therein. Didelez and Sheehan (2007)

also proved the consistency of endogenous parameter estimation in the presence

of unobserved confounders, based on a classic IV model where outcome Y and

covariate W are both continuous, and a threshold IV model for situation when

covariate W and instrument G are both binary (Bowden and Turkington, 1984).

Details of consistency for the two models are presented in sections 2.1.1 and 2.1.4,

respectively. Moreover, IV analysis can be used to consistently estimate the en-

dogenous parameter when the true value of the covariate W is not observed and

a noisy surrogate X is observed instead. An extensive literature on IV analysis

focusing on the aspect of measurement error correction can be found in Durbin

(1954), Fuller (1987), Carroll and Stefanski (1994), Buzas and Stefanski (1996),

Goetghebeur and Vansteelandt (2005), Carroll et al. (2006), Gustafson (2007),

and the references therein.
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For binary outcomes, such as the presence or absence of some disease, Y is

usually modeled by a logistic or probit regression model. Despite its common

usage in recent medical studies (e.g. Brunner et al., 2008; Ding et al., 2009;

Elliott et al., 2009; Kamstrup et al., 2009; Kivimäki et al., 2011; Thanassoulis

et al., 2013), the classic IV estimation is no longer consistent when there is an non-

null effect of covariate W on the binary outcome Y (Didelez and Sheehan, 2007).

Palmer et al. (2008) investigated the extent of bias in classic IV analysis for binary

outcomes by simulations, and showed that the unobserved confounders tend to

bias the IV estimates of endogenous parameter towards null, i.e. the effect of W

on Y tends to be underestimated. McKeigue et al. (2010) proposed a simplified

model that ignores measurement errors in W (i.e assuming X = W ), ignores the

random error term in W , and assumes that all variation in W given instrument

G can be explained by a univariate unobserved confounder. This assumption is

strong and unlikely to be realistic, and violation of the assumption could bias the

endogenous parameter estimate. We conduct a simulation study based on logistic

regression in section 2.2.2 to show the bias from this simplified model and the

classic IV model. When the random error in W is non-ignorable, the simplified

model is similar to a logistic regression with binary outcome and measurement

error in the covariate. Kuchenhoff (1995) proves the theoretical identifiability of

this model, but also points out that it is not numerically identifiable. We further

discuss the identifiability problem of IV analysis with binary outcome in section

2.2.3. We examine the likelihood function of the IV model using an arbitrary

data and graphically show that the unique maximum likelihood estimate (MLE)

of the endogenous parameter can not be numerically detected even if it existed.

This suggests that the endogenous parameter can not be consistently estimated

by methods based on likelihood, including MLE and Bayesian methods without

informative priors.
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It is often of interest in observational studies to investigate the effect of some

intermediate covariate on time to the occurrence of events such as diseases and

death, while the same issues of causal inference, unobserved confounders and/or

measurement errors need to be considered. The problem can be further compli-

cated by censoring in the time-to-event outcome. For example, in a case-control

observational study, the outcome of time from baseline to some disease is right-

censored for the controls, who are disease-free at the end of the study. By using

instruments satisfying corresponding assumptions, the IV approach can be ac-

commodated into survival analysis and provide a possible solution to this prob-

lem. The built-in Stata command “ivtobit” (StataCorp, 2011) and user-written

Stata command “cmp” (Roodman, 2011) can be used to fit linear IV model with a

tobit model for the censored time-to-event data. They use a maximum likelihood

approach by assuming a bivariate normal error distribution. Bijwaard Bijwaard

(2008) proposed an IV Linear Rank estimator for right-censored time-to-event

data, based on a Generalized Accelerated Failure Time model. In addition, gen-

eralized method of moments (GMM) estimators (Hansen, 1982; Hall, 2005; Yin

et al., 2011, among others) could potentially be used to draw parametric maxi-

mum likelihood inference for IV analysis with survival outcome. Nevertheless, IV

methods for survival analysis remain underdeveloped, and yet to our knowledge

no Bayesian IV model for survival outcome has been formally developed.

In this dissertation, we develop two Bayesian approaches for IV analysis with

censored time-to-event outcome, based on a two-stage linear model. A general

form of the IV model is used so that all model parameters are identifiable. This

is done by jointly modelling the random error term in the time-to-event outcome

and the random error term in the continuous covariate. The first approach is a

parametric Bayesian model with a bivariate normal or other parametric bivariate

distribution such as an elliptically contoured distribution. (see section 3.2.4 for a

6



detailed review of literature). The second approach is a semiparametric Bayesian

model using Dirichlet process mixtures (DPM) for the random errors, in order to

relax the parametric assumptions and address heterogeneous clustering problems.

Instead of using a pre-specified number of mixture components, the DPM model

allows the number of mixture components to be determined by both the prior

and the data (see section 4.1 for a detailed review of literature). By using a

Bayesian approach, prior information (such as estimates and confidence intervals

of the parameters from former studies) could be incorporated by using informative

priors. Markov Chain Monte Carlo (MCMC) sampling methods are developed

for computation and estimation. Performance of the two approaches is evaluated

by simulation studies, under frequentist criteria of bias, standard deviation and

coverage probability.

We show that both proposed methods largely reduce bias in estimation and

greatly improves coverage probability of the endogenous variable parameter, com-

pared to the simple method where the unobserved confounders and measurement

errors are ignored. Moreover, the parametric Bayesian approach with bivariate

normal errors appears to be fairly robust against violation of the parametric as-

sumption. The semiparametric Bayesian approach with DPM performs as well

as the parametric Bayesian approach when the errors are bivariate normal, but

has a higher precision of parameter estimates than the parametric Bayesian ap-

proach when the errors are non-normal. We illustrate our method using two real

data sets: the Women’s Health Initiative Observational Study (WHI-OS) and the

Atherosclerosis Risk in Communities (ARIC) Study . In the WHI-OS, we investi-

gate the effect of high-sensitivity C-reactive protein (hsCRP) on time to diagnosis

of diabetes, using multiple selected single-nucleotide polymorphisms (SNPs) as

genetic instruments. In the ARIC study, we examine the effect of systolic blood

pressure (SBP) on time to diagnosis of coronary heart disease (CHD), using the

7



IV model to correct for measurement errors in SBP. MCMC convergence diag-

nostics are conducted for the real data analyses. Although we focus on their

applications in epidemiology for simplicity of illustration, these two approaches

are generally applicable to any IV analysis with censored time-to-event outcome.

1.2 Research Outline

The rest of the dissertation is organized as follows. Chapter 2 consists of two

sections: Section 2.1 introduces the existing work for IV analysis with continuous

outcome. Section 2.2 presents two methods in the literature for IV analysis with

binary outcome and shows the bias in parameter estimation of the two methods

by a simulation study. The identifiability problem for IV method with binary

outcome is discussed. Chapter 3 describes our parametric Bayesian model for IV

analysis with censored time-to-event outcome, along with the MCMC procedure.

It includes a simulation study to examine the performance of the model, and

application of the model to two real data examples to illustrate the method.

Chapter 4 describes our semiparametric Bayesian model with Dirichlet Process

Mixtures. A simulation study comparing the performance of the two models

is conducted. We illustrate the method by its application to the two real data

examples. Chapter 5 contains some remarks and possible future extensions.
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CHAPTER 2

Instrumental Variable Analysis with Continuous

Outcome and Binary Outcome

2.1 Continuous Outcome

In this section, we present the existing work for IV analysis with continuous

outcome. Consistency property of the classic IV estimates for the endogenous

variable parameter is justified. The two-stage least squares (TSLS) method is

introduced. Two variance estimators of the IV estimates are presented. A thresh-

old model is introduced for situations where covariate W and instrument G are

both binary: The same classic IV approach can be applied, and corresponding

consistency is justified.

2.1.1 Consistency

For each subject i, let Yi be the continuous outcome variable, Wi be an unobserved

continuous covariate of interest that is subject to measurement errors, Xi be the

observed surrogate of Wi, Zi be a vector of observed confounders, Ui be a vector

of unobserved confounders, and Gi be a vector of instruments, i = 1, . . . , n, where

n is the total number of subjects. The variables follow the structure shown in

Figure 1.1. For simplicity of illustration, in this section we assume instrument

Gi is univariate, and we ignore the observed confounders Zi, which can be easily

9



incorporated in the classic IV estimation for continuous outcomes.

Classical IV analysis assumes linear relationships between the instrument G,

the covariate W and the outcome Y . With the structure in Figure 1.1, the

variables can be modeled by the following three linear equations when Y , W and

X are continues:

Wi = α0 + α1Gi + α2
′Ui + ε1i (2.1)

Yi = β0 + β1Wi + β2
′Ui + ε2i (2.2)

Xi = Wi + ε3i (2.3)

i = 1, . . . n, where ε1i, ε2i, and ε3i are independent random errors with mean zero

and finite variances τ 2
1 , τ 2

2 , and τ 2
3 respectively. Note that ε3i is the measurement

error in the intermediate covariate. The unobserved confounder vector Ui is stan-

dardized to have mean 0 and covariance matrix ΣU , where ΣU is the correlation

matrix of Ui. The variables ε1i, ε2i, ε3i, Ui and Gi are assumed to be independent.

β1 is the endogenous parameter and it is the parameter of primary interest.

Since Wi is not observed, we can replace Wi in equations (2.1) and (2.2) by

Wi = Xi− ε3i from equation (2.3) and have the following two-stage linear model:

Xi = α0 + α1Gi + α2
′Ui + ε1i + ε3i (2.4)

Yi = β0 + β1Xi + β2
′Ui + ε2i − β1ε3i (2.5)

The standard way to consistently estimate β1 is through a linear regression of

Y on W and U together. This becomes problematic when W and/or U are un-

observed due to measurement errors and/or unobserved confounders. Moreover,

a linear regression of Y on X alone will result in biased estimate of β1, since X

is correlated with U and ε3. Instead, we consider (1) a linear regression of Y on

G, and (2) a linear regression of X on G. By substituting Wi in equation (2.2)

10



with equation (2.1):

Yi = β0 + β1Wi + β2
′Ui + ε2i

= β0 + β1(α0 + α1Gi + α2
′Ui + ε1i) + β2

′Ui + ε2i

= (β0 + β1α0) + α1β1Gi + (β1α2
′ + β2

′)Ui + (β1ε1i + ε2i)

= η0 + η1Gi + (β1α2
′ + β2

′)Ui + β1ε1i + ε2i (2.6)

where η0 = β0 + β1α0 and η1 = α1β1. Based on equation (2.6), since G is

independent of U , ε1 and ε2, the regression coefficient of G in a linear regression

of Y on G alone by an ordinary least squares (OLS), denoted as η̂1, is an unbiased

estimate of η1 = α1β1, due to the well-known unbiasedness property of OLS

estimation. Similarly, based on equation (2.4), since G is independent of U , ε1

and ε3, the regression coefficient of G in a linear regression of X on G alone

by an ordinary least squares (OLS), denoted as α̂1, is an unbiased estimate of

α1. Hence, β1 can be consistently estimated by the ratio of the two unbiased

estimates:

β̂1 =
η̂1

α̂1

(2.7)

The following is a more detailed proof of (1) the bias resulted from regressing

Y on X alone, and (2) the unbiasedness of η̂1 and β̂1:

Based on equation (2.5), the expectation of Y given X is:

E(Y |X = x) = EUEε3E(Y |X = x, U, ε3)

= β0 + β1x+ β2
′Eε3E(U |X = x, ε3)− β1EUE(ε3|X = x, U)

= β0 + β1x+ β2
′E(U |X = x)− β1E(ε3|X = x) (2.8)

Let β = (β0, β1)′ and Z be the design matrix. From a linear regression of Y on
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X alone by OLS, expectation of estimate of β estimate is:

E(β̂) = (Z ′Z)−1Z ′E(Y |X)

= (Z ′Z)−1Z ′(Zβ + β2
′E(U |X)− β1E(ε3|X))

= β + (Z ′Z)−1Z ′β2
′(E(U |X)− β1E(ε3|X)) (2.9)

Even though E(U) = E(ε3) = 0, E(U |X) and E(ε3|X) are usually nonzero.

Therefore, the second part of (2.9) is the bias of β̂.

Instead, based on equation (2.6), the expectation of Y given G is:

E(Y |G = g) = E(W,U)|G=gE(Y |W,U,G = g)

= EU |G=gEW |U,G=gE(Y |W,U) since Y⊥G|(W,U)

= EUEW |U,G=g(β0 + β1W + β2
′U)

= EU(β0 + β1(α0 + α1g + α2
′U) + β2

′U)

= β0 + β1α0 + β1α1g + (β1α2
′ + β2

′)E(U)

= (β0 + β1α0) + β1α1g

= η0 + η1g (2.10)

Therefore, similar to the argument for equation (2.8), let η = (η0, η1)′, Z be the

design matrix and η̂ be the parameter estimate, we haveE(η̂) = (Z ′Z)−1Z ′E(Y |G) =

η. Therefore, η̂1 is an unbiased estimate of η1 = β1α1.

Furthermore, based on equation (2.4), the expectation of X given G is:

E(X|G = g) = E(U,ε3)|G=gE(X|G = g, U, ε3)

= E(U,ε3)E(X|G = g, U, ε3) since U⊥G, ε3⊥G

= α0 + α1g + α2
′E(U) + E(ε3)

= α0 + α1g (2.11)
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Similarly, let α = (α0, α1)′, Z be the design matrix and α̂ be the parameter

estimate, we have E(α̂) = (Z ′Z)−1Z ′E(X|G) = α. Therefore, α̂1 is an unbiased

estimate of α1.

Here we ignore observable confounders or other covariates of interest, as they

can easily be incorporated into the models according to the assumed structure of

the variables. In particular, if some confounder independent of instrument G is

observed and added into the model, i.e. adjusting for the observed confounder in

both OLS regressions, the variation in estimates α̂1 and η̂1 will be reduced and

therefore result in reduced variance for the IV estimate β̂1. Moreover, there can

be no interactions with the unobserved confounder U and intermediate covariate

W . Since U is unknown, this is obviously an untestable assumption.

2.1.2 Two-Stage Least Squares

The consistent estimate of β1 from IV analysis is a ratio of two parameter esti-

mates from two different models. It is difficult to derive a variance estimate for

a ratio in this form. Another approach of classic IV analysis for continuous out-

come is the Two-Stage Least Squares (TSLS) estimation. When G is univariate,

the TSLS estimation of β1 is identical to the ratio estimate described in section

2.1.1. The procedure is as follows:

1) Obtain unbiased estimates α̂0 and α̂1 by a linear regression of X on G;

2) Find the predicted value of X, denoted as X̃, by X̃ = α̂0 + α̂1G;

3) Obtain the consistent estimate of β1 by a linear regression of Y on X̃.
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This can be summarized by a two-step regression model:

E(Xi) = α0 + α1Gi (2.12)

E(Yi) = β0 + β1E(Xi|Gi) (2.13)

This following is a detailed proof to show that the TSLS estimate of β1 is

identical to the ratio estimate from (2.7). This can be shown by the explicit

formula of the OLS estimator. Let 1 be a vector of length n with all elements

equal 1, and β̃ = (β̃0, β̃1)′ be the coefficient estimate from the regression of Y

on X̃. We are trying to show that β̃1 = β̂1 = η̂1/α̂1. Now let G, X, and Y be

vectors of {G1, ..., Gn}, {X1, ..., Xn}, and {Y1, ..., Yn}, respectively. Based on the

OLS estimation,

α̂0

α̂1

 =

1′

G′

(1 G
)−11′

G′

X

=

1′1 1′G

G′1 G′G

−11′G

G′X


=

1

(1′1G′G− 1′GG′1)

 G′G −1′G

−G′1 1′1

1′X

G′X


=

1

(1′1G′G− 1′GG′1)

G′G1′X − 1′GG′X

−G′11′X + 1′1G′X

 (2.14)

Similarly, η̂0
η̂1

 =
1

(1′1G′G− 1′GG′1)

G′G1′Y − 1′GG′Y

−G′11′Y + 1′1G′Y


Thus, by the ratio approach,

η̂1/α̂1 =
−G′11′Y + 1′1G ′Y

−G′11′X + 1′1G ′X
(2.15)
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For the TSLS estimate,β̃0
β̃1

 =

 1

α̂0 · 1′ + α̂1 ·G′

(1 α̂0 · 1 + α̂1 ·G
)−1 1′

α̂0 · 1′ + α̂1 ·G′

Y

=

 1′1 α̂01
′1 + α̂11

′G

α̂01
′1 + α̂1G

′1 α̂2
01
′1 + 2α̂0α̂11

′G+ α̂2
1G
′G

−1 1′Y

α̂01
′Y + α̂1G

′Y


=

1

α̂2
1(1′1G′G− 1′GG′1)

α̂2
01
′1 + 2α̂0α̂11

′G+ α̂2
1G
′G −α̂01

′1− α̂11
′G

−α̂01
′1− α̂1G

′1 1′1

 1′Y

α̂01
′Y + α̂1G

′Y


=

1

α̂2
1(1′1G′G− 1′GG′1)

α̂0α̂1(1′G1′Y − 1′1G′Y ) + α̂2
1(G′G1′Y − 1′GG′Y )

α̂1(1′1G′Y −G′11′Y )

 (2.16)

Hence, by (2.14), (2.15) and (2.16),

β̃1 =
1′1G′Y −G′11′Y

α̂1(1′1G′G− 1′GG′1)

=
1′1G′Y −G′11′Y

1′1G′G− 1′GG′1
· 1′1G′G− 1′GG′1

1′1G′X −G′11′X

=
1′1G′Y −G′11′Y

1′1G′X −G′11′X

= η̂1/α̂1

= β̂1

This completes the proof of equivalence of the two estimates. We assume all

2 × 2 matrices above are nonsingular. The same result can be easily derived

using Pseudoinverse if the matrices are singular.

We can see the equivalence of the two estimates in a more general framework

of maximum likelihood. Suppose the first IV estimate is based on maximizing

the likelihood of a generalized linear model (GLM):

E(yi) = h−1(η0 + η1gi) (2.17)

and given OLS estimates α̂0 and α̂1 from a linear model E(xi) = α0 + α1gi,

where h−1(·) is the link function. Let η̂0 and η̂1 be the corresponding Maximum
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Likelihood Estimators (MLEs) from GLM (2.17). The second IV estimate is

based on maximizing the likelihood of a GLM:

E(yi) = h−1(β0 + β1x̃i) (2.18)

where x̃i = α̂0 + α̂1gi. Let β̃0 and β̃1 be the corresponding MLEs from GLM

(2.18). We want to show that β̃1 = η̂1/α̂1.

Let L(·) denotes the likelihood function.

(β̃0, β̃1) = argmax
(β0,β1)

L(β0, β1|y, x̃, α̂0, α̂1)

= argmax
(β0,β1)

L(β0, β1|y, α̂0 + α̂1g, α̂0, α̂1)

= argmax
(β0,β1)

L(β0 + α̂0β1, α̂1β1|y, g, α̂0, α̂1)

= argmax
(η0,η1)

L(η0, η1|y, g, α̂0, α̂1) ·
∣∣∣∣dβdη

∣∣∣∣ where η0 = β0 + α̂0β1, η1 = α̂1β1

= (η̂0 −
α̂0

α̂1

η̂1,
η̂1

α̂1

) (2.19)

Therefore, when the MLE is unique, we have β̃1 = η̂1/α̂1. Equivalence of the two

estimates holds.

The two-step regression approach also provides a solution for calculating the

endogenous parameter estimates by IV analysis when there are multiple instru-

mental variables, multiple intermediate covariates, and/or multiple continuous

outcomes. Similar to equations (2.1) and (2.2), it can be modeled by two multi-

variate linear regression:

Xi = α0 + α1
′Gi + α2

′Ui + ε1i + ε3i (2.20)

Yi = β0 + β1
′Xi + β2

′Ui + ε2i (2.21)

Again, the parameter matrix β1 is of primary interest. Similar to the TSLS

procedure described earlier, a consistent estimate of α1 can be generated by a
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multivariate linear model of X on G alone. Thus, a consistent estimate of β1 can

be generated by a multivariate linear model of Y on X̃, which is a matrix of the

predicted value of X based on the first-step model (2.20).

2.1.3 Variance Estimation

Although the TSLS procedure in section 2.1.2 leads to a consistent estimate of

β1, the estimated covariance matrix for the second-step model (2.13) needs to be

adjusted to take into account the variability in α̂0 and α̂1, since α̂0 and α̂1 are

estimates from the first-step model (2.12) other than their true values. Ignoring

the fact that X̃ is estimated by using α̂0 and α̂1 will understate the variance of

β̂0 and β̂1.

There are two standard approaches for variance estimation with the TSLS

procedure. The first estimator is proposed by Murphy and Topel (1985) based

on a limited information maximum likelihood (LIML) two-step procedure. The

LIML estimation fits a first-step model, which is then used to estimate regression

coefficients for a second-step model of primary interest. The instrumental variable

approach in section 2.1.2 is a special case of the LIML two-step procedure when

the likelihood functions of models (2.12) and (2.13) are known. A general formula

of the Murphy-Topel estimator for two-stage models is described by Hardin (2002)

and Hole (2006).

We denote α = (α0, α1)′ and β = (β0, β1)′. Based on the two-step regression

model in the previous section, the Murphy-Topel estimate for β is given by

V̂2 + V̂2(ĈV̂1Ĉ
T − R̂V̂1Ĉ

T − ĈV̂1R̂
T )V̂2

where V̂1 and V̂2 are the estimated covariance matrices for regression models (2.12)

and (2.13), respectively, where each is the model-based estimate not taking into
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account the fact that the estimate of α is embedded in model (2.13). They can

be calculated by

V̂1 =

[
−

n∑
i=1

(
∂2lnfi1
∂α∂αT

)]−1
∣∣∣∣∣∣
α = α̂

V̂2 =

[
−

n∑
i=1

(
∂2lnfi2
∂β∂βT

)]−1
∣∣∣∣∣∣
α = α̂, β = β̂

where fi1 and fi2 are observation i’s contribution to the likelihood function of

models (2.12) and (2.13), respectively. Note that likelihood function f1 involves

parameter α only.

Further,

Ĉ =
n∑
i=1

(
∂lnfi2
∂β

)(
∂lnfi2
∂αT

)∣∣∣∣
α = α̂, β = β̂

R̂ =
n∑
i=1

(
∂lnfi2
∂β

)(
∂lnfi1
∂αT

)∣∣∣∣
α = α̂, β = β̂

This implies that the Murphy-Topel estimate exceeds the naive variance estimate

from the second-step model, V̂2, by a positive-definite matrix. Under the assump-

tion that the first-step model produces consistent estimates of both first-step pa-

rameters and their asymptotic covariance matrix, the covariance matrix of the

second-step parameter estimates can be consistently estimated by the Murphy-

Topel estimator.

An alternative to the Murphy-Topel estimator is the Huber/White/Sandwich

estimator (Huber, 1967; White, 1980). Hardin (2002) derives explicit formula of

the sandwich variance estimator for the two-step procedure. Based on our two-

step model, we assume the first-step model has an estimating equation Ψ1(α),

and the second-step model has an estimating equation Ψ2(β|α). The overall
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estimating equation can be partitioned as

[Ψ(α, β)] =

 Ψ1(α)

Ψ2(β|α)

 = [0]

The sandwich estimate of variance for the complete parameter vector (α′, β′)′ is

given by VS = A−1BA−T , where

A =


∂Ψ1

∂αT
∂Ψ1

∂βT
∂Ψ2

∂αT
∂Ψ2

∂βT


B =

Ψ1ΨT
1 Ψ1ΨT

2

Ψ2ΨT
1 Ψ2ΨT

2


Assuming that valid log-likelihood functions f1 and f2 exist for the two models,

the estimating equations are derivatives of the model log-likelihoods,

Ψ1(α) =
n∑
i=1

∂lnfi1(α)

∂α

Ψ2(β|α) =
n∑
i=1

∂lnfi2(β|α)

∂β

Then the matrix elements of the sandwich estimator VS are given by

VS(α) = V1V
∗−1

1 V1 = VS1

CovS(α, β) = V1R
TV2 − VS1C

∗TV2

VS(β) = V2V
∗−1

2 V2 + V2

(
C∗V1V

∗−1
1 V1C

∗T −RV1C
∗T − C∗V1R

T
)
V2

= VS2 + V2

(
C∗VS1C

∗T −RV1C
∗T − C∗V1R

T
)
V2
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where the components are estimated by

V̂ ∗1 =

[
n∑
i=1

(
∂lnfi1
∂α

)(
∂lnfi1
∂αT

)]−1
∣∣∣∣∣∣
α = α̂

V̂ ∗2 =

[
n∑
i=1

(
∂lnfi2
∂β

)(
∂lnfi2
∂βT

)]−1
∣∣∣∣∣∣
α = α̂, β = β̂

Ĉ∗ =
n∑
i=1

(
∂2lnfi2
∂β∂αT

)∣∣∣∣∣
α = α̂, β = β̂

along with V̂1, V̂2 and R̂, which are the same as in the Murphy-Topel estima-

tor. The asterisks (∗) are used to distinguish similar matrix components in the

Murphy-Topel estimator. V̂S1 = V̂1V̂
∗−1

1 V̂1 and V̂S2 = V̂2V̂
∗−1

2 V̂2 are sandwich es-

timators from the individual models (2.12) and (2.13). The sandwich estimator

of primary interest is V̂S(β). It is in a form that is similar to the Murphy-Topel

estimator. The differences are the use of the sandwich estimators VS1 and VS2

from the individual models and the matrix of second derivatives C∗ over the

matrix of first derivative products C.

The sandwich estimator provides consistent estimates of the covariance matrix

for the parameter estimates when the fitted parametric model is incorrect or

not specified, as well as in the presence of heteroscedasticity. It is sometimes

called the robust covariance matrix estimator, the heteroskedasticity-consistent

covariance matrix estimator, or the empirical covariance matrix estimator due to

its desirable model-robustness property. For the two-step model with equations

(2.4) and (2.5), the sandwich estimator is robust to the underlying distributions

of the unobserved confounders U , measurement errors ε3, and the random errors

ε1 and ε2. Kauermann and Carroll (2001) investigates the performance of the

sandwich estimator and concludes that the sandwich estimator generally have a

larger variance than model-based classical variance estimates, which is the price
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that one pays to obtain consistency. This increased variability in the variance

estimates also causes the problem of undercoverage of confidence intervals.

The relationship between the Murphy-Topel estimator and the sandwich es-

timator was described in Hardin (2002). The two estimators are asymptotically

equal when the assumed model distributions are true. The sandwich estimator

is computationally more difficult than the Murphy-Topel estimator due to the

use of C∗, which requires computing second derivatives of the second model’s

log likelihood. However, the robustness property of the sandwich estimator is

appealing especially when the parametric assumptions are invalid. Moreover, the

full sandwich variance matrix for (α, β) can be calculated. This allows Wald tests

of hypothesis of the parameters across the two models, which are not possible

using the Murphy-Topel estimator.

As indicated by the two variance estimators, variance of β1 from the two-step

models, as well as the inferences drawn from the estimates, will be extremely

sensitive to the precision of the first-step estimates α̂. Besides sample size, the

precision of α̂ is mainly determined by the correlation between instrument G and

surrogate covariate X, which is an indicator of the instrumental strength of G.

Both the Murphy-Topel estimator and the sandwich estimator can be calcu-

lated by using Stata’s qvf command for fitting generalized linear models with

instrumental variables. A detailed illustration of the software command can be

found in Hardin et al. (2003).

2.1.4 Binary Covariate and Binary Instrument

In this subsection, we assume that no measurement error in the intermediate

covariate is involved, i.e. X = W . We also assume that the unobserved con-

founder U is univariate and standardized to have mean 0 and variance 1. When
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Figure 2.1: Structure of instrumental variable analysis with binary covariate and

binary instrument

both covariate X and instrument G are binary, the common method is to use a

threshold model which assumes an underlying unobservable continuous variable

Xc with linear conditional expectation:

E(Xc|G = g, U = u) = α0 + α1g + α2u

and define

Xi =

1 if Xc > 0

0 otherwise

The dependence structure can be represented as in Figure 2.1, where the rela-

tionship between Xc and X is deterministic.

The conditional independencies are

Y⊥(G,Xc)|(U,X), X⊥(G,U)|Xc and G⊥U

However, since Xc is not observed, we have

Y⊥G|(U,X), X not⊥G and G⊥U

for the remaining variables. Therefore, the core conditions of instrumental vari-

able apply to (G,U,X, Y ) when Xc is ignored.
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Without loss of generality, we assume α2 > 0. By an argument similar to that

in section 2.1.1, we have

E(Y |G = g) = EUEX|U,G=gE(Y |X,U) sinceY⊥G|(X,U), U⊥G

= EUEX|U,G=g(β0 + β1X + β2U)

= EU(β0 + β1I(α0 + α1g + α2U > 0) + β2U)

= β0 + β1PU

(
U >

−α0 − α1g

α2

)
(2.22)

where I(·) is the indicator function. We assume the binary instrument G

takes value 0 or 1. Let

µ0 =
−α0

α2

and µ1 =
−α0 − α1

α2

then model (2.22) can be written as

E(Y |G = g) = β0 + β1PU(U > µ0) + β1(PU(U > µ1)− PU(U > µ0))g (2.23)

Equation (2.23) is linear in G, thus the parameter of G:

τY |G = β1(PU(U > µ1)− PU(U > µ0)) (2.24)

can be consistently estimated by an OLS regression of Y on G.

Similarly,

E(X|G = g) = EUE(X|G = g, U)

= EUI(α0 + α1g + α2U > 0)

= PU(U > µ0) + (PU(U > µ1)− PU(U > µ0))g (2.25)

This is also linear in G, with parameter

τX|G = PU(U > µ1)− PU(U > µ0) (2.26)
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consistently estimated by OLS regression of X on G. By (2.24) and (2.26), we

can generate consistent estimate of β1 by taking the ratio of the two coefficient

estimates:

β̂1 =
τ̂Y |G
τ̂X|G

(2.27)

This is identical to the IV approach when G, X and Y are all continuous.

24



2.2 Binary Outcome

In this section, we first present two IV methods for binary outcome in the lit-

erature: one is the ad hoc method following the continuous outcome scenario,

the other is based on a simplified model ignoring the random error term in the

continuous intermediate covariate. We conduct a simulation study to show that

both methods generate inconsistent estimates of the endogenous parameter when

the true underlying model is subject to unobserved confounders and the random

error term in the continuous covariate is not ignorable. We further examine the

likelihood function and graphically show that the maximum likelihood estimate

(MLE) of the endogenous parameter is not numerically identifiable. This indi-

cates that the endogenous parameter is not practically estimable by methods

solely based on the likelihood.

2.2.1 Inconsistent Estimation

The outcome variable in observational studies is often a binary indicator of disease

status. For IV analysis with binary outcome, a logistic regression model or a

probit regression model is usually used in replacement of equation(2.5). Figure

2.2 shows the structure of IV analysis with binary outcome, where F−1(·) is

a logit or probit link function. Here we focus on the situation with a logistic

regression model, since a probit regression model has very similar properties of

bias and unidentifiability. Also, here we ignore the potential measurement errors

in the intermediate covariate and assume that X is an accurate measurement (i.e.

X = W ), and we assume unobserved confounder U is univariate. This is because

a univariate unobserved confounder alone will cause the bias and identifiability

problems.
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Figure 2.2: Structure of instrumental variable analysis with binary outcome

The structure in Figure 2.2 with a logit link function can be modeled by:

Xi = α0 + α1Gi + α2Ui + εi (2.28)

logit(pi) = β0 + β1Xi + β2Ui (2.29)

where pi = Pr(Yi = 1), Yi independently follows a Bernoulli distribution with

probability pi, E(εi) = 0, V ar(εi) = σ2, i = 1, . . . , n. Again, the coefficient β1 is

of primary interest, as eβ1 is the disease odds ratio for each unit increment in X.

The classic IV analysis with binary outcome is based on an ad hoc method

similar to the continuous outcome scenario. After substituting Xi in equation

(2.29) with equation (2.28), we have

logit(pi) = β0 + β1Xi + β2Ui

= β0 + β1(α0 + α1Gi + α2Ui + εi) + β2Ui

= η0 + η1Gi + vi (2.30)

where η0 = β0 + β1α0, η1 = β1α1, and vi = (β1α2 + β2)Ui + β1ε. The term

v combines unobserved confounder U and random error ε. An unbiased OLS

estimate of α1, α̂1, is derived by a linear regression of X on G, similar to section

2.1.1. An estimate of η1, denoted as η̂1, is derived by a logistic regression of Y on

G. The ratio η̂1/α̂1 serves as an estimate of β1. An equivalent method is similar
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to the TSLS approach described in section 2.1.2, where β1 is derived by a logistic

regression of Y on the predicted value of X that is based on the linear regression

of X on G (X̃, as in section 2.1.2).

Although this ad hoc method is the most commonly used method in the med-

ical literature for IV analysis with binary outcomes (examples of recent publica-

tions include Brunner et al., 2008; Ding et al., 2009; Elliott et al., 2009; Kamstrup

et al., 2009; Kivimäki et al., 2011; Thanassoulis et al., 2013), the estimate β̂1 is not

a consistent estimate of β1 when β1 6= 0. This is because η̂1, the MLE based on

a logistic regression model ignoring vi, is not a consistent estimate of η1 = α1β1,

even though E(v) = 0 and G⊥v. Instead of maximizing the likelihood of the

conditional model

Lcond =
n∏
i=1

e(η0+η1Gi+vi)Yi

1 + eη0+η1Gi+vi

, the MLEs maximize the likelihood of the marginal model

Lmarg =
n∏
i=1

e(η0+η1Gi)Yi

1 + eη0+η1Gi

Without the linear relationship betweenX and Y , the MLEs for the two likelihood

functions are generally different.

McKeigue et al. (2010) proposed another IV method for binary outcomes,

using a simplified model that ignores the random error ε in X:

Xi = α0 + α1Gi + α2Ui (2.31)

logit(pi) = β0 + β1Xi + β2Ui (2.32)

where E(U) = 0 and V ar(U) = 1. It makes a fairly strong assumption: all the

variation in X that can not be explained by the instrument G is contributed by

a univariate unobserved confounder U . Although McKeigue et al. proposed a
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Bayesian approach by assuming Ui follows a normal distribution , a frequentist

approach can be derived based on this simplified model:

1. Derive robust estimates of α0 and α1 by OLS estimate from a linear regres-

sion of X on G;

2. The residuals from step 1 are estimate of Ui: Ûi = Xi − α̂0 − α̂1Gi;

3. An estimate of β1 can be derived by a logistic regression of Y on X, while

adjusting for Ûi from step 2.

The estimate based on this simplified model relies on the strong and fairly

unrealistic assumption that there is no random errors in X other than one con-

founder U . The estimate of β1 will not be consistent if this assumption is invalid.

2.2.2 Bias Evaluation by a Simulation Study

As an illustration of the bias problem of the existing IV methods for binary

outcome, we conduct a simulation study to evaluate the estimation bias caused

by the ad hoc approach and the simplified model described in section 2.2.1.

We generate the data following the model with equations (2.28) and (2.29),

where εi is independent and identically distributed (i.i.d.) as∼ N(0, 1), Ui i.i.d. ∼

N(0, 1) and α1 = 1, i.e. unobserved confounder U and random error ε explain

equal variation in covariateX. InstrumentG is generated as i.i.d. Binomial(2, 0.5),

representing an additive genetic model of one locus with risk allele frequency

equal 0.5. Thus, E(G) = 1 and V ar(G) = 1/2. α1 is set as 0.67, 1.00 and 1.31,

corresponding to population R-square of 10%, 20% and 30% between X and G.

We refer to these values as “weak”, “moderate” and “strong”, respectively. α0 is

arbitrarily set as 0.
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For the second-stage equation (2.29), we use three values of β1: 0, 0.5 and

1, giving odds ratios 1, 1.6 and 2.7. These values represent none, small and

median effect, respectively, of covariate X on the disease outcome Y . β2 is set as

1, indicating a moderate confounding effect. β0 is set as −α1β1, so the sample

disease prevalence rate (Pr(Y = 1)) is approximately 0.5. Total sample size n

takes values 100, 200, 500, 1000 and 1500. We applied both the ad hoc method

and the frequentist approach for the simplified model to the simulated data. Each

mean estimate is based on 10000 simulations. Results are summarized in table

2.1.

When covariate X has no effect on outcome Y , i.e. β1 = 0, estimates from

both approaches appear to be consistent, as the mean of the estimates reduce

to close to 0 when the sample size n gets larger (bias≤ 0.002 when n ≥ 1000).

For fixed sample size, the bias decreases as the instrument strength (population

R-square between X and G) increases. However, the estimates from both ap-

proaches have substantial bias when β1 is nonzero even when sample size is very

large. Neither increase in instrument strength nor increase in sample size can

effectively reduce the bias. Moreover, for the ad hoc approach, the bias/effect

ratio increases as the effect β1 gets larger, resulting in estimates that are more

understated. Although the simplified model results in smaller biases than the ad

hoc approach for our settings when β1 is nonzero, we note that the results are

sensitive to the strength of confounding effect and the proportions of variation in

X contributed by U and ε.
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Table 2.1: Simulation results for IV analysis with Binary Outcome

Performance of the of the ad hoc method and the simplified model under

various sample sizes (n), true values of the intermediate covariate (β1), and

instrument strength (R2(X,G)). Bias is calculated as the absolute value of the

difference between the sample mean of the β1 estimates and the true value of

β1. Each result is based on 10000 simulations.

Estimation Bias of β1

β1 = 0 β1 = 0.5 β1 = 1

R2(X,G) Sample size n ad hoc Simple ad hoc Simple ad hoc Simple

10% 100 -0.059 -0.064 -0.21 -0.107 -0.465 -0.105

200 -0.023 -0.025 -0.168 -0.057 -0.441 -0.078

500 -0.010 -0.011 -0.158 -0.046 -0.435 -0.080

1000 -0.002 -0.002 -0.156 -0.044 -0.435 -0.082

1500 -0.002 -0.002 -0.156 -0.044 -0.434 -0.080

20% 100 -0.025 -0.028 -0.16 -0.042 -0.424 -0.04

200 -0.010 -0.011 -0.158 -0.044 -0.432 -0.067

500 -0.003 -0.004 -0.155 -0.042 -0.431 -0.072

1000 -0.001 -0.001 -0.155 -0.043 -0.432 -0.079

1500 -0.001 -0.001 -0.154 -0.043 -0.432 -0.079

30% 100 -0.013 -0.015 -0.152 -0.032 -0.417 -0.032

200 -0.003 -0.003 -0.154 -0.04 -0.427 -0.062

500 -0.003 -0.003 -0.154 -0.041 -0.428 -0.073

1000 -0.002 -0.002 -0.154 -0.042 -0.429 -0.076

1500 -0.001 -0.001 -0.155 -0.043 -0.430 -0.078
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2.2.3 Identifiability

As shown in the simulation study, the ad hoc method and the simplified model

will generate inconsistent estimates of β1 when the true underlying model has

unobserved confounder U and random error ε in X. Therefore, it is desirable

to derive a consistent estimate of β1. However, by describing the pattern of the

likelihood function from equations (2.28) and (2.29) graphically, we show that

β1 is not estimable by likelihood-based methods (including MLE and Bayesian

methods) without additional information on σ2, α2 or the ratio of α2
2/σ

2.

Following the two methods discussed in section 2.2.1, there are, in general, two

ways to make use of the instrument G. The first one is to follow equation (2.30)

and try to consistently estimate η1 = β1α1 by taking into account the random

effect vi. The second way is to substitute Ui in equation (2.29) by Ui in equation

(2.28), similar to the frequentist approach for the simplified model. Both ways

of estimation involve one random effect in the logistic regression model. We will

use the second way to illustrate the identifiability issue, as the argument for the

first way will be similar. In that case, equation (2.29) becomes:

logit(pi) = β0 + β1Xi + β2Ui

= β0 + β1Xi + β2(Xi − α0 − α1Gi − εi)

= d0 + d1Xi + d2Gi + d3νi (2.33)

where d0 = β0 − α0β2, d1 = β1 + β2, d2 = −α1β2, d3 = −β2σ and νi = εi/σ,

so E(νi) = 0 and V ar(νi) = 1. A natural approach is to assume νi follows a

parametric distribution, e.g. νi ∼ N(0, 1), and find the MLE of (d1, d2, d3, d4)

by maximizing the likelihood of model (2.33), then back-calculate the MLE of

(β0, β1, β2, σ
2). Since the variable ν is a random error term that is not observed,

the likelihood function involves marginalizing out ν.
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Equation (2.33) can be viewed as a logistic regression where one covariate is

subject to measurement error. Kuchenhoff (1995) proved that a logistic regres-

sion model with normal measurement error in one of the covariates is identifiable.

By definition, a model parameter is identifiable if it is uniquely determined by

the likelihood function. The whole model is called identifiable if all model param-

eters are identifiable. Following the proof in Kuchenhoff (1995), the parameters

(d1, d2, d3, d4) is uniquely determined by:

d1 = lim
X→∞

∂
∂X
Q(X,G)

Q(X,G)
+ lim

X→−∞

∂
∂X
Q(X,G)

Q(X,G)

d2 = lim
G→∞

∂
∂X
Q(X,G)

Q(X,G)
+ lim

G→−∞

∂
∂X
Q(X,G)

Q(X,G)

d0 = −d1Q
−1(X = 1/2, G = 0)

d3 = −K−1(Q(X =
1− d0

d1

, G = 0))

where Q(X,G) is the likelihood function of model (2.33) when outcome Y = 1

and random effect ν is marginalized:

Q(X,G) =

∫
R(d0 + d1X + d2G+ d3ν)ϕ(ν)dν

and

R(t) =
exp(t)

1 + exp(t)

K(t) =

∫
G(1 + tν)ϕ(ν)dν

where ϕ(·) is the density function of standard normal distribution. The details

of the proof is a slight variant of the proof in the appendix of Kuchenhoff (1995).

However, Kuchenhoff (1995) also pointed out that the model is practically

non-identifiable without extra information. In order to show this, we generate a

random sample of 20 observations by X ∼ N(0, 1), ν ∼ N(0, 1), with d1 = 3,

d3 = 2, and d0 = d2 = 0. To construct the likelihood, we assume d0 and d2 are
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known and plot the likelihood versus d1 and d3. The likelihood function with

observed outcome Y and covariate X is:

L =
n∏
i=1

∫ (
ed1Xi+d3ν

1 + ed1Xi+d3ν

)Yi ( 1

1 + ed1Xi+d3ν

)1−Yi
ϕ(ν)dν (2.34)

Integrations are calculated numerically and approximated by definite integrals

from −6 to 6. This approximation is accurate, since the first two terms are

bounded within (0, 1) and ϕ(·) is close to 0 outside of (−6, 6). We use MATLAB

software (version 7.1) (MATLAB, 2005) to calculate the integration and generate

the likelihood plots. The plot of likelihood versus d1 and d3 is shown in Figure 2.3.

We can see a flat ‘ridge’ in the plot, spreading among different values of d1 and

d3. The difference in largest values (‘peaks’) of the ridge is too small to detect,

indicating that the MLE of the parameters is not numerically detectable even if

it is unique. This is confirmed by the two plots of profile likelihoods (likelihood

function of one parameter while maximizing with respect to the other one) in

Figure 2.4. They implies that for different d3’s, there is always a value of d1

to attain the ‘ridge’, showing that different combinations of (d1, d3) can achieve

values that are very close to the maximum likelihood. Note that the spikes of

the likelihood are due to calculation errors from the numerical integration and

should be ignored. However, if we have additional information, that is, a fixed

value or at least a strong prior, on σ2 (or equivalently, α2 or α2
2/σ

2), the MLE will

be practically identifiable. This might be available by using repeated measures,

while it is reasonable to assume that the random errors are mainly caused by

within-subject variation. Moreover, the same identifiability problem will arise if

we model the binary outcome Y with a probit link. Therefore, we conclude that

for the two-stage model (2.28) and (2.29), consistent estimate of β1 can not be

derived by likelihood-based method without additional information.
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Figure 2.3: Likelihood of IV analysis with binary outcome
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Figure 2.4: Profile Likelihood of IV analysis with binary outcome
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CHAPTER 3

A Parametric Bayesian Approach for

Instrumental Variable Analysis with Censored

Time-to-Event Outcome

In this chapter, we first introduce some basic concepts of time-to-event data anal-

ysis, also known as survival analysis, and review the methods for time-to-event

data based on linear models. We then introduce IV analysis with right-censored

time-to-event outcome, and propose a parametric Bayesian model with a bivari-

ate normal or non-normal elliptically contoured error distribution. We examine

the performance of the model with normal error distribution through simulation

studies. Two real data examples, the Women’s Health Initiative Observational

Study and the Atherosclerosis Risk in Communities Study, are used as illustra-

tion.

3.1 Preliminaries

3.1.1 Introduction to Time-to-Event Outcome

The identifiability problem of IV analysis with binary outcome in section 2.2.3 is

fundamentally caused by the loss of information while the underlying continuous

link function is dichotomized into binary outcome. Additional information can
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sometimes be achieved in the form of time-to-event data, also known as survival

data.

Survival analysis is a branch of statistics in which the time to and rate of

occurrence of events (e.g. diseases and death) are of primary interest. Censorship

is a defining feature of survival analysis. A subject is censored if his exact time

to the event is not observed, but partial information on the event’s occurrence is

available. Right-censoring is the most common type of censoring, meaning that

the subject’s event time (also called a survival time, lifetime, or failure time) is

longer than his observed on-study time. There are other types of censoring (e.g.

left censoring and interval censoring), but we will focus on right-censored data in

this section.

For each subject i, let Yi be the time-to-event outcome variable, and Ci be a

corresponding right-censoring time. Only the smaller of the two, Ti = min(Yi, Ci),

can be observed. If Yi < Ci, the subject experiences the event and Yi = Ti; oth-

erwise the patient is right-censored and Yi > Ti. Let Xi = (X1i, . . . , Xki)
′ denote

a vector of fixed-time explanatory covariates. Thus the observed data consist of

(Ti, δi, Xi), where censoring indicator δi = I[Yi ≤ Ci]. In this dissertation, we

assume the censoring is conditional random, meaning that Yi is independent of

Ci given Xi.

Important functions of the survival time Y include survival distribution func-

tion S(y), hazard function λ(y) and survival time density function f(y). The

survival distribution function represents the probability that time to event for a

subject is beyond y:

S(y) = P (Y > y)

The hazard function describes failure rate at time y, which is the probability that
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a subject fails at time y given that he has survived until y:

λ(y) = lim
∆y→0

P (y ≤ Y ≤ y + ∆y | Y ≥ y)

∆y

The survival time density function represents the instantaneous probability of

failure at time y:

f(y) = − d

dy
S(y)

= λ(y)S(y)

In all the above functions, we assume y is continuous on (0, ∞). Thus the

likelihood function of observing (Ti, δi), i = 1 . . . n is:

L =
n∏
i=1

f(Ti)
δiS(Ti)

1−δi

=
n∏
i=1

λ(Ti)
δiS(Ti) (3.1)

3.1.2 Accelerated Failure Time Models

Accelerated Failure Time (AFT) models (Cox and Oakes, 1984) are a popular

class of parametric models for survival data that are based on linear models.

They provide alternatives to the commonly-used proportional hazards models

(Cox, 1972). Whereas a proportional hazards model assumes that the effect of a

covariate is to multiply the hazard by a constant, an AFT model assumes that

the effect of a covariate is to multiply the predicted event time by a constant.

The AFT model has the following form:

log(Y ) = β0 +X ′β + σW (3.2)

where X is a vector of covariates, σ is a scale parameter for the random error W .

Therefore the effect of covariate X on the survival function is:

S(y | X) = S0(ye−X
′β)
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where S0(y) is the baseline survival function. The factor e−X
′β is called an accel-

eration factor indicating how a change in covariate values changes the time scale

from the baseline time scale. This means that the covariates have direct effects

on the survival distribution without requiring any proportional hazards assump-

tions. AFT models can therefore be framed as linear models for the logarithm of

the survival time.

3.1.2.1 Parametric AFT Models

For most AFT models, the distribution of the error term W is assumed to be of

a known parametric form. This leads to a parametric distribution for survival

time Y , since Y is a shifted and scaled transformation of W by model (3.2).

Common parametric forms for W include: a standard extreme value distribution

leading to a Weibull distribution for Y , a standard normal distribution leading to

a log-normal distribution for Y , a standard logistic distribution leading to a log-

logistic distribution for Y , etc. The fully parametric models have the advantages

of increased power to detect covariate effects. The parameter estimates can be

obtained through maximum likelihood estimation. The estimates have desirable

properties such as asymptotically normal distributions with variances that can

be estimated consistently from the data.

Parametric AFT models are comparatively easy to implement in standard

software such as R and SAS. Diagnosis of parametric assumptions are mainly

assessed by graphical methods such as hazard plot, Cox-Snell residual plot and

quantile-quantile plot (Klein and Moeschberger, 2003).
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3.1.2.2 Semiparametric AFT Model and Buckley-James Estimator

The parametric assumptions by fully parametric AFT models might not be valid

in certain datasets. Instead, the semiparametric AFT model:

log(Y ) = X ′β + ε (3.3)

allows the random error ε to have an unspecified distribution Fε with mean µ

and finite variance σ2: ε ∼ Fε, E(ε) = µ and Var(ε) = σ2 <∞. This model only

assumes homoscedasticity for the random errors.

One approach to estimate β in model (3.3) is the Buckley-James estimator

(Buckley and James, 1979). Let Zi = log(Yi) and Zo
i = log(Ti) = log(Yi)∧log(Ci).

The AFT model in (3.3) becomes:

Zi = X ′iβ + εi (3.4)

This is simply a standard linear regression model if there is no censoring. A new

variable is defined as:

Z∗i = δiZ
o
i + (1− δi)E[Zi | Zi ≥ Zo

i , X
′
i] (3.5)

with desirable property E(Z∗i | Xi) = E(εi) + X ′iβ = E(Zi | Xi). If Z∗i were

known, ordinary least squares could be used with the transformed responses Z∗i .

The Buckley-James estimating algorithm simultaneously updates the response

estimate Ẑ∗i and parameter estimate β̂ at each step and proceeds iteratively:

1. Select a reasonable initial estimator β(0), and let Z̃ = Xβ(0).

2. Compute the residuals ε = Zo− Z̃ and the estimated transformed response

Ẑ∗i = δiZ
o
i + (1− δi)Ê(Zi | Zi ≥ Zo

i , Xi)

= δiZ
o
i + (1− δi)

[
Z̃i − {Ŝε(εi)}−1

∫ ∞
εi

sdŜε(s)

]
, i = 1, . . . , n,
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where Ŝε(·) is the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the

survival function 1− Fε using the censored residuals {εi, δi}.

3. Apply ordinary least squares to {Ẑ∗i , Xi}. Update Z̃ = Xβ̂.

4. Stop if Z̃ converges. Otherwise, return to step 2.

The iterating procedure might eventually oscillate between two values of β̂. In

that case, the average of the two values will be used.

The Buckley-James estimator produces unbiased estimates of the covariate

effects under relatively weak assumptions. Furthermore, it can be used to check

the appropriateness of a parametric specification. The bj function in R pack-

age Design can be used to produce the Buckley-James estimates (Stare et al.,

2001; Harrell, 2009; R Core Team, 2012). Ritov (1990) and Lai and Ying (1991)

established the asymptotic properties of the estimator. However, the variance

estimation of the Buckley-James estimator remains very difficult due to the pres-

ence of censored data in nonparametric density estimation.

3.2 IV Analysis with Censored Time-to-Event Outcome

3.2.1 Introduction

In this section, we propose a parametric Bayesian model for IV analysis with cen-

sored time-to-event outcome. We examine its performance by simulation studies,

and illustrate the method on two real data examples. Although our method can

be easily extended to the case of arbitrary censoring (e.g. left censoring, interval

censoring), we focus on right-censored time-to-event outcome for simplicity of

illustration.

Similar to IV analysis with continuous outcome introduced in section 1.1, IV
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Figure 3.1: Directed acyclic graph for instrumental variable model with right-

censored time-to-event outcome in the presence of unobserved confounders and

measurement errors in the intermediate covariate

analysis with censored time-to-event outcome follows a structure as indicated in

Figure 3.1. For each subject i, let Yi be the time-to-event outcome variable, Ci be

the corresponding right-censoring time, Ti = min(Yi, Ci) be the observed time, Wi

be an unobserved continuous covariate of interest that is subject to measurement

errors, Xi be the observed surrogate of Wi, Zi be a vector of observed confounders,

Ui be a vector of unobserved confounders, and Gi be a vector of instruments,

i = 1, . . . , n. The primary aim is to estimate the causal effect of Wi on Yi based

on the observed right-censored data consisting of n independent and identically

distributed observations (Ti, δi, Xi, Zi, Gi), i = 1, . . . n, where censoring indicator

δi = I[Yi ≤ Ci].

With assumption of linear relationships among the variables Yi, Wi, Ui, Zi

and Gi, the underlying structure in Figure 3.1 can be modeled by

Wi = α0 + α1
′Gi + α2

′Zi + α3
′Ui + ε1i (3.6)

Yi = β0 + β1Wi + β2
′Zi + β3

′Ui + ε2i (3.7)

Xi = Wi + ε3i (3.8)
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i = 1, . . . n, where ε1i, ε2i, and ε3i are independent random errors with mean 0

and finite variances τ 2
1 , τ 2

2 , and τ 2
3 respectively, similar to the model in section

2.1.1. Note that ε3i is the measurement error in the intermediate covariate. The

unobserved confounder vector Ui is standardized to have mean 0 and covariance

matrix ΣU , where ΣU is the correlation matrix of Ui. The variables ε1i, ε2i, ε3i,

Ui and Gi are assumed to be independent. Yi is usually a monotone transformed

survival time. For example, the second-stage equation (3.7) is an accelerated fail-

ure time model if Yi is the log-transformed survival time. Again, the endogenous

parameter β1 is the parameter of primary interest.

3.2.2 A Parametric Bayesian Instrumental Variable Model

We consider the following two-stage linear model:

Xi = α0 + α1
′Gi + α2

′Zi + ξ1i (3.9)

Yi = β0 + β1Xi + β2
′Zi + ξ2i (3.10)

where the random errors ξ1i and ξ2i jointly follow a bivariate normal distribution:ξ1i

ξ2i

 i.i.d.∼ N2

0

0

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 (3.11)

Our primary goal is to estimate and make inference on the endogenous parameter

β1.

This model can be used to adjust for unobserved confounders and measure-

ment errors simultaneously. It is a reduced form of the model with equations

(3.6),(3.7) and (3.8). Since Wi is not observed, we can replace Wi in equations

(3.6) and (3.7) by Wi = Xi − ε3i from equation (3.8) and have the following
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two-stage linear model:

Xi = α0 + α1
′Gi + α2

′Zi + α3
′Ui + ε1i + ε3i (3.12)

Yi = β0 + β1Xi + β2
′Zi + β3

′Ui + ε2i − β1ε3i (3.13)

Based on these two equations, parameters related to unobserved confounders Ui

and random errors (ε1i, ε2i, ε3i), which are (α3, β3, τ
2
1 , τ

2
2 , τ

2
3 ), are not all identi-

fiable. Since the parameter of primary interest is β1, we can reduce the two

equations to the two-stage model with equations (3.9) and (3.10), by combining

the unobserved confounders and random errors:

ξ1i = α3
′Ui + ε1i + ε3i and ξ2i = β3

′Ui + ε2i − β1ε3i

With normality assumptions on Ui, ε1i, ε2i and ε3i, the random errors ξ1i and ξ2i

jointly follow a bivariate normal distribution as shown in equation (3.11), where

σ2
1 = α3

′ΣUα3 + τ 2
1 + τ 2

3 , σ2
2 = β3

′ΣUβ3 + τ 2
2 + β2

1τ
2
3 , and ρσ1σ2 = α3

′ΣUβ3− β1τ
2
3 .

Although we aim to estimate the endogenous parameter in a censored time-

to-event context, the underlying model is the same as the two-stage linear model

for continuous outcomes without censoring. Censoring only affects the estimation

procedure, not the interpretation of the underlying causal model. In addition,

the normality assumption in (3.11) is not essential for the development of our

estimation and inferential method. In section 3.2.4, we note that our approach

can be extended with minimal modifications to elliptically contoured models that

include many useful non-normal models.

3.2.3 Estimation and Inference Procedure

In the absence of censoring, the classic IV methods for continuous outcome de-

scribed in section 2.1 can be applied to derive consistent estimates of β1. In the
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presence of censoring, estimation and inference for β1 can be drawn by using the

maximum likelihood estimation theory and applying the delta method. However,

the asymptotic approximations that the frequentist approaches rely on might

not be valid when weak instruments are used (Lawlor et al., 2008). Moreover,

there could be a high-dimensional optimization problem in maximizing likelihood

when multiple observed confounders are incorporated into the model. To avoid

these two problems, we develop a Bayesian approach with MCMC techniques

to draw inferences on the endogenous parameter β1. Furthermore, the Bayesian

approach can take advantage of prior information by using informative priors for

the parameters.

For the two-stage IV model (3.9)–(3.11), denote θ = (α0, α1, α2, β0, β1, β2, σ
2
1, σ

2
2, ρ),

~T = (T1, ..., Tn), ~δ = (δ1, ..., δn), ~X = (X1, ..., Xn), ~Z = (Z1, ..., Zn) and ~G =

(G1, ..., Gn). The likelihood function of observing (~T , ~δ, ~X, ~Z, ~G) is:

L(θ | ~T , ~δ, ~X, ~Z, ~G) = P (~T , ~δ | ~X, ~Z, ~G, θ) · P ( ~X, ~Z, ~G | θ)

=
n∏
i=1

f1(Ti | Xi, Zi, Gi)
δi S(Ti | Xi, Zi, Gi)

1−δi · f2(Xi, Zi, Gi)

(3.14)

where

S(T | X,Z,G) = 1− Φ

(
T − β0 − β1X − β2

′Z − σ2
σ1
ρ(X − α0 − α1

′G− α2
′Z)√

(1− ρ2)σ2
2

)

f1(T | X,Z,G) = φ

(
T − β0 − β1X − β2

′Z − σ2
σ1
ρ(X − α0 − α1

′G− α2
′Z)√

(1− ρ2)σ2
2

)

f2(X,Z,G) = φ

(
X − α0 − α1

′G− α2
′Z√

σ2
1

)

Φ(·) and φ(·) are the cumulative density function and the probability density

function of standard normal distribution, respectively. The detailed derivation of

the likelihood is given in the appendix.
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We use independent vague priors for the parameters: a normal distribu-

tion N(0, ς2) with large variance ς2 for each element in α0, α1, α2, β0, β1 and

β2, an inverse-gamma distribution Inv-Gamma(γ1, γ2) with small shape param-

eter γ1 and small scale parameter γ2 for σ2
1 and σ2

2, and a uniform distribu-

tion Unif(−1, 1) for ρ. The MCMC method is used to generate samples from

the posterior distributions of the parameters: In each iteration, a random walk

Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) is used

to update the parameters one by one, while other parameters are fixed at their

current states. Highly correlated parameters are updated simultaneously using

a multiple-block Metropolis-Hasting algorithm (Chib and Greenberg, 1995) in

order to have faster convergence for the Markov chains. Uniform proposal dis-

tributions are used for the random walk in our simulations and real data anal-

ysis, with widths chosen to obtain appropriate acceptance rates. The detailed

MCMC algorithm is provided in the appendix. A sufficiently large amount of

MCMC samples are generated from the posterior distribution. Sample mean

of a parameter can be used to approximate the posterior mean and serve as

an estimation of the parameter. Credible intervals of the parameters can be

constructed by using the empirical quartiles of the simulated samples. We imple-

mented the method in R (R Core Team, 2012). Our program is available online

at http://www.biostat.ucla.edu/people/gangli/IV MH.R , along with an example

with simulated data at http://www.biostat.ucla.edu/people/gangli/IV example.R

.

Convergence of the MCMC algorithm can be examined visually by graphical

methods including trace plots, histograms and autocorrelation plots, and quan-

titatively by using the Brooks-Gelman-Rubin diagnostics (Brooks and Gelman,

1998). Detailed convergence diagnostics are presented in section 3.4.3 for the real

data examples.

46



3.2.4 Extension to Non-Normal Models

The method developed earlier for the normal IV model (3.9)–(3.11) can be eas-

ily extended to a more general IV model with elliptically contoured distributed

errors. Specifically, the normality assumption (3.11) can be replaced by the fol-

lowing assumptionξ1i

ξ2i

 i.i.d.∼ EC2

0

0

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , g

 , (3.15)

where a k-dimensional random vector ξ is said to have an elliptically contoured

distribution (ECD), denoted by ξ ∼ ECn(µ,Σ, g), if it has the following density

function

|Σ|−1/2g[(x− µ)
′
Σ−1(x− µ)]

for a given function g. Clearly the k-dimensional multivariate normal distribution

is an ECD with g(x) = (2π)−
k
2 e−

x
2 . The ECD also includes many non-normal

multivariate distributions such as the multivariate t, the multivariate Cauchy, the

multivariate Laplace, the multivariate uniform, scale mixtures of normal distri-

butions, and the multivariate stable distributions. See Fang and Anderson (1990)

and Chmielewski (1981), and the references therein for some nice survey of ECD

and its applications in various areas, including robust regression (Lange et al.,

1989), risk measure (Landsman and Valdez, 2003), hyperspectral imaging data

modeling (Marden and Manolakis, 2004), etc.

The family of ECDs share many nice properties of the multivariate normal, in-

cluding that all marginal distributions and all conditional distributions of an ECD

are ECD. With a bivariate ECD assumption on random errors (ξ1i, ξ2i)
′ other

than the bivariate normal, we will simply modify the functions S(T | X,Z,G),

f1(T | X,Z,G) and f2(X,Z,G) in the likelihood function (3.14) accordingly:

S(T | X,Z,G) and f1(T | X,Z,G) are derived from the conditional distribution
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of ξ2i given ξ1i; f2(X,Z,G) is derived from the marginal distribution of ξ1i. Both

are univariate ECDs in explicit form determined by the given function g.

3.3 Simulation Studies

A simulation study is conducted to assess the performance of our proposed para-

metric Bayesian IV model with normal error distribution, under frequentist cri-

teria of bias, standard deviation (SD), and coverage probability (CP). Synthetic

data is generated following the underlying model with unobserved confounders

and measurement errors given by equations (3.12) and (3.13), with a variety of

sample sizes, instrument strengths, censoring rates, and effects of intermediate

covariate. Specifically, we use a simulation setting that is motivated by the WHI-

OS real data example in section 3.4.1.

For the first-stage equation (3.12): A univariate instrument Gi and a uni-

variate unobserved confounder Ui are used, and no observed confounder vec-

tor Zi is considered, i.e. α2 = β2 = 0. Gi and Ui both follow a standard

normal distribution N(0, 1); ε1i and ε3i follow normal distributions N(0, 0.04)

and N(0, 0.015), respectively. The regression parameters are set as α0 = 0.5,

α1 =
√

0.005, α3 =
√

0.04. This gives E(X) = 0.5 and V ar(X) = 0.1, while

Cor2(X,G) = 5%, similar to the mean and variance of the intermediate co-

variate and its correlation with the genetic instrument in the WHI-OS exam-

ple. We also consider a stronger instrument with Cor2(X,G) = 10% by setting

α1 =
√

0.01 and ε1i ∼ N(0, 0.035) while other parameters remain the same. For

the second-stage equation (3.13): Different values are used for the endogenous

parameter: β1 = (0,−0.5,−1), representing none, small, or moderate causal ef-

fects, respectively, of underlying true covariate W on outcome Y . These values

of β1 correspond to acceleration factors of 1, 1.6 and 2.7 when the outcome Y
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is a log-transformed survival time and an accelerated failure time model is used.

Other regression parameters are set as β0 = 5− α0β1 and β3 = −
√

0.05, and the

random error ε2i follows a normal distribution N(0, 0.45). This gives E(Y ) = 5

and V ar(Y ) = 0.5 when β1 = 0, similar to the time-to-event outcome in the

WHI-OS example. The underlying right-censoring time is set to be conditionally

independent of Yi: Ci = β0 + β1Xi + β3Ui + εci, where εci ∼ N(µc, 2) and µc is

adjusted to give censoring rates 25%, 50% and 75%. The observed time Ti and

censoring indicator δi are derived by Ti = min(Yi, Ci) and δi = I[Yi ≤ Ci]. We

use sample size n = (300, 500, 800) for each of the parameter settings.

We first use a regular linear regression survival model (without using IV) to

evaluate the bias caused by the unobserved confounder Ui and the measurement

error ε3i. We generate 5000 synthetic data sets for each of the simulation settings.

The following linear model is applied to each set of observed data (Ti, δi, Xi),

i = 1, . . . , n:

Yi = β1Xi + εi where εi ∼ N(µ, σ2) (3.16)

We denote this as the ‘simple method’. Estimate and 95% confidence interval

of the parameters (β1, µ and σ2) are derived based on maximum likelihood es-

timator and asymptotic normal approximation (Klein and Moeschberger, 2003).

This can be easily implemented by using the survreg function in R package ‘sur-

vival’ (Therneau, 2013) or the LIFEREG procedure (SAS Institute Inc., 2008) in

the SAS R© software. Expectation and SD of the parameter estimates are approxi-

mated by the sample mean and sample SD of the 5000 estimates from independent

simulated data sets. Coverage probability is approximated by the proportion of

confidence intervals that cover the true value of the parameter.

We then apply our proposed IV model (3.9)–(3.11) to the simulated data. We

generate 2000 synthetic data sets for each of the simulation settings described
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earlier. For each data set, the likelihood is constructed using observed data

(Ti, δi, Xi, Gi), i = 1, . . . , n and likelihood function (3.14). Independent vague pri-

ors are used: N(0, 1002) for each of α0, α1, β0, and β1; Inv-Gamma(0.001, 0.001)

for σ2
1 and σ2

2, and Unif(−1, 1) for ρ. MCMC samples are generated from the

posterior distribution, which is the product of the likelihood and the priors. The

detailed MCMC algorithm is described in the Appendix. Specifically, a width

of the proposal distribution that gives an acceptance rate between 0.3 and 0.4 is

chosen for each parameter. We run 110, 000 iterations and use the first 10, 000

iterations as burn-in to achieve a state of convergence. We thin the resulting

chain by taking every 5th sample, in order to reduce autocorrelation. Posterior

mean and credible interval are derived for each parameter based on the resulting

20, 000 posterior samples. Similar to simulations using the simple method de-

scribed earlier, expectation and SD of the parameter estimate are approximated

by the sample mean and sample SD of the 2000 posterior means from independent

simulated data sets. Coverage probability is approximated by the proportion of

credible intervals that cover the true value of the parameter.

Results of the parameter of primary interest, β1, from the two analysis models

are summarized in Table 3.1. The β1 estimates from the simple method have

substantial bias in all simulation settings: bias ≈ 0.45, 0.37 and 0.29 for β1 =

0, −0.5 and −1, respectively, insensitive to different sample sizes and different

censoring rates. The coverage probabilities are poor, especially when sample size

is large or censoring rate is low (e.g. CP ≤ 0.36 when n = 800; CP ≤ 0.43 when

censoring rate = 25%). This is because the SD is smaller in these situations, while

the bias remains large. On the other hand, the bias in β1 estimation from our IV

method is much smaller. For example, with instrument strength R2(X,G) = 0.05

and n = 800, the bias of the IV estimate is <0.05. With a stronger instrument

of R2(X,G) = 0.1 and n = 800, the bias is further reduced to ≤ 0.021. Coverage
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probabilities of the 95% credible intervals from the IV method are very close to

the nominal level. Moreover, the bias from the IV method is always reduced

as sample size increases, under different scenarios of censoring rates, instrument

strengths and true values of β1, suggesting consistency of the parametric Bayesian

IV estimation. The bias, SD and coverage probability seem to be insensitive to

different values of β1. Unsurprisingly, the IV method tends to perform better

in terms of bias and SD with stronger instrument and/or smaller censoring rate,

and the SD decreases as sample size increases.

Using the IV method will result in larger variation in the estimates compared

to the simple method, due to the uncertainty from the first-stage model (3.9).

Our simulation results show that the β1 estimates from our IV method have a

four-to-five-fold increase in SD with instrument strength R2(X,G) = 0.05 and

a roughly threefold increase in SD with instrument strength R2(X,G) = 0.1

compared to the simple method. This is an inevitable trade-off between accuracy

and precision. The gains in bias reduction come at the cost of lower statistical

power. It is worthwhile to apply the IV method when the major concern lies

with bias in parameter estimation, and instruments with reasonable strength are

available.

We further investigate the performance of our method by examining all the

parameter estimates, with extensive simulations by varying the true values of

all parameters. Our method performs well for estimation of all parameters in

the IV analysis model: α0, α1, β0, β1, σ
2
1, σ

2
2, and ρ, in terms of bias and coverage

probability (not reported here). In addition, we have conducted simulations with

vague dependent priors. The results are very similar to the ones with vague

independent priors (not reported here).

In order to investigate the robustness of our proposed model against deviation
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of normality assumption, we conducted another simulation study with different

true underlying distributions for the time-to-event outcome Y . The simulation

setting is the same as the previous one with R2(X,G) = 0.05, except for the

random error terms ε2i in equation (3.10) and εci in censoring time Ci. ε2i follows

distributions of four different forms: normal, exponential, weibull, and a mixture

of normal distributions, while fixing E(ε2i) = 0 and V ar(ε2i) = 0.45. εci follows

the same distribution as ε2i, fixing the censoring rate at 50%. We apply the

proposed IV method to each of the data set, similar to described earlier. Results

of β1 estimation are summarized in Table 3.2. Again, when the distribution of

ε2i is normal, the IV estimation of β1 has bias becoming close to 0 as sample size

increases, and the coverage probability is close to the nominal level of 95%. These

properties also hold for IV estimation of β1 when ε2i follows the three non-normal

distributions. This suggests that the IV method based on normality assumption

is quite robust against the deviation from normality.
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Table 3.1: β1 Estimation with and without Instrumental Variable Analysis on

Simulated Data with Normal Random Errors

Simple estimate IV estimate

without IV R2(X,G) = 0.05 R2(X,G) = 0.1

n CR β1 Bias SD CP Bias SD CP Bias SD CP

300 25% 0 0.444 0.139 0.108 0.031 0.609 0.968 0.021 0.434 0.958

-0.5 0.378 0.141 0.228 0.035 0.607 0.969 0.012 0.449 0.954

-1 0.297 0.141 0.432 0.032 0.589 0.975 0.015 0.451 0.953

50% 0 0.449 0.157 0.186 0.062 0.649 0.969 0.042 0.496 0.960

-0.5 0.372 0.158 0.351 0.063 0.649 0.963 0.031 0.502 0.959

-1 0.294 0.163 0.551 0.063 0.650 0.969 0.030 0.488 0.965

75% 0 0.447 0.206 0.402 0.085 0.776 0.975 0.081 0.621 0.954

-0.5 0.377 0.207 0.551 0.101 0.791 0.969 0.063 0.602 0.960

-1 0.300 0.210 0.705 0.103 0.757 0.977 0.080 0.587 0.965

500 25% 0 0.447 0.107 0.013 0.015 0.484 0.955 0.010 0.347 0.950

-0.5 0.372 0.107 0.067 0.020 0.470 0.963 0.010 0.342 0.955

-1 0.297 0.110 0.229 0.006 0.485 0.958 0.004 0.339 0.961

50% 0 0.449 0.122 0.044 0.022 0.519 0.970 0.018 0.385 0.955

-0.5 0.371 0.125 0.153 0.008 0.526 0.958 0.010 0.370 0.965

-1 0.296 0.127 0.348 0.014 0.538 0.958 0.019 0.378 0.965

75% 0 0.438 0.156 0.210 0.064 0.626 0.973 0.055 0.485 0.953

-0.5 0.371 0.164 0.363 0.066 0.654 0.966 0.029 0.487 0.958

-1 0.296 0.166 0.552 0.067 0.620 0.970 0.045 0.480 0.959

800 25% 0 0.449 0.083 <0.001 0.004 0.393 0.957 0.005 0.278 0.949

-0.5 0.374 0.086 0.008 0.013 0.386 0.953 0.004 0.272 0.952

-1 0.297 0.087 0.071 0.007 0.378 0.958 0.006 0.272 0.956

50% 0 0.447 0.096 0.003 0.015 0.434 0.955 0.007 0.301 0.956

-0.5 0.372 0.097 0.032 0.034 0.422 0.964 0.016 0.312 0.952

-1 0.299 0.099 0.145 0.040 0.412 0.960 0.007 0.302 0.954

75% 0 0.449 0.125 0.055 0.035 0.507 0.964 0.017 0.383 0.956

-0.5 0.372 0.126 0.163 0.034 0.513 0.958 0.011 0.373 0.966

-1 0.296 0.128 0.358 0.049 0.523 0.963 0.021 0.374 0.967

Results are based on 2000 simulations using the IV method and 5000 simulations using the

simple method. Bias is calculated as the absolute difference between the sample mean of the

β1 estimates and the true value of β1. Standard deviation (SD) is calculated as the sample

standard deviation of the β1 estimates. Coverage probability (CP) is the proportion of 95%

credible intervals (for IV estimates) or confidence intervals (for simple estimates) that cover β1.
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Table 3.2: β1 Estimation with Instrumental Variable Analysis on Simulated Data

with Normal and Non-Normal Random Errors

IV estimate

Error Distribution n β1 Bias SD CP

Normal 300 0 0.063 0.631 0.970
-0.5 0.055 0.655 0.962
-1 0.071 0.653 0.970

500 0 0.019 0.514 0.961
-0.5 0.009 0.506 0.962
-1 0.015 0.509 0.970

800 0 0.009 0.414 0.955
-0.5 0.022 0.414 0.962
-1 0.001 0.403 0.962

Exponential 300 0 0.031 0.431 0.974
-0.5 0.039 0.436 0.965
-1 0.052 0.429 0.971

500 0 0.018 0.367 0.958
-0.5 0.026 0.356 0.957
-1 0.001 0.359 0.964

800 0 0.001 0.279 0.960
-0.5 0.011 0.281 0.963
-1 0.011 0.286 0.959

Weibull 300 0 0.080 0.714 0.969
-0.5 0.061 0.744 0.974
-1 0.055 0.744 0.966

500 0 0.012 0.583 0.967
-0.5 0.022 0.591 0.962
-1 0.025 0.595 0.957

800 0 0.004 0.486 0.955
-0.5 0.016 0.476 0.956
-1 0.017 0.470 0.959

Normal Mixture 300 0 0.061 0.649 0.979
-0.5 0.045 0.662 0.958
-1 0.040 0.629 0.976

500 0 0.009 0.539 0.960
-0.5 0.031 0.538 0.959
-1 0.009 0.533 0.958

800 0 0.009 0.433 0.951
-0.5 0.001 0.431 0.955
-1 0.020 0.421 0.952

‘Error Distribution’ refers to distribution of ε2i in equation (3.10) and εci in censoring time

Ci. Distribution ‘Normal Mixture’ is a mixture of two normal distributions N(−.63, .05) · 0.5 +

N(.63, .05) · 0.5. Results are based on 2000 simulations. Censoring rate is 50% and instrument

strength is R2(X,G) = 0.05. Bias is calculated as the absolute difference between the sample

mean of the β1 estimates and the true value of β1. Standard deviation (SD) is calculated as the

sample standard deviation of the β1 estimates. Coverage probability (CP) is the proportion of

95% credible intervals that cover β1.
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3.4 Real Data Examples

3.4.1 Women’s Health Initiative Observational Study

We illustrate the proposed IV method using two real data examples. The first one

is a prospective case-control study nested within the Women’s Health Initiative

Observational Study (WHI-OS). In this study, we want to investigate the effect of

high-sensitivity C-reactive protein (hsCRP) on development of diabetes. hsCRP

is an inflammatory marker that has been positively associated with diabetes

(Han et al., 2002; Freeman et al., 2002; Liu et al., 2007). However, whether

lowering hsCRP level will result in diabetes prevention is uncertain. Therefore,

we apply the Mendelian Randomization (MR) method (i.e. IV analysis with

genetic instruments) with time-to-event outcome to make inference about the

causal effect of hsCRP on diabetes and account for potential impact of unobserved

confounders and measurement errors.

In the WHI-OS, 82069 postmenopausal women (50-59 years of age) with no

history of diabetes were followed-up for a mean of 5.5 years. 1584 cases of dia-

betes were identified and matched with 2198 controls (by age, ethnicity, clinical

center, time of blood draw, and length of follow-up). We focus on the subgroup

of whites (954 cases and 968 controls) to avoid the potential problem of popu-

lation stratification. Time to diabetes diagnosis from baseline was recorded for

each case, and time to last visit from baseline for each control. Plasma concen-

tration of hsCRP is measured for each subject. Descriptive statistics of baseline

characteristics are summarized by case-control status in Table 3.3. More detailed

descriptions of the study are given in Liu et al. (2007) and Chan et al. (2011).

13 haplotype-tagging single-nucleotide polymorphisms (tSNPs) across 2.3 kb of

the CRP (C-reactive protein, pentraxin-related) genes that had been shown to
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account for most of the genetic variation within the CRP locus are used as in-

struments. Details of selection of the tSNPs are given in Lee et al. (2009). None

of the 13 tSNPs shows indication of Hardy-Weinberg disequilibrium (all p-values

from a Hardy-Weinberg equilibrium test > 0.05 after Bonferroni correction).

We first apply a simple method similar to what has been described in section

3.3 to estimate the association between hsCRP and time to diabetes diagnosis:

Yi = β1Xi + β2
′Zi + εi where εi ∼ N(µ, σ2) (3.17)

i = 1, . . . , n. For each subject i, Yi is the log-transformed time to diabetes diag-

nosis (in days); Xi is the log-transformed hsCRP level; Zi is a vector of observed

potential confounders including age, body mass index, cigarette smoking, alco-

hol intake, hormone-replacement therapy, family history of diabetes and physical

activity. The censoring indicator δi is 1 for cases and 0 for controls. The ob-

served time variable Ti is log-transformed time to diabetes diagnosis for cases

and log-transformed time to last visit for controls. Since the outcome Yi is a

log-transformed survival time, this model is a log-normal accelerated failure time

model. By using the SAS R© procedure LIFEREG (SAS Institute Inc., 2008), β1

has an estimate (SE) of −0.446 (0.089) with a p-value <.001. This correspond

to a 95% confidence interval of (−0.621,−0.272) as summarized in Table 3.4.

This significant negative association is consistent with the previous finding by

Liu et al. (2007), who analyzed the same data set and found that hsCRP was

significantly associated with increased diabetes risk (odds ratio = .16 with 95%

confidence interval (1.03, 1.30) and a p-value <.001).

We then apply the proposed parametric IV method with two-stage model

(3.9)–(3.11) to estimate the causal effect of hsCRP on time to diabetes diagnosis.

For each subject i, instrument Gi is a vector of the 13 tSNPs, where each tSNP is

coded as an additive effect model, i.e. coded as either 0, 1, or 2 depending on the
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number of minor alleles. Yi, Xi, Zi, Ti and δi are defined as earlier. The likelihood

is constructed using observed data (Ti, δi, Xi, Zi, Gi), i = 1, . . . , n and likelihood

function given by equation (3.14). Independent vague priors are used: N(0, 1002)

for each element of α0, α1, α2, β0, β1 and β2; Inv-Gamma(0.001, 0.001) for σ2
1

and σ2
2, and Unif(−1, 1) for ρ. In the MCMC sampling, a width of the proposal

distribution that gives an acceptance rate between 0.35 and 0.4 is chosen for each

parameter. We generate 30 chains from different initial values, with 1, 100, 000

iterations (100, 000 burn-ins) in each chain. We thin the chains by taking every

10th sample to reduce autocorrelation. A detailed discussion of convergence is

given in section 3.4.3. Posterior mean, posterior standard deviation and credible

interval are derived for each parameter based on the resulting 3, 000, 000 combined

samples. Figure 3.2(a) is a histogram of the resulting MCMC samples of β1. The

brackets on the horizontal axis denote the 95% credible interval. The posterior

distribution of β1 is fairly normal, with mean −0.162, standard deviation 0.426

and 95% credible interval (−0.987, 0.685), as summarized in Table 3.4.

Based on these results, we see that although hsCRP is significantly associated

with development of diabetes, there is not sufficient evidence of causal effect of

hsCRP on time to diabetes diagnosis among white postmenopausal women. This

is consistent with the previous finding by Brunner et al. (2008), who applied the

MR approach in a case-control study and found that the associations between

C-reactive protein (CRP) and diabetes incidence are likely to be noncausal. One

possible explanation for the association is that hsCRP level is affected by causal

factors of diabetes, such as obesity (Keavney, 2008). On the other hand, the

instruments in this IV analysis may not be strong enough to provide sufficient

statistical power to detect small effect sizes (partial R-square = 0.028), even

though the sample size is reasonably large.
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3.4.2 Atherosclerosis Risk in Communities Study

The second data example is a subset in the Atherosclerosis Risk in Communities

(ARIC) Study. In this example, we focus on the aspect of measurement error

correction of our proposed IV method, and we assume that there is no unobserved

confounder (i.e. all confounders are adjusted). Therefore, IV assumption (1) de-

scribed in section 1.1 is reduced to: Instrument G is independent of measurement

errors in intermediate covariate W . The ARIC study is a multi-center prospec-

tive cohort study of cardiovascular disease and its risk factors. A total of 15,792

subjects aged 45-64 years were recruited from four US communities in 1987-89.

They received 4 clinical examinations at 3-year intervals (Visits 1-4). Medical,

social and demographic data were collected at each visit. Hospitalization infor-

mation was obtained by annual telephone follow-up and active surveillance in

the communities. A more detailed description of the study is reported elsewhere

(The ARIC Investigators, 1989). In this study, we are interested in estimating the

association between systolic blood pressure (SBP) and development of coronary

heart disease (CHD), after correcting for potential bias due to measurement error

through IV analysis. For each of Visits 1-4, a subject’s SBP level is an average

of three measurements. We use Visit 2 (1990-92) as baseline, and use the SBP

level at Visit 1 (1987-89) as an instrument of the baseline SBP level. We exclude

subjects that (1) have missing baseline information, (2) do not have information

after baseline, and/or (3) have developed their first CHD event prior to baseline.

After the exclusion, our data consists of 12,782 subjects, 768 of which have CHD

events during the follow-up. Descriptive statistics of baseline characteristics are

summarized in Table 3.5.

For each subject i, outcome Yi = time to the first CHD event from baseline

(Visit 2) in years; censoring indicator δi = 1 if the subject has at least one CHD
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event during the follow-up, and 0 otherwise; observed time Ti = Yi if δi = 1,

and time to the last visit from baseline in years otherwise; covariate of interest

Xi = standardized log-transformed SBP level at baseline; instrument Gi = stan-

dardized log-transformed SBP level at Visit 1; both Xi and Gi are standardized

to have standard deviation 1; Zi is a vector of observed potential confounders

at baseline, including ethnicity (black vs. non-black) and other potential risk

factors of CHD developed by the Framingham Heart Study: gender, age, total

cholesterol level, high-density lipoprotein cholesterol level, smoking behavior, and

diabetes status (Wilson et al., 1998).

Similar to the previous example in Section 3.4.1, we first apply the simple

method with equation (4.20) to estimate the association between SBP and time

to CHD. β1 has an estimate (SE) of −0.779 (0.087) with a p-value <.001, corre-

sponding to a 95% confidence interval of (−0.950,−0.608) as summarized in Table

3.6. We then apply the proposed parametric IV method with two-stage model

(3.9)–(3.11), primarily aiming to correct for potential measurement error bias.

Similarly, the likelihood is constructed using observed data (Ti, δi, Xi, Zi, Gi),

i = 1, . . . , n and likelihood function (3.14). Similar independent vague priors are

used as described in Section 3.4.1. In the MCMC sampling, a width of the pro-

posal distribution that gives an acceptance rate between 0.2 and 0.25 is chosen

for each parameter. Due to the high correlations between some of the parameters

(cor(α0, α1) ' −0.95, cor(β0, β1) ' −0.97 in the posterior samples), we used

a multiple-block Metropolis-Hasting algorithm (Chib and Greenberg, 1995) to

update the parameters: α0 and α1 are updated simultaneously; β0 and β1 are

updated simultaneously. This dramatically improves convergence and results in

greatly reduced autocorrelations. We generate 40 chains from different initial val-

ues, with 2, 100, 000 iterations (100, 000 burn-ins) in each chain. The chains are

thinned to reduce autocorrelation by taking every 20th sample. A detailed discus-
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sion of convergence is given in section 3.4.3. Posterior mean, posterior standard

deviation and credible interval are derived for each parameter based on the re-

sulting 4, 000, 000 combined samples. Figure 3.2(b) is a histogram of the resulting

MCMC samples of β1. The brackets on the horizontal axis denote the 95% cred-

ible interval. The posterior distribution of β1 appears to be normal. It has mean

−1.180, standard deviation 0.141 and 95% credible interval (−1.460,−0.907), as

summarized in Table 3.6. A standard deviation increase in log-transformed SBP

level is associated with an acceleration of 1.18 years in time to the first CHD

event. We observe a larger effect size of SBP on CHD development compared to

the simple analysis. This result suggests that the effect size of β1 calculated by

the simple method is possibly attenuated by measurement errors in Xi.

In the IV analysis, we assume that the SBP measurement at an earlier visit is

an instrument of the SBP measurement at a later visit. This assumption is weaker

than the assumption that both the earlier and later measurements are replicates of

noisy surrogate (Carroll et al., 2006; Gustafson, 2007). This is because the latter

assumption fixes α1 = 1 while the former assumption does not. Note that the

instrument G is not required to be independent of the observed confounders Z,

since the confounding effects of Z are adjusted when Z is included in both stages

of the model (equations (3.9) and (3.10)). Since a subject’s SBP level at certain

time point is naturally predictive of his/her SBP level three years later, Gi is a

strong instrument of Xi (partial R-square = 0.35). Furthermore, measurement of

the instrument does not need to be accurate: Measurement errors in instrument

G will not violate the IV assumptions. Therefore, the SBP at Visit 1 can still

serve as an instrument if it is also subject to measurement errors.
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Table 3.3: Baseline characteristics of a white subgroup within the Women’s

Health Initiative Observational Study (WHI-OS)

Characteristic Controls (n=968) Case (n=954)

Age, mean ± SD, year 63.9 ± 6.9 63.9 ± 6.9

BMI, mean ± SD, kg/m2 26.5 ± 5.1 32.5 ± 6.8

Physical activity, MET-h/wk

Median 10.5 5.8

Interquartile range 3.8 – 20.6 0.9 – 14.0

Smoking status, %

Nonsmoker 52.3 49.7

Past smoker 42.6 43.7

Current smoker 5.1 6.6

Alcohol intake, %

Nondrinker 9.8 13.4

Past drinker 16.5 22.3

Current drinker, <1 drink/week 31.9 40.1

Current drinker, ≥ 1 drink/week 41.8 24.2

Hormone-replacement therapy, %

Never 37.1 48.5

Past 14.3 15.3

Current 48.6 36.2

Family history of diabetes, %

Yes 30.2 51.5

No 69.8 48.5

HsCRP, mg/L

Median 2.05 4.06

Interquartile range 0.91 – 4.24 2.16 – 7.55

BMI = body mass index; hsCRP = high-sensitivity C-reactive protein. Fam-

ily history of diabetes is defined as self-reported diabetes in a first-degree rela-

tive. Medians and interquartile ranges are provided for continuous variables with

skewed distributions.
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Table 3.4: Instrumental Variable (IV) analysis versus simple method in a sub-

group analysis of whites within the Women’s Health Initiative Observational

Study (WHI-OS)

The simple method uses a log-normal accelerated failure time model to esti-

mate the association between high-sensitivity C-reactive protein (hsCRP) and

time to diabetes diagnosis. The IV analysis uses our proposed Bayesian IV

method to estimate the causal effect of hsCRP on time to diabetes diagnosis,

using 13 selected tSNPs as genetic instruments. Both models adjust for ob-

served potential confounders including age, body mass index, cigarette smok-

ing, alcohol intake, hormone-replacement therapy, family history of diabetes

and physical activity.

estimate of β1 SE 95% CI

Simple method -0.446 0.089 (-0.621, -0.272)

IV analysis -0.162 0.426 (-0.987, 0.685)

CI stands for confidence interval for the simple method and credible interval for

the IV analysis.

SE in the IV analysis is estimated by the posterior standard deviation of β1.

The 13 selected tSNPs are: rs4275453, rs2808634, rs3093059, rs2794521,

rs1417938, rs1800947, rs1130864, rs1205, rs3093075, rs3093068, rs2808629,

rs2369146, and rs1470515.
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Table 3.5: Baseline characteristics of a subset of the Atherosclerosis Risk in

Communities (ARIC) Study

Characteristic
Baseline (Visit 2)

(n = 12, 782)

Age, mean ± SD, year 56.9 ± 5.7

Gender, % of Female 57

Ethnicity, % of Black 24.6

Current smoker, % 21.6

Diabetes, % 11

Total cholesterol level, mean ± SD, mmol/L 5.42 ± 1.01

HDL cholesterol level, mean ± SD, mmol/L 1.29 ± 0.43

Systolic blood pressure, mean ± SD, mmHg 145 ± 17.7

HDL = high-density lipoprotein.
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Table 3.6: Instrumental Variable (IV) analysis versus simple method in a subset

of the Atherosclerosis Risk in Communities (ARIC) Study

The simple method uses a linear regression survival model with normally

distributed residuals to estimate the association between standardized log-

transformed systolic blood pressure (SBP) level at baseline and time to the

first CHD event. The IV analysis uses our proposed Bayesian IV method to

estimate this association, by using standardized log-transformed SBP level at

Visit 1 as an instrument to correct for potential bias due to measurement er-

rors in baseline SBP. Both models adjust for observed potential confounders

including gender, age, total cholesterol level, high-density lipoprotein choles-

terol level, smoking behavior, and diabetes status.

estimate of β1 SE 95% CI

Simple method -0.779 0.087 (-0.950, -0.608)

IV analysis -1.180 0.141 (-1.460, -0.907)

CI stands for confidence interval for the simple method and credible interval for

the IV analysis.

SE in the IV analysis is estimated by the posterior standard deviation of β1.
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3.4.3 MCMC Convergence Diagnostics

We assess the convergence of MCMC sampling in the two real data examples.

Trace plots of parallel chains with diverse initial values are monitored for all the

parameters. Figure 3.3 shows the trace plots of β1: (a) for the WHI-OS data

and (b) for the ARIC data. Different chains are marked with different colors.

The chains seem to be mixing well and stable over the whole period. We further

visually compare the histograms of individual chains to the histogram of combined

samples. No obvious difference is observed. Autocorrelation plots of individual

chains are monitored for each parameter. Figure 3.4 shows the autocorrelation

plots of two representative individual chains for β1: (a) for the WHI-OS data and

(b) for the ARIC data. The autocorrelation is relatively low in the individual

chains (generally less than 0.1 after a lag of 1000 for the WHI-OS data and

less than 0.1 after a lag of 500 for the ARIC data). Finally, we use the Brooks-

Gelman-Rubin diagnostics (Brooks and Gelman, 1998) to quantitatively measure

convergence. The ‘potential scale reduction factor’ (PSRF) is calculated for each

parameter, together with its 95% confidence interval. Approximate convergence is

diagnosed when the upper limit of PSRF is close to 1. The 95% upper confidence

limit of PSRP for β1 is <1.005 for both real data examples, indicating good

convergence properties of the method.
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Figure 3.2: Histograms of the posterior samples of β1 from normal IV model

(a) WHI-OS example; (b) ARIC example. Posterior samples after discarding

burn-in and thinning. The brackets denote the limits of the 95% credible interval.
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Figure 3.3: Trace plots of the posterior samples of β1 from normal IV model

(a) WHI-OS example; (b) ARIC example. Posterior samples after thinning.
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Figure 3.4: Autocorrelation plots of individual chains of β1 from normal IV model

(a) WHI-OS example; (b) ARIC example. Posterior samples after discarding

burn-in and thinning.
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CHAPTER 4

A Semiparametric Bayesian Approach for

Instrumental Variable Analysis with Censored

Time-to-Event Outcome

In Chapter 3, we assume the random errors ξ1i and ξ2i jointly follow a bivariate

normal distribution or other parametric distribution such as a bivariate elliptically

contoured distribution. This allows a natural extension of the linear two-stage

model for uncensored continuous outcomes into an instrumental variable (IV)

model for censored time-to-event outcomes with MCMC procedures. This para-

metric Bayesian IV method requires full specification of a parametric model for

the error terms. It also assumes homogeneous error distribution, which may not

reflect the real underlying distribution. Thus, we consider to develop a more flex-

ible IV method with less stringent model assumptions. However, it is difficult to

handle arbitrary censoring (including left-censoring, interval-censoring and right-

censoring) using the classic semiparametric frequentist approaches such as the

Buckley-James estimator (Buckley and James, 1979). Therefore, we extend the

parametric Bayesian IV approach to a semiparametric Bayesian IV approach by

using a Dirichlet process mixture (DPM) model, to allow for heterogeneity in the

random error distribution in the presence of arbitrarily censored data.

In this chapter, we first review the Dirichlet process, its application of DPM

models, and the existing MCMC sampling algorithms in section 4.1. We then
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introduce our semipametric Bayesian IV method in section 4.2.1, with estimation

and inference procedure described in section 4.2.2. In section 4.3, we examine

the performance of the semipametric IV model through simulation studies, com-

pared with the parametric IV model proposed earlier. In section 4.4, the DPM

model is applied to the Women’s Health Initiative Observational Study and the

Atherosclerosis Risk in Communities Study as illustration .

4.1 Preliminaries

4.1.1 Introduction to Dirichlet Process

First introduced by (Ferguson, 1973), the Dirichlet Process (DP) is a distribution

over distributions, i.e. each draw from a Dirichlet process is itself a distribution.

A random distribution H is distributed according to a DP with base distribution

H0 and strength parameter ν, if for any finite measurable partition A1, . . . , Ar of

the parameter space Θ, the measures

(H(A1), . . . , H(Ar)) ∼ Dirichlet(νH0(A1), . . . , νH0(Ar))

where the Dirichlet distribution is a distribution over the K-dimensional probabil-

ity simplex: {(π1, . . . , πK) : πk ≥ 0,
∑

k πk = 1}. (π1, . . . , πK) follows Dirichlet(ν1, . . . , νK)

if:

P (π1, . . . , πK) =
1

B

K∏
k=1

πνk−1
k where B =

∏
k Γ(νk)

Γ(
∑

k νk)

The Dirichlet distribution is a multidimensional extension of the beta distribu-

tion. The base distribution H0 and strength parameter ν represent mean and

inverse-variance of the DP: for any measurable set A ⊂ Θ,

E[H(A)] = H0(A), Var[H(A)] = H0(A)(1−H0(A))/(ν + 1)
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For H ∼ DP(ν,H0) and θ1, . . . , θn
i.i.d.∼ H, the posterior distribution:

H | θ1, . . . , θn ∼ DP(ν + n,
νH0 +

∑n
i=1 δθi

ν + n
) (4.1)

where δθi is a point mass located at θi. Thus the predictive distribution for

θn+1 | θ1, . . . , θn with H marginalized out is:

θn+1 | θ1, . . . , θn ∼
1

ν + n

(
νH0 +

n∑
i=1

δθi

)
(4.2)

the posterior base distribution of H.

One way to visualize the DP is the Pólya urn scheme (Blackwell and Mac-

queen, 1973). Starting from (4.2), we can construct a distribution over sequences

θ1, θ2, . . . by iteratively drawing each θi given θ1, . . . , θi−1, as for n > 1, the joint

distribution

P (θ1, . . . , θn) =
n∏
i=1

P (θi | θ1, . . . , θi−1)

Specifically, each value in Θ is a unique color, and draws θ ∼ H are balls with

the drawn value being the color of the ball. In addition there is an urn containing

previously seen balls. In the beginning there are no balls in the urn, and we pick

a color drawn from H0, i.e. draw θ1 ∼ H0, paint a ball with that color, and

drop it into the urn. In subsequent steps, say the n + 1st, we will either, with

probability ν
ν+n

, pick a new color (draw θn+1 ∼ H0), paint a ball with that color

and drop the ball into the urn, or, with probability n
ν+n

, reach into the urn to

pick a random ball out (draw θn+1 from the empirical distribution), paint a new

ball with the same color and drop both balls back into the urn.

From the Pólya urn scheme, we see that for a long enough sequence of draws

from H, the value of any draw will be repeated by another draw, regardless the

smoothness of H0. This implies that H is composed only of a weighted sum of

point masses, i.e. it is a discrete distribution.
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Besides the Pólya urn scheme, the DP can also be expressed in terms of the

“stick-breaking” construction as given in Sethuraman (1994):

H =
∞∑
k=1

πkδθ∗k

where θ∗k
i.i.d.∼ H0

πk = βk

k−1∏
i=1

(1− βi)

βk
i.i.d.∼ Beta(1, ν) (4.3)

Truncating the summation of H in (4.3) at a large integer K results in a model

considered in Ishwaran and Zarepour (2002). This reduces H into finite dimen-

sional form as H =
∑K

k=1 πkδθ∗k .

4.1.2 Dirichlet Process Mixture Models and MCMC algorithms

The most common application of the DP is Dirichlet Process Mixture (DPM)

models, which is becoming increasingly popular in Bayesian applications, due

to the growth of MCMC simulation methods. The DPM models use Dirichlet

process priors to avoid critical dependence on parametric models and robustify

parametric assumptions. Instead of using a pre-specified number of mixture com-

ponents, a DPM model allows the number of mixture components to be deter-

mined by both the prior and the data. It is a general approach which allows

model parameters to vary from observation to observation.

We model a set of observations (Z1, . . . , Zn) using a set of latent parameters

(θ1, . . . , θn). Each θi is drawn independently and identically from H, while each
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Zi has distribution F (θi) parameterized by θi:

Zi | θi ∼ F (θi)

θi | H ∼ H

H ∼ DP(ν,H0)

i = 1, . . . , n.

A variety of MCMC methods have been developed to sample from the poste-

rior distribution of parameters of a DPM model. When H0 is a conjugate prior

for the likelihood given by F , the Gibbs sampling method considered by Escobar

(1994) and Escobar and West (1995), the Gibbs sampling method by West et al.

(1994) and Bush and MacEachern (1996), the collapsed cluster sampling method

by Maceachern (1994) and the blocked Gibbs sampler by Ishwaran and James

(2001) can be used. The first three methods exploit the Pólya urn scheme, whilst

the last method considers the truncated stick-breaking process. When H0 is a

non-conjugate prior, the “no-gaps” algorithm of Maceachern and Müller (1998)

based on the Pólya urn scheme, and Metropolis-Hasting algorithms with differ-

ent modifications (Neal, 2000; Jain and Neal, 2007) can be applied. Here we

illustrate one algorithm with conjugate priors (Escobar, 1994; Escobar and West,

1995) and two algorithms for non-conjugate priors (algorithms 5 and 8 in Neal,

2000).

Let the state of the Markov Chain consist of θ = (θ1, . . . , θn). For conjugate

prior H0, the Gibbs sampling method can be used to sample from the posterior

distribution of θ. The Escobar (1994) approach is to repeatedly draw values for

each θi from its conditional distribution given both data Z and θj for j 6= i

(denoted as θ−i). Since θi’s are exchangeable, from (4.2) we have the conditional
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distribution:

θi | θ−i, Zi ∼
∑
j 6=i

qijδ(θj) + riSi (4.4)

i = 1, . . . , n. Here, Si is the posterior distribution for θ based on the prior H0

and the single observation Zi with likelihood F (Zi, θ). The values of qij and ri

are defined by:

qij = b F (Zi, θj) (4.5)

ri = b ν

∫
F (Zi, θ) dH0(θ) (4.6)

where b is such that
∑

j 6=i qij + ri = 1. Computing the integral ri and sampling

from Ri must be feasible operations for this algorithm. This will generally so

when H0 is the conjugate prior for F .

For non-conjugate prior H0, we first introduce an equivalent form of the

parameters θ. Let ci indicate which “latent class” is associated with observa-

tion Zi, with the numbering of the ci being no significance. For each class, c,

the parameter θc determines the distribution of observations from that class:

Zi | ci, θC ∼ F (θci), where θC = (θc : c ∈ {c1, . . . , cn}), i.e. all distinct values of

θ. The conditional distribution of ci given cj for j 6= i (denoted as c−i) is:

If c = cj for some j 6= i: P (ci = c | c−i) =
n−i,c

n− 1 + ν

P (ci 6= cj for all j 6= i | c−i) =
ν

n− 1 + ν
(4.7)

where n−i,c denotes the number of cj that cj = c and j 6= i. One Metropolis-

Hasting algorithm to sample from the posterior distribution of c = (c1, . . . , cn)

and θC is to repeatedly sample as follows:

1. For i = 1, . . . , n, repeat the following update of ci R times: Draw a candi-

date, c∗i from the conditional distribution for ci by (4.7). If this c∗i is not
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in {c1, . . . , cn}, choose a value for θc∗i from H0. Replace ci with c∗i with

acceptance probability:

a(c∗i , ci) = min

[
1,
F (Zi, θc∗i )

F (Zi, θci)

]
(4.8)

Otherwise keep ci the same.

2. For all c ∈ (c1, . . . , cn): draw a new value from the posterior distribution

θc | Zi such that ci = c.

This is the algorithm 5 in Neal (2000). If the integer R is greater than one, it

is possible to save computation time by reusing values of F that were previously

computed. Neal (2000) uses R = 4 to examine the performance of the algorithm.

Another commonly used MCMC algorithm is sampling with auxiliary param-

eters (Algorithm 8 in Neal, 2000). Again, let the state of the Markov Chain

consist of {c1, . . . , cn} and {θc : c ∈ c1, . . . , cn}. Let m be a prefixed number of

auxiliary parameters. Repeatedly sample as follows:

1. For i = 1, ..., n: Let k− be the number of distinct cj for j 6= i. Label these

cj with values in {1, ..., k−}. Let h = k− +m.

2. If ci = cj for some j 6= i, draw m values independently from H0 as

{θk−+1, ..., θh}.

3. If ci 6= cj for all j 6= i, let ci have the label k− + 1, and draw m − 1 valus

independently from H0 as {θk−+2, ..., θh}.

4. Draw a new value for ci from {1, ..., h} using the following probabilities:

P (ci = c|c−i, ξi, θ1, ..., θh) =

 b n−i,c F (ξi|θc) for 1 ≤ c ≤ k−

b ν/mF (ξi|θc) for k− < c ≤ h

where n−i,c is the number of cj for j 6= i that are equal to c. b is the

normalizing constant.
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5. For all c ∈ {c1, ..., cn}: Draw a new value from θc|ξi such that ci = c.

The m temporary auxiliary parameters drawn from H0 are used to approximate

the integral in 4.6. With the auxiliary parameters, models with non-conjugate

priors can apply Gibbs sampling to update {c1, . . . , cn}. Neal (2000) showed by

simulation that this algorithm is more efficient in terms of autocorrelation time

compared to the previous algorithm for models with non-conjugate priors.
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4.2 A Semiparametric Bayesian Instrumental Variable Model

4.2.1 The Model and Data

For each subject i, let Yi be the time-to-event outcome variable, Wi be an un-

observed continuous covariate subject to measurement errors, Xi be an observed

surrogate of Wi, Zi be a vector of observed confounders, Ui be a vector of unob-

served confounders, and Gi be a vector of instruments, i = 1, . . . , n.

We consider the following two-stage linear model:

Xi = α1
′Gi + α2

′Zi + ξ1i (4.9)

Yi = β1Xi + β2
′Zi + ξ2i (4.10)

where the random errors ξ1i and ξ2i jointly follow a bivariate normal distribution

with Dirichlet process (DP) prior:

(ξ1i, ξ2i)
′ ∼ N2(µi,Σi) (4.11)

(µi,Σi) ∼ i.i.d. H (4.12)

H ∼ DP(ν,H0) (4.13)

The variable Xi is often referred to as an endogenous variable in the econometrics

literature. The endogenous parameter β1 is the parameter of primary interest.

For each subject i, µi = (µ1i, µ2i)
′, and Σi =

 σ2
1i ρiσ1iσ2i

ρiσ1iσ2i σ2
2i

. DP (ν,H0) in

(4.13) is a Dirichlet process prior with strength parameter ν and base distribution

H0. H is a random discrete distribution that has the same support as H0, where

H0 is usually a continuous distribution. This discreteness of H randomly clusters

different (µi,Σi) together: The parameters µi and Σi are the same within one
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cluster and different across clusters. Note that the marginal distribution of any

(µi,Σi) (by marginalizing out H) is H0. A detailed introduction of DP prior

can be found in section 4.1.1. As a result, the total number of clusters, denoted

as k, is random. The posterior distribution of k is determined by both the

strength parameter ν and the data. Therefore, the DP prior enables the model

to better capture heterogeneity in the error distribution, without using a pre-

specified number of clusters. This can relax the parametric assumption of a

specific distribution for the previous IV model introduced in Chapter 3, and

address for potential heterogeneous clustering problems.

Similar to the parametric model in Chapter 3, this model can be used to adjust

for unobserved confounders and measurement errors simultaneously, based on the

following derivation: With assumption of linear relationships among the variables

Yi, Wi, Ui, Zi and Gi, the underlying structure of IV analysis in Figure 3.1 can

be modeled by

Wi = α0 + α1
′Gi + α2

′Zi + α3
′Ui + ε1i (4.14)

Yi = β0 + β1Wi + β2
′Zi + β3

′Ui + ε2i (4.15)

Xi = Wi + ε3i (4.16)

i = 1, . . . n, where ε1i, ε2i, and ε3i are random error in the intermediate covariate

Wi, random error in time-to-event outcome Yi, and measurement error in Wi,

respectively. We replace the unobserved Wi in equations (4.14) and (4.15) by

Wi = Xi − ε3i from equation (4.16), and combine the unobserved confounders

Ui, random errors (ε1i, ε2i, ε3i) and intercepts (α0, β0) into the correlated random

error terms (ξ1i, ξ2i):

ξ1i = α0 + α3
′Ui + ε1i + ε3i and ξ2i = β0 + β3

′Ui + ε2i − β1ε3i

This gives the two-stage linear model given by equations (4.9) and (4.10).
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In time-to-event data that is subject to censoring, the outcome Yi is not always

observed. Let Li and Ri be two censoring process with Li ≤ Ri. Yi is observed if

and only if Li = Yi = Ri. The censoring indicator δi = 1 if Yi < Li (left-censored);

2 if Li ≤ Yi ≤ Ri and Li < Ri (interval-censored); 3 if Yi > Ri (right-censored);

4 if Li = Yi = Ri (event). The primary aim is to estimate the causal effect

of Wi on Yi, i.e. parameter β1, based on the observed censored data consisting

of n independent and identically distributed observations (Li, Ri, δi, Xi, Zi, Gi),

i = 1, . . . n.

4.2.2 Estimation and Inference Procedure

We develop an MCMC procedure to draw inferences on the endogenous param-

eter β1. Let ~C = {c1, . . . , cn} be the latent class (or “cluster”) indicator, and

θC = {θc : c ∈ c1, . . . , cn}, where θc = {µ1c, µ2c, σ
2
1c, σ

2
2c, ρc}, i.e. θC consists of all

distinct values of θi = {µ1i, µ2i, σ
2
1i, σ

2
2i, ρi} and ~C is a vector of indicators that

maps the individuals to the clusters. Note that the numbering of C can be arbi-

trary. We denote the total number of clusters as k. For the two-stage IV model

(4.9)–(4.13), we denote the parameters as Θ = (α1, α2, β1, β2, θC , ~C). The ob-

served data consists of (~L, ~R,~δ, ~X, ~Z, ~G), where ~L = (L1, ..., Ln), ~R = (R1, ..., Rn),

~δ = (δ1, ..., δn), ~X = (X1, ..., Xn), ~Z = (Z1, ..., Zn) and ~G = (G1, ..., Gn). Due to

censoring of the event times ~Y , the likelihood function cannot be derived based

on the bivariate distribution given by (4.11) directly. We construct the likelihood

function by using the marginal likelihood of the first-stage model (4.9) and the

conditional likelihood of the second-stage model (4.10). The likelihood function
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is:

L(Θ | ~L, ~R,~δ, ~X, ~Z, ~G) = P ( ~X, ~Z, ~G | Θ) · P (~L, ~R,~δ | ~X, ~Z, ~G,Θ)

=
n∏
i=1

f1i(Xi, Zi, Gi) · [1− Si(Li | Xi, Zi, Gi)]
I{δi=1}

· [Si(Li | Xi, Zi, Gi)− Si(Ri | Xi, Zi, Gi)]
I{δi=2}

·Si(Ri | Xi, Zi, Gi)
I{δi=3} · f2i(Li | Xi, Zi, Gi)

I{δi=4}

(4.17)

where

f1i(X,Z,G) = φ

(
X − µ1i − α1

′G− α2
′Z√

σ2
1i

)

f2i(Y | X,Z,G) = φ

(
Y − µ2i − β1X − β2

′Z − σ2i
σ1i
ρi(X − µ1i − α1

′G− α2
′Z)√

(1− ρi2)σ2
2i

)

Si(Y | X,Z,G) = 1− Φ

(
Y − µ2i − β1X − β2

′Z − σ2i
σ1i
ρi(X − µ1i − α1

′G− α2
′Z)√

(1− ρi2)σ2
2i

)

i = 1, . . . n. Φ(·) and φ(·) are the cumulative density function and the probabil-

ity density function of standard normal distribution, respectively. The detailed

derivation of the likelihood is given in the appendix. Note that functions f1i(·),

f2i(·) and Si(·) are specifically for subject i, since the subjects have different

distribution parameters given by the DP prior.

Due to the components involving survival function Si(·) in the likelihood func-

tion, conjugate priors are not available for parameter elements in Θ in the pres-

ence of censoring. We propose to use vague and slightly informative independent

priors for elements in Θ and the strength parameter ν, and develop an MCMC

procedure to generate samples from the joint posterior distribution as summarized

below. We use independent priors for simplicity in implementation. Furthermore,

using vague joint priors will generate similar results, since the posterior distribu-
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tion will be primarily driven by the data. The MCMC algorithm is described in

details in the appendix.

For each parameter element in (α1, α2, β1, β2): A normal distribution N(0, ς2)

with large variance ς2 is used as prior distribution. In each MCMC iteration,

a regular random walk Metropolis-Hasting algorithm (Metropolis et al., 1953;

Hastings, 1970) is used to update the parameter, while other parameters are

fixed at their current states.

Since the individual parameters θi’s are grouped into k clusters, we can update

the cluster indicators ~C and corresponding parameters θC , instead of updating

θi’s. The algorithm 8 in Neal (2000) is used for the MCMC sampling. For cluster

indicators ~C: In each MCMC iteration, we reassign the cluster status of the

subjects by updating (c1, . . . , cn) one by one. For each update of ci, the subject i

will be re-assigned to either an existing cluster or a new cluster. The probability of

being assigned to a new cluster involves the base distribution H0 of the DP prior.

We set H0 as a product of independent slightly informative priors for elements

in θi, i.e. H0 = π(µ1i)π(µ2i)π(σ2
1i)π(σ2

2i)π(ρi). Here ‘slightly informative’ means

that the chosen priors spread out and properly cover the reasonable values for the

parameters. We use normal distributions for π(µ1i) and π(µ2i), inverse-gamma

distributions for π(σ2
1i) and π(σ2

2i), and a uniform distribution Unif(−1, 1) for

π(ρi).

For cluster parameters θC : After all cluster indicators in ~C are updated, the

corresponding parameters θC are updated for each cluster, using data within

the cluster only. For this step, we propose to use the regular random walk

Metropolis-Hasting method, with vague independent priors: a normal distribu-

tion N(0, ς2) with large variance ς2 for µ1c and µ2c, an inverse-gamma distribution

Inv-Gamma(γ1, γ2) with small shape parameter γ1 and small scale parameter γ2
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for σ2
1c and σ2

2c, and again a uniform distribution Unif(−1, 1) for ρc. We use differ-

ent priors than H0 in this step because we want to use priors as non-informative

as possible to evaluate the performance of our proposed method under frequentist

criteria.

For strength parameter ν: The parameter ν affects the model by affecting

the number of clusters, k. Given a fixed sample size n, clusters k increases as

ν increases. We will use a prior that gives a reasonable marginal prior for k,

P (k | ν, n), that properly spreads out on the reasonable values of k. Antoniak

(1974) gives an explicit expression for the marginal distribution of k:

P (k | ν, n) = an(k)n! νk
Γ(ν)

Γ(ν + n)

k = 1, 2, . . . , n, where an(k) is a normalizing constant. We use the prior distri-

bution proposed by Conley et al. (2008):

P (ν) ∝
(
ν − ν
ν − ν

)ω
· I(ν < ν < ν) (4.18)

where ν and ν are chosen to give small k and large k, respectively. ω is a

constant chosen to control the shape of the prior. Therefore, we have the posterior

distribution of ν given by P (ν | k, n) ∝ P (ν)P (k | ν, n). Similarly, we use the

random walk Metropolis-Hasting method to update ν in each iteration. For all

Metropolis-Hasting algorithms mentioned above, uniform proposal distributions

are used for the random walk in our simulations and real data analysis, with

widths chosen to obtain appropriate acceptance rates.

By iterating the procedure described above, a sufficiently large amount of

MCMC samples can be generated from the posterior distribution. Posterior mean

of a parameter can be used as an estimation of the parameter. Credible inter-

vals of the parameters can be constructed by using the empirical quartiles of

the simulated samples. Convergence of the MCMC algorithm can be examined
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visually by graphical methods including trace plots and histograms, and quan-

titatively by using the Brooks-Gelman-Rubin diagnostics (Brooks and Gelman,

1998). Detailed convergence diagnostics are presented in section 4.5 for the real

data examples. We implemented this method in C programming language, due

to its relatively fast process in large number of iterations.
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4.3 Simulation Studies

Two simulation studies are conducted to assess the performance of our proposed

semiparametric Bayesian IV model with Dirichlet process mixture (DPM) error

distribution, under frequentist criteria of bias, standard deviation (SD), coverage

probability (CP), and width of credible interval (CI). Synthetic data is generated

following the underlying model with unobserved confounders and measurement

errors given by equations (4.14) to (4.16), with different underlying error distri-

butions, sample sizes, and effects of intermediate covariate. Specifically, we use a

simulation setting that is motivated by the WHI-OS real data example in section

4.4.1.

For equation (4.14): A univariate instrument Gi and a univariate unobserved

confounder Ui are used, and no observed confounder vector Zi is considered, i.e.

α2 = β2 = 0. Gi and Ui both follow a standard normal distribution N(0, 1);

ε1i follows normal distributions N(0, 0.04). The regression parameters are set as

α0 = 0.5, α1 =
√

0.005, α3 =
√

0.04. For equation (4.16): The measurement

error ε3i follows normal distributions N(0, 0.015). This gives E(X) = 0.5 and

V ar(X) = 0.1, while Cor2(X,G) = 5%, similar to the mean and variance of the

intermediate covariate and its correlation with the genetic instrument in the WHI-

OS example. For equation (4.15): Different values are used for the endogenous

parameter: β1 = (0,−0.5,−1), representing none, small, or moderate causal

effects, respectively, of underlying true covariate W on outcome Y . These values

of β1 correspond to acceleration factors of 1, 1.6 and 2.7 when the outcome Y

is a log-transformed survival time and an accelerated failure time model is used.

Other regression parameters are set as β0 = 5 − α0β1 and β3 = −
√

0.05. The

random error ε2i is set to have mean 0 and variance 0.45, following different

distributions including normal, exponential and two sets of mixtures of normal
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distributions. This gives E(Y ) = 5 and V ar(Y ) = 0.5 when β1 = 0, similar to

the time-to-event outcome in the WHI-OS example.

In the first simulation study, only right censoring is considered. An underlying

right-censoring process, Ti, is conditionally independent of Yi: Ti = β0 + β1Xi +

β3Ui + εT i. If Yi ≤ Ti, then the event time Yi is observed, Li = Ri = Yi and

censoring indicator di = 4; else if Yi > Ti, then Yi is right-censored, Li = Ri = Ti

and di = 3. We let εT i follow the same distribution as ε2i, giving a 50% right-

censoring rate and a 50% event rate, mimicking the WHI-OS example. We use

sample size n = (100, 300, 500) for each of the parameter settings.

We first use a regular linear regression survival model (without using IV) to

evaluate the bias caused by the unobserved confounder Ui and the measurement

error ε3i. We generate 5000 synthetic data sets for each of the simulation settings.

The following linear model is applied to each set of observed data (Li, Ri, δi, Xi),

i = 1, . . . , n:

Yi = β1Xi + εi where εi ∼ N(µ, σ2) (4.19)

We denote this as the ‘simple method’. Estimate and 95% confidence interval

of the parameters (β1, µ and σ2) are derived based on maximum likelihood es-

timator and asymptotic normal approximation (Klein and Moeschberger, 2003).

This can be easily implemented by using the survreg function in R package ‘sur-

vival’ (Therneau, 2013) or the LIFEREG procedure (SAS Institute Inc., 2008) in

the SAS R© software. Expectation and SD of the parameter estimates are approxi-

mated by the sample mean and sample SD of the 5000 estimates from independent

simulated data sets. Coverage probability is approximated by the proportion of

confidence intervals that cover the true value of the parameter.

We then apply our proposed DPM IV model (4.9)–(4.13) to the simulated

data. We generate 2000 synthetic data sets for each of the simulation settings
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described earlier. For each data set, the likelihood is constructed using observed

data (Li, Ri, δi, Xi, Gi), i = 1, . . . , n and likelihood function (4.17). Independent

vague priors are used for α1, β1, and each parameter in θC in the cluster parameter

update steps: N(0, 1002) for α1, β1, µ1c and µ2c; Inv-Gamma(0.001, 0.001) for σ2
1c

and σ2
2c; Unif(−1, 1) for ρc, c = 1, . . . , k. Independent slightly informative priors

are used for θi (i.e. for the base distribution H0) in the cluster indicator update

steps: Let µ1t, µ2t, σ
2
1t and σ2

2t denote the true population means of µ1i, µ2i,

σ2
1i and σ2

2i, respectively. We use normal distributions with standard deviations

equal to 10 and means equal to µ1t and µ2t for µ1i and µ2i, respectively; Inverse-

gamma distributions with standard deviations equal to 5 and means equal to σ2
1t

and σ2
2t for σ2

1i and σ2
2i, respectively; and Unif(−1, 1) for ρi, i = 1, . . . , n. Prior

distribution given by (4.18) is used for the strength parameter ν, with ν and ν

set as extreme values of ν that will give mode of k equal to 1 and 15, respectively.

Specifically, ν = 0.01 and ν = (5, 3.3, 2.9) for n = (100, 300, 500), respectively. ω

is set as 0.8.

MCMC samples are generated from the posterior distribution. Detailed MCMC

algorithm can be found in the appendix. For each simulated data set, we run

110, 000 iterations and use the first 10, 000 iterations as burn-in. The resulting

chain is thinned by taking every 5th sample to reduce autocorrelation. Posterior

mean, posterior SD and credible interval are derived for α1, β1, ν and k based

on the resulting 20, 000 posterior samples. Similar to simulations using the sim-

ple method described earlier, expectation and SD of the parameter estimate are

approximated by the sample mean and sample SD of the 2000 posterior means

from independent simulated data sets. Coverage probability is approximated by

the proportion of credible intervals that cover the true value of the parameter.

In addition, we also apply the parametric Bayesian IV model with normal error
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distribution (3.6)–(3.8) introduced in Chapter 3 to the 2000 synthetic data sets.

Similar independent vague priors are used for the parameters as for the DPM IV

model: N(0, 1002) for each of α0, α1, β0, and β1; Inv-Gamma(0.001, 0.001) for σ2
1

and σ2
2, and Unif(−1, 1) for ρ. The MCMC procedure described in Chapter 3 and

appendix is used to generate posterior samples for each parameter. Expectation,

SD and coverage probability are derived for each parameter following the same

procedure as for the DPM IV model.

Results of the parameter of primary interest, β1, from the three analysis mod-

els are summarized in Table 4.1. The β1 estimates from the simple method have

substantial bias in all simulation settings: bias ≈ 0.45, 0.37 and 0.29 for β1 = 0,

−0.5 and −1, respectively, insensitive to different sample sizes and different error

distributions. The coverage probabilities are much lower than the nominal level

of 95%, especially when sample size is large (e.g. CP < 35% when n = 500).

This is because the SD gets smaller as n increases, while the bias remains large.

When the underlying error distribution is normal (i.e. the parametric IV

model is correct), the two proposed IV methods have similar performance in

terms of bias, SD, width of 95% and coverage probability of β1 estimation. Both

IV methods have much smaller bias in β1 estimation than the simple method.

For example, when n = 500 and β1 = 0, both IV methods have bias < 0.02, while

the simple method has bias ≈ 0.45. Coverage probabilities of the 95% CIs from

both IV methods are slightly higher but close to the nominal level. For both IV

methods, bias reduces to close to 0 as sample size n increases.

When the underlying error distribution is non-normal (exponential or mix-

tures of normal distributions), both IV methods show robustness against devi-

ation of normality assumption: Bias is again largely reduced compared to the

simple method, and coverage probability remains close to the nominal level of
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95%. While both IV methods have similar good coverage probabilities, the DPM

IV model has smaller mean width of 95% CIs, as well as smaller SD of the β1

estimates, than the normal IV model. For example, the mean 95% CI width of

β1 from the DPM IV model is about one-third shorter when n = 500 and error

distribution is exponential, and more than half shorter when n = 500 and error

distribution is Normal Mixture 1 (a mixture of two normal distributions with

different means and same variance), compared to the mean 95% CI width of β1

from the normal IV model. This implies that the DPM IV model can gain more

precision, therefore has more statistical power in hypothesis testing of param-

eter β1, than the normal IV model, when the true underlying random error is

non-normal. Although bias from the DPM IV model appears to be larger than

from the normal IV model when n = 300 and n = 500, this only implies that the

posterior mean is not as good an estimator for β1 in the DPM IV model as in the

normal IV model. This is possibly due to the non-normal posterior distribution

of β1 in the DPM IV model. Nevertheless, biases from both IV methods reduce

to close to 0 as sample size n increases.

Results of the strength parameter ν and total number of clusters k are sum-

marized in Table 4.2. When the true random error is normal, the average of k

is close to 1, indicating that the DPM IV model only consists of one cluster in

most of the iterations, which makes the DPM IV model reduce to the normal IV

model. This explains why the two IV methods have similar performance. When

the true random error is a mixture of two normal distributions (same means with

different variance, or different means with same variance), the average of k is

close to 2 when n = 300 and n = 500, indicating that the DPM IV model finds

the correct number of clusters. When the true random error is exponential, the

average of k is close to 2 when n = 300 and n = 500. This indicates that the

skewed ‘tail’ of the distribution can be approximated by one additional normal
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distribution. These explains how the DPM IV model gains efficiency compared

to the normal IV model.

Using the IV methods will result in larger variation in the estimates compared

to the simple method, due to the uncertainty from the first-stage model (4.9).

The β1 estimates from the DPM IV model have a two-to-five-fold increase in SD

compared to the simple method in our simulation results. This is the cost of

using IV methods to reduce bias and make causal inference.

In addition, although two IV methods result in similar mean CI widths when

the random error is normal, it does not guarantee that the CI widths from the

two methods are always similar in specific simulated data. Figure 4.1 (a) shows

the CI width ratio (normal IV model vs. DPM IV model) for the simulation

setting of normal random errors, n = 500 and β1 = 0. 51% of the CI width

ratios are smaller than 1, and 1% of the CI width ratios are smaller than 0.7.

Similarly, although the semiparametric Bayesian IV method results in shorter

mean CI widths than the parametric IV method when the random error is non-

normal, it does not guarantee that the CI width from the DPM IV model is always

shorter. Figure 4.1 (b) shows the CI width ratio (normal IV model vs. DPM IV

model) for the simulation setting of Normal Mixture 2 (a mixture of two normal

distributions with same means and different variances) random errors, n = 500

and β1 = 0. 1% of the CI width ratios are smaller than 1.

We conduct a second simulation study to further examine the performance of

the proposed DPM IV model on time-to-event data with arbitrary censoring (left

censoring, interval censoring and right censoring). The simulation settings are

similar as in the first simulation study except for the censoring processes. Two
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underlying censoring processes, T1i and T2i, are conditionally independent of Yi:

T1i = β0 + β1Xi + β3Ui + εT1i

T2i = β0 + β1Xi + β3Ui + εT2i

where εT1i and εT2i independently follow the same distribution as ε2i, i = 1, . . . , n.

The left-censoring time Li and right-censoring timeRi are set as Li = min(T1i, T2i)

and Ri = max(T1i, T2i). This gives 1/3 of left-censoring, 1/3 of interval-censoring,

and 1/3 of right-censoring. 2000 synthetic data sets are generated for each of the

simulation settings. Similar priors and MCMC procedures are used to generate

posterior samples for the parameters.

Inferences of β1, ν and k are summarized in Table 4.3. The results are gen-

erally consistent with the ones in the first simulation study: For three different

distributions (normal, exponential and mixture normals), biases of β1 estimation

are small and decrease as n increases, and the coverage probabilities are close to

the nominal level of 95%. This shows that our proposed semiparametric Bayesian

IV model performs well for arbitrarily censored time-to-event data, which is dif-

ficult to handle using the classic frequentist approaches.

The average number of clusters k is close to 1 for normal errors, and is around

1.4 for exponential errors. The average k is not correctly specified when the error

distribution is a mixture of two normal distributions (mean k < 1.1). This is

probably due to the simulation setting that all Yi’s are censored, and the censored

data does not provide sufficient information for the DPM IV model to identify

different clusters. However, the average k increases to close to 2 when we increase

the event rate (results not reported here).
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Table 4.1: β1 estimation with and without Instrumental Variable analysis on

simulated right-censored data

Error Simple estimate Normal IV estimate DPM IV estimate

Distribution n β1 Bias SD CP Bias SD Wid CP Bias SD Wid CP

Normal 100 0 0.449 0.264 0.578 0.156 0.817 5.82 0.982 0.135 0.848 5.79 0.982

-0.5 0.377 0.273 0.689 0.125 0.838 5.88 0.984 0.152 0.830 5.87 0.986

-1 0.301 0.276 0.792 0.113 0.858 5.98 0.984 0.114 0.854 6.05 0.990

300 0 0.449 0.149 0.147 0.066 0.621 3.09 0.973 0.056 0.634 3.17 0.970

-0.5 0.371 0.150 0.312 0.008 0.642 3.15 0.975 0.023 0.648 3.18 0.967

-1 0.298 0.159 0.512 0.032 0.634 3.26 0.975 0.021 0.649 3.25 0.979

500 0 0.448 0.115 0.029 0.007 0.501 2.26 0.970 0.018 0.504 2.29 0.962

-0.5 0.371 0.118 0.114 0.024 0.522 2.32 0.964 0.039 0.518 2.30 0.963

-1 0.299 0.122 0.301 0.006 0.523 2.38 0.965 0.027 0.528 2.36 0.963

Exponential 100 0 0.445 0.180 0.277 0.192 0.569 4.03 0.983 0.168 0.543 3.57 0.981

-0.5 0.371 0.184 0.452 0.158 0.574 4.05 0.982 0.155 0.539 3.67 0.979

-1 0.297 0.194 0.640 0.110 0.609 4.29 0.987 0.075 0.582 4.00 0.985

300 0 0.446 0.103 0.011 0.045 0.453 2.14 0.960 0.106 0.327 1.54 0.951

-0.5 0.372 0.105 0.060 0.046 0.444 2.19 0.972 0.070 0.358 1.74 0.968

-1 0.295 0.108 0.231 0.028 0.466 2.28 0.969 0.039 0.410 1.99 0.970

500 0 0.448 0.079 0.000 0.017 0.347 1.56 0.972 0.083 0.248 1.10 0.947

-0.5 0.373 0.081 0.005 0.006 0.366 1.59 0.955 0.064 0.267 1.20 0.965

-1 0.297 0.085 0.060 0.004 0.378 1.66 0.964 0.040 0.304 1.35 0.960

Normal 100 0 0.451 0.274 0.599 0.193 0.795 5.99 0.990 0.206 0.697 4.54 0.973

Mixture 1 -0.5 0.373 0.279 0.716 0.137 0.867 6.05 0.982 0.183 0.787 5.00 0.981

-1 0.296 0.281 0.807 0.124 0.845 6.10 0.990 0.145 0.815 5.67 0.988

300 0 0.445 0.155 0.183 0.024 0.644 3.24 0.969 0.174 0.267 1.32 0.938

-0.5 0.373 0.155 0.334 0.029 0.638 3.30 0.974 0.149 0.280 1.45 0.966

-1 0.297 0.162 0.537 0.021 0.695 3.36 0.969 0.113 0.345 1.73 0.975

500 0 0.449 0.118 0.035 0.031 0.526 2.35 0.960 0.114 0.227 1.05 0.943

-0.5 0.374 0.122 0.132 0.019 0.531 2.36 0.964 0.096 0.231 1.13 0.964

-1 0.293 0.122 0.340 0.015 0.546 2.39 0.957 0.090 0.264 1.27 0.966

Normal 100 0 0.445 0.265 0.558 0.190 0.809 5.68 0.983 0.192 0.669 4.63 0.981

Mixture 2 -0.5 0.372 0.265 0.681 0.138 0.829 5.93 0.990 0.166 0.725 4.96 0.984

-1 0.303 0.275 0.771 0.124 0.846 5.90 0.984 0.121 0.762 5.09 0.981

300 0 0.447 0.150 0.156 0.055 0.647 3.14 0.968 0.099 0.434 2.09 0.963

-0.5 0.373 0.152 0.298 0.019 0.658 3.16 0.962 0.085 0.442 2.21 0.968

-1 0.295 0.156 0.514 0.047 0.656 3.23 0.968 0.079 0.485 2.35 0.962

500 0 0.446 0.114 0.032 0.025 0.536 2.29 0.951 0.056 0.358 1.56 0.955

-0.5 0.370 0.115 0.117 0.027 0.507 2.29 0.963 0.048 0.348 1.63 0.969

-1 0.297 0.119 0.291 0.003 0.543 2.35 0.958 0.033 0.371 1.70 0.965

Results are based on 2000 simulations using the two IV methods and 5000 simulations using the simple method.

‘Error Distribution’ refers to distribution of ε2i in equation (4.15) and εTi in censoring time Ti. Right censoring

rate is 50% and instrument strength is R2(X,G) = 0.05. Bias is the absolute difference between the sample

mean of the β1 estimates and the true value of β1. Standard deviation (SD) is the sample standard deviation

of the β1 estimates. Coverage probability (CP) is the proportion of 95% credible intervals (for IV estimates)

or confidence intervals (for simple estimates) that cover β1. Wid is the mean width of 95% credible intervals.

Normal Mixture 1 is a mixture of two normal distributions N(−.63, .05) · 0.5 +N(.63, .05) · 0.5. Normal Mixture

2 is a mixture of two normal distributions N(0, 0.3352) · 0.8 +N(0, 1.342) · 0.2.
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Table 4.2: Simulation results of strength parameter ν and number of clusters k

of the Dirichlet process mixture IV model

Error Strength parameter ν Number of clusters k

Distribution n β1 Mean SD Mean SD

Normal 100 0 0.225 0.012 1.041 0.056

-0.5 0.226 0.015 1.042 0.068

-1 0.225 0.015 1.042 0.068

300 0 0.179 0.008 1.034 0.050

-0.5 0.179 0.009 1.036 0.055

-1 0.179 0.008 1.034 0.049

500 0 0.164 0.007 1.033 0.046

-0.5 0.164 0.007 1.034 0.042

-1 0.164 0.006 1.032 0.041

Exponential 100 0 0.299 0.087 1.385 0.402

-0.5 0.286 0.081 1.321 0.378

-1 0.273 0.074 1.263 0.341

300 0 0.334 0.052 1.984 0.311

-0.5 0.318 0.060 1.890 0.362

-1 0.290 0.068 1.714 0.418

500 0 0.331 0.039 2.166 0.247

-0.5 0.323 0.034 2.115 0.217

-1 0.306 0.040 2.004 0.265

Normal 100 0 0.312 0.091 1.445 0.422

Mixture 1 -0.5 0.290 0.085 1.340 0.393

-1 0.259 0.062 1.196 0.290

300 0 0.345 0.017 2.058 0.101

-0.5 0.343 0.023 2.044 0.135

-1 0.332 0.042 1.978 0.253

500 0 0.313 0.014 2.053 0.087

-0.5 0.313 0.014 2.054 0.086

-1 0.313 0.015 2.049 0.096

Normal 100 0 0.331 0.097 1.532 0.448

Mixture 2 -0.5 0.318 0.096 1.472 0.445

-1 0.310 0.093 1.433 0.431

300 0 0.342 0.036 2.036 0.218

-0.5 0.338 0.041 2.008 0.246

-1 0.331 0.049 1.965 0.296

500 0 0.319 0.016 2.086 0.100

-0.5 0.318 0.015 2.079 0.097

-1 0.316 0.021 2.068 0.139

Results are based on 2000 simulations using the DPM IV model.

‘Error Distribution’ refers to distribution of ε2i in equation (4.15) and εTi in censoring time Ti. Right censoring

rate is 50% and instrument strength is R2(X,G) = 0.05.

Mean and SD are the sample mean and sample standard deviation of the 2000 posterior means, respectively.

Normal Mixture 1 is a mixture of two normal distributions N(−.63, .05) · 0.5 +N(.63, .05) · 0.5.

Normal Mixture 2 is a mixture of two normal distributions N(0, 0.3352) · 0.8 +N(0, 1.342) · 0.2.
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Figure 4.1: Histograms of credible interval width ratios

95% CI width ratio CIwid1/CIwid2 for (a)Normal error distribution, n = 500,

β1 = 0; (b)Normal Mixture 2 error distribution, n = 500, β1 = 0, from the first

simulation study. CIwid1 is 95% credible width by the normal IV model, CIwid2

is 95% credible interval width by the DPM IV model. Normal Mixture 2 is a

mixture of two normal distributions N(0, 0.3352) · 0.8 +N(0, 1.342) · 0.2.
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Table 4.3: Simulation results of the Dirichlet process mixture IV model for sim-

ulated data with arbitrary censoring

Error β1 Strength parameter ν Number of clusters k

Distribution n β1 Bias SD Width CP Mean SD Mean SD

Normal 300 0 0.052 0.681 3.359 0.971 0.182 0.011 1.055 0.068

-0.5 0.055 0.697 3.377 0.970 0.182 0.010 1.051 0.062

-1 0.030 0.689 3.457 0.975 0.182 0.011 1.055 0.065

500 0 0.039 0.546 2.437 0.955 0.167 0.007 1.050 0.048

-0.5 0.021 0.556 2.481 0.959 0.167 0.009 1.052 0.058

-1 0.020 0.558 2.518 0.965 0.167 0.008 1.051 0.050

Exponential 300 0 0.055 0.580 2.822 0.964 0.225 0.060 1.318 0.364

-0.5 0.025 0.598 2.917 0.965 0.218 0.055 1.272 0.334

-1 0.029 0.608 3.058 0.972 0.208 0.048 1.210 0.294

500 0 0.048 0.436 1.980 0.962 0.232 0.063 1.496 0.427

-0.5 0.017 0.472 2.097 0.957 0.222 0.060 1.426 0.408

-1 0.010 0.485 2.219 0.966 0.207 0.055 1.324 0.371

Normal 300 0 0.074 0.799 3.836 0.971 0.183 0.016 1.060 0.096

Mixture 1 -0.5 0.036 0.785 3.863 0.965 0.182 0.013 1.055 0.078

-1 0.044 0.798 3.959 0.966 0.181 0.008 1.050 0.050

500 0 0.038 0.610 2.732 0.967 0.173 0.029 1.093 0.193

-0.5 0.021 0.655 2.796 0.949 0.168 0.017 1.062 0.112

-1 0.017 0.636 2.851 0.961 0.167 0.010 1.051 0.070

Results are based on 2000 simulations using the DPM IV model.

‘Error Distribution’ refers to distribution of ε2i, εT1i and εT2i. Censoring rate is 1/3 for each of left-censoring,

interval-censoring and right-censoring. Instrument strength is R2(X,G) = 0.05.

Bias is the absolute difference between the sample mean of the β1 estimates and the true value of β1. Mean

and SD are the sample mean and sample standard deviation of the 2000 posterior means, respectively. Coverage

probability (CP) is the proportion of 95% credible intervals (for IV estimates) or confidence intervals (for simple

estimates) that cover β1. Width is the mean width of 95% credible intervals.

Normal Mixture 1 is a mixture of two normal distributions N(−.63, .05) · 0.5 +N(.63, .05) · 0.5.
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4.4 Real Data Examples

We illustrate the proposed semiparametric Bayesian IV method using two real

data examples. The first one is a prospective case-control study nested within

the Women’s Health Initiative Observational Study (WHI-OS). The second one

is the Atherosclerosis Risk in Communities (ARIC) Study.

4.4.1 Women’s Health Initiative Observational Study

In the WHI-OS, our aim is to investigate the effect of high-sensitivity C-reactive

protein (hsCRP) on time-to-development of diabetes. hsCRP is an inflammatory

marker that has been shown to have positive association with diabetes (Han et al.,

2002; Freeman et al., 2002; Liu et al., 2007). However, it is uncertain whether

lowering hsCRP level will help prevent diabetes. Therefore, we perform instru-

mental variable analysis using genetic instruments to make inference about the

causal effect of hsCRP on diabetes development, while accounting for potential

impact of unobserved confounders and measurement errors.

82069 postmenopausal women (50-59 years of age) with no history of diabetes

were followed-up for a mean of 5.5 years in the WHI-OS. 1584 cases of diabetes

were identified and matched with 2198 controls by age, ethnicity, clinical center,

time of blood draw, and length of follow-up. We focus on the subgroup of whites

(954 cases and 968 controls) to avoid the potential problem of population stratifi-

cation. Time to diabetes diagnosis from baseline was recorded for each case, and

time to last visit from baseline was recorded for each control. Plasma concen-

tration of hsCRP is measured for each subject. Descriptive statistics of baseline

characteristics are summarized by case-control status in Table 3.3 in Chapter 3.

More detailed descriptions of the study can be found in Liu et al. (2007) and
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Chan et al. (2011).

In order to perform the IV analysis, 13 haplotype-tagging single-nucleotide

polymorphisms (tSNPs) across 2.3 kb of the CRP (C-reactive protein, pentraxin-

related) genes that had been shown to account for most of the genetic variation

within the CRP locus are used as instruments. Details of selection of the tSNPs

are given in Lee et al. (2009). None of the 13 tSNPs shows indication of Hardy-

Weinberg disequilibrium (all p-values from a Hardy-Weinberg equilibrium test

> 0.05 after Bonferroni correction).

We first apply a ‘simple method’ without using IV, similar to the one in section

4.3, to estimate the association between hsCRP and time to diabetes diagnosis:

Yi = β1Xi + β2
′Zi + εi where εi ∼ N(µ, σ2) (4.20)

i = 1, . . . , n. For each subject i, Yi is the log-transformed time to diabetes diagno-

sis (in days); Xi is the log-transformed hsCRP level; Zi is a vector of observed po-

tential confounders including age, body mass index, cigarette smoking, alcohol in-

take, hormone-replacement therapy, family history of diabetes and physical activ-

ity. For the cases, the censoring indicator δi = 4 (event) and the observed left and

right censoring times Li = Ri = log-transformed time to diabetes diagnosis (in days);

for the controls, the censoring indicator δi = 3 (right-censored) and the observed

left and right censoring times Li = Ri = log-transformed time to last visit (in days).

Since the outcome Yi is a log-transformed survival time, this model is a log-normal

accelerated failure time model. By using the SAS R© procedure LIFEREG (SAS

Institute Inc., 2008), β1 has an estimate (SE) of −0.446 (0.089) with a p-value

<.001, and a corresponding 95% confidence interval of (−0.621,−0.272) as sum-

marized in Table 4.4. This significant negative association between hsCRP and

diabetes development is consistent with the results reported by Liu et al. (2007),

who analyzed the same data set using the traditional Mendelian Randomiza-
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tion method and found that hsCRP was significantly associated with increased

diabetes risk (odds ratio = .16 with 95% confidence interval (1.03, 1.30) and a

p-value <.001).

We then apply the parametric Bayesian IV model with normal error distri-

bution (3.6)–(3.8) introduced in Chapter 3 to the data. Similar vague priors and

MCMC procedure as described in Chapter 3 and appendix are used to generate

posterior inferences for each parameter. β1 has posterior mean (posterior SD) of

−0.162 (0.426) and 95% credible interval of (−0.987, 0.685), as summarized in

Table 4.4.

We further apply the proposed semiparametric Bayesian IV method with

DPM error distribution (4.9)–(4.13) to estimate the causal effect of hsCRP on

time to diabetes diagnosis. For each subject i, instrument Gi is a vector of the 13

tSNPs, where each tSNP is coded as an additive effect model, i.e. coded as either

0, 1, or 2 representing the number of minor alleles. Li, Ri, δi, Xi and Zi are defined

as earlier. The likelihood is constructed using observed data (Li, Ri, δi, Xi, Zi, Gi),

i = 1, . . . , n and likelihood function given by equation (4.17). Independent vague

and slightly informative priors are used: N(0, 1002) for each parameter element in

(α1, α2, β1, β2); N(0, 1002) for µ1c and µ2c, Inv-Gamma(0.001, 0.001) for σ2
1c and

σ2
2c, and Unif(−1, 1) for ρc, in the cluster parameter update steps, c = 1, . . . , k;

N(µ1t, 3
2) for µ1i, N(µ2t, 102) for µ2i, Inverse-gamma distribution with mean σ2

1t

and SD 1 for σ2
1i, Inverse-gamma distribution with mean σ2

2t and SD 5 for σ2
2i, and

Unif(−1, 1) for ρi, in the cluster indicator update steps as the base distribution

H0, i = 1, . . . , n, where µ1t, µ2t, σ
2
1t and σ2

2t are posterior means of corresponding

parameters from the parametric IV model described earlier. Prior distribution

given by (4.18) is used for the strength parameter ν, with ν = 0.01 and ν = 2.3,

which are extreme values of ν that will give mode of k equal to 1 and 15, respec-
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tively. ω is set as 0.8.

MCMC procedure described in section 4.2.2 and appendix is used to gener-

ate posterior samples for the parameters. We generate 40 chains from different

initial values, with 1, 100, 000 iterations (100, 000 burn-ins) in each chain. We

thin the chains by taking every 10th sample to reduce autocorrelation. A de-

tailed discussion of convergence is given in section 4.5. Posterior mean, posterior

standard deviation and credible interval are derived for each parameter element

in (α1, α2, β1, β2, ν, k), based on the resulting 4, 000, 000 combined samples. Fig-

ure 4.3(a) is a histogram of the resulting MCMC samples of β1. The brackets

on the horizontal axis denote the 95% credible interval. The posterior distribu-

tion of β1 has mean 0.230, standard deviation 0.668 and 95% credible interval

(−1.144, 1.629), as summarized in Table 4.4. The conclusion is consistent with

the previous IV analysis using the normal IV model: No statistically significant

causal effect of hsCRP on time to diabetes diagnosis is detected.

The posterior mean (SD) of the strength parameter ν is 0.760 (0.348), and the

posterior mean (SD) of the number of clusters k is 5.74 (1.13). We approximate

the posterior distribution of bivariate random errors (ξ1, ξ2) by using the cluster

parameters θC and cluster indicators ~C in the last samples of the 40 chains. Figure

4.2 shows the contour plot of the bivariate density. Although the posterior mean

of k suggests that the error distribution consists of multiple clusters, the contour

plot shows that the error distribution is close to a bivariate normal distribution.

This could explain why the DPM IV model results in a longer CI width than the

normal IV model.

The results from the three methods suggest that although hsCRP is signifi-

cantly associated with diabetes development, there is not sufficient evidence of

causal effect of hsCRP on time to diabetes diagnosis among white postmenopausal
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women. This is consistent with the findings by Brunner et al. (2008), who ap-

plied the traditional Mendelian Randomization approach in a case-control study

and found that the associations between C-reactive protein (CRP) and diabetes

incidence are likely to be noncausal. One possible explanation for the associa-

tion is that hsCRP level is affected by causal factors of diabetes, such as obesity

(Keavney, 2008). On the other hand, even though the sample size of the WHI-OS

subgroup analysis is reasonably large, the instruments in our IV analyses may

not be strong enough to provide sufficient statistical power to detect small effect

sizes (partial R-square = 0.028).
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Table 4.4: Two Bayesian approaches of Instrumental Variable (IV) analysis ver-

sus simple method in a subgroup analysis of whites within the Women’s Health

Initiative Observational Study

estimate of β1 SE 95% CI

Simple method -0.446 0.089 (-0.621, -0.272)

Parametric IV method -0.162 0.426 (-0.987, 0.685)

Semiparametric IV method 0.230 0.668 (-1.144, 1.629)

Simple method: A log-normal accelerated failure time model without using IV to estimate the

association between high-sensitivity C-reactive protein (hsCRP) and time to diabetes diagnosis.

Parametric IV method: IV model with normal error distribution.

Semiparametric IV method: IV model with Dirichlet process mixture errors.

Both IV models estimate the causal effect of hsCRP on time to diabetes diagnosis, using the fol-

lowing 13 selected tSNPs as genetic instruments: rs4275453, rs2808634, rs3093059, rs2794521,

rs1417938, rs1800947, rs1130864, rs1205, rs3093075, rs3093068, rs2808629, rs2369146, and

rs1470515.

Estimate and SE of β1 from each of the IV models are posterior mean and posterior standard

deviation, respectively.

CI: Confidence interval for the simple model and credible interval for the IV models.

All three models adjust for observed potential confounders including age, body mass index,

cigarette smoking, alcohol intake, hormone-replacement therapy, family history of diabetes and

physical activity.
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Figure 4.2: Density contour plot of random errors (ξ1, ξ2) of the Dirichlet process

mixture model for the Women’s Health Initiative Observational Study
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4.4.2 Atherosclerosis Risk in Communities Study

The second real data example is the Atherosclerosis Risk in Communities (ARIC)

Study. In this example, we focus on the aspect of measurement error correction of

our proposed IV method, and we assume that there is no unobserved confounder

(i.e. all confounders are adjusted). Therefore, IV assumption (1) described in

section 1.1 is reduced to: Instrument G is independent of measurement errors in

intermediate covariate W . The ARIC study is a multi-center prospective cohort

study of cardiovascular disease and its risk factors. A total of 15,792 subjects

aged 45-64 years were recruited from four US communities in 1987-89. They

were planned to receive 4 clinical examinations at 3-year intervals (Visits 1-4).

Medical, social and demographic data were collected at each visit. Hospitalization

information was obtained by annual telephone follow-up and active surveillance in

the communities. A more detailed description of the study is reported elsewhere

(The ARIC Investigators, 1989). In this example, we focus on estimating the

association between systolic blood pressure (SBP) and development of coronary

heart disease (CHD) while correcting for potential bias due to measurement error

through IV analysis. For each of Visits 1-4, a subject’s SBP level is an average

of three measurements. We use Visit 2 (1990-92) as baseline, and use the SBP

level at Visit 1 (1987-89) as an instrument of the baseline SBP level. We exclude

subjects that (1) have missing baseline information, (2) do not have information

after baseline, and/or (3) have developed their first CHD event prior to baseline.

After the exclusion, our data consists of 12,782 subjects, 768 of which have CHD

events during the follow-up. Descriptive statistics of baseline characteristics are

summarized in Table 3.5 in Chapter 3.

For each subject i, outcome Yi is time to the first CHD event from baseline

(Visit 2) in years; covariate of interest Xi is the standardized log-transformed
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SBP level at baseline; instrument Gi is the standardized log-transformed SBP

level at Visit 1; both Xi and Gi are standardized to have standard deviation 1;

Zi is a vector of observed potential confounders at baseline, including ethnicity

(black vs. non-black) and other potential risk factors of CHD developed by

the Framingham Heart Study: gender, age, total cholesterol level, high-density

lipoprotein cholesterol level, smoking behavior, and diabetes status (Wilson et al.,

1998). If subject i has at least one CHD event during the follow-up, censoring

indicator δi = 4 (event) and the observed left and right censoring times Li = Ri =

Yi; otherwise censoring indicator δi = 3 (right-censored) and the observed left and

right censoring times Li = Ri = time to the last visit from baseline in years.

Similar to the previous example in section 4.4.1, we first apply the simple

method with equation (4.20) without using IV to estimate the association between

SBP and time to CHD. β1 has an estimate (SE) of −0.779 (0.087) with a p-

value <.001, corresponding to a 95% confidence interval of (−0.950,−0.608) as

summarized in Table 4.5. We then apply the parametric Bayesian IV model

with normal error distribution (3.6)–(3.8) to the data. Similar vague priors and

MCMC procedure as described in Chapter 3 and appendix are used to generate

posterior inferences for each parameter. β1 has posterior mean (posterior SD) of

−1.180(0.141) and 95% credible interval of (−1.460,−0.907), as summarized in

Table 4.5.

We further apply the proposed semiparametric Bayesian IV model with DPM

error distribution (4.9)–(4.13) to estimate the association between SBP and time

to CHD, primarily aiming to correct for potential measurement error bias. Similar

to section 4.4.1, the likelihood is constructed using observed data (Li, Ri, δi, Xi, Zi, Gi),

i = 1, . . . , n and likelihood function given by equation (4.17). Independent vague

and slightly informative priors are used: N(0, 10002) for each parameter ele-
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ment in (α1, α2, β1, β2); N(0, 10002) for µ1c and µ2c, Inv-Gamma(0.0001, 0.0001)

for σ2
1c and σ2

2c, and Unif(−1, 1) for ρc, in the cluster parameter update steps,

c = 1, . . . , k; N(µ1t, 102) for µ1i, N(µ2t, 1002) for µ2i, Inverse-gamma distribution

with mean σ2
1t and SD 5 for σ2

1i, Inverse-gamma distribution with mean σ2
2t and

SD 20 for σ2
2i, and Unif(−1, 1) for ρi, in the cluster indicator update steps as

the base distribution H0, i = 1, . . . , n, where µ1t, µ2t, σ
2
1t and σ2

2t are posterior

means of corresponding parameters from the parametric IV model described ear-

lier. Prior distribution given by (4.18) is used for the strength parameter ν, with

ν = 0.01 and ν = 1.7, which are extreme values of ν that will give mode of k

equal to 1 and 15, respectively. ω is set as 0.8.

MCMC procedure described in section 4.2.2 and appendix is used to gener-

ate posterior samples for the parameters. We generate 50 chains from different

initial values, with 2, 200, 000 iterations (200, 000 burn-ins) in each chain. The

chains are thinned to reduce autocorrelation by taking every 20th sample. A de-

tailed discussion of convergence is given in section 4.5. Posterior mean, posterior

standard deviation and credible interval are derived for each parameter element

in (α1, α2, β1, β2, ν, k), based on the resulting 5, 000, 000 combined samples. Fig-

ure 4.3(b) is a histogram of the resulting MCMC samples of β1. The brackets

on the horizontal axis denote the 95% credible interval. The posterior distribu-

tion of β1 has mean −1.153, standard deviation 0.141 and 95% credible interval

(−1.432,−0.874), as summarized in Table 4.5. The β1 estimate indicates that a

standard deviation increase in log-transformed SBP level is associated with an

acceleration of 1.15 years in time to the first CHD event. We observe a larger

effect size of SBP on CHD development compared to the simple analysis. This re-

sult suggests that the effect size of β1 calculated by the simple method is possibly

attenuated by measurement errors in Xi.
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The results from the two IV methods are very similar, indicating that the

random error distribution is close to bivariate normal. For the DPM IV model,

the posterior mean (SD) of the strength parameter ν is 0.201 (0.143), and the

posterior mean (SD) of the number of clusters k is 2.05 (0.22). Although there

are on average about 2 clusters, the posterior samples of θC and ~C show that

one cluster has much smaller weight (number of subjects) than the other, and

the bivariate normal error distributions of the two clusters have similar means

(µ1c, µ2c) and different covariance matrices (detailed results not reported here).

In the two IV analyses, the SBP measurement at an earlier visit is assumed

to be an instrument of the SBP measurement at a later visit. This assumption

is weaker than the assumption that both the earlier and later measurements

are replicates of noisy surrogate (Carroll et al., 2006; Gustafson, 2007). This is

because the latter assumption fixes α1 = 1 while the former assumption does not.

Note that the instrument G is not required to be independent of the observed

confounders Z, since the confounding effects of Z are adjusted when Z is included

in both stages of the model (equations (4.9) and (4.10)). Since a subject’s SBP

level at certain time point is naturally predictive of his/her SBP level three years

later, Gi is a strong instrument of Xi (partial R-square = 0.35). Furthermore,

measurement of the instrument does not need to be accurate: Measurement errors

in instrument G will not violate the IV assumptions. Therefore, the SBP at Visit

1 can still serve as an instrument if it is also subject to measurement errors.
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Table 4.5: Two Bayesian approaches of Instrumental Variable (IV) analysis versus

simple method in the Atherosclerosis Risk in Communities (ARIC) Study

estimate of β1 SE 95% CI

Simple method -0.779 0.087 (-0.950, -0.608)

Parametric IV method -1.180 0.141 (-1.460, -0.907)

Semiparametric IV method -1.153 0.141 (-1.432, -0.874)

Simple method: a linear regression survival model with normally distributed

residuals to estimate the association between standardized log-transformed sys-

tolic blood pressure (SBP) level at baseline and time to the first CHD event.

Parametric IV method: IV model with normal error distribution.

Semiparametric IV method: IV model with Dirichlet process mixture errors.

Both IV analyses estimate the association between standardized log-transformed

SBP level at baseline and time to first CHD by using standardized log-

transformed SBP level at Visit 1 as an instrument to correct for potential bias

due to measurement errors in baseline SBP.

Estimate and SE of β1 from each of the IV models are posterior mean and

posterior standard deviation, respectively.

CI: Confidence interval for the simple model and credible interval for the IV

models.

All three models adjust for observed potential confounders including gender,

age, total cholesterol level, high-density lipoprotein cholesterol level, smoking

behavior, and diabetes status.
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4.5 MCMC Convergence Diagnostics

We assess the convergence of MCMC sampling of the semiparametric Bayesian IV

method in the two real data examples. Trace plots of parallel chains with diverse

initial values are monitored for each parameter in (α1, α2, β1, β2, ν). Figure 4.4

shows the trace plots of β1: (a) for the WHI-OS data and (b) for the ARIC data.

Different chains are marked with different colors. The chains appear to be mixing

well and stable over the whole period. We also use the Brooks-Gelman-Rubin

diagnostics (Brooks and Gelman, 1998) to measure convergence. The ‘potential

scale reduction factor’ (PSRF) is calculated for each parameter, together with

its 95% confidence interval. Approximate convergence is diagnosed when the

upper limit of PSRF is close to 1. The 95% upper confidence limit of PSRP for

β1 is 1.015 for the WHI-OS data and 1.038 for the ARIC data, indicating good

convergence properties of the method.
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Figure 4.3: Histograms of the posterior samples of β1 from DPM IV model

(a) WHI-OS example; (b) ARIC example. Posterior samples after discarding

burn-in and thinning. The brackets denote the limits of the 95% credible interval.
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Figure 4.4: Trace plots of the posterior samples of β1 from DPM IV model

(a) WHI-OS example; (b) ARIC example. Posterior samples after thinning.
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CHAPTER 5

Discussion

We have developed two Bayesian approaches for IV analysis to examine the causal

effect of an intermediate covariate on a censored time-to-event outcome, in the

presence of unobserved confounders and/or measurement errors in the intermedi-

ate covariate. We show by simulations that both proposed methods largely reduce

bias in estimation and greatly improves coverage probability of the endogenous

variable parameter, compared to the ‘simple method’ where the unobserved con-

founders and measurement errors are ignored. The parametric Bayesian approach

with normality assumption is shown to be robust against deviation from its para-

metric assumption. However, when the error distribution is non-normal, the

semiparametric Bayesian approach with Dirichlet process mixtures has higher

precision in estimating the endogenous parameter compared to the parametric

Bayesian approach.

Other advantages of the two Bayesian approaches include: (1) It is straight-

forward to incorporate different types of censoring into these models, which is

difficult for the semiparametric methods in the frequentist framework; (2) They

do not rely on asymptotic approximations that might be invalid for weak instru-

ments (Lawlor et al., 2008); (3) Prior information can be incorporated by using

informative priors for the parameters.

These two methods work well in a variety of settings, provided that the instru-

mental assumptions described early in introduction are satisfied. It is generally
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difficult to validate the instrumental assumptions statistically, since confounder

U is unobserved. One possible solution is to extend the Instrumental Variable

Bayesian Model Averaging (IVBMA) method proposed by Eicher et al. (2009)

to time-to-event outcome. The IVBMA estimate accounts for model uncertainty

by taking the weighted average of IV estimates from different potential models,

weighted by both the first and second stage posterior model probabilities. The

Bayesian Sargan test based on the IVBMA framework could be used to detect

violation of the IV assumptions.
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Appendix

A1. Likelihood Derivation for the Parametric Bayesian Ap-

proach

We use notations defined in Section 3.2.

For time-to-event data subject to right-censoring, the likelihood of observing (~T ,~δ) is:

L =

n∏
i=1

f(Ti)
δiS(Ti)

1−δi (.1)

where S(y) = Pr(Y > y) is the survival distribution function and f(y) = − d
dyS(y) is the

survival time density function.

Based on the two-stage IV model (3.9) and (3.10), the likelihood function of observing

(~T ,~δ, ~X, ~Z, ~G) can be written as:

L(θ | ~T ,~δ, ~X, ~Z, ~G) = P (~T ,~δ | ~X, ~Z, ~G, θ) · P ( ~X, ~Z, ~G | θ) (.2)

where the second part is the marginal likelihood of the first-stage model (3.9), and the first

part is the conditional likelihood of the second-stage model (3.10).

For the first part: from the bivariate normality assumption of ξ1 and ξ2 following equation

(3.11), the conditional distribution of ξ2i given ξ1i is:

ξ2i | ξ1i ∼ N
(
σ2
σ1
ρ ξ1i, (1− ρ2)σ2

2

)
i = 1, . . . n. Since ξ1i = Xi−α0−α1

′Gi−α2
′Zi from the first-stage model (3.9), the conditional

distribution becomes:

ξ2i | Xi, Zi, Gi ∼ N
(
σ2
σ1
ρ(Xi − α0 − α1

′Gi − α2
′Zi), (1− ρ2)σ2

2

)
Therefore, given ~X, ~Z, ~G, α0, α1 and α2, the second-stage model (3.10) has conditional survival

function

S(T | X,Z,G) = P (Y > T | X,Z,G)

= P (β0 + β1X + β2
′Z + ξ2 > T )

= P (ξ2 > T − β0 − β1X − β2′Z)

= 1− Φ

(
T − β0 − β1X − β2′Z − σ2

σ1
ρ(X − α0 − α1

′G− α2
′Z)√

(1− ρ2)σ2
2

)
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and conditional density function

f1(T | X,Z,G) = − ∂

∂t
S(T | X,Z,G)

= φ

(
T − β0 − β1X − β2′Z − σ2

σ1
ρ(X − α0 − α1

′G− α2
′Z)√

(1− ρ2)σ2
2

)

where Φ(·) and φ(·) are the cumulative density function and the probability density function

of standard normal distribution, respectively. From (.1), we have

P (~T ,~δ | ~X, ~Z, ~G, θ) =

n∏
i=1

f1(Ti | Xi, Zi, Gi, θ)
δi S(Ti | Xi, Zi, Gi, θ)

1−δi (.3)

For the second part: the marginal distribution of ξ1i is:

ξ1i ∼ N(0, σ2
1)

which gives the marginal density function for the first-stage model (3.9):

f2(X,Z,G) = φ

(
X − α0 − α1

′G− α2
′Z√

σ2
1

)

Therefore, the likelihood of observing ~X, ~Z and ~G is:

P ( ~X, ~Z, ~G | θ) =

n∏
i=1

f2(Xi, Zi, Gi) (.4)

From (.2), (.3) and (.4), we have the joint likelihood function (3.14).
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A2. MCMC algorithm for the Parametric Bayesian Ap-

proach

We use the MCMC sampling method to generate samples from the posterior distribution of the

parameters. In each iteration, a random walk Metropolis-Hasting algorithm is used to update

the parameters in θ = (α0, α1, α2, β0, β1, β2, σ
2
1 , σ

2
2 , ρ) one by one, while other parameters are

fixed at their current state. It updates the current state of the parameter, denoted as z, by

candidate z∗ generated from a proposal distribution h(z∗|z), with acceptance probability:

a(z, z∗) = min

(
1,
h(z|z∗)π(z∗)

h(z∗|z)π(z)

)
where π(·) is a probability density function, in our case, the unstandardized posterior distribu-

tion function (i.e. the product of prior distribution and likelihood function) of the parameter.

The following is the detailed procedure to update z:

1. Generate a candidate sample z∗ from proposal distribution h(z∗|z).

2. Calculate

log(a(z, z∗)) = log

(
h(z|z∗)π(z∗)

h(z∗|z)π(z)

)
= [log(h(z|z∗))− log(h(z∗|z))] + [log(P(z))− log(P(z∗))]

+[log(L(z))− log(L(z∗))]

where P(·) is the prior distribution density function and L(·) is the likelihood function.

In our case, L(·) is the joint likelihood function (3.14).

3. Generate a random number r from Unif(0, 1).

4. If log(a(z, z∗)) > log(r), we accept z∗ as the next sample of the parameter; else we keep

z as the next sample.

5. Repeat from step 1.

Independent diffuse priors are used for the parameters: a normal distribution N(µ, ς2)

with large variance (e.g. µ = 0, ς2 = 1002) for each element in α0, α1, α2, β0, β1 and β2;

an inverse-gamma distribution Inv-Gamma(γ1, γ2) with small shape parameter and small scale

parameter (e.g. γ1 = γ2 = 0.001) for σ2
1 and σ2

2 ; and a uniform distribution Unif(−1, 1)

for ρ. Uniform proposal distributions are used for the random walk: Unif(z − ω, z + ω) for
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each element in α0, α1, α2, β0, β1 and β2; Unif(max(z − ω, 0), z + ω) for σ2
1 and σ2

2 ; and

Unif(max(z − ω,−1),min(z + ω, 1)) for ρ. Different positive ω is chosen for each parameter to

obtain an appropriate acceptance rate (e.g. 20% ∼ 40% depending on the sample size).

The detailed derivation of the log of acceptance probability for parameters in θ is as follows:

• α0: Denote the current state and candidate sample as α0 and α∗0, respectively. With

prior distribution N(µ, ς2) and proposal distribution Unif(α0 − ω, α0 + ω), the log of

acceptance probability:

log(a(α0, α
∗
0)) =

1

2ς2
(
(α0 − µ)2 − (α∗0 − µ)2

)
+

n∑
i=1

[
δi

(
1

2
(q2i − q∗i

2)

)
+ (1− δi)

(
log(1− Φ(q∗i ))− log(1− Φ(qi))

)
+

1

2

(
ν2i − ν∗i

2

)] (.5)

where

qi =
1√

(1− ρ2)σ2
2

[
log(Ti)− (β0 + β1Xi + β2

′Zi)−
σ2
σ1
ρ(Xi − α0 − α1

′Gi − α2
′Zi)

]
(.6)

νi =
1√
σ2
1

(Xi − α0 − α1
′Gi − α2

′Zi) (.7)

q∗i and ν∗i are similar to qi and νi, respectively, both equations with all α0 replaced by α∗0.

• α1: We update α1 by updating its elements one-by-one. To update the j-th element α1j

with candidate sample α∗1j , and with prior distribution N(µ, ς2) and proposal distribu-

tion Unif(α1j −ω, α1j +ω), the log of acceptance probability is similar to (.5), with the

first term replaced by 1
2ς2 ((α1j − µ)2 − (α∗1j − µ)2). qi and νi stay the same as (.6) and

(.7). q∗i and ν∗i are similar to qi and νi, respectively: Both equations have all α1 replaced

by α∗1, where α∗1 is α1 with the j-th element replaced by α∗1j .

• α2: We update α2 by updating its elements one-by-one. To update the j-th element α2j

with candidate sample α∗2j , and with prior distribution N(µ, ς2) and proposal distribu-

tion Unif(α2j −ω, α2j +ω), the log of acceptance probability is similar to (.5), with the

first term replaced by 1
2ς2 ((α2j − µ)2 − (α∗2j − µ)2). qi and νi stay the same as (.6) and

(.7). q∗i and ν∗i are similar to qi and νi, respectively: Both equations have all α2 replaced

by α∗2, where α∗2 is α2 with the j-th element replaced by α∗2j .
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• β0: We update the current state β0 with candidate sample β∗0 . With prior distribution

N(µ, ς2) and proposal distribution Unif(β0−ω, β0+ω), the log of acceptance probability:

log(a(β0, β
∗
0)) =

1

2ς2
(
(β0 − µ)2 − (β∗0 − µ)2

)
+

n∑
i=1

[
δi

(
1

2
(q2i − q∗i

2)

)
+ (1− δi)

(
log(1− Φ(q∗i ))− log(1− Φ(qi))

)] (.8)

where qi stays the same as (.6). q∗i is similar to qi, with β0 replaced by β∗0 .

• β1: We update the current state β1 with candidate sample β∗1 . With prior distribution

N(µ, ς2) and proposal distribution Unif(β1−ω, β1+ω), the log of acceptance probability

is similar to (.8), with the first term replaced by 1
2ς2 ((β1−µ)2− (β∗1 −µ)2). qi stays the

same as (.6). q∗i is similar to qi, with β1 replaced by β∗1 .

• β2: We update β2 by updating its elements one-by-one. To update the j-th element

β2j with candidate sample β∗2j , and with prior distribution N(µ, ς2) and proposal distri-

bution Unif(β2j − ω, β2j + ω), the log of acceptance probability is similar to (.8), with

the first term replaced by 1
2ς2 ((β2j − µ)2 − (β∗2j − µ)2). qi stays the same as (.6). q∗i is

similar to qi, with β2 replaced by β∗2 , where β∗2 is β2 with the j-th element replaced by β∗2j .

• σ2
1 : We update the current state σ2

1 with candidate sample σ2
1
∗
. With prior distribution

Inv-Gamma(γ1, γ2) and proposal distribution Unif(max(σ2
1 − ω, 0), σ2

1 + ω), the log of

acceptance probability:

log(a(σ2
1 , σ

2
1
∗
)) =

[
log(σ2

1 + ω −max(0, σ2
1 − ω))− log(σ2

1
∗

+ ω −max(0, σ2
1
∗ − ω))

]
+

[
(γ1 + 1)(logσ2

1 − logσ2
1
∗
) + γ2

(
1

σ2
1

− 1

σ2
1
∗

)]
+

n∑
i=1

[
δi

(
1

2
(q2i − q∗i

2)

)
+ (1− δi)

(
log(1− Φ(q∗i ))− log(1− Φ(qi))

)
+

1

2

(
(logσ2

1 − logσ2
1
∗
) + (ν2i − ν∗i

2)

)]
where qi and νi stay the same as (.6) and (.7). q∗i and ν∗i are similar to qi and νi,

respectively: Both equations have all σ2
1 replaced by σ2

1
∗
.
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• σ2
2 : We update the current state σ2

2 with candidate sample σ2
2
∗
. With prior distribution

Inv-Gamma(γ1, γ2) and proposal distribution Unif(max(σ2
2 − ω, 0), σ2

2 + ω), the log of

acceptance probability:

log(a(σ2
2 , σ

2
2
∗
)) =

[
log(σ2

2 + ω −max(0, σ2
2 − ω))− log(σ2

2
∗

+ ω −max(0, σ2
2
∗ − ω))

]
+

[
(γ1 + 1)(logσ2

2 − logσ2
2
∗
) + γ2

(
1

σ2
2

− 1

σ2
2
∗

)]
+

n∑
i=1

[
δi

(
1

2
(logσ2

2 − logσ2
2
∗

+ q2i − q∗i
2)

)
+ (1− δi)

(
log(1− Φ(q∗i ))− log(1− Φ(qi))

)]
where qi stays the same as (.6). q∗i is similar to qi, with all σ2

2 replaced by σ2
2
∗
.

• ρ: We update the current state ρ with candidate sample ρ∗. With prior distribution

Unif(−1, 1) and proposal distribution Unif(max(ρ − ω,−1),min(ρ + ω, 1)), the log of

acceptance probability:

log(a(ρ2, ρ∗)) =

[
log(min(ρ+ ω, 1)−max(ρ− ω,−1))− log(min(ρ∗ + ω, 1)−max(ρ∗ − ω,−1))

]
+

n∑
i=1

[
δi

(
1

2
(log(1− ρ2)− log(1− ρ∗2) + q2i − q∗i

2)

)
+ (1− δi)

(
log(1− Φ(q∗i ))− log(1− Φ(qi))

)]
where qi stays the same as (.6). q∗i is similar to qi, with all ρ replaced by ρ∗.
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A3. Likelihood Derivation for the Semiparametric Bayesian

Approach with Arbitrary Censoring

We follow notations defined in Sections 4.2.1 and 4.2.2:

For time-to-event data subject to arbitrary-censoring, the likelihood of observing (~L, ~R,~δ)

is:

L =

n∏
i=1

(1− S(Li))
I{δi=1}

(S(Li)− S(Ri))
I{δi=2}

S(Ri)
I{δi=3}f(Li)

I{δi=4} (.9)

where S(y) = Pr(Y > y) is the survival distribution function and f(y) = − d
dyS(y) is the

survival time density function.

Based on the two-stage IV model (4.9) and (4.10), the likelihood function of observing

(~L, ~R,~δ, ~X, ~Z, ~G) can be written as:

L(Θ | ~L, ~R,~δ, ~X, ~Z, ~G) = P ( ~X, ~Z, ~G | Θ) · P (~L, ~R,~δ | ~X, ~Z, ~G,Θ) (.10)

where the first part is the marginal likelihood of the first-stage model (4.9), and the second

part is the conditional likelihood of the second-stage model (4.10).

For the first part: From the bivariate normality assumption of ξ1 and ξ2 given by (4.11),

the marginal distribution of ξ1i is:

ξ1i ∼ N(µ1i, σ
2
1i)

which gives the marginal density function for the first-stage model (4.9):

f1i(X,Z,G) = φ

(
X − µ1i − α1

′G− α2
′Z√

σ2
1i

)

i = 1, . . . n. Therefore, the likelihood of observing ~X, ~Z and ~G is:

P ( ~X, ~Z, ~G | Θ) =

n∏
i=1

f1i(Xi, Zi, Gi) (.11)

For the second part: From the bivariate normality assumption of ξ1 and ξ2 given by (4.11),

the conditional distribution of ξ2i given ξ1i is:

ξ2i | ξ1i ∼ N
(
µ2i +

σ2i
σ1i

ρi(ξ1i − µ1i), (1− ρ2i )σ2
2i

)
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i = 1, . . . n. Since ξ1i = Xi − α1
′Gi − α2

′Zi from the first-stage model (4.9), the conditional

distribution becomes:

ξ2i | Xi, Zi, Gi ∼ N
(
µ2i +

σ2i
σ1i

ρi(Xi − µ1i − α1
′Gi − α2

′Zi), (1− ρ2i )σ2
2i

)
Therefore, given ~X, ~Z, ~G and Θ, the second-stage model (4.10) has conditional survival function

Si(T | X,Z,G) = P (Y > T | X,Z,G)

= P (β1X + β2
′Z + ξ2 > T )

= P (ξ2 > T − β1X − β2′Z)

= 1− Φ

(
T − µ2i − β1X − β2′Z − σ2i

σ1i
ρi(X − µ1i − α1

′G− α2
′Z)√

(1− ρ2i )σ2
2i

)

and conditional density function

f2i(T | X,Z,G) = − ∂

∂t
Si(T | X,Z,G)

= φ

(
T − µ2i − β1X − β2′Z − σ2i

σ1i
ρi(X − µ1i − α1

′G− α2
′Z)√

(1− ρ2i )σ2
2i

)

where Φ(·) and φ(·) are the cumulative density function and the probability density function

of standard normal distribution, respectively. From (.9), we have

P (~L, ~R,~δ | ~X, ~Z, ~G,Θ) =

n∏
i=1

[1− Si(Li | Xi, Zi, Gi)]
I{δi=1}

· [Si(Li | Xi, Zi, Gi)− Si(Ri | Xi, Zi, Gi)]
I{δi=2}

·Si(Ri | Xi, Zi, Gi)
I{δi=3} · f2i(Li | Xi, Zi, Gi)

I{δi=4}

(.12)

From (.10), (.11) and (.12), we have the joint likelihood function (4.17).
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A4. MCMC algorithm for the Semiparametric Bayesian

Approach with Arbitrary Censoring

We follow notations defined in Sections 4.2.1 and 4.2.2. We develop an MCMC procedure

to generate posterior samples of α1, α2, β1, β2, θi = {µ1i, µ2i, σ
2
1i, σ

2
2i, ρi}, ~C = {c1, . . . , cn},

θc = {µ1c, µ2c, σ
2
1c, σ

2
2c, ρc}, and ν, where i = 1, . . . , n, cluster indicators {c1, . . . , cn} are coded

as values in {1, 2, . . . , k}, k is the total number of clusters, c = 1, . . . , k. In each iteration, we

generate a new sample for each of the parameters listed above using the following algorithm.

• For α1: We update vector α1 by updating its elements one-by-one using the random

walk Metropolis-Hasting (M-H) algorithm described in Section A2. For the j-th element

α1j , we propose to use a vague normal prior distribution N(µp, ς
2
p) with large variance

(e.g. µp = 0, ς2p = 1002), and a uniform proposal distribution Unif(α1j − ωp, α1j + ωp)

for the random walk, where ωp is a positive number chosen to give an appropriate ac-

ceptance rate (e.g. 20% ∼ 40%). A candidate sample α∗1j is generated from the proposal

distribution, and accepted as the current state of α1j with probability a(α1j , α
∗
1j). The

log of acceptance probability is given by:

log(a(α1j , α
∗
1j)) = `(Θ∗)− `(Θ) +

1

2ς2p

(
(α1j − µp)2 − (α∗1j − µp)2

)
where Θ∗ is Θ with α1j replaced by α∗1j , `(·) is the log-likelihood function given by

`(Θ) = log(L(Θ)), and L(Θ) is the likelihood function given by equation (4.17).

• For α2: Similar procedure as for α1 is used. Elements in vector α2 is updated one-

by-one using the M-H sampling algorithm. For the j-th element α2j , we propose to

use a vague normal prior distribution N(µp, ς
2
p) and a uniform proposal distribution

Unif(α2j−ωp, α2j+ωp) with appropriate width ωp. A candidate sample α∗2j is generated

from the proposal distribution, and accepted as the current state of α2j with probability

a(α2j , α
∗
2j). Similarly, the log of acceptance probability is given by:

log(a(α2j , α
∗
2j)) = `(Θ∗)− `(Θ) +

1

2ς2p

(
(α2j − µp)2 − (α∗2j − µp)2

)
where Θ∗ is Θ with α2j replaced by α∗2j .

• For β1: We update β1 using the M-H sampling algorithm, similar to the procedure

for α1j . We propose to use a vague normal prior distribution N(µp, ς
2
p) and a uniform
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proposal distribution Unif(β1 − ωp, β1 + ωp) with appropriate width ωp. A candidate

sample β∗1 is generated from the proposal distribution, and accepted as the current state

of β1 with probability a(β1, β
∗
1). Similarly, the log of acceptance probability is given by:

log(a(β1, β
∗
1)) = `(Θ∗)− `(Θ) +

1

2ς2p

(
(β1 − µp)2 − (β∗1 − µp)2

)
where Θ∗ is Θ with β1 replaced by β∗1 .

• For β2: Similar procedure as for α1 is used. Elements in vector β2 is updated one-

by-one using the M-H sampling algorithm. For the j-th element β2j , we propose to

use a vague normal prior distribution N(µp, ς
2
p) and a uniform proposal distribution

Unif(β2j−ωp, β2j+ωp) with appropriate width ωp. A candidate sample β∗2j is generated

from the proposal distribution, and accepted as the current state of β2j with probability

a(β2j , β
∗
2j). Similarly, the log of acceptance probability is given by:

log(a(β2j , β
∗
2j)) = `(Θ∗)− `(Θ) +

1

2ς2p

(
(β2j − µp)2 − (β∗2j − µp)2

)
where Θ∗ is Θ with β2j replaced by β∗2j .

• For ~C: We update the cluster indicators c1, . . . , cn, one-by-one. Let m be a prefixed num-

ber of auxiliary parameters. We use m = 10 in our simulation studies and real data exam-

ples in Chapter 4. For the base distribution H0 of the Dirichlet process prior, we propose

to use independent slightly informative priors H0 = π(µ1i)π(µ2i)π(σ2
1i)π(σ2

2i)π(ρi). Here

‘slightly informative’ means that the chosen priors spread out and properly cover the rea-

sonable values for the parameters. We propose to use normal distributions for π(µ1i) and

π(µ2i), inverse-gamma distributions for π(σ2
1i) and π(σ2

2i), and a uniform distribution

Unif(−1, 1) for π(ρi). The following procedure is used to update cluster indicator ci:

1. For subject i: Let k− be the number of distinct cj for j 6= i. Let h = k− +m, and

c−i = {cj : j 6= i}.

2. If ci = cj for some j 6= i (i.e. subject i is not a ‘singleton’), draw m sam-

ples independently from H0 as {θk−+1, ..., θh} (i.e. draw m independent samples

from π(µ1i) as {µ1,k−+1, ..., µ1h}, draw m independent samples from π(µ2i) as

{µ2,k−+1, ..., µ2h}, draw m independent samples from π(σ2
1i) as {σ2

1,k−+1, ..., σ
2
1h},

draw m independent samples from π(σ2
2i) as {σ2

2,k−+1, ..., σ
2
2h}, draw m indepen-

dent samples from π(ρi) as {ρ−k + 1, ..., ρh}).

121



3. If ci 6= cj for all j 6= i (i.e. subject i is a ‘singleton’), relabel these cj with values

in {1, ..., k−}, and label ci as k−+ 1. Draw m− 1 samples independently from H0

as {θk−+2, ..., θh}.

4. Draw a new value for ci from {1, ..., h} with probabilities:

P (ci = c|c−i, θ1, . . . , θh) =


b · n−i,c · Li(θc) , 1 ≤ c ≤ k−

b · νm · Li(θc) , k− ≤ c ≤ h
where n−i,c is the number of subjects that are in {j : j 6= i, cj = c}, and Li(θc) is

the likelihood of subject i with parameter θc:

Li(θc) = L(α1, α2, β1, β2, θc | Li, Ri, δi, Xi, Zi, Gi)

and b is a normalizing constant.

5. Update the total number of clusters k accordingly.

• For θc: We update cluster parameters θc, c = 1, . . . , k, one-by-one. For each c ∈

{1, . . . , k}, we update {µ1c, µ2c, σ
2
1c, σ

2
2c, ρc} one-by-one, while keeping the other pa-

rameters at their current state, using the M-H sampling algorithm. We propose to

use independent vague priors for the parameters: a normal distribution N(µ, ς2) with

large variance (e.g. µ = 0, ς2 = 1002) for µ1c and µ2c; an inverse-gamma distribu-

tion Inv-Gamma(γ1, γ2) with small shape parameter and small scale parameter (e.g.

γ1 = γ2 = 0.001) for σ2
1c and σ2

2c; and a uniform distribution Unif(−1, 1) for ρc.

– For µ1c: We use a uniform proposal distribution Unif(µ1c − ωp, µ1c + ωp) with

appropriate width ωp. A candidate sample µ∗1c is generated from the proposal

distribution, and accepted as the current state of µ1c with probability a(µ1c, µ
∗
1c).

The log of acceptance probability is given by:

log(a(µ1c, µ
∗
1c)) = `c(Θ

∗)− `c(Θ) +
1

2ς2p

(
(µ1c − µp)2 − (µ∗1c − µp)2

)
where Θ∗ is Θ with µ1c replaced by µ∗1c, and `c(·) is the log-likelihood function

with subjects in cluster c only,

`c(Θ) = log(L(Θ | Li, Ri, δi, Xi, Zi, Gi, i ∈ {j : cj = c}))

– For σ2
1c: We use a uniform proposal distribution Unif(max(σ2

1c − ωp, 0), σ2
1c + ωp)

with appropriate width ωp. A candidate sample σ2
1c
∗

is generated from the proposal
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distribution, and accepted as the current state of σ2
1c with probability a(σ2

1c, σ
2
1c
∗
).

The log of acceptance probability is given by:

log(a(σ2
1c, σ

2
1c
∗
)) =`c(Θ

∗)− `c(Θ)

+ log(min(2ωp, σ
2
1c + ωp))− log(min(2ωp, σ

2
1c
∗

+ ωp))

+ (γ1 + 1)
[
log(σ2

1c)− log(σ2
1c
∗
)
]

+ γ2

(
1

σ2
1c

− 1

σ2
1c
∗

)
where Θ∗ is Θ with σ2

1c replaced by σ2
1c
∗
.

– For µ2c: Similar to µ1c, we use a uniform proposal distribution Unif(µ2c−ωp, µ2c+

ωp) with appropriate width ωp. A candidate sample µ∗2c is generated from the

proposal distribution, and accepted as the current state of µ2c with probability

a(µ2c, µ
∗
2c). The log of acceptance probability is given by:

log(a(µ2c, µ
∗
2c)) = `c(Θ

∗)− `c(Θ) +
1

2ς2p

(
(µ2c − µp)2 − (µ∗2c − µp)2

)
where Θ∗ is Θ with µ2c replaced by µ∗2c.

– For σ2
2c: Similar to σ2

1c, we use a uniform proposal distribution Unif(max(σ2
2c −

ωp, 0), σ2
2c + ωp) with appropriate width ωp. A candidate sample σ2

2c
∗

is gener-

ated from the proposal distribution, and accepted as the current state of σ2
2c with

probability a(σ2
2c, σ

2
2c
∗
). The log of acceptance probability is given by:

log(a(σ2
2c, σ

2
2c
∗
)) =`c(Θ

∗)− `c(Θ)

+ log(min(2ωp, σ
2
2c + ωp))− log(min(2ωp, σ

2
2c
∗

+ ωp))

+ (γ1 + 1)
[
log(σ2

2c)− log(σ2
2c
∗
)
]

+ γ2

(
1

σ2
2c

− 1

σ2
2c
∗

)
where Θ∗ is Θ with σ2

2c replaced by σ2
2c
∗
.

– For ρc: We use a uniform proposal distribution Unif(max(ρc − ωp,−1),min(ρc +

ωp, 1)) with appropriate width ωp. A candidate sample ρ∗c is generated from the

proposal distribution, and accepted as the current state of ρc with probability

a(ρc, ρ
∗
c). The log of acceptance probability is given by:

log(a(ρc, ρ
∗
c)) =`c(Θ

∗)− `c(Θ) + log(min(ρc + ωp, 1))− log(max(ρc − ωp,−1))

− log(min(ρ∗c + ωp, 1)) + log(max(ρ∗c − ωp,−1))

where Θ∗ is Θ with ρc replaced by ρ∗c .
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• For θi: After updating ~C and θc, c = 1, . . . , k, the individual parameters θi = {µ1i, µ2i, σ
2
1i, σ

2
2i, ρi},

i = 1, . . . , n, can be derived.

• For ν: We update the strength parameter ν of the Dirichlet process prior using the M-H

sampling algorithm. We propose to use prior distribution

P (ν) ∝
(
ν − ν
ν − ν

)ω
· I(ν < ν < ν)

where ν and ν are chosen to give small k (e.g. mode of k = 1) and large k (e.g. mode

of k = 15), respectively. ω is a constant chosen to control the shape of the prior (e.g.

ω = 0.8). We use a uniform proposal distribution Unif(max(ν, ν − ωp),min(ν, ν + ωp)).

A candidate sample ν∗ is generated from the proposal distribution, and accepted as the

current state of ν with probability a(ν, ν∗). The log of acceptance probability is given

by:

log(a(ν, ν∗)) =log(min(ν, ν + ωp)−max(ν, ν − ωp))

− log(min(ν, ν∗ + ωp)−max(ν, ν∗ − ωp))

+ ωp [log(ν − ν∗)− log(ν − ν)]

+ k(logν∗ − logν) + log(Γ(ν∗))− log(Γ(ν∗ + n))

− log(Γ(ν)) + log(Γ(ν + n))

where Γ(·) is the gamma function.
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