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Introduction

The genomics era opened a door to understanding genetic changes 
in susceptibility to diseases, such as single nucleotide polymor
phisms, gene copy number variations, and gene deletions and inser
tions (Zerhouni 2014). The subsequent explosion of related “omics” 
approaches, including transcriptomics, metabolomics, and proteomics, 
have provided more details of how gene regulation and protein produc
tion are implicated in human disease mechanisms. 

However, many human illnesses such as cancers, diabetes, immune 
system and neurodegenerative disorders, and respiratory and cardio
vascular diseases are caused by a complicated interplay between 
multiple genetic and environmental factors (Lango and Weedon 
2008). The environmental counterpart to genomics is exposomics, 
which aims to capture an individual’s lifetime exposure to external 
factors (e.g., infections, environmental chemicals, drugs, radiation) 
measured via biomarkers in blood, urine, feces, or breath samples. 
It provides an opportunity to develop an environmental analog of 
genomewide association studies, similarly top down and hypothesis 
free (Lioy and Rappaport 2011).

Another emerging omics tool is epigenomics—the study of changes 
in gene activity not attributable to DNA sequence alterations (e.g., 
DNA methylation and chromatin remodeling). Epigenetic changes 
including inherited effects and environmentally induced alterations are 
implicated in disease causation, and epigenomics is being developed 
in disease research. The U.S. National Institutes of Health (NIH) 
Roadmap Epigenomics Consortium has provided detailed human epig
enomic maps to enhance studies of human disease and development 
(NIH Roadmap Epigenomics Consortium 2015). Epigenomics is also 
being explored in environmental health research with many exposures 
being associated with adverse health effects (Shenderov and Midtvedt 
2014). These developments provide an unprecedented opportunity to 
add a new dimension to the study of human diseases. 

The 21st century has seen these and many other pivotal advances 
in science and technology: Together, they offer, for the first time, the 

possibility of gaining a dynamic systemslevel and humanspecific 
understanding of the causes and pathophysiologies of disease 
(van de Stolpe and Kauffmann 2015). This understanding is a vital 
need, in view of current failures (Scannell et al. 2012; Kaitin and 
DiMasi 2011) in health research, drug discovery, and clinical transla
tion (Collins 2011). But these developments in humanspecific models 
and tools require a new research paradigm to unlock their full poten
tial. We suggest it is time for a novel, overarching paradigm for medical 
research based on adapting and applying the transitional process 
underway in toxicology that includes reducing reliance on animal 
models, and instead emphasizing human biology and approaches based 
on multiscale pathways. 

Discussion
In future health research and drug discovery, diseases can be  envisaged 
as the combined outcome of extrinsic causes that include many 
types of exposures, not just chemical exposures, and intrinsic genetic 
and epigenetic changes (e.g., Gohlke et al. 2009) that interact at 
multiple levels (Figure 1). This combined approach would provide a 
more coherent “big picture” by linking environmental sciences with 
medical research.

Some of the thinking required to develop a more comprehensive 
framework for understanding disease causation has already begun. 
Toxicologists and environmental health scientists are already devising 
new models that explore synergies between toxic exposures and infec
tious pathogens in complex diseases, exemplified by interactions 
between the hepatitis B virus and aflatoxin in liver cancer (Birnbaum 
and Jung 2010).

A new medical research paradigm. To maximize the value of 
advanced models and technologies, we believe that a new paradigm 
is needed for fundamental research into human diseases and for drug 
discovery. The focus should move decisively away from preclinical 
animal studies and overly simplistic cell models toward a systems 
biology framework to integrate new types of scientific data, such 
as from omics, novel humanspecific in vitro models, and clinical 
studies. Such a framework would help enable a comprehensive and 
dynamic understanding of disease causation and pathophysiology. 

A concept that systematically describes links between causes of 
disease and outcomes could be repurposed from 21stcentury toxi
cology. Since the publication of the U.S. National Research Council 
(NRC) report calling for a new paradigm (NRC 2007), a transition 
in toxicology has been underway, actively supported by U.S. regula
tory and research agencies both from environmental and medical 
arenas (Collins 2011), as well as by the European Union [Scientific 
Committees on Health and Environmental Risks (SCHER) et al. 
2013]. The focus in toxicological research turned first to under
standing toxicity pathways––the normal cellular processes involving 
genes, proteins, and small molecules that lead to adverse human 
health effects when significantly perturbed by chemical toxicants 
(NRC 2007). 

The notion of the celllevel toxicity pathways described in the 
NRC report (2007) has already been extended to the broader concept 
of adverse outcome pathways (AOPs), thereby addressing the sequence 
of changes between the molecular initiating event (e.g., a chemical 
binds to a cell receptor) and adverse outcomes at the molecular, 
cellular, organ, organism, and population levels. An AOP is a standard
ized way to describe concisely the critical mechanisms of toxic effects 
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Summary: Biomedical developments in the 21st century provide 
an unprecedented opportunity to gain a dynamic systems-level and 
human-specific understanding of the causes and pathophysiologies 
of disease. This understanding is a vital need, in view of continuing 
failures in health research, drug discovery, and clinical translation. The 
full potential of advanced approaches may not be achieved within a 
20th-century conceptual framework dominated by animal models. 
Novel technologies are being integrated into environmental health 
research and are also applicable to disease research, but these advances 
need a new medical research and drug discovery paradigm to gain 
maximal benefits. We suggest a new conceptual framework that 
repurposes the 21st-century transition underway in toxicology. Human 
disease should be conceived as resulting from integrated extrinsic and 
intrinsic causes, with research focused on modern human-specific 
models to understand disease pathways at multiple biological levels 
that are analogous to adverse outcome pathways in toxicology. Systems 
biology tools should be used to integrate and interpret data about 
disease causation and pathophysiology. Such an approach promises 
progress in overcoming the current roadblocks to understanding human 
disease and successful drug discovery and translation. A discourse 
should begin now to identify and consider the many challenges and 
questions that need to be solved.
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and is enabling the emergence of a new predictive 
toxicology paradigm [Organisation for Economic 
Cooperation and Development (OECD) 2012]. 
This paradigm contrasts with classical toxicology 
where socalled apical toxicity end points are 
studied in a series of animal tests for different 
kinds of toxic effects [e.g., cancer, reproduc
tive and developmental toxicity, or skin allergy 
(sensitization)]. However, this traditional black 
box approach sheds little light on the underlying 
pathways of toxicity. Rather, it merely presents an 
end result that is not easily accessible to deeper 
analysis or understanding. 

Because of its potential to contribute to 
deeper knowledgebased human and environ
mental health assessments, the AOP concept 
is now established as a comprehensive frame
work at the OECD to support its international 
regulatory programs on chemical toxicology 
(OECD 2013). The OECD has published the 
first well characterized AOP, describing chem
ical potential for causing skin allergy (OECD 
2012) (Figure 2), and many others are under 
development (e.g., Vinken et al. 2013) and 
review. An essential component of the OECD 
program is the AOP Knowledge Base (AOPKB; 
http://www.aopkb.org) that facilitates scientific 
collaboration on an international scale to aid both 
the development and evaluation of AOPs. 

Repurposing the AOP concept for human 
health research. We now suggest a novel 
step in the evolution of pathway concepts––
the incorporation of the AOP construct into 
human health research and drug discovery. 
Our proposed disease AOPs, like AOPs in 
toxicology, would describe a chain of causally 
linked key events causing downstream effects at 
several biological levels and provide clear mechanistic rationales for 
diagnostic, preventative, and therapeutic interventions in the era of 
personalized medicine. 

The important commonalities between safety science and health 
research, drug discovery, and clinical translation argue for the relevance 
of the AOP concept in all these fields. These common features include 
a) human biological pathways whose response continuum encompasses 
efficacy, adaptation, and adversity; b) shared research tools and tech
nologies (e.g., in vitro models, analytical approaches, computational 
modeling); and c) the benefits of betterstructured and transparent 
weightofevidence decisionmaking frameworks, whether for chemical 
safety or drug efficacy, that can integrate all the data inputs. 

Our proposed AOPs for human diseases are a natural extension 
of the AOPs developed in toxicology. The central steps will likely be 
similar, although the molecular initiating events will be more varied. 
For example, as well as chemical perturbations, infectious and genetic 
factors may initiate the disease process. Nevertheless, the principles 
and basic biology will be shared between disease AOPs and toxicity 
AOPs, and the related information could be integrated into the existing 
OECD AOPKB, including information compiled by several programs 
designed to leverage big data such as the NIH Big Data to Knowledge 
initiative (https://datascience.nih.gov/bd2k/), as well as information 
from existing pathways and bioinformatics databases [e.g., the Kyoto 
Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/)] 
and the gene–disease database DisGeNET (http://www.disgenet.org/). 

In the context of disease research and drug discovery, our disease 
AOP concept would provide a unified framework for describing 

relevant pathophysiological pathways and networks across multiple 
biological levels and for encompassing extrinsic and intrinsic causes. 
Describing these pathways and networks, along with anchoring 
molecular initiating events with adverse outcomes, our AOP frame
work would represent a significant advance over existing concepts, 
such as disease mechanisms that are often studied in isolation and 
biological pathways or networks (e.g., for cancers) that are invariably 
considered only at the molecular or cellular levels.

The disease AOP approach would better exploit advanced 
 experimental and computational platforms for knowledge discovery, 
since the emergence of AOP networks will identify knowledge gaps 
and steer investigations accordingly. A commitment to build, curate, 
and disseminate a pathways framework within the biomedical research 
field would thus provide considerable impetus to base decisions on 
mechanistic understanding rather than empirical observation, as has 
been the case in toxicology. 

Advanced human-specific disease models. In addition to a stra
tegic and integrated knowledgebased exploitation of omics tools and 
the introduction of the AOP concept, we further propose a strong 
focus on humanspecific models. Advanced humanspecific cell and 
tissuebased models (e.g., Singh et al. 2011) and nextgeneration 
tools are making possible a fuller, dynamic comprehension of disease 
pathophysiology and a more reliable and costeffective drug discovery 
process (Muotri 2015). 

Humaninduced pluripotent stem cell technology offers unique 
access to healthy as well as patient and diseasespecific in vitro cell 
models (Bellin et al. 2012). This could help achieve the holy grail of 

Figure 1. Integrating data on extrinsic and intrinsic causes of disease using systems biology provides a 
more comprehensive understanding of human illnesses. The adverse outcome pathway (AOP) concept 
links exposure, via chemical structure (or structures), the molecular initiating event, and key events, to 
an adverse outcome.

EXTERNAL INTERNAL

Application of the adverse outcome pathway concept

External influences 
(exposome):
Including chemicals (via 
consumer products, food, 
water, air, soil & dust), 
drugs, infections, 
behaviour, occupational, 
stress, smoking, ageing, 
nutrition, radiation.

Genetic effects (genome):
Susceptibility genes, up- and 
down-regulation of genes, 
germline & somatic mutations 
(including drug-, chemical- & 
radiation-induced), inherited 
single nucleotide polymorphisms, 
gene copy number changes, 
insertions, deletions, exome 
changes, accumulation of DNA 
damage (ageing).

Adverse effects at cellular, 
organ & individual levels. 
Cellular/organ pathways may 
locate in immune function, 
apoptosis, calcium homeostasis, 
oxidative stress, growth factor 
signalling, nerve degeneration, 
etc. Individual-level effects 
would include embryonic 
development, disease, & death.

Epigenetic effects (epigenome):
Defects in the epigenome can 
cause disease & may be specific 
to tissue or cell types. Defects 
include changes in the localised 
or global density of DNA 
methylation; post-translational 
modifications of histones; 
changes in non-coding 
microRNAs; & changes in 
chromatin structure, which 
together alter the regulation of 
gene expression.

e.g. gene regulation
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relating disease genotype to phenotype, for example by correlating 
individual genetic variants with gene expression patterns, disease path
ways, and associated outcomes. Models derived from human stem 
cells have been developed to enhance research into autism spectrum 
disorders (Marchetto et al. 2010), cardiovascular disease (Zanella 
et al. 2014), Alzheimer’s disease (Choi et al. 2014), and many other 
illnesses. In some instances, insights about molecular disease mecha
nisms and drug effects have emerged from human stem cell systems 
that were previously missed in nonhuman models (Marchetto et al. 
2010; MitneNeto et al. 2011).

Human organonachip culture devices, combining microfluidics 
with two and threedimensional cell culture, aim to reproduce key 
architectural, physical, functional, and biochemical features of human 
organs in vitro. Within miniature cell chambers, highly controlled cell 
culture allows in vivo–like interactions between multiple cell types 
(van de Stolpe and Kauffmann 2015). Identifying and independently 
varying critical cellular and molecular disease contributors is difficult 
in animal models, but in microfluidic systems, molecular factors and 
different cell types can be varied independently and simultaneous 
measurements of realtime systemlevel responses become practical 
(Benam et al. 2015; van de Stolpe and den Toonder 2013). There 
are already prototype microfluidic models for diseases of the heart, 
lung, intestine, liver, and kidney and of the vascular, endocrine, 
 musculoskeletal, nervous system, and more (Benam et al. 2015). 

Key information is also provided by studies of ex vivo biopsied 
or postmortem human tissue (Zerhouni 2014; Beach 2013) using 
powerful analytical tools such as nextgeneration sequencing (Twine 
et al. 2011), and novel multiplexed fluorescent in situ cell and tissue 
visualization technologies for proteins, DNA, and RNA molecules 
(Weibrecht et al. 2013) using digital pathology platforms that enable 
quantification of complex staining patterns. In addition, advanced 
mass spectrometry techniques can provide highthroughput, compre
hensive, and quantitative information about proteins in clinical cell 
(e.g., tumor biopsies) and biofluid samples (e.g., urine, saliva, or 
plasma) at high sensitivity (Jimenez and Verheul 2014). Interpreting 
omics data from healthy and diseased tissues using bioinformatics 
tools has revealed associations with multiple pathways important in 
(patho)physiology (Andreev et al. 2012), including information on 
the status and dynamics of regulatory gene networks and pathways 
(Tonevitsky et al. 2013). Access to biobanks with wellcharacterized 
human tissues, cells, and biofluids from phenotyped patients and 

controls will also be important. Finally, advanced clinical studies to 
obtain in vivo human information (the true gold standard model) also 
have much to offer. They may provide new insights into pathology 
(Rosén et al. 2013; Ledford 2008) and anchor research models of all 
kinds to realworld illnesses in humans (Koren et al. 2007). 

Multidisciplinary data should be integrated and interpreted by 
means of systems biology tools (van der Sijde et al. 2014). New 
bio informatics approaches become even more powerful with the 
incorporation of cell biology data, and systems biology offers ways 
to integrate computational and experimental methods at multiple 
scales from biochemistry through to individual levels (Figure 2). 
Development and adaptation of integrated software platforms 
are central to efficient and effective use of data and for predictive 
 computational modeling (Ghosh et al. 2011). 

Toward a new research paradigm. The key driver for a new para
digm in health research is the slow progress scientists have made in 
understanding human disease. This has resulted in a lack of success in 
drug discovery and translation of laboratory findings into effective ther
apies and in the spiraling investment of resources wasted by latestage 
drug failures (Kaitin and DiMasi 2011). There are many reasons for 
failures in translation to the clinic, but the reliance on animal models, 
which are limited by species and strain differences and yet continue to 
dominate decisions throughout the drug discovery and development 
process, is a key issue which urgently needs to be addressed (Collins 
2011; Langley 2014; Pound and Bracken 2014; Seok et al. 2013). The 
second driver is the emergence of novel scientific tools and models that 
enable, for the first time, advanced approaches that could revolutionize 
our understanding and treatment of human disease (Collins 2011). 

The transformational potential of 21stcentury scientific advances 
will not be realized if they are simply added to a growing list of existing 
methods within an outdated 20thcentury paradigm of health research 
and drug discovery. Medical research is now poised to capitalize on the 
same paradigm shift that is transforming toxicological science, in terms 
of the overarching framework of research and how data are interpreted 
and integrated. Toxicology increasingly emphasizes improving predic
tion by human biologybased models and by focusing on AOPs to 
exploit systems biology thinking and advanced mathematical modeling. 
Recognition of the need to change direction to a humanbased, multi
scale–pathwayfocused paradigm is critical, as is confidence in the new 
approaches. Recognition and confidence are increasingly reflected in 
major programs such as the U.S. funding commitment in the 2016 

Figure 2. Diagram showing different pathways concepts, including the well-characterized adverse outcome pathway (AOP) for chemically induced skin allergy, 
from chemical structure through molecular initiating event, key events and adverse outcome. DCs, dendritic cells; QSAR, quantitative structure–activity relation-
ships. Reprinted from Encyclopedia of Toxicology, Vol. 1, 3rd ed. Adverse outcome pathways: development and use in toxicology, pp. 95–99, 2014, with permission 
from Elsevier. 
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budget for a precision medicine initiative involving the omics and a 
million research volunteers (Collins and Varmus 2015) and, in toxicology, 
the OECD’s AOP Development Programme (OECD 2013). 

Conclusions
Our proposed new research paradigm, adapted from 21stcentury 
toxicology, would involve the following aspects:
• Developing a big picture of human diseases, integrating extrinsic and 

intrinsic causes, and linking environmental sciences with medical 
research using systems biology.

• Introducing a disease AOP concept, analogous to toxicity AOPs, 
with the intention of providing a unified framework for describing 
relevant pathophysiology pathways and networks across multiple 
biological levels.

• Creating a strong focus on advanced humanspecific research 
(in vitro, ex vivo, in vivo, and in silico) in place of empirical, animal
based studies.

To accomplish the goals outlined in this article, many questions 
will need to be considered:
• To what extent can existing and emerging human models and tools 

be applied to replace animal studies? 
• Where are the knowledge and technology gaps? 
• How can big data be synthesized into actionable knowledge? 
• Can computational models effectively bridge the in vitro–in vivo 

divide? 
• How easy will it be to optimize the derivation of enriched populations 

of diseaserelevant cells from humaninduced pluripotent stem cells? 
In summary, a new coherent roadmap for medical research promises 

progress in several areas: 
• Revealing common disease pathways.
• Discovering new and multiple human drug targets.
• Improving translation. 
• Reducing latestage drug attrition.
• Facilitating drug repurposing.
• Contributing to the development of personalized medicine. 
• Achieving more reliable and valid data in faster time frames and at 

lower costs. 
It will take a formidable effort and redeployment of funds (e.g., away 

from efforts to improve animal models) to achieve the new paradigm 
of a multiscale–pathwaysbased, humancentered concept for disease 
research. We hope this article will help launch a serious discourse among 
researchers, policymakers, regulatory agencies, and researchfunding 
organizations around the world and encourage those who have already 
begun to think along these lines. Unless rethinking of the 20thcentury 
research paradigm starts now, benefits to patients from 21stcentury 
scientific and technological advances will be unduly delayed. 
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