
UCLA
UCLA Previously Published Works

Title
Gene expression in large pedigrees: analytic approaches

Permalink
https://escholarship.org/uc/item/8223f1rp

Journal
BMC Genomic Data, 17(Suppl 2)

ISSN
2730-6844

Authors
Cantor, Rita M
Cordell, Heather J

Publication Date
2016-12-01

DOI
10.1186/s12863-015-0311-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8223f1rp
https://escholarship.org
http://www.cdlib.org/


PROCEEDINGS Open Access

Gene expression in large pedigrees:
analytic approaches
Rita M. Cantor1* and Heather J. Cordell2

Abstract

Background: We currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide,
using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members
of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and
important problems and questions. To study the complexity and interrelationships of genetics and gene expression,
we used established statistical tools, developed newer statistical tools, and developed and applied extensions to
these tools.

Methods: To study gene expression correlations in the pedigree members (without incorporating genotype or trait
data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis,
meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics
and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional
association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying
allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches
included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels.
To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models,
nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple
regression.

Results and discussion: Regarding the analysis of pedigree data, we found that gene expression is familial, indicating
that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in
analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene
network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed
Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines –Major Gene Analysis) have
similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of
association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be
incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex,
exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with
measurements of gene expression was found to be generally advantageous in terms of generating improved levels of
significance and in providing more interpretable biological models.

Conclusions: Pedigrees can be used to conduct analyses of and enhance gene expression studies.
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Background
Genome-wide expression studies are making significant
contributions to the identification of risk genes for com-
plex traits. Expression studies can help identify genes in
linked and associated regions that are appropriate for
follow-up with functional studies [1]. Most often know-
ledge of gene expression in a relevant tissue can help.
That is, if a chromosomal region is linked to a pheno-
type such as one relating to an eye disorder, genes that
are expressed in the eye become the prime candidates
for further study. In addition, genes that are overex-
pressed in the eyes of affected individuals compared to
controls are also excellent candidates. Also, those genes
that fall within the same biological network as a candi-
date gene are good candidates for further study. There
are also studies where gene expression is the prime gen-
etic data (that is, no markers have been genotyped for
linkage or association studies). Expression is assessed
genome-wide to identify patterns of expression. In all of
these studies, we usually do not include biological rela-
tives, so that all observations are independent. The
Genetic Analysis Workshop (GAW) 19 data, however,
provides expression in multiple members of large pedi-
grees, giving an excellent opportunity to learn about the
familiality of expression and develop methods to adjust
for it or capitalize on it in statistical analyses.

Early microarray analyses
Genetic epidemiologists currently have the ability to
successfully quantify transcript abundance of messenger
RNA (mRNA), genome-wide, using microarray tech-
nologies [2]. For a given gene, and among all genes,
mRNA abundance is quite variable, with substantial dif-
ferences among individuals, tissues, and time periods
over a life span [3]. The wealth of data generated over
multiple tissues and time points by the recently devel-
oped technologies permits investigators to design and
conduct studies that promise to substantially improve
our understanding of factors that influence mRNA
levels. This should then, among other goals, lead to the
identification of the elements responsible for their regu-
lation. We anticipate that this growing insight and infor-
mation will ultimately lead to more precise predictions
of gene expression levels by revealing the genetic con-
tributors to regulation, and by providing clarification of
how genetic factors act through gene expression to con-
tribute to protein levels and human phenotypes. That is,
identifying the ways in which transcript variation is reg-
ulated and quantifying the interrelationships of mRNA
abundance among genes is expected to help us under-
stand how gene expression contributes to variation in
complex human traits. The development of this informa-
tion is likely to involve a long and intense process, and
we are currently in its early stages. However, a great deal

of experimentation and analytic work has already been
done, and it will facilitate the accuracy, speed and
breadth of analyses that contribute to this overarching
research aim.
The gene expression group of 9 GAW19 papers tack-

led some timely and important questions that should
contribute to this aim by using established tools devel-
oped by others, developing newer tools, and developing
extensions to these tools. In addition to this work, the
papers we summarize here also evaluated the type 1 and
type 2 errors of analytic methods used, provided analytic
tools for the research community, and conducted ana-
lyses to better understand biological aspects of gene ex-
pression. Here we only present a summary of the papers
that is designed to place the GAW19 gene expression
studies within the context of this broad and evolving
field. We hope to help the reader interpret GAW19
investigations and their results. Because this paper is a
summary, we encourage those who are interested to read
the individual GAW19 gene expression papers for
relevant details and to assess the motivations for these
works. To place the GAW19 gene expression papers
within a larger context, we begin by summarizing some
of the methods developed prior to GAW19 that have
been applied to gene expression levels, historically, and
follow this with a more in-depth presentation of some of
the analytic methods used in the GAW19 papers from
this group. We then provide a discussion of how the
findings reported in these papers can impact the field.
Analytic methods for research using expression data

that are derived from microarray technologies have been
under development since the inception of these tech-
nologies in the early 2000s and during the period of
their refinement, which continues to be an ongoing
process. The arrays have almost always been used on
samples of independent individuals, so that most of the
methods developed prior to those by our GAW19 gene
expression group did not address capitalizing on the
possibilities of large numbers of nonindependent sam-
ples, such as those from pedigrees. An exception occurs
with early studies of expression quantitative trait loci
(eQTL) that used pedigree linkage analyses to map regu-
latory elements, although most of the later investigations
used association studies with single nucleotide poly-
morphism (SNP) arrays involving samples of independ-
ent individuals. eQTL studies are addressed in greater
detail below.
Several of the initial statistical methods we mention

for gene expression analyses were already available and
obvious choices, and others were developed or adapted
specifically to address gene expression questions. A sali-
ent feature is that expression arrays allow us to query
expression levels across the entire genome, simultan-
eously, giving a much broader view than was previously
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feasible. Unfortunately, along with this ability, multiple
testing, which is tied to the number of probes measured
in each study sample, becomes a challenge. For GAW19,
approximately 22,000 probes were used; more current
array data would include expression measures from
450,000 probes.

Identifying gene expression differences using false
discovery rates
Initially, because of cost, the sample sizes of the studies
conducted were relatively small, sometimes as small as
30 individuals, and the extensive multiple testing made
statistical power a prohibitive problem. However, the
false discovery rate (which is less stringent than a
family-wise error rate addressed by a Bonferroni
correction), was subsequently applied to analyses of the
genome-wide expression data. The false discovery rate
(FDR) is set in advance by the investigator to allow for a
particular proportion of false positives within the re-
ported positive results. For example, the FDR may be as
permissive of 0.05, which would allow 5 % of the tests
reported as positive to be incorrect. This statistical
criterion was formally described by Benjamini and
Hochberg [4], was applied to gene expression studies by
Storey and Tibshirani [5], and was the first alternative to
the family-wise error rate to gain broad acceptance.

Cleaning microarray data
In addition to introducing a fundamental difference in
the statistical approach to estimation of errors, there
was a significant focus on identifying the best methods
to clean the array-based expression data. Cleaning
involved the identification and removal of outliers result-
ing from systematic errors in the application of arrays,
such as placing cases on separate arrays from controls,
and individual errors resulting from the poor prepar-
ation of DNA. Storey first described expression hete-
rogeneity in his surrogate variable analysis paper [6],
referencing the importance of identifying the sources of
batch effects. The cleaning methods are now well devel-
oped, although one must always be cognizant of where
possible bias could be introduced, and address whether
there are factors leading to batch effects in generating
expression levels that could affect the results of a study.

Comparing gene expression in different contexts
Early array-based gene expression studies primarily com-
pared expression levels within different contexts, such as
the presence or absence of a disease or the presence or
absence of a treatment to cells from individuals in the
same disease state [7]. This work is done in case–control
studies. T-tests, analyses of variance, and nonparametric
versions of these tests were used to identify significant
differences in the expression of genes between the two

states. Significant differences in gene expression could
then be used to identify genes and pathways that are in-
volved in the disease state or the response to treatment [8].

Finding clusters of genes with similar expression patterns
in different states
Early analytic approaches also included methods to clus-
ter genes based on similarities or correlations in their
expression levels. The goal was to reveal similarities or
differences in coordinated gene expression under dif-
ferent states. Clustering allowed the subdivision of the
whole set of genes based on which ones were expressed
at higher levels and which ones at lower levels. These
similarities are likely to reflect similarities in gene func-
tion. For example in a person who has an infection, clus-
ter analyses of gene expression are likely to illustrate
that expression of certain immune response genes are
elevated in a similar fashion. One could apply a
treatment and observe whether the changes in gene
expression revealed anything about the biology of the
infectious agent or the response to treatment. That is,
clustering applied established analytic techniques to the
quantitative gene expression levels so as to provide an
assessment of similarity in these gene expression levels
and cluster the genes according to this similarity. A set
of genes that are all highly expressed when compared to
the other genes on the array will be in the same cluster
and this fact might derive from the impact of a similar
genetic or environmental factor or both. This approach
clearly answers a different question than asking whether
the genes are differentially expressed within differing
contexts. This is also different from clustering subjects
based on their gene expression levels, which is what is
done in evolutionary studies to find similarity among
species.
The 2 standard approaches used to find genes that are

related through similarity in expression levels are hier-
archical and K-means clustering [9, 10]. Key questions
should be addressed prior to conducting cluster analyses.
These include whether to analyze all genes measured on
the arrays or only a selection, as there are genes that will
add noise to the analysis because they do not contribute
to the clusters. A prior understanding of the biological
process under analysis can help identify the genes to
select. In addition, nonindependence of replicate sam-
ples can lead to biased results and individual study de-
signs may have to be developed to achieve a sufficient
sample size such that the results will not be vulnerable
to this factor. This is particularly true in pedigree data,
which is a key feature of the GAW19 expression data.
Hierarchical clustering lends itself to an easily inter-

preted visual display of a dendrogram, where the indi-
viduals in the study are used to generate the gene
expression data and the analyses are conducted to cluster
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genes with similar expression patterns; the clusters gener-
ated by this method, however, are fairly imprecise, such
that small changes in expression levels can result in den-
drograms that are different. There are 2 methodological
approaches. The first method, agglomerative hierarchical
clustering, is a “bottom up” approach, where each obser-
vation starts in its own cluster, and pairs of clusters are
merged as one moves up the hierarchy based on applying
an algorithm to the gene expression levels. The second
method, divisive hierarchical clustering, uses a “top down”
approach, where all observations start within 1 cluster,
and the clusters are split recursively as one travels
down the developing hierarchy. An alternative ap-
proach, K-means clustering [11], requires the investigator
to set the number of clusters into which the genes will fall
in advance. One begins with an initial partition and the
results undergo iterations until a final criterion is reached.

Weighted gene coexpression network analysis: reducing
the dimensionality of gene expression data
As time passed, and more expression data were gener-
ated, opportunities to develop novel analytic approaches
presented themselves and the gene expression micro-
array technology matured. More sophisticated analytic
methods were developed. Weighted gene coexpression
network analysis (WGCNA) is an example of one such
widely used method that was employed by a number of
the individuals in our GAW 19 group. The method is
designed to construct gene networks from the pairwise
correlations of expression data [12]. WGCNA allows for
the incorporation of context differences and trait values
with the gene expression summary measures. WGCNA
is presented in much greater detail in the “Methods” sec-
tion below. More recently, other molecular biology
approaches to measure gene expression have become
available. RNA sequence data allow for the integration
of expression and genotype information measured simul-
taneously. However, the GAW19 data were array based.

Identifying genetic contributors to gene regulation:
expression quantitative trait loci
eQTL have been studied extensively [13]. Their identifi-
cation is essential to the search for genetic contributors
to gene regulation [14]. eQTL are based on quantified
gene expression that can be viewed like any other
phenotypic trait and genetic markers can be used for
gene mapping through linkage and/or association. The
key difference is that there are many such traits gener-
ated by microarrays for many genes throughout the gen-
ome. Analytically, each of these traits is analyzed the
same way as other quantitative phenotypes such as
height and weight. Thus, expression traits can be
adjusted for covariates and transformed to achieve a
normal distribution for quantitative trait loci (QTL)

analysis. The key difference here is that a substantial
correction for multiple testing is needed to identify
eQTL, as the expression levels are usually all tested for
linkage or association with all of the SNPs available in
the same study sample, engendering a large multiple
testing problem, the magnitude of which is the product
of the number of gene probes and the number of SNPs.
eQTL, whether discovered by linkage or association,
identify loci that harbor genetic elements that regulate the
expression of the gene under analysis. Those that are next
to the gene tested (usually between 50,000 base pairs and
1 megabase, depending upon the preference of the investi-
gator) are classified as cis loci, whereas those anywhere
else in the genome are classified as trans loci [15].
The GAW19 data provided by the workshop orga-

nizers included gene expression levels measured on the
individuals from 20 pedigrees that were ascertained for
individuals with type 2 diabetes. Additional traits in-
cluded both simulated and real longitudinal measures of
systolic (SBP) and diastolic blood pressure (DBP) and
whole genome sequence data that has been imputed
within the 20 pedigrees. The data are described in detail
in the accompanying summary publication [16]. A prior
manuscript analyzing a larger sample of the data derived
from the San Antonio Family Heart Study reports that
85 % of lymphocyte expression levels were significantly
heritable, making them appropriate candidate traits for
eQTL analyses in the GAW19 pedigrees. In that manu-
script [17], heritability varied substantially among the
transcript levels, and the median was 22.5 %. In the pub-
lished analysis, eQTL were identified by mapping the tran-
script levels using the SOLAR (Sequential Oligogenic
Linkage Analysis Routines) software [18] to conduct link-
age analyses.

GAW19 gene expression group analyses
The 9 papers contributed to GAW19 by our gene ex-
pression group explored 3 aspects of gene expression.
The first group of papers considered the expression
values in the pedigree members without incorporating
genotype or trait data into the analysis. The questions
explored involved identifying aspects of the correlation
structure of the expression levels of the thousands of
genes measured. Analytic approaches to accomplish this
included principal components analysis [19, 20], WGCNA
[20], meta-analyses [20], gene enrichment analyses [20],
and linear mixed models [19, 20].
The second group of papers explored the genetics of

gene expression by incorporating SNPs and rare-variant
genotypes into the gene expression analyses to better
allow us to identify contributors to gene regulation.
Factors addressed included eQTL complexity [21], the
feasibility of applying allele-specific binding (ASB) to
filter potential regulatory SNPs [22], and epistatic
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interactions of eQTL [23]. Analytic approaches to conduct
these investigations included linear mixed models [21],
measured genotypes in pedigrees [21], permutation tests
[23], and covariance kernels [22].
The third group of papers incorporated both genotype

and phenotype data into the gene expression analyses to
understand the effects of gene expression and/or genetic
variation on phenotypic traits. Genome-wide gene ex-
pression was used (a) to predict blood pressure pheno-
types via its associations with the SNP genotypes [24],
(b) to predict hypertension [25], (c) in the joint analysis
of blood pressure traits with sequence data [26], and (d)
to identify causal models that include blood pressure
traits and genotypes with the expression levels. Analytic
methods employed in this work included linear mixed
models [24, 27], nonparametric weighted U statistics
[26], structural equation modeling [27], Bayesian unified
frameworks [27], and multiple regression [25].

Methods
Analytic approaches
Several well-established analytic approaches have been
applied by members of the GAW19 gene expression
group to perform analyses involving the gene expression
data. We describe the ones that are most applicable to
our full set of gene expression analyses in detail here
and present refinements and specific applications of
them in the Results and Discussion section. The first
method, WGCNA, is a recently developed approach that
identifies biologically plausible patterns of gene expres-
sion from the correlations among genome-wide gene ex-
pression data. The second, linear mixed models, is used
to test SNP and trait associations with expression levels,
while adjusting for the statistical nonindependence of
members of the same pedigree. The third, causal model-
ing, allows for the integration of gene expression, geno-
type, and trait data in a single analysis for model
selection. Here we provide a summary of these analytic
approaches.

Weighted gene coexpression network analysis
WGCNA [12] is a data-mining method that is used to
analyze pairwise correlations among gene expression
levels to identify networks among genes. The result of
the correlation analyses is a set of coexpression gene
modules, intramodular hubs, and network nodes. An im-
portant aspect of this work is that it reduces the dimen-
sionality of the data, so that multiple testing becomes
less of an issue than if each gene expression probe is an-
alyzed separately. It also provides insights into which
genes may be operating in the same pathways and the
biological processes of the individual genes. To use this
method, one first defines a gene coexpression similarity
measure, which is used to construct the network. The

coexpression similarity measure for a pair of genes, i
and j, is denoted by: Sij. Many studies use the absolute
value of the correlation as an unsigned coexpression
similarity measure,

Sunsignedij ¼ cor xi; xj
� ��� ��;

where gene expression profiles xi and xj are the gene ex-
pression levels of i and j across multiple samples. The
absolute value does not allow one to discriminate be-
tween gene repression and activation. Signed networks
allow the similarity between genes to discriminate
among these differences. To define a signed coexpres-
sion measure between gene expression profiles xi and xj,
a transformation of the correlation,

Sunsignedij ¼ 0:5þ 0:5cor xi; xj
� �

is used. An adjacency matrix (network) is used to quan-
tify how strongly the genes are related to each other. A
module eigengene, the first principal component of the
standardized expression profiles, can be considered as a
summary of the standardized module expression data.
To find modules that relate to a clinical trait of interest,
module eigengenes are each correlated with the clinical
trait of interest, which give rise to eigengene significance
measures, allowing one to identify the correlated clinical
traits, thus relating gene expression profiles to other
phenotypes.

Linear mixed models
Linear models have a wide application in genetics studies.
A linear model expresses the expected value of a trait as a
linear combination of observed predictors. A linear model
can have fixed, random, or a combination of fixed and
random effects predictors. Fixed and random effects refer,
respectively, to population-average and subject-specific
effects, where the latter are generally assumed to be un-
known for an individual. These random effects are usually
assumed to have a normal distribution. A linear mixed
model is a linear model that contains both fixed and ran-
dom effects, and thus is composed of mixed effects. These
models are very useful when measurements are made on
groups of related subjects, for example, in pedigrees. For
the eQTL analysis we used the linear mixed effects models
where the genetic effects are modeled as random. Using
the subscript kl to denote the lth individual in the kth

family, and defining Ykl and SNPkl as the gene expression
and genotype dosage, respectively, we write the model as:

Ykl ¼ βo þ βs SNPkl þ αkl þ εkl

where the betas denote the regression coefficients for
the fixed effects, αkl is the random intercept, and εkl is
the normally distributed error term with mean 0 and
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variance σε
2. The αkl within the kth family are normally

distributed with mean 0 and covariance matrix: 2σg
2ϕ,

where ϕ is the kinship matrix; the overall covariance
matrix is block diagonal with 1 block per family.
The FaST-LMM (Factored Spectrally Transformed

Linear Mixed Models) software [28] uses a linear mixed
modeling approach to test SNP association with quanti-
tative traits (such as expression levels) in pedigrees.
FaST-LMM is designed to perform genome-wide associ-
ation studies (GWAS) when the relationships among the
individuals in the study sample are unknown. Carefully
chosen GWAS SNPs genotyped on the study sample are
used to estimate genetic similarity. Linear mixed models
capture these relationships and transformation of the es-
timated matrix of pairwise relationships is used to speed
the analysis.

Causal modeling
Structural equation modeling (SEM) is a regression-based
approach to causal modeling, popular in the social sciences
literature. A system of linear equations is constructed
based on hypothesized relationships between variables
(nodes) in a graphical model. The resulting structural
equation model implies a particular structure for the
covariance matrix of the measured variables. Given the
observed (empirical) sample covariance matrix, the pa-
rameters of the model can be estimated using maximum
likelihood. Once the model’s parameters have been esti-
mated, the resulting model-implied covariance matrix can
be compared to the observed covariance matrix to assess
whether the model provides a good fit to the data, or two
different models can be compared with one another using
the Akaike information criterion (AIC).
An alternative, recently proposed approach that can be

used for modeling multivariate phenotypes is the Bayesian
unified framework (BUF) [29]. Although not originally de-
signed for causal modeling per se, the approach allows
phenotypic “outcome” variables (including measures of
gene expression) to be partitioned into subsets γ = (U, D, I)
with respect to a predictor variable, in our case a SNP
genotype. Variables in U are unassociated with the SNP,
variables in D are directly associated with the SNP, and var-
iables in I are indirectly associated with the SNP. Indirect
association with the SNP implies that an outcome vari-
able’s relationship with the SNP genotype is mediated
through an intermediate (directly associated) variable. For
each possible partition of variables, a Bayes factor is com-
puted, and the model with the highest Bayes factor can be
interpreted as the one that best fits the data.

Results and discussion
Two papers analyzed the GAW19 expression data in the
pedigrees alone without using the genotype or pheno-
type data provided. The first paper investigated the

effects of potential covariates on the gene expression
levels. The results would provide insights into how to
best adjust for external factors in analyzing expression
data. To achieve this, Gallagher et al. [19] used linear
regression to investigate the effects of age, sex, medica-
tion, blood pressure, hypertension, smoking status, and
pedigree membership on the principal components of
gene expression levels in this sample. Most of the cova-
riates tested were not significantly associated with the
principal components that were generated. However,
there was a highly significant correlation between pedi-
grees and the second principal component, indicating
that it is essential to correct expression levels for pedi-
gree membership when the study sample is composed of
related individuals. This finding was reflected through-
out the analyses reviewed here, as the second paper [20]
presents and evaluates an analytic method that directly
incorporates pedigree membership into the analysis and
most of the subsequent papers employ software that ac-
counts for pedigree membership. Gallagher et al. [19]
also investigated the familiality of the proportions of the
cell types in the expression samples. To achieve this, in-
formation from the Haem Atlas and the Cell Mix soft-
ware was used to predict the proportions of different
types of cells (granulocytes, natural killer cells, mono-
cytes, and B, Tc, and Th lymphocytes) within individuals.
Analysis of variance indicated that the proportions of
cell types differed significantly among pedigrees, a factor
not considered by most investigators.
The second paper [20] reports the development and

evaluation of a statistical approach to incorporate family
relationships into the estimates of correlations among
gene expression levels. Their method is based on
WGCNA. Tissier et al. [20] build a coexpression network
for each pedigree and summarize the networks for all ped-
igrees. The results are then compared with WGCNA on
the whole set of pedigrees without accounting for pedigree
structures as well as with using WGCNA on the residuals
of a linear mixed model so as to remove within-family cor-
relation structures. Their work is limited to the 5 largest
pedigrees of sizes: 65, 55, 45, 62, and 49. From all modules
of these 5 pedigrees, the first significant eigengene was
found using the model Yj = μ + uj + βeigengenej

k + ɛj, where
Yj is the outcome, uj the random genetic effect, and
eigengenej

k the value of the eigengene of module k of
family member j. The individual genes were identified by
taking the intersection and union of the genes in the 5
modules flagged by the 5 most significant eigengenes. The
first principal component was computed for each set,
and the principal component that explained the largest
amount of variance was selected as the eigengene of their
approach. Unfortunately, this family based approach did
not yield a significant finding under the simulation model
used for SBP. However, they were able to identify clusters
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of genes correlated with the top genes used to simulate
SBP. The authors concluded that a thorough simulation
study would be required to investigate the method in a
more comprehensive way.
The second set of papers investigated 3 aspects of gene

expression that query complexity and incorporate func-
tionality to better understand the nature of gene regulation.
The papers are summarized in Table 1. The first paper by
Cantor et al. [21] uses a linear mixed model statistical ap-
proach to investigate the presence of allelic heterogeneity
at eQTL. The initial eQTL were chromosomal regions
likely to harbor regulatory elements contributing to
variation in gene expression. They are identified through
linkage analysis of the quantitative expression levels within
the pedigrees. Once a region is found to be linked to the
expression levels of a particular gene through linkage, indi-
vidual SNPs within the region are tested for association
with the expression levels. Given the current focus on an
initial association study, rather than linkage analysis
followed by an association study, eQTL have come to refer
to the SNPs associated with variation in gene expression.
We use the term interchangeably here, depending upon
the analysis used to generate the result.
Cantor et al. [21] used the SOLAR-MGA [18] and

FaST-LMM [28] software to account for the non-
independence of pedigree members in the GAW19 ex-
pression data. Prior to investigating the real data, type 1
statistical errors and power were estimated using the
simulated trait data provided for workshop participants.
This group reports comparable power and type 1
errors for the two programs for analyses examining
individual SNPs. However, the investigation of eQTL
allelic heterogeneity is based on analyses that se-
quentially condition the likelihood of the data on
significant SNPs until no additional individual SNP
associations are observed. Again simulated data show
the programs are comparable.
In the second paper listed in Table 1, Howey et al. [23]

were able to find that not only is there allelic heterogen-
eity in expression levels, but that there is also evidence
that pairs of alleles interact significantly to contribute to
these traits. The authors explored 48 published SNP as-
sociations with blood pressure and expression traits in
the GAW19 sample. Similar to Cantor et al. [21], family
relationships were taken into account using linear mixed
models as programmed in FaST-LMM. Marginal SNP
associations with blood pressure–related traits were
not significant; 13 SNP interaction pairs, however, were
tested using the GEMMA (genome-wide efficient mixed-
model analysis) [30] software, which uses an estimated
kinship matrix, and the authors report evidence of interac-
tions contributing to expression levels. Specifically, there
were 2 clear SNP × SNP interactions, as well as an overall
p value of 0.017 for simultaneously testing all considered

interactions, supporting this aspect of eQTL complexity
along with allelic heterogeneity.
In the third paper listed in Table 1, Peralta et al. [22]

present an approach to detect cis-regulatory loci using
the physical property of allele-specific chromatin accessi-
bility as weights in a kernel variance component test. Cis
loci are those within a small distance of the gene on the
chromosome and would represent local gene regulation.
Their work is based on the observation that chromatin
remodeling processes, such as those associated with
transcription, create openings in the chromatin that can
be detected as DNase-I hypersensitivity sites. They allow
transcription factors to interact with the underlying
DNA. The functional potential of a locus was estimated
as the departure from the expected equal chromatin
accessibility of 2 alleles within a locus.
The authors constructed 2 covariance kernels from the

GAW19 data. One was weighted by the functional po-
tential of the SNPs, specifically based on those known to
be heterozygous at DNase-I hypersensitivity sites in the
public ENCODE (Encyclopedia of DNA Elements) gen-
ome DNase-I sequence data. These covariance kernels
were then used in a test of association. The authors used
a variance component approach with both the weighted
and nonweighted covariance kernels to test genetic vari-
ants with putative allele specific effects on gene regula-
tion. The SOLAR software was used construct these
association tests in the presence of the pedigree struc-
tures. Evidence of potential cis-regulatory effects for 10
transcripts was detected, 2 of which appeared only when
the weightings were used in the analysis. One may con-
clude from this work that incorporating evidence of
functionality can improve the detection of cis-regulatory
elements.
The third set of papers, summarized in Table 2, investi-

gated the relationship between gene expression and
phenotype (blood pressure or hypertension), with or with-
out making use of genetic data. Most papers focused on
pairwise relationships between variables, testing separately
for association between genotype and gene expression
and/or between gene expression and phenotype, but Tong
et al. [26] used a similarity-based weighted U statistic
approach to jointly model effects of genotype and gene
expression on phenotypes, and found some advantage
(in terms of significance levels of association analyses)
by incorporating both genotype and gene expression mea-
sures into the analyses. Ainsworth and Cordell [27] took
forward individual gene expression probes and WGCNA
module eigengenes showing association with phenotype
(SBP and DBP), together with SNPs that associated with
the relevant gene expression measures, for causal model-
ing using either SEM or a BUF [29]. Although only weak
overall levels of significance were observed, SEM and BUF
were generally in agreement in their assessment of the
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underlying causal model, with the most commonly
identified model suggesting a causal pathway that led from
SNP genotype through gene expression to phenotype.
Pitsillides et al. [24] identified the same associations be-
tween gene expression and blood pressure that had been
identified by Ainsworth and Cordell [27], and also identi-
fied many highly significant associations between genotype
and gene expression of nearby genes (so-called cis-eQTL),
with a significant enrichment of cis-eQTL occurring in
known blood pressure loci and regulatory regions. Rad-
kowski and Wątor [25] identified gene expression probes
in 6 well-annotated genes that are potentially predictive of
hypertension dynamics (change in blood pressure over
time). Although the overall predictive accuracy was not
great (cross-validation R2 of 0.1459), 2 of the genes identi-
fied, IFNAR1 and NOX3, have previously been implicated
in the pathogenesis of hypertension.

Conclusions
The GAW19 gene expression group used the expression,
genotype, and phenotype data (both real and simulated)
provided by the organizers to apply, develop and evaluate
analytic methods and pursue biological questions relevant
to an overarching goal of understanding the regulation of
gene expression data in genetically complex disorders.
Most contributions capitalized on or corrected for the fact
that these data were measured on multiple members of
large pedigrees, and thus the data could not be treated as
study samples of independent individuals. Most frequently
used analytic methods for expression data are based on
this assumption of independence of members of the study
sample and most studies are conducted on samples of
unrelated individuals. Thus, analysis of the pedigree data
was a challenge and an opportunity for the members of
our gene expression group. The family structures allowed
Gallaugher et al. [19] to investigate familiality of gene
expression, Tissier et al. [20] to develop a method to
incorporate family structures in the WGCNA gene ex-
pression studies, Cantor et al. [21] to apply and compare
linear mixed models approaches that have recently been
developed, and Howey et al. [23] to incorporate linear
mixed models into the testing of gene interactions for the
expression traits.
To investigate familiality of gene expression, Gallaugher

et al. [19] conducted a principal components analysis of
the gene expression data, and tested the principal compo-
nents for correlations with several potential covariates,
where one of them was pedigree membership. The stron-
gest covariate association was a highly significant associ-
ation across the pedigrees for the second principal
component and average gene expression. Three pedigrees
were considered outliers. The group reasoned that this
phenomenon could be due either to pedigree-specific
genetic variation, technical artifacts, or clinical factors.

Technical artifacts were ruled out, however, regardless of
its cause, Gallaugher et al. [19] concluded that such
familiality should be addressed when pedigree members
are included in an analysis so as to avoid type 1 statistical
errors. In addition, these investigators added to the grow-
ing body of evidence supporting the notion that gene ex-
pression is familial. Identifying the factors contributing to
this familiality, such as tissue type or stage of develop-
ment, will lead to a better biological understanding of the
process and result in improved study designs.
In complementary work, Tissier et al. [20] developed

their own method to incorporate family structure into
the gene expression studies using WGCNA. This is a
valuable addition to a method designed for the analysis
of independent individuals. The authors built a coex-
pression network for each family and then combined the
results across families. Comparison was conducted with
2 simpler approaches: (a) ignoring correlations among
the family members and (b) decorrelating the gene ex-
pression by using the residuals of a mixed model and a
single-probe analysis. That is, with the lack of simulated
gene expression data, they had to evaluate their ap-
proach by contrasting their results with those of the
other methods. Although, not definitive, they found that
their method provided more significant results than the
other two. Additional research on their approach could
provide an important addition to WGCNA.
To address pedigree structure with existing software,

Cantor et al. [21] used linear mixed models to identify
eQTLs with SOLAR-MGA and FaST-LMM, and Howey
et al. [23] used FaST-LMM and GEMMA (genome-wide
efficient mixed-model analysis). Unlike Tissiers et al’s
[20] approach, this software is designed for a simple
assessment of SNP association and interactions and to
identify cis-eQTL. Cantor et al. [21] found that for both
single SNP assessment and conditional analyses, these
programs had similar type 1 and type 2 errors, and the
type 1 errors were as expected for both programs. The
advantage of FaST-LMM is that kinship relationships
among the individuals do not have to be made explicit.
The pedigree data with simulated phenotypes provided
by the Workshop allowed an evaluation of this software
for related individuals, and thus these programs are rec-
ommended to investigators exploring expression data
with pedigrees.
Three papers focused on biological aspects of gene ex-

pression, Peralta et al. [22] used biological complexity to
develop a statistically rigorous method to incorporate a
biological feature of genes, DNase-I hypersensitivity
sites, into tests of association. They built 2 covariance
kernels, one nonweighted and one weighted by the func-
tional potentials, and conducted kernel-based variance
component association analysis. They found evidence of
potential cis regulatory effects, where a stepwise removal
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of the cis-located SNPs from the weighted kernel results
in a nonsignificant association signal. Using this method-
ology, they found evidence of allele-specific cis-regulation
for 4 transcripts with both kernels.
Addressing the potential complexity of eQTL, Cantor et

al. [21] provided evidence of allelic heterogeneity at cis-
eQTL, and Howey et al. [23] illustrated a second source of
complexity by testing for and identifying epistasis in gene
regulation. We thus have evidence of (at least) 2 sources
of complexity in the genetics of gene expression.
The papers in our group that incorporated genotype

and phenotype data together with measurements of gene
expression investigated whether the integration of these
different data types (either, explicitly through joint model-
ing, or implicitly, through incorporation of prior biological
knowledge) could generate improved levels of statistical
significance and/or increased biological understanding re-
garding underlying causal mechanisms. Although only
weak overall levels of significance were observed with
regard to phenotype, in general the incorporation of dif-
ferent data types was found to be somewhat advantageous
in terms of generating improved levels of significance and
providing more interpretable biological models.
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