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Abstract 

We often make decisions on behalf of others, such as picking 
out gifts or making restaurant recommendations. Yet, without 
direct access to others’ preferences, our choices on behalf of 
others depend on what we think they like. Across two 
experiments, we examined whether and how accurately 
people are able to infer others’ preferences by observing their 
choices. Our results suggest that people are capable of making 
reasonably accurate predictions about what others will choose 
next, given what they have chosen before. These results lay 
the groundwork to systematically study how people make 
novel predictions about others’ preferences, and when 
different strategies might be appropriate. 

Keywords: preference learning; social cognition; Theory of 
Mind; decision-making 

Introduction 
People often make choices to please others, such as 

buying gifts or making restaurant recommendations. The 
effortlessness of these mundane, everyday decisions belies 
their underlying complexity. Others’ preferences may differ 
from our own, and we do not have complete knowledge of 
what they like. Therefore we must base our decisions on 
what we think the other person likes or wants. These choices 
are easy when we can simply give others what they have 
chosen before; even infants can cast aside their own 
preferences to give others foods that they clearly like 
(Repacholi & Gopnik, 1997; Doan et al., 2015). 

 However, choosing for others is rarely so simple. For 
example, suppose you are recommending a movie to a 
friend. You might remember some movies your friend has 
watched and liked before, but recommending exactly those 
movies would hardly be useful to her. Thus, it is often 
insufficient, even inappropriate, to simply choose what 
others have liked before. Instead, you would most likely 
consider movies that your friend has not seen before and 
choose the one you think she would like best. How do 
people make these novel choices on other people’s behalf? 

In many cases, people’s own preferences provide a useful 
template for reasoning about other people’s preferences. For 
example, you might recommend whatever movie you like 
best, under the assumption that your friend has similar 
tastes. Indeed, people tend to project their own desires and 
beliefs to those who are perceived to be similar (Ames, 
2004). This is a useful strategy for predicting others’ 
choices, especially when we have sparse, noisy, or 
ambiguous information about their preferences. 

However, it is not a perfect strategy; other people’s 
preferences do not always align perfectly with our own.  
Observing what others have liked before is another valuable 
source of information. Humans are capable of drawing 
powerful generalizations from sparse, noisy data (see 
Tenenbaum et al., 2011, for a review). Even young children 
draw systematic inferences about others’ goals, preferences, 
and beliefs in ways that go beyond the observable evidence 
(Hamlin et al., 2007; Gweon et al., 2010; Kushnir et al., 
2010). Previous work has formalized this process as 
“inverse planning,” working backwards from others’ 
observable actions to infer the unobservable mental states 
that generated them (Baker et al., 2009). Thus, people might 
use others’ past choices to generate an abstract 
representation of their preferences, abstracting from the 
specific items that others have chosen to spot qualities that 
they might also enjoy in novel items. This would be akin to 
reasoning from a few movies that your friend has liked 
before—such as Love Actually, Pretty Woman, and 
Sleepless in Seattle—that she likes romantic comedies, and 
that she might enjoy other romantic comedies. 

The ultimate goal of the present work is to better 
understand how people generalize from observed previous 
choices to make predictions about what others would choose 
next—as a first step, we ask whether and how accurately 
people can do this. Experiment 1 validates key features of 
our approach, and tests whether people can generalize from 
others’ choices in a simplified context. In Experiment 2, 
participants (henceforth “observers”) were faced with a 
more naturalistic—and much more challenging—task: they 
observed choices made by a previous participant (the 
“target”) among one set of movies, and then predicted what 
the other person chose among a completely different set of 
movies. 

Experimental Task: Choosing Novel Movies 
The experimental task used here was designed to mirror 

the everyday task of recommending a movie to a friend 
(Figure 1). We created posters and plot synopses of novel 
movies that varied along three features: valence (positive or 
negative), setting (historical or futuristic), and genre 
(romantic or action). Each of the three features was varied 
orthogonally to generate 8 categories of movies; 4 movies 
were made for each category, resulting in 32 novel movies 
total. All movies were normed on Amazon Mechanical Turk 
by an independent group of raters (n = 90; data not shown) 
to ensure that each movie was categorized according to its 
intended features. The benefit of using novel movies is 
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twofold: first, we mitigated the potentially complex effects 
of prior knowledge and familiarity, as all movies were novel 
to all participants; second, we imposed some structure on 
the features of our movies, thus simplifying the learning 
problem.  

In both experiments, participants watched the choices 
made by a target among a set of 16 movies, and then 
predicted what the same target would choose among a novel 
set of 16 movies. We considered two metrics for human 
performance. First, we directly compared observers’ 
predictions to targets’ real choices; this served as a ground-
truth indicator of accuracy. Second, we compared observers’ 
predictions to those of a mixed multinomial logit (MML) 
model. Model accuracies served as a benchmark for how 
well observers could be expected to do, given the choices 
they have seen the target make. 

MML models have been used extensively in economics to 
model consumer choices (e.g., Train, 1980); more recently, 
they have also been applied to describe the development of 
preference understanding in young children (Lucas et al., 
2014). MML models assume an agent’s preferences are: (1) 
stable over time; and (2) defined over features of objects, 
and thus generalizable to other objects with similar features. 
When choosing one option out of a set, an agent’s choices 
are probabilistically related to the utility, or attractiveness, 
of each option (Luce, 1977). Each option i is represented as 
a binary vector of its features (xi) and a vector of weights (β) 
corresponding to the agent’s preferences for individual 
features. The utility of option i (ui) is the weighted sum of 
its features (β · xi), scaled by a free parameter T that 
describes the stochasticity of the agent’s choices. (In all 
cases, T was a free parameter fit with a regularizing prior 
and the models were fit to maximize the maximum a 
posteriori estimate.) Taken together, the probability of an 
individual choosing option i from a pair of options J is 
defined as:  

 

P(ci | X,β) =
exp(β ⋅ xi /T )

j exp(β ⋅ x j /T )∑
 

 
In the experiments below, the MML model served three 

important functions. First, the model was used to describe 
targets’ own preferences: in Experiment 1a, we trained the 
model on one half of participants’ own choices to extract the 
preference weights (β), and then used these learned weights 
to predict the second half of participants’ responses. The 
model should predict targets’ choices to the extent that 
participants’ responses are reliable and that their preferences 
align well with the features we imposed on the stimuli,  

Second, the model was used to evaluate participants’ 
inferences about the target’s preferences. In Experiment 1b, 
the model was trained on the first half of the target agent’s 
choices—the same choices that human participants 
observed—and then tested on the participants’ prediction 
about the target agents’ choices among novel options. The 
model’s accuracy reflects whether participants learned the 

feature weights that describe the other person’s choices, and 
to what extent they used these weights to predict what the 
other person would choose among a set of novel options. 

 Finally, the model was used as a descriptive tool to 
capture participants’ strategies when choosing for others. 
Most notably, in Experiment 2, we extended the model to 
not only capture participants’ inferences about the 
preferences of a target agent, but also how participants’ 
observations interact with their own preferences when 
making novel predictions about the target’s choices. 
Critically, throughout the paper, we used the model as a 
benchmark for human performance, rather than as a formal, 
computational characterization of the inferential processes 
involved in preference learning and generalization.  

Experiment 1 
Experiment 1, we tested two key assumptions of our 

approach. In Exp. 1a, we asked whether people’s 
preferences are reliable and well defined over the features 
built into our stimuli; here, participants chose whichever 
movies they liked best, and we used the MML model to 
predict their choices. In contrast, in Exp. 1b, we were 
interested in whether people are able to learn about the 
preferences of others after observing a series of choices. 
Here, we simplified the learning problem by having 
participants learn about a simulated agent whose preferences 
can be perfectly described in our feature space, and who 
deterministically chooses the option with highest utility. 
Taken together, Exp. 1 serves to validate our overall 
approach and pilot a behavioral paradigm that can be used 
to study preference learning under noisier, richer conditions.  

Experiment 1a: Choosing for self 
Participants: 40 adults participated in an online 

behavioral experiment for pay through Amazon Mechanical 
Turk. All participants in this and subsequent experiments 
had U.S. IP addresses and provided informed consent in 
accordance with the IRB at Stanford University.  

Procedure: The study was split into two rounds; in each 
round, participants saw half (16) of the 32 novel movies. 
Each round was composed of two tasks: Meet the Movies 
and Choose for Self (Figure 1a). In Meet the Movies, 
participants were shown the title, poster, and synopsis of 
each movie (Figure 1b). To ensure that participants were 
attending to and forming preferences for the movies, they 
rated how much they would like to watch each movie using 
a Likert Scale (1 – Not at all; 7 – Very much). In Choose for 
Self, participants were shown pairs of movie posters that 
they had just “met” and were asked to choose which of the 
two they would rather watch. There were 56 trials in this 
task (i.e., 56 pairs chosen from 16 movies), spanning all 
possible permutations of non-identical conditions. 

Experiments 1b: Choosing for other 
Participants: 50 participants were recruited for an online 

behavioral experiment through Amazon Mechanical Turk.  
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Procedure: Participants were told that they would 
observe and predict the choices of a target agent who had 
previously participated in Experiment 1a. Unbeknownst to 
the participants, the responses were generated by simulating 
the responses of an agent with pre-defined weights who 
deterministically chose the option with the highest utility. 

As before, the study was split into two rounds, and each 
round began with Meet the Movies (Figure 1a). In the first 
round, participants observed the target’s choices (Observe 
Other; Figure 1b). Participants were shown pairs of movie 
posters, and a border appeared around the movie that the 
target had chosen. To ensure that participants attended to the 
task, we asked them to imitate the target’s choice by 
selecting the highlighted movie. Instead of using all 56 
possible pairs, we excluded 8 pairs in which the artificial 
agent would be indifferent between the two movies; thus, 
participants saw 48 choices total. 

In the second round (Choose for Other; Figure 1b), 
participants were again shown pairs of movies, but were 
instead asked to select the movie that they believed the 
target had chosen. Participants were not given trial-by-trial 
feedback, but they were informed that they would receive a 
bonus based on the number of correct responses in this task. 

Note that the MML model had perfect information about 
each movie’s features, while human observers had no prior 
knowledge of the movies. Even though participants had a 
chance to “meet” the movies, we reasoned that this brief 
pre-exposure would be insufficient to eliminate their 
uncertainty about the dimensions of the feature space as 
well as the uncertainty about each movie’s features. Thus, in 
Experiment 1b, we provided keywords for each movie (e.g., 
“positive, historical, romantic”) during all tasks, making 
explicit the features of each movie. This ensured that the 
task for our human participants was comparable to the task 
imposed on our model, making the performance comparison 
more meaningful. 

Results and Discussion 
Experiment 1a: The model was trained on participants’ 

responses in the first round and tested in the second, and 
vice versa. Our measure of model accuracy (henceforth 
cross-validation accuracy) is the model’s average accuracy 
in predicting participants’ choices in each iteration; overall, 
the model accurately predicted participants’ choices in the 
test set (Cross-validation accuracy: M(SD) = 0.54(0.11), 
tested against 0.50: t(39) = 2.34, p = 0.02; Fig. 2a).  

Experiment 1b: Participants’ accuracy was near ceiling 
in the Observe Other task (M(SD) = 0.98(0.08)), suggesting 
that participants were alert and attentive during the task. 
Impressively, people showed fairly high accuracy even in 
the Choose for Other task, where participants had to use 
their previous observations to predict the target’s responses 
among a set of new movies, (M(SD) = 0.77(0.22), test 
against 0.50: t(49) = 24.27, p < 0.001; Fig. 2b). 

Overall, our model performed reasonably well at 
capturing people’s own preferences, suggesting that 
participants themselves have stable preferences that can be 

inferred and predicted by our model. Importantly, 
participants were never told about the three dimensions or 
the features of each movie in Experiment 1a—nevertheless, 
people’s preferences were well described by the model, 
suggesting that people’s preferences align reasonably well 
with the feature space we have imposed on the stimuli. 

 

 

Figure 1: (a) Task order: In Experiment 1a, participants only chose 
for themselves; in Experiment 1b, participants only chose on 

behalf of another agent. Experiment 2 combines aspects of both of 
these into a multi-session experiment.  (b) Schematic of tasks and 

example stimuli. 
 

However, we note that the model is much worse at 
predicting real people’s preferences (Experiment 1a) than 
people are at predicting an artificial target agent’s 
preferences (Experiment 1b). These results serve 
complementary functions. On one hand, Exp. 1b provides 
an approximate upper bound for human performance, in the 
extreme case where the choice data provided are as clear 
and consistent as possible. Overall, we find that observers 
perform admirably when they are provided with good 
evidence. By contrast, model performance in Exp. 1a 
provides an estimate of the quality of the evidence available 
to observers when learning from real people’s choices. 
These results suggest that real people vary wildly in the 
extent to which their choices are consistent and aligned with 
the features built into the stimuli. 

In Experiment 2, we aimed for a stronger test of people’s 
ability to learn and generalize about other’s preferences: 
having them observe a real person’s choices and asking 
them to predict their real choices. This is a much more 
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challenging task than learning from an idealized, 
deterministic target.. However, given that people perform 
very well when given very clear information, we would still 
expect people to be able to learn and generalize from real 
person’s choices, at least to the extent that targets’ choices 
are consistent and informative. 
 

 
Figure 2: Experiment 1 results. Left: Model cross-validation 

accuracy in Exp. 1a, indicating how well the model predicted each 
participants’ choices among the test set, based on weights inferred 
from participants’ choices among the training set. Right: Human 

performance in Choose for Target. 

Experiment 2 
As described above, Experiment 2 extended the previous 

experiments by having participants choose for themselves as 
well as for a target—here, the target was a real participant 
who participated earlier in the same experiment. This not 
only allowed us to test people’s ability to learn and 
generalize from noisy, messy choices of real participants, 
but also allowed us to examine the degree to which 
participants’ own preferences biased their choices on behalf 
of the target.  

Procedure: 51 participants were recruited from the 
Stanford community for a two-day experiment. On day 1, 
participants completed the Meet the Movies and Choose for 
Self tasks, matching the procedure used in Experiment 1a. 
On day 2, participants first observed a target’s choices 
(Observe Target), then predicted the target’s choices among 
a different set of movies (Choose for Target). This session 
closely matched the procedure in Experiment 1b, with the 
critical difference that participants’ responses were yoked. 
That is, participant A’s responses during the first round of 
Choose for Self were presented to participant B during 
Observe Target, and participant B’s predictions in Choose 
for Target were tested against the actual choices that 
participant A made during the second round of Choose for 
Self. In sum, each participant observed and predicted the 
responses of another participant who had come before. Data 
from 2 participants were discarded because they did not 
return for the second day of the experiment. 

Results and Discussion 
First, the model was trained on participants’ binary 

choices in one round of Choose for Self and tested on the 
remaining round; as in Experiment 1, the model described 

participants’ own preferences reasonably well (Cross-
validation accuracy: M(SD) = 0.61(0.12), test against 0.50: 
t(48) = 6.4, p < 0.001). If model accuracy is taken as a 
proxy for how consistent targets’ choices were and how 
closely they aligned to our stimulus features, then these 
results suggest that some targets’ choices were more 
informative than others, but that it is possible, on the whole, 
to generalize from the choices of targets in our sample. 

Accordingly, participants’ predictions about the target’s 
choices on a novel set of movies also matched the target’s 
actual choices reasonably well (M(SD) = 0.57(0.11), test 
against 0.50: t(48) = 4.59 , p < 0.001, Fig. 3a) — despite the 
sparseness and noisiness of the target’s choices in both 
halves of the experiment. Impressively, participants’ 
performance was comparable to that of the model predicting 
the target’s choices based on the same observations (Model 
performance: M(SD) = 0.59(0.13), paired t-test: t(48) = -
0.92, p = 0.361). When the predictions of the MML model 
were compared to participants’ predictions, we found a 
reasonable correspondence (M(SD) = 0.63, test against 0.50: 
t(48) = 7.1, p < 0.001, Fig. 3a). Most importantly, we found 
a correlation between human and model accuracy in 
predicting the target’s choices (r = 0.36, p = 0.01; Fig 3b). 
Thus, even though 57% might not seem much higher than 
chance, our results suggest that observers seized the 
underlying structure in targets’ choices when possible. 

So far we have considered a completely allocentric 
version of the MML model, which infers the targets’ 
preference weights from their previous choices and makes 
predictions based solely on these inferred weights. 
However, an alternative possibility is that one could make 
predictions by simply projecting one’s own preferences 
while completely ignoring others’ preferences, or that one 
could use a mix of these two strategies. In an exploratory 
analysis, we asked whether participants’ predictions about 
the choices of others were biased by their own preferences. 
We extended our MML model to make predictions based on 
a weighted average of self and learned target preferences, 
with the weight determined by free parameter η. Here, the 
model with η=0 is completely allocentric (i.e., made solely 
from others’ preferences), whereas the model with η=1 
makes completely egocentric predictions (i.e., made solely 
from the participant’s own preferences).  

We examined the distribution of best-fit values of η in our 
sample (Fig. 4). The distribution of best-fit values of η 
across participants peaks at η = 0, suggesting that many of 
the participants relied on their past observations of the 
target’s choices to make their predictions. There is also a 
second, smaller peak at η = 1, indicating that there is a 
second group of participants who relied solely on their own 
preferences when making decisions for others. However, 
there is a wide range of η values in our sample, suggesting 
that some participants combined self and other preferences 
to some degree when making their choices. Using a leave-
one-trial-out cross-validation procedure, we compared the 
performance of the combined model to a model that made 
choices based only on target weights (other model) or only 
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on observer weights (self model). Notably, for 7 out of the 
49 participants, the combined model predicts participants’ 
choices better than both the self and other model alone, 
suggesting that these participants were using both self and 
other preferences when making their choices.  

 

 
Figure 3: Experiment 2 results. (a) Human (left) and model (right) 
right accuracy in Choose for Target. The model shown here was 
trained solely on the target’s choices, and thus corresponds to a 
totally allocentric observer. (b) Correlation between human and 

model accuracies. 
 

Overall, we find initial evidence that people can learn 
impressively well from extremely noisy, sparse data to 
derive reasonable predictions about others’ choices, and that 
their accuracy is commensurate with the quality of the 
information gleaned from others’ past choices. We also find 
hints that people are not completely free of biases coming 
from their own preferences. 

We note that there are two limitations of the paradigm in 
its current form, which will be addressed in future work. 
First, the interpretation of η is confounded when the 
observer and target have similar preferences. In such cases, 
the model would predict choice equally well when using 
self-preferences and when using other-preferences. The 
best-fit value of η would then depend on small differences 
in choice histories and are unlikely to reflect differences in 
participants’ strategies. Second, though many targets’ 
choices align closely with our stimulus dimensions and are 
consistent from one set of movies to the other, other targets’ 
choices were not at all informative, and in these cases our 
observers were set up to fail. While we randomly paired 
each observer to a target in the current work, future 
iterations of this paradigm will screen participants with 

consistent, learnable preferences, and yoke participants to 
targets whose preferences are orthogonal to their own. 
 

 
Figure 4: Distribution of η. Smaller η indicate that participants 
chose allocentrically (i.e., based on the target’s choices), and 
higher η suggest that participants chose egocentrically (i.e., based 
on their own preferences). 

General Discussion 
Across two experiments, we found that participants can 

generalize from the choices a target has made before to 
accurately predict what the target will choose next. In 
Experiment 1a, we first verified that the model captures 
people’s own preferences, suggesting that people have 
stable preferences that can be described by the dimensions 
we have imposed on the stimuli. Experiment 1b suggested 
that participants can accurately predict others’ choices in an 
idealized scenario, where they are observing the choices of 
an artificial target whose actions are deterministic and 
perfectly aligned with predetermined features of the stimuli.  

Experiment 2 provided the main testing ground for our 
hypothesis: participants not only indicated their own 
preferences, but also grappled with the much harder task of 
learning from and predicting the noisy and often 
inconsistent choices of a real human participant. Despite the 
task being more challenging, we again found that 
participants made reasonably accurate predictions. Further, 
observers’ accuracy was commensurate with the consistency 
of the target’s choices, as measured by the accuracy of a 
simple MML model. In an exploratory analysis, we used 
this model to probe how strongly participants relied on their 
own preferences or on previous observations of the target’s 
choices in order to choose on their behalf.  

Interestingly, we found that participants’ accuracy in 
making predictions about targets correlated with the 
accuracy of the MML model. Since the performance of the 
MML model is an index of consistency of a target’s 
preferences from one set of movies to the next, this result 
suggests that participants are better able to predict the target 
if the target provides consistent data for participants to learn 
about. What happens when the data provided are noisy? One 
possibility is that participants switch to an egocentric 
strategy of projecting their own preferences onto the target. 
Here, we demonstrate that participants use a mixture of 
egocentric and allocentric strategies; future work needs to 
be done to examine the factors determining how participants 
choose their strategy. 

When we observe others’ choices, we make inferences 
about the hidden, internal states—such as preferences—that 
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motivated the choice. Using MML models that have been 
used in economics and cognitive science (Train, 1980; 
Lucas et al., 2009), we operationalize this process as 
learning the weights the other person attaches to underlying 
features that define the choice. While the model and our 
feature space are indeed too limited to capture the full 
richness and complexity of how people represent and learn 
about preferences, we believe that this simplified space is a 
good starting point for this investigation.  

Given that we have found that people can learn and 
generalize from others’ preferences, the natural next step is 
to explore how this is done. In the current work, we made 
the simplifying assumption that our stimuli varied along 
three binary dimensions; however, the feature space of 
people’s actual movie preferences is much larger. In fact, 
for the same type of items, different people could use 
different sets of features to guide their choices—for 
example, one person might pay attention to a movie’s 
reviews before choosing to watch it, while another person 
might decide which movies to watch based on the cast. As 
such, before learning which features another person values, 
observers have to first infer what features to learn about. 
This is a non-trivial problem, and it is similar to the 
structure learning problem explored in other domains of 
cognitive science (Gershman & Niv, 2010). 

Another exciting extension of this work is to examine the 
degree to which social closeness affects people’s predictions 
of others’ choices. If participants systematically 
overestimate that the people closest to them are also more 
similar to them (Savitsky et al., 2011), then they might 
choose more egocentrically for a friend than for a stranger. 
However, closeness could very well play the opposite role: 
because people have had more opportunities to observe the 
choices of their close friends, they may choose more 
accurately for their friends than for a stranger. This direction 
also converges with prior neuroimaging work, which 
suggests that watching other people receive rewards engages 
neural systems involved in reward, and that this vicarious 
reward signal is influenced by perceived similarity between 
the observer and the target (Mobbs et al., 2009). However, 
little empirical work has directly tested the neural 
computations involved in making novel choices for others 
based on abstract, generalizable preferences, or how social 
closeness might modulate neural responses associated with 
preference learning. 

The current work explored the deceptively mundane 
problem of predicting what others will like next based on 
what they have liked before. This is no small feat — other 
people’s preferences may (or may not) differ substantially 
from our own, and their choices provide only a sparse and 
noisy reflection of their preferences. Motivated by both 
classical theories on egocentric biases (Ross et al., 1976) 
and more recent computational approaches to understand 
human learning as rational inductive inferences from sparse, 
noisy data (Tenenbaum et al., 2011), our experiments 
provide important empirical groundwork to better 
understand how this feat might be accomplished.  
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