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1.  INTRODUCTION 

 

1.1  Background 

 
In the search for UXO and for discrimination between UXO and non-UXO metallic 

fragments (clutter) it is necessary to accurately determine the parameters that characterize a 

metallic object in the ground.  A search system is needed that not only detects the object 

itself but can also determine its size, shape, orientation, shell thickness and metal content 

(ferrous or non-ferrous, mixed metals).  These properties of a buried metallic object are 

referred to here as the object parameters. 

The search for UXO is a two-step process.  The object must first be detected and its 

location determined then the parameters of the object must be defined.  The first step is 

now accomplished with a variety of magnetometer and active electromagnetic (AEM) 

systems.  The AEM systems operate in the transient or frequency domain mode and at 

present use a single transmitter and up to three receivers.  The characterization phase can 

also be described as a two-step process.  A variety of incident fields are used to induce 

magnetization and current flow in different directions within the object.  The magnetic 

dipole moments induced in the body, normalized by the inducing field are known as the 

polarizabilities of the object.  The secondary fields related to these induced polarizabilities, 

as a function of frequency or time, are the measured quantities.  Interpretation could stop 

with the determination of the object location and the three orthogonal principal 

polarizabilities.  These polarizabilities and their variation with either time or frequency are 

the only fundamental object parameters that can be recovered from the inductive excitation 

of a finite body in the ground if a dipolar representation is assumed.  Presumably a catalog 

of polarizabilities could be constructed from the forward model polarizabilities for a wide 

range of potential targets and then a look-up table inversion scheme could be used to 

identify the actual dimensions and physical properties of a target.   

We have found that a powerful second step in the characterization process is to 

directly interpret the polarizabilities in terms of the principal axes of an equivalent 

spheroid.  This step yields the size and aspect ratio of the spheroid that is physically 

equivalent to the target.  Finally, the wideband target response permits the estimation of 
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both the permeability-conductivity ratio and the conductivity-permeability product so that 

each can be estimated independently.  It is unlikely that any better resolution of the shape 

of an intact UXO than its equivalent spheroid can be recovered using practical system data.  

A catalog of equivalent spheroidal bodies representing most UXOs would thus be relatively 

easy to construct for final target identification.  This more detailed second step requires the 

broadband spectral or transient response using frequencies low enough to identify the quasi 

dc magnetization response and high enough to identify the purely electromagnetic (EM), 

inductive limit, response which depends only on the size of the object. 

The concept of characterizing UXO by equivalent spheroid parameters is key to 

distinguishing intact UXO from non-UXO metal scrap.  Any UXO is expected to retain its 

fundamental shape (size, aspect ratio and symmetry about its long axis) with perhaps minor 

distortion caused by impact.  Metal scrap will have distinct polarizability signatures that 

cannot mimic these of elongated symmetric bodies.  Roughly flat sheets will have dipolar 

responses approaching these of a highly flattened oblate spheroid (close to a loop 

response), twisted sheets a principal moment orthogonal to some equivalent plane through 

the sheet with small and highly irregular minor axis polarizabilities etc.  These 

distinguishing polarizabilities, coupled with the size estimates and spatial sampling of the 

multiple receiver array are more than enough to separate small scrap from deeper targets of 

concern.   

An optimal EM system can extract from the measurements the best possible 

estimates of the location, orientation, size, shape and metal content of a buried metallic 

object in the presence of the interfering response of the ground and non-UXO metallic 

objects.  Discrimination can be achieved partly by selective filtering of the responses 

inherent in the system configuration and design and partly through post acquisition 

processing.  The target parameters are obtained by a statistical inversion of the 

measurements to establish the principal electromagnetic moments of the detected object 

and their variation with time or frequency.  
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1.2  Objectives 

 

In summary the technical objectives of this project were: 

1) To develop and demonstrate a methodology for the quantitative evaluation of existing 

AEM systems and for the design of new systems.   

2) To implement a new methodology for optimizing an AEM system for detecting and 

classifying UXO of a given class in a specified geologic setting and in a given noise 

environment.   

3) To design and build a prototype of an active EM system for detecting and characterizing 

a metallic object in the ground.     

 

1.3  Technical Approach 

 

The design methodology is based on the use of simulators, numerical models of the 

electromagnetic response of an arbitrary target in the ground to an arbitrary configuration 

of transmitters and receivers.  The variables in the simulator are the parameters of the 

targets, the parameters of the AEM system and the noise (ambient, motion, instrumental, 

and geologic).  The target parameters are the location, orientation, depth, size, shape, metal 

content and type.  A schematic of the simulator is shown in Figure 1.3.1. 

 

 
Figure 1.3.1:  Schematic diagram of the simulator.   
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Figure 1.3.2:  Schematic diagram of the optimization process.   

 

 

 
Figure 1.3.3:  Schematic diagram of the verification process.   

 
 

The simulator can be used to evaluate designs by simulating the response of a given 

system, with a given noise level, to a particular target.  Various system configurations can 
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be quantitatively compared through their respective signal to noise ratios over the same 

target.   

This forward modeling approach is useful for evaluating the relative response of 

different targets for a given system, for example in analyzing the role of loop size in 

discriminating between small, shallow, targets and deeper, larger, ones.  It is also useful for 

evaluating the ground response and modeling the spectral or transient response of various 

targets.   

The system parameters that are variables in the design are: a) the geometric 

configuration of the transmitter(s) and receivers(s) and the way in which they are mounted 

for given target objectives (the platform), b) the spatial positioning of the system (profile, 

grid, single site stand-off, etc.), c) the transmitter power and waveform, d) the system and 

ambient noise, e) the receiver bandwidth and dynamic range, f) the signal averaging time (a 

function of survey speed).  The geologic variables (geologic noise) are the values and 

variability of the ground conductivity and permeability.  A more detailed schematic of all 

the variables that contribute to the data acquired with a general AEM system is shown in 

Figure 1.3.4.   

 

 
Figure 1.3.4:  Generic AEM System. 
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In inverse mode the simulator is used to determine target properties from 

measurements with a given transmitter-receiver configuration.  At any given time in the 

transient response (or at a given frequency in the frequency domain) the response data are 

inverted to yield the location (x, y, z) of the target, its attitude and its principal 

polarizabilities (yielding an apparent aspect ratio).  In this process noise estimates (or 

measurements) are interpreted to yield error estimates of the object location, attitude and 

polarizabilities.  This inversion, at a succession of times in the transient, or at many 

frequencies, yields the object polarizabilities as a function of time or frequency, which can 

in turn yield the size, true aspect ratio and estimates of the conductivity and permeability of 

the target.  The accuracy of these property estimates depends on the time or frequency 

window over which the polarizability measurements, and their accuracies, are known.  This 

particular inversion process can be used on artificial test data to determine the bandwidth of 

the system that is needed to provide the desired accuracy in the physical property 

measurement.   

Finally, the simulator was used to determine the optimum configuration for 

detecting and characterizing the target.  In this step certain transmitter configurations are 

selected and the position and orientation of n receivers (with given signal-to-noise ratios) 

are varied until targets of various shape and depth are characterized.  The array is judged as 

optimum when the errors in target parameter estimation are minimized.  An initial analysis 

using this approach for targets of specific polarizability led to the conclusion that a system 

employing three orthogonal transmitters and a minimum of five vertical receivers deployed 

within the footprint of the horizontal loop transmitter would be optimal.  In this analysis, 

the criterion for optimization was that the sum of the squared error in the individual 

principal polarizability be a minimum.  This left open the possibility that certain 

configurations might be used to estimate one polarizability very well while yielding poor 

estimates of the other two.   

Since the accurate determination of the polarizabilities is needed to determine the 

true aspect ratio and physical properties of the target, the inversion algorithm was extended 

to determine the number of receivers and their orientation needed to resolve polarizabilities 

of any arbitrary target located beneath the transmitter-receiver array.  This analysis showed 

that more than five receivers would be advantageous but that using multiple receiver 
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orientations had little practical advantage over slightly larger arrays of only vertical 

receivers.   

The results of all these quantitative analyses led to the preliminary design of a 

configuration using three orthogonal loop transmitters and eight vertical receivers deployed 

in an asymmetric pattern in the plane of the horizontal loop.  This is shown schematically 

in Figure 1.3.5 and a photo of the bench prototype, showing one of the loop transmitters, is 

shown in Figure 1.3.6. 

 

 
Figure 1.3.5:  Schematics of the bench test acquisition setup. 

 

 
Figure 1.3.6:  Photo of the prototype system. 
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2.  INVERSION FOR TARGET PARAMETERS AND THE ROLE OF SYSTEM 

CONFIGURATION 

 

2.1  Estimating Equivalent Dipole Polarizabilities for the Inductive Response of 

Isolated Conductive Bodies 

 

2.1.1  Introduction 

Any set of currents can be characterized in terms of a set of their multipole 

moments.  The associated magnetic fields can be represented as a sum of corresponding 

multipole terms away from the currents (e.g., Jackson, 1975, p.746).  For a magnetic 

multipole term of order n, magnetic field strengths fall off as 1/r n+2, in resistive media.  

Dipole terms are the lowest order magnetic multipole terms.  At distances much greater 

than the scale of an object, dipole terms become a very good approximation to the 

magnetic fields arising from currents induced in the object.   

 In the vicinity of a conductive body, the primary magnetic field imposed by an 

external source current may be approximated by the primary magnetic field at the object 

center r0, B(p)(r0,t).  Assuming a common time variation g(t) for all primary magnetic 

field components at the object center, we define a primary field magnitude vector as  

B(0) ≡ B(p)(r0,t)/g(t).  We choose the normalization of g(t) so that g(t0) = 1 at some chosen 

time t0, for example, for a step function turn-off primary field we choose the scale of g(t) 

so that g(t) = 1 for t<0.  In practice, it is common to assume that the medium surrounding 

the object is sufficiently resistive that the magnetic fields due to currents induced in the 

surrounding medium are negligible at the body, so that g(t) is simply the transmitter 

current waveform.  Neglecting primary field gradients, the secondary magnetic fields  

B(s)(r,t) ≡ B(r,t) - B(p)(r,t)    (2.1.1) 

due to currents induced in a conductive body can be written as linear combinations of the 

magnetic fields that would be induced by primary fields of strength g(t) in the ˆ ˆ,x ,y  or 

ẑ direction at the objects center, Bx
(s)(r,t), By

(s)(r,t), or Bz
(s)(r,t) respectively; 

B(s)(r,t) = Bx
(0) Bx

(s)(r,t) + By
(0)By

(s)(r,t) + Bz
(0) Bz

(s)(r,t)  ,  (2.1.2) 

where Bx
(0), By

(0), Bz
(0) are the x, y, and z components of B(0).  Being secondary magnetic 

fields induced by a source magnetic field of strength g(t) (which is dimensionless) 
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Bx
(s)(r,t), By

(s)(r,t), and Bz
(s)(r,t) are similarly dimensionless. Forming a matrix with the 

three vectors Bx
(s)(r,t), By

(s)(r,t), and Bz
(s)(r,t) as its columns, the right hand side of 

Equation 2.1.2 is a matrix vector product;  

B(s)(r,t) = [Bx
(s)(r,t), By

(s)(r,t), Bz
(s)(r,t)] ⋅ B(0)  ,   (2.1.3) 

where B(s)(r,t), Bx
(s)(r,t), By

(s)(r,t), Bz
(s)(r,t) and B(0) considered as column vectors, the dot 

effect matrix multiplication.   

 At distances where non-dipole secondary magnetic fields are small, the secondary 

magnetic fields induced by the primary magnetic field in the  direction can be broken 

into contributions by dipole components in the x, y, and z directions;  

x̂

Bx
(s)(r,t) = mxx(t) Bx

(d)(r) + myx(t)By
(d)(r) + mzx(t) Bz

(d)(r),  (2.1.4a) 

where Bx
(d)(r), By

(d)(r), and Bz
(d)(r) are the magnetic fields of a unit magnetic dipole in 

the ˆ ˆ, ,x y  and ẑ  directions respectively, placed at the body center, and have units of 

Tesla/Amp-m2.  Quantities mxx(t), myx(t), and mzx(t) are the current dipole moments in 

these directions, for a unit primary (inducing) magnetic field in the direction at the 

object center, and have units of Amp-m

x̂
2/Tesla.  Similarly, 

By
(s)(r,t) = mxy(t) Bx

(d)(r) + myy(t)By
(d)(r) + mzy(t) Bz

(d)(r),  (2.1.4b) 

Bz
(s)(r,t) = mxz(t) Bx

(d)(r) + myz(t)By
(d)(r) + mzz(t) Bz

(d)(r),  (2.1.4c) 

with mxy(t), myy(t), mzy(t) and mxz(t), myz(t), mzz(t) the corresponding moments for 

primary magnetic fields in the ŷ  and ẑ  directions.  Assuming that the surrounding 

medium is sufficiently resistive that tertiary currents induced in the surrounding medium 

by the magnetic fields due to currents in the body can be neglected, the effective 

magnetic dipole moments correspond to the actual moments of the currents circulating in 

the body.  We make this assumption, and henceforth refer to them simply as the dipole 

moments.  Equations (2.1.4) can be written in matrix form as 

xx xy xz
(s) (s) (s) (d) (d) (d)

x y z x y z yx yy yz

zx zy zz

m m m

( ) ( ) ( ) ( ), ( ), ( ) m m m

m m m

 
    =     
 
 

B r , B r , B r B r B r B r  (2.1.5) 

where the explicit time dependence of the matrix of dipole moments has been omitted.  

The matrix of dipole moments M is symmetric (Landau and Lifshitz, 1960, p192).  

Substituting equation (2.1.5) into equation (2.1.3) gives 
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(d) (d) (d)(s) (0)
x y z( , t) ( ), ( ), ( ) (t)= B r B r B r B r M B

   (2.1.6) 

In time domain applications, M is real, in addition to being symmetric, so can be 

diagonalized by an orthogonal matrix U(t); 

L(t) = UT(t) M(t) U(t)     (2.1.7a) 

where T denotes transpose, L(t) is diagonal, with elements L11(t), L22(t), L33 (t) known as 

the principal moments of M(t), and have the same units as M  (Amp-m2/Tesla).  Equation 

(2.1.7a) expresses M(t) in coordinates given by the columns of U(t), (ui), known as the 

principal directions of M(t).  For bodies with an axis of symmetry w , w  is one principal 

direction (e.g., u1), with corresponding principal component (e.g., L11) giving the 

equivalent dipole moment induced in the w  direction for a unit primary field in the w  

direction at the object center.  The other two principal moments correspond to equivalent 

dipole moments induced in directions normal to w  for unit primary fields in those 

directions.  Symmetry of the object implies that the latter two moments are equal.  For a 

symmetric object, rotating into coordinates aligned with the object's symmetry axis 

diagonalizes M, so may be accomplished by a rotation matrix U, which is independent of 

time.   

 This definition of the equivalent dipole polarizability matrix M is consistent with 

that used by Pasion and Oldenburg (2001), and differs by a factor of µ0 from that used by 

Baum (1999).   

 As written, equation (2.1.6) represents the magnetic field B(0)(r,t) as a linear 

combination of dipole fields.  Differentiating it, one can apply the same methods to 

modeling measurements of d B(s) (r, t)/dt, with dM(t)/dt replacing M(t).  In this case, 

dM(t)/dt may be diagonalized analogously to Equation (2.1.7a); 

L’(t) = U’T(t) M(t) U’(t)     (2.1.7b) 

Where for a symmetric object, diagonalization may be accomplished with the same time 

dependent matrix as before; U’(t) = U.  Strictly speaking dM/dt and L’(t) represent 

equivalent dipole polarizability (decay) rates rather than equivalent dipole 

polarizabilities.  In common usage, they are referred to simply as polarizabilities, but can 

be distinguished by having units of Amp-m2/s-Tesla rather than Amp-m2/Tesla.   

For a given time dependence of source, g(t), equation (2.1.6) relates secondary 

fields at any time to an equivalent dipole polarizability M(t) for that time, so M(t) may be 
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estimated separately for each time.  Consequently, we drop the explicit time dependence, 

and assume that all measurements are at a single time relative to the starting time for the 

primary field pulse.   

 

2.1.2  Estimating Dipole Polarizabilities When Object Center is Known 

When the object center location is known, B(0) can be calculated for each of a set 

of sources with the same time dependence g(t).  For the i′th measurement of a set of n 

measurements, letting Bi
(0) be the primary field polarization vector at the object center, ri 

be the location of a magnetic field measurement, and be the orientation of the magnetic 

field receiver (e.g., coil), equation (2.1.6) written for the component at r

v̂ i

iv̂ i is  

T T (d) (d) (d) (0)(s)
i i i x i y i z i i( ) ( ), ( ), ( )= ⋅ ˆ ˆv B r v B r B r B r M B



i( )

  ,   (2.1.8) 

one (scalar) equation constraining the six unknown dipole polarizabilities mxx, myy, mzz, 

mxy = myx, myz = mzy, and mxz = mzx, for each receiver source combination.  This can be 

rewritten as  

di = f i xx mxx + f i yy myy + f i zz mzz + f i xy mxy + f i yz myz + f i xz mxz ,  (2.1.9) 

where , and the coefficients f T (s)
i id ≡ v̂ B r i xx , f i yy , … , can be found by multiplying 

out the vector and matrix products on the right side of equation (2.1.8), substituting mxy, 

myz, and mxz for myx, mzy, and mzx, and identifying the coefficients of mxx, myy, mzz, mxy, 

myz, and mxz.  Equations (2.1.9) can be written in matrix form as 

d = F m ,      (2.1.10) 

where m = (mxx, myy , mzz , mxy , myz , mxz )T , which has least squares solution  

m = (FT F)–1 FT d .     (2.1.11) 

The dipole polarizability moment matrix M can be assembled from the elements of m, 

using the symmetry of M.   

 

2.1.3  Estimating Dipole Polarizabilities and Object Center Location 

When the object center position r0 is unknown, one may form equation (2.1.8) 

using dipole fields Bx
(d), By

(d), Bz
(d) calculated for dipoles centered at some candidate 

object center position r0, and primary field polarization vectors Bi
(0) at the candidate 
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object center position, form equation (2.1.10), and calculate the least squares dipole 

polarizabilities m for that candidate center location, m (r0).  Its squared misfit is 
22

0( ) /σχ ≡ − ˆd d r 2

T

  ,     (2.1.12) 

where σ2 is the squared measurement uncertainty, and 
1

0( ) ( )−≡ Td̂ r F F F F d      (2.1.13) 

is the best fitting data predicted for this choice of r0.  Matrix F depends on r0 through Bx 
(d), By (d), Bz (d), and Bi (0).  We find the position r0 giving a minimum of squared misfit 

(2.1.12), using the downhill simplex algorithm (Press, et al., 1986, p. 289), started from 

four candidate center locations, r0
(j), j=1,..., 4 at the corners of a tetrahedron with edges 

one quarter of the length of the maximum separation of receiver locations, centered one 

half the maximum receiver separation below the receivers.  The downhill simplex 

algorithm moves the corners of the tetrahedron systematically expanding or contracting 

as necessary to arrive at a minimum of the minimized function, (the squared misfit), and 

ends when the corners have converged within a small tolerance of each other, or the 

function values at the four corners are within a small tolerance of each other. 

 

2.1.4  Estimating Dipole Polarizability Uncertainties 

For data with small measurement errors, the uncertainty in the resultant dipole 

polarizabilities and equivalent dipole position (object center) may be obtained from 

analysis of a linearized inversion for dipole polarizabilities and position.  Denoting dipole 

components at the i′th receiver in the receiver direction vi by 

i1
(d) T (d) (d) T (d) (d) T (d)

u x i i2 u y i i3 u z iB ( ), B ( ), B ( ),ˆ ˆ ˆv B r v B r v B r′ ′ ′≡ ≡ ≡  (2.1.14) 

for x, y, and z dipoles respectively, denoting x, y, and z components of the center primary 

field Bi
(0) by B1i

(0), B2i
(0), and B3i

(0), and numbering the elements of M as mkj, for k = 1, 3, 

j=1, 3, then equation (2.1.8) can be written explicitly as 
3 3

(d) (0)
i ik ji

k 1 j 1
d = B B m

= =

′∑∑ kj   .    (2.1.15) 

When equivalent dipole position r0 is not known a priori, one can expand equation (2.15) 

in a Taylor series about an initial value r0
(q), such as the result of the downhill simplex 

method search of the previous section.  Letting M(q) be the corresponding dipole 
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polarizability matrix fit for candidate dipole position r0
(q), a first order Taylor expansion 

about r0
(q) yields  

0

3 3
(d) (0) (q+1) (q) (q+1) (q) (d) (0)T

i ik ji kj kj 0 0 ik
k 1 j 1

d = B B m m [ ] [B B ]
= =

′ ′+ − ⋅∇∑∑ rr r ji

∆ ∆

.   (2.1.16) 

Collecting coefficients of the new polarizability estimates m11
(q+1), m22

(q+1) , ..., into a row 

vector ai (q), and coefficients of the components of change vector   (q+1) (q)
0 0 0-∆ ≡r r r

into a row vector gj
(q) equation (2.1.16) becomes  

( ) ( )T(q) (q)
i i i 11 22 33 12 23 13 0 0 0d , m , m , m , m , m , m , x , y , z= ∆a g   ,  (2.1.17) 

where superscript (q+1) has been omitted from the various mij
(q+1), and the symmetry of 

M has been used to eliminate m21
(q+1), m32

(q+1), and m31
(q+1).  This can be written in matrix 

form as 

m~F~d =   ,      (2.1.18) 

with the rows of F~ and vector m~ are the vectors on the right side of equation (2.17), and 

solved for m~ in the same manner as equations (2.1.10) and (2.1.11).  A new estimated 

object center position is given by  
(q 1) (q)

0 0
+

0= + ∆r r r

1

2

  .     (2.1.19) 

Taylor expanding about the new estimate r0
(q+1) (equation 2.1.16, with q incremented), 

the process is repeated until the change magnitude |∆r0| is less than a small tolerance.  

The variances of the resultant dipole polarizabilities mxx, myy, mzz, mxy, myz, mxz, and 

equivalent dipole coordinates x0, y0, and z0, are given by the diagonal elements of the 

covariance matrix  
T -1 T T -cov( ) = ( ) cov( ) ( )m F F F d F F F   .    (2.1.20) 

For magnetic field measurements with squared uncertainty σ2 and noise uncorrelated 

between receivers, cov(d) = diag(σ2) is a diagonal matrix, and  
T -1cov( ) = ( )m F F σ   .      (2.1.21) 

For data with unequal uncertainties, the rows of equations (2.1.10) and (2.1.18) are 

normalized by dividing by the corresponding uncertainties, giving the normalized data 

unit uncertainties.   
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2.1.5  Principal Moment and Principal Direction Uncertainties 

The leading six by six sub-matrix of cov(m~ ) gives the covariance of the non-

redundant elements of the dipole polarizablity matrix M, cov(m).  The principal 

directions of M are given by the eigenvectors of M, and form the columns of the rotation 

matrix U which diagonalizes M (equation 2.1.7), yielding its the principal moments on 

the diagonal. Using the symmetry of M and L, equation (2.1.7) can be written as  

lL = O m      (2.1.22) 

where lL ≡ (L11, L22, L33, L12, L23, L13)T, and O is an orthogonal matrix obtained by 

writing out matrix product (2.1.7) explicitly and identifying coefficients.  Principal 

moments L11, L22, L33 are Rayleigh quotients of matrix M, so are insensitive to first order 

to changes in estimated principal direction matrix U.  Their squared uncertainties lie on 

the diagonal of  

cov (lL) = O cov (m) OT  .    (2.1.23) 

Uncertainties in the principal directions of M are related to the stability of eigenvectors of 

M to changes in M.  Perturbing M by ∆M, the resulting change in the j′th eigenvector 

(principal direction) uj is  
T

k j
j

k j j k

=
u M u

u
≠

∆
∆

λ − λ∑ ku

T m

    (2.1.24) 

to first order in ∆M, provided that λj ≠ λk for k ≠ j, where λk are eigenvalues of M (L11, 

L22, and L33) (Watson, 1983).  The numerator can be written as  
T

k j jk=u M u w∆ ∆     (2.1.25) 

where wjk
T ≡ (u1ju1k, u2ju2k, u3ju3k, u1ju2k + u2ju1k, u2ju3k + u3ju2k, u1ju3k + u3ju1k).  The 

squared uncertainties of the elements of the j′th principal direction are then given by the 

diagonal elements of the three by three matrix  
TT T

k jk k jk
j

j k j kk j k j
cov( ) = cov( )

≠ ≠

   
   
   λ − λ λ − λ   
∑ ∑

u w u w
u m   .  (2.1.26) 

If some eigenvalue λk is very close to λj the denominator in equation (2.1.24) becomes 

small, and a perturbation ∆M may perturb the j′th eigenvector a large amount in the 

direction of the k′th eigenvector.  Consequently, principal directions corresponding to 
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two principal moments become indeterminate when the difference between the two 

moments is less than the uncertainty in the difference.  The squared uncertainty in the 

difference between the i′th and j′th principal moments is  

var (Lii – Ljj) = cov (lL)ii + cov (lL)jj – 2 cov (lL)ij  ,   (2.1.27) 

where cov (lL)ij is the i j′th element of cov (lL).   

 

2.1.6  Application 

Our current application of equivalent dipole polarizabilities is discrimination 

amongst buried metallic objects.  The authors’ encoding of the preceeding algorithms 

have been extensively tested on synthetic data.  Two synthetic examples are presented 

here.   

The first example simulates collection of magnetic induction data in the vicinity 

of a 12 cm diameter buried steel sphere with a relative permeability µr=180, and 

conductivity σ =107 Ω-1 m-1, with the sphere center 1 m below the level of transmitter and 

receiver coils.  Three components of the time derivative of the secondary magnetic 

induction dB(s)/dt were computed at the center of a 1 m square loop transmitter for 81 

placements of the loop on a 9 x 9 grid with 0.4 m spacing.  An observation time of 610 µs 

after transmitter turn-off was chosen to approximate the effective center time of the 

averaging gate of a commercial transmitter-receiver system (Geonics EM-61).  The 

largest observed derivative component is dBz
(s)/dt directly above the sphere.  For a 180 

Amp-m2 transmitter moment, dBz
(s)/dt = -4648. nT/s for the measurement directly above 

the sphere at 610 µs.  Gaussian noise of magnitude 8.8 nT/s was added to the dBz
(s)/dt 

measurements simulating an observed noise level (at Fort Ord, California).  Gaussian 

noise of magnitude 27. nT/s was added to the dBx
(s)/dt and dBy

(s)/dt measurements to 

simulate the larger noise levels typically observed in horizontal field components.  These 

data were inverted for dipole polarizabilities and location.  The downhill simplex 

algorithm converges to a weighted rms misfit of 0.90318 with the estimated object center 

at (x,y,z) = (0.0028, -0.0039, 1.0008) meters.  Started from this point, after three 

iterations the linearized inversion converges to a weight rms misfit of 0.90316 with the 

estimated object center at (0.0026 ± 0.0030, -0.0040 ± 0.0030, 1.0002 ± 0.0051) meters.  

The true center position is (0,0,1) meters.  The estimated principal dipole polarizabilities 
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L11, L22, and L33 are -0.654 ± 0.015, -0.647 ± 0.011, -0.635 ± 0.014 Amp-m2 / s / µT.  

The absolute differences between principal dipole polarizability estimates 0.008 ± 0.010 

and 0.012 ± 0.009 Amp-m2 / s / µT respectively for |L11 - L22| and |L22 - L33|, are less than 

two estimation errors, indicating that the object is spherically symmetric within 

measurement errors.   

For a second example, the response of an aluminum prolate spheroid 24 cm long 

by 8 cm wide, of conductivity σ = 3.5 107 Ω-1 m-1 was modeled using an integral equation 

code provided by P. B. Weichman of Blackhawk Geophysics, with subsequent 

modifications to improve accuracy.  The code expands the electric field within the 

spheroid in a polynomial basis, and solves for a set of modes, each with a characteristic 

decay time.  Subsequently, the excitation of the modes for each position of transmitter 

loop is computed for a ramp-on/ramp-off transmitter current, and the contributions of the 

different mode voltages observed in receiver coils are summed over modes, for each 

transmitter-receiver pair.  This code was used to compute the spheroid response for 81 

transmitter loop positions of a 1 m square horizontal loop, on a 9 by 9 grid with 0.2 m 

spacing, in two coaxial dipole receivers, one concentric with the transmitter, and the other 

0.4 m above the first.  The spheroid center was placed 0.6 m below the transmitter level, 

offset 0.2 m in x and y from the grid center, with symmetry axis in the y-z plane dipping -

30°.  A 3.3 ms ramp-on, 0.08 ms ramp-off transmitter current, and a 0.4 ms averaging 

gate starting 0.42 ms after transmitter current extinction, were used to emulate a 

commercial transmitter-receiver system (Geonics EM-61).   

Gaussian noise with a magnitude of 1% of the largest observed voltage was added 

to the computed voltages.  The resultant data was inverted, yielding an estimated center 

location of (0.207 ± 0.008, 0.206 ± 0.009, 0.600 ± 0.005) meters, in agreement with the 

true location (0.200, 0.200, 0.600).  The principal polarizabilities were estimated as 0.785 

± 0.023, 0.768 ± 0.018, and 0.529 ± 0.011 V/µT, with differences 0.016 ± 0.025 and 

0.238 ± 0.020 V/µT.  The agreement of L11 and L 22 indicates an object that, within 

measurement errors, is rotationally symmetric about the third principal direction.  The 

differences between the third moment and the other two are well resolved, and, for a non-

magnetic object, consistent with the smaller cross section perpendicular to the symmetry 
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axis.  The third principal direction is estimated as (0.016 ± 0.023, 0.850 ± 0.026, -0.526 ± 

0.043), in agreement with the true axis of symmetry (0, 0.866, -0.500).   

For the transmitter-receiver configurations used in the above examples (which 

each have more than one receiver component of data), examination of plots of the 

squared data misfit χ2 as a function of candidate center position (not shown), on sections 

through, and near, the true object location, typically show a large "valley" in data misfit 

sloping downwards to a well defined minimum at the object center (within measurement 

errors), with small shallow secondary valleys close to the transmitters and receivers.  

Close to the transmitters and receivers, misfit topography is on the scale of the data grid 

spacing.  The existence of such topography recommends measurement grid spacings finer 

than the height of the transmitters and receivers above the shallowest expected depth of 

objects (e.g., ground surface).   

For the commonly occurring case of a transmitter-receiver system with a single 

horizontal transmitter loop and single coaxial receiver, plots of squared data misfit as a 

function of candidate center position are more problematic.  Figure 2.1.1 shows a detail 

of such a plot, for a 1 m2 horizontal loop transmitter, concentric Bz receiver system, sited 

on a 9 by 9 grid centered over a sphere at (0,0,1) meters.  There is a clear minimum at the 

true object center (0,0,1), but also a shallow local minimum at (0.00, 0.00, 1.08) meters.  

The existence of local minima close to, but distinct from, the minimum associated with 

the true object position, means that one must be extremely cautious in interpreting data 

from single transmitter single receiver systems.  For comparison, Figure 2.1.2 shows 

squared data misfit χ2 over the same region of candidate object center position, for a 

similar system with an additional Bz receiver 0.4 m above the first.  The added data 

eliminates the secondary local minimum.   
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Figure 2.1.1:  Squared data misfit χ2 as a function of candidate object center position r0, for 

1 m2 square transmitter loop, concentric vertical dipole receiver system sited on a 9 x 
9 grid, centered 1 m above a 12 cm steel sphere (detail).   

 

            
Figure 2.1.2:  Squared data misfit χ2 as a function of candidate object center position r0, for 

1 m2 square transmitter loop, 2 coaxial vertical dipole receiver system sited on a 9 x 9 
grid, centered 1 m above a 12 cm steel sphere (detail).   
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2.2  Depths of equivalent dipole polarizability resolution for some transmitter receiver 

configurations 

Equivalent dipole polarizability matrices and dipole locations are a convenient 

way to summarize active source induced current magnetic field measurements in an 

interpretable form.  The matrices' principal moments give information on the rotational 

symmetry of a conductive object, their principal directions yield the object's orientation, 

and the dipole location r0 estimates the object's center position.  An algorithm for 

estimating these and their uncertainties was outlined in a previous section.  Here 

uncertainty estimates are used to compute the depths to which the polarizability matrices 

and dipole locations can be estimated for steel spheres of varying radius, for several 

transmitter-receiver configurations.   

Equivalent dipole polarizability matrices M model observed secondary magnetic 

fields B(s)(r,t), in terms of the magnetic fields of unit dipoles in the , x̂ ŷ , and z  

directions, B

ˆ

x
(d)(r), By

(d)(r), Bz
(d)(r) centered at some location r0, and the primary 

(inducing) magnetic field strength B(0)⋅g(t), at r0, for a given time variation g(t) of 

primary magnetic field:  

  (2.2.1) (d) (d) (d)(s) 0
x y z( , t) = ( ), ( ), ( ) (t)


( )B r B r B r B r M B



In this model, the polarizability matrix is independent of transmitter and receiver geometry 

and object location, depending only on the innate properties of the object, its orientation, 

and the transmitter waveform.  The principal values of M, depend only on the object, 

independent of its orientation, and on the transmitter waveform.  Equivalent dipole position 

r0 is generally assumed to coincide with the object center.   

 For typical time domain systems, secondary fields are measured after primary fields 

are extinct, at which time the entire magnetic field is secondary.  In simplest form, the time 

variation of the primary field is incorporated in the estimated polarizability matrix M(t), 

and the primary magnetic field strength vector at object center B(0), for a given source, is 

simply the magnetic field there for a D.C. current in the transmitter coils of the transmitter's 

nominal current strength (e.g., peak current strength).   
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 The methods of Section 2.1 were used to estimate equivalent dipole polarizabilities 

from synthetic three component magnetic field data for a vertical magnetic dipole source at 

13 sites placed symmetrically on a grid with 0.4 m spacings in x and y centered 1 meter 

above steel spheres of varying radius, modeled with a conductivity of σ = 107 Ω-1 m-1 and 

relative permeability µr = 180.  A step function turn-off transmitter current was used, as the 

most generic of waveforms, and an observation time of 610 µs after turnoff chosen to 

simulate the effective center time of the averaging gate of an existent commercial 

transmitter-receiver system.  Polarizability estimates are listed in Table I.  In principle, for 

spherically symmetric objects, the three principal moments are identical.  The variation 

between estimated principal moments is less than 1% for spheres smaller than 25 cm 

radius.  The variations are due to the limited spatial extent of the data used, the presence of 

non-dipole moment components in the data, and truncation of the data at four significant 

figures.  In subsequent computations based on Table I, the three estimated moments were 

replaced with their average.   

 

 
Table I.  Estimated principal moments for simulated steel sphere data at 610 µs after step 
function turn-off, from 13 vector measurements coincident with vertical dipole source on 
grid 1 m above sphere center.   
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Section 2.1 gives equations for the covariance matrix for dipole polarizability 

matrix M elements, and covariance matrices for the principal moments and directions 

derived from it.  In general, computing principal moments and directions requires knowing 

all elements of M (which is symmetric).  If principal directions are known a priori, 

principal moments may be determined from fewer measurements, but determining the 

principal directions empirically requires knowledge of all elements of M.  A simple 

measure of how well a data set resolves M is the relative average squared uncertainty 
3 3 3 3

22
ij ij

i 1 j 1 i 1 j 1
var (m ) / m

= = = =
ξ ≡ ∑∑ ∑∑     (2.2.2) 

where var(mij) is the estimated squared uncertainty of the ij′th element of M obtained from 

the diagonal of the covariance matrix of the elements of M (cov(m ) of Section 2.1).  The 

denominator in (2.2.2) is a matrix invariant; independent of the coordinates used to express 

M, so a property of the object from which M arises.  In our experience, the numerator of 

(2.2.2) is also coordinate independent, suggesting that ξ2 itself may be a coordinate 

independent measure of the relative uncertainty in M.   

 For each radius sphere in Table I, for each of a number of transmitter-receiver 

configurations, the relative root mean squared (rms) moment uncertainty ξ was computed 

as a function of sphere depth, for spheres directly below the center of a 9 x 9 grid of system 

placements with 0.4 m spacing in x and y.  One meter square transmitter loops were used 

with a moment of 180 Amp-m2, and a receiver noise level of 1.97 nT/s in vertical field 

measurements, simulating an observed noise level, and 5.91 nT/s in horizontal field 

components (when present) simulating the larger noise levels observed in horizontal 

components.   

A plot of relative rms moment uncertainty ξ as a function of depth below 

transmitter and receiver is shown in Figure 2.2.1 for an isotropic -6.41 105 Amp-m2/s/T 

equivalent dipole polarizability (6 cm radius steel sphere at 610 µs) below the grid of 

system placements for a horizontal loop transmitter / concentric vertical magnetic dipole 

receiver system.  Being based on a linearized inversion for M and r0, these uncertainty 

estimates scale linearly with receiver noise level.  For spheres very near the level of the 

transmitter and receiver (z=0), the rms uncertainty is large as all the transmitter placements 

illuminate the sphere with nearly vertical primary fields, yielding little information on mxx, 
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mxy, and myy, and correspondingly large variances in them.  Relative rms uncertainty 

decreases to a minimum at 0.135 m depth, and subsequently rises with increasing depth, 

reflecting the decrease of primary field strengths with increasing depth.  In practice, 

mounting a receiver-transmitter system above ground level sets a minimum depth below 

transmitter for buried objects, avoiding difficulties with the large uncertainties at the 

transmitter-receiver level.  The great increase of uncertainty with depth for spheres at large 

depths limits the depths for which polarizabilities can be resolved.  For the horizontal loop 

transmitter vertical dipole receiver on this grid ξ > 0.1 for 6 cm radius steel spheres below 

1.47 m.  (At z=1.47 m, the corresponding relative uncertainties in horizontal and vertical 

polarizabilities are 0.061, 0.061, and 0.147 respectively.)   

 
Figure 2.2.1:  Relative rms polarizability uncertainty ξ as a function of sphere center depth 

below transmitter and receiver for a 6 cm radius steel sphere.  Also, relative 
uncertainty in vertical moment dmzz/dt (dashed), and in horizontal moments dmxx/dt 
and dmyy/dt (dotted). 

 

The depths to 5, 10, and 20% rms uncertainty in polarizability d5%
(p), d10%

(p), and d20%
(p), 

were similarly found for isotropic polarizabilities corresponding to all the spheres in Table 

I, and are plotted in Figure 2.2.2, as a function of sphere radius.  The depths to 5, 10, and 

20% uncertainty in estimated sphere depth, d5%
(z), d10%

(z), and d20%
(z), are plotted in Figure 

2.2.3.  In general, object position can be estimated more precisely than the full 

polarizability matrix can, as object position may be determined when an object is 

illuminated by only a single orientation of primary field, whereas estimating the full 
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polarizability matrix requires illuminating the object with primary fields B0 in at least three 

directions, each with a significant component in the direction orthogonal to the other two.  

Consequently, object depth can be resolved within 10% to greater depths than polarizability 

in all cases plotted.  The relative uncertainties in polarizability and position depend on all 

elements of the polarizability matrix M (through , gF i
(q), and mkj

(q) of Section 2.1), 

depending on both its principal values, and principal directions (object orientation).  Most 

cases presented here are for spherical objects, for which the principal values are all the 

same, and the polarizability M is coordinate independent.  For comparison d10%
(p) and 

d10%
(z) are plotted in Figure 2.2.4 for the same transmitter-receiver pair, for the case of 

objects with the same vertical dipole polarizabilities d mzz /dt at 610 µs as the spheres of 

Table I, and all other polarizabilities null, corresponding to thin horizontal non-magnetic 

discs.  The general trends are the same as for the sphere.  Polarizability can be resolved to 

10% slightly deeper than for the sphere for all but the 1 cm radius sphere.  Object depth can 

be resolved approximately 1.2 times deeper than for the sphere.   

 
Figure 2.2.2:  Depths to 5%, 10%, and 20% rms uncertainty in polarizability as a function 

of sphere radius for steel spheres below a 9 x 9 grid of transmitter-receiver system 
placements, for a 1 m2 square loop transmitter with a concentric vertical dipole 
receiver. 
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Figure 2.2.3:  Depths to 5%, 10%, and 20% uncertainty in sphere center depth, as a 

function of sphere center depth below center of transmitter-receiver placement grid, 
for same system and grid as in Figure 2.2.2.   

 

 
Figure 2.2.4:  Depths to 10% rms polarizability uncertainty and to 10% uncertainty in 

center depth, for thin horizontal non-magnetic disk with same vertical polarizability 
dmzz/dt at 610 µs, as spheres of Table I, plotted as a function of the corresponding 
sphere's radius.   
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Effects of adding a second coaxial vertical receiver 0.2 m above the first are shown 

in Figure 2.2.5, where d10%
(p) and d10%

(z) are plotted for the two receiver system (dotted) 

together with their values for the previously plotted single receiver system (solid).  In 

addition to resolving polarizabilities and location to greater depth as shown here, the added 

receiver makes locating the object position an easier problem as it eliminates a secondary 

minimum in data misfit near the true object position (Section 2.1).   

 

 
Figure 2.2.5:  Depths to 10% rms polarizability uncertainty and to 10% uncertainty in 

center depth, as a function of radius for steel spheres below a 1 m2 square transmitter 
loop with two coaxial vertical component receivers 0.2 m apart vertically, on same 
grid as in Figure 2.2.2.   

 

Figure 2.2.6 plots where d10%
(p) and d10%

(z) (both dotted) for a similar system with 

the two vertical component receivers in the plane of the transmitter loop, offset ± 0.2 m in x 

and y along a diagonal from the loop center.  This system shows greatest improvement in 

sensitivity over the single receiver system for objects close to the transmitter-receiver 

plane, greatly increasing the depths to which the smallest spheres can be resolved.  For 

spheres of radii greater than 8 cm, the (modest) improvement is due primarily to a simple 
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reduction in uncertainty by a factor of 1/ 2  due to the doubling of the number of 

receivers.   

 

 
Figure 2.2.6:  Depths to 10% polarizability uncertainty and to 10% uncertainty in center 

depth, as a function of sphere radius, for 1 m2 loop transmitter system with two 
vertical component receivers 0.566 m apart on diagonal in plane of transmitter loop, 
on same grid as in Figure 2.2.2. 

 

Results for a horizontal loop transmitter three component concentric receiver are 

shown in Figure 2.2.7 (dotted lines).  For comparison, a system with a 1 m2 horizontal loop 

and two orthogonal 1 m2 vertical loop transmitters with lower edges at the level of the 

horizontal loop is shown in Figure 2.2.8 (dotted lines).  The results for the 3 transmitter 1 

receiver system are substantially better than for the 1 transmitter 3 receiver system, in part, 

because of the greater noise level in horizontal component receivers.   
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Figure 2.2.7:  Depths to 10% polarizability uncertainty and to 10% uncertainty in depth as 

a function of sphere radius, for 1 m2 loop transmitter system with 3 component 
concentric receiver, on same grid as in Figure 2.2.2. 

 

 
Figure 2.2.8:  Depths to 10% polarizability uncertainty and to 10% uncertainty in depth, as 

a function of sphere radius, for three orthogonal 1 m2 loop transmitter system with 
vertical component receiver at horizontal loop center, on same grid as in Figure 2.2.2. 
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As a final example, adding 2 orthogonal horizontal component receivers to the 3 

transmitter system to make a 3 transmitter 3 receiver system yields results shown in Figure 

2.2.9. The added horizontal components substantially increase the depth of resolution of the 

1 cm radius sphere, but little affect results for 3 cm radius and larger spheres. 

 

 
Figure 2.2.9:  Depths to 10% polarizability uncertainty and to 10% uncertainty in depth, as 

a function of sphere radius, for 3 transmitter loop system with 3 component receiver at 
horizontal loop center, on same grid as in Figure 2.2.2. 

 

 

 31



3.  PERFORMANCE ASSESSMENT AND DIRECT OPTIMIZATION 
 

3.1  Introduction 
 

The broad definition of optimum in this report is an active EM system that can 

extract, from the measurements, the best possible estimates of the location, orientation, 

depth, size, shape, and metal content of a buried metallic object in the presence of the 

interfering response of non-UXO metallic objects.  Discrimination can be achieved partly 

through selective filtering of the response inherent in the system design and partly through 

post acquisition processing.  These parameters are never determined perfectly because of a 

fundamental non-uniqueness in the solutions (the response of the target) to the governing 

equations.  Also, practical limitations introduced by depth of the target, the response of a 

general, inhomogeneous, ground and the presence of response from other non-UXO 

metallic objects, as well as the signal to noise limitations imposed by weight and power 

considerations, introduce constraints on what is achievable.  An optimum system is 

bounded by these theoretical and practical considerations and at the end represents a 

compromise that detects, discriminates and classifies to an agreed upon criterion or 

specification. 

There have been several theoretical and numerical studies of target response for 

new UXO EM systems, none of which have addressed the issue of optimization.  

Laboratory, field and theoretical analyses of the frequency domain GEM-3 (e.g. Won et al., 

1997) and of the EM-61 and its variants EM61HH, EM63, etc. (e.g. McNeill and Bosnar, 

1996; Khadr et al., 1998; Ware, 2000) for a range of targets have demonstrated some of the 

detection/classification properties and potential of these systems.  The studies focused on 

the response of a particular system to various targets but not on the broader issue of what 

system would perform best over the targets.  Some of these systems rely on the frequency 

domain (spectral) or time domain transient signal characteristics to classify the target (e.g. 

Keiswetter et al., 1999; Barrow et al. 1996; or Ware, 2000).  Others rely on both the 

spectral response and the variation of response with transmitted field polarization (e.g. Bell 

et al., 1998; Khadr et al., 1998; Pasion and Oldenburg, 2001; Snyder et al., 1999).  A 

fundamental and critical technical comparison of time and frequency approaches has been 

tactfully avoided. 
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Our research has clearly shown the importance of using multiple polarizations of 

the incident magnetic field to stimulate the principal induced magnetic polarizations of the 

target.  The second step in the identification/discrimination process is then to measure the 

resulting secondary fields at enough points in space to uniquely determine these principal 

polarizations – the inversion or interpretation process.  

[Fundamentally the incident magnetic field induces a circulating current in a confined 

conductor.  This current produces a magnetic dipole moment, usually referred to as M.  If 

this moment is normalized by the inducing magnetic field, the resulting quantity is called 

the magnetic polarization.  We use both terms in this report.]  Finally the characterization 

depends on recovering the broadband polarization response.   

The concept of identifying an object through the measurement of secondary fields 

arising from induced magnetization and induced currents is illustrated in the following 

cartoon.  

 
Figure 3.1.1:  Induced magnetization and currents in 3D bodies. 

 

In any conducting permeable body placed in a magnetic field there are two types of 

induced magnetic moments.  At zero frequency, dc, the incident magnetic field magnetizes 

the body so that it acquires a static magnetic dipole moment.  This vector moment is in the 

direction of the inducing static magnetic field.  As the frequency of the inducing field is 

increased a circulating current is induced to flow by virtue of Faraday’s Law.  This 

circulating current produces a magnetic moment, which is in the opposite direction to the 
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inducing magnetic field.  The net magnetic moment, that is responsible for producing the 

so called secondary fields measured away from the body, is a function of the frequency, 

conductivity, permeability, size and shape of the body.  In this cartoon the induced 

principal magnetic moments are shown in black and the induced principal electromagnetic 

moments, for a particular frequency, caused by the induced currents are shown in red.  The 

characteristics of these principal moments, and how they change with frequency, are the 

basis of shape and metal content determination.  The magnetic and EM moments are 

always in opposite directions.  The sphere has equal moments in any three orthogonal 

directions. The disk and cylinder have two identical minor axis moments and a different 

axial moment, and the flattened ellipsoid has three different moments.  It is also important 

to see from this cartoon that the magnetic moments behave differently from the EM 

moments and can be large in directions where the EM moments are small.  For example in 

the thin disk the axial magnetization will be very small whereas the axial moment will be 

the largest for EM induction.  [This simplistic description for the disk is in fact only valid 

for very thin disks.  For a disk of appreciable thickness the coplanar EM moments can be 

quite large due to the increase in induction number caused by the permeability.  A relative 

permeability of 200 effectively increases the thickness by 200 and consequently presents a 

large cross-sectional area to the inducing electromagnetic field.]  These observations 

clearly illustrate the need for broadband coverage not only to separate ferrous from non-

ferrous response but also to assist in relating the response to the shape of the body. 

For regular bodies of revolution the induced moments are aligned with the 

symmetry axes of the object, and for a uniform inducing field they do not change direction 

with frequency.  For an irregular object such as twisted scrap metal, the moment directions 

do change with frequency.  For actual search systems the dimensions of the object may be 

comparable to the distance to, and size of, the transmitter and the moments may change 

size and direction as a function of frequency.  In any event it is these induced moment 

characteristics that allow determination of the object parameters.  To actually excite these 

moments it is clear that several polarizations of incident field are required. 

A rigorous approach to the interpretation of the secondary fields measured with any 

particular search system would involve an inversion scheme to determine the parameters of 

an object that best reproduced the field data in a numerical simulation of the actual system.  
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Forward modeling codes for solid metallic objects of arbitrary shape are only now 

becoming available, and for bodies of arbitrary relative permeability and arbitrary 

frequency they are slow even on very fast computers.  It is certainly impractical to consider 

this approach for real time processing and interpretation in the field.  Further, there are at 

the moment no modeling codes for ferrous and non-ferrous shells of various shapes.  Since 

these are needed to represent typical UXO (there being little interest in detecting solid iron 

cannon balls) another approach is needed to represent the response of metallic objects. 

For purposes of design, system evaluation and interpretation we have adopted a 

simple dipole moment representation of a target.  This is basically the same approach used 

by Khadr et al. (1998), Bell et al. (1998), Pasion and Oldenburg (2001) and Baum (1999). 

With this approximation it is assumed that any target can be represented by three 

orthogonal dipole moments, the principal dipole moments (PDM) or, if normalized by the 

incident field, the principal dipole polarizations (PDP).  We have concluded from these 

studies and our own simulators that a satisfactory approach to characterizing the target is to 

recover the PDM’s and their directions as a function of frequency or time.  The use of 

PDM’s greatly simplifies the inversion process used to find the location and vector PDM’s 

of the object.  Moreover this representation is a practical way to characterize any object 

since it basically encapsulates the response in a compact manner.  A rigorous identification 

will require matching of the PDM’s, as a function of frequency or time, to a catalogue of 

objects whose PDM’s have been predetermined. 

Smith and Morrison (2004) describe an inversion algorithm, which locates an 

object and recovers its PDM for a specific search system in a given amount of system 

noise.  The inversion process inherently assigns uncertainties to the extracted target 

parameters and location based on the uncertainties (noise) in the data.  These uncertainties 

are the fundamental data used to assess the quality of the response and to estimate ROC 

curves.  Smith et al. (2004b) used this inversion algorithm to determine the depths of 

detection, to a given uncertainty, and PDM’s to a given uncertainty, of simple target 

spheres for several search configurations. This inversion analysis underlies the design 

methodology described in this section of the report. 
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3.2  Optimizing the transmitter-receiver configuration  
 

The inversion algorithm described in Smith and Morrison (2004), and used for 

system comparison by Smith et al. (2004b) is the fundamental tool used in this more 

generalized study.  In a sense the approach used here can also be cast as an inverse 

problem: to determine the parameters of the AEM system that maximize the response for a 

given target subject to constraints on the system (size, platform, weight and power) and the 

anticipated ambient noise.  

As with a rigorous inversion, the parameters of a proposed system are varied 

incrementally until a maximum response is obtained or until a maximum in the signal to 

noise ratio is obtained.  For a given model and background, and with given system and 

ambient noise, the code is run repeatedly for changes in the system parameters until the 

variances in the estimated target parameters are minimized.  This process provides an 

objective method for finding the optimum array configuration (i.e. the number of 

components and their spatial disposition, the transmitter moments and the bandwidth) 

needed to obtain the best estimate of the depth and vector principal moments of the target. 

The first step in such a process can be seen in one of the examples shown in Smith 

et al. (2004b) (Figure 3.2.1).  Here uncertainty estimates are used to compute the depths to 

which the PDM’s and dipole locations can be estimated for steel spheres of varying radius, 

for two transmitter-receiver configurations.  One meter square transmitter loops were used 

with a moment of 180 Amp-m2, and a receiver noise level of 1.97 nT/s in vertical field 

measurements, simulating an observed noise level, and 5.91 nT/s in horizontal field 

components (when present) simulating the larger noise levels observed in horizontal 

components.  A step function turn-off transmitter current was used, as the most generic of 

waveforms, and an observation time of 610 µs after turnoff chosen to simulate the effective 

center time of the averaging gate of an existent commercial transmitter-receiver (T-R) 

system.  For each radius sphere and for each T-R configuration the relative root mean 

squared (rms) inverted moment uncertainty and depth uncertainty were computed as a 

function of sphere depth, for spheres directly below the center of a 9 x 9 grid of system 

placements with 0.4 m spacing in x and y. 
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Figure 3.2.1:  Depth to 10% polarizability uncertainty and 10% uncertainty in depth as a 

function of sphere radius for TxTyTz-Bz and TxTyTz – BxByBz systems.   
 

The results, in Figure 3.2.1, are shown for an orthogonal three loop transmitter and vertical 

field, Bz, receiver and for the same transmitter with three orthogonal receivers.  The results 

for the standard horizontal loop with a single vertical receiver are shown for reference as 

the solid line.  The important role of multiple field polarizations at the target is easily seen 

in this figure.  The depth of detection for a 10 cm radius sphere almost doubles with the 

three-component transmitter.  But relatively little is gained by adding a triaxial receiver.   

In general it was found that the object position can be estimated more precisely than 

the PDM’s. The object position may be determined with only a single orientation of 

primary field, whereas estimating the full polarizability matrix requires illuminating the 

object with primary fields in at least three directions, each with a significant component in 

the direction orthogonal to the other two.  Consequently, object depth can be resolved 

within 10% to greater depths than PDM’s. 

The recovery of the PDM’s requires measurements using several polarizations of 

the incident field.  How these are provided is a function of the spatial deployment of a 

system as well as the number of polarizations provided by different transmitters in the 

system.  If a single horizontal loop source is moved in discrete intervals over an object then 
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it is illuminated with different polarizations by virtue of its changing position in the source 

dipole field.  This is illustrated in the cartoon of Figure 3.2.2. 

 
Figure 3.2.2   

 

In the numerical experiments by Smith et al. (2004b) referred to above, the ‘data’ were in 

fact assumed to have been taken on a grid. An illustration of the effectiveness of an 

elementary system employing a single horizontal loop receiver within a horizontal loop 

transmitter is shown in Figure 3.2.3.  

 

 
Figure 3.2.3:  Principal polarizations (PDM) and location for a dipping ellipsoid on 9 x 9 

grid using a single horizontal loop receiver within a horizontal loop transmitter.   
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The target is a dipping ellipsoid and the response is obtained on a 9 by 9 grid above it.  The 

table shows that the principal polarizations (called PDM’s in this figure) and location are 

very well recovered.  In this inversion instrumentation noise was included but location 

errors were not.  The accuracy of the inversion now depends on accuracy of the positioning 

on the grid.  We have addressed the role of positioning error in this project and some 

examples are presented below.  For rapid field surveys absolute positioning to the 

centimeter level might be expensive and difficult but relative positioning on the scale of the 

target depth might be easier to achieve.  This suggests designing systems which are as close 

as possible to stand alone: multiple transmitters and a number of spaced apart receivers that 

locate and characterize the target from a single system set-up in the vicinity of the target.  

Such a system also suggests a search procedure involving two modes of operation.  First, 

the object is located with a simple configuration and low power, narrow band, mode.  

Once located, the system switches to broadband, multicomponent mode and the accurate 

depths and PDM’s, and identification through the look-up catalog of object parameters.  

Finally, anticipating the results presented below, a system comprising multiple receivers 

will require sensors that are smaller than the loop receivers currently employed.  In this 

report we analyze a variety of system configurations that are optimum for detecting objects 

and for determining their PDM’s while minimizing their complexity and minimizing the 

number of sensors required. 

 The general simulation/inversion code was used to investigate the number of 

receivers, and their orientations, required for an optimum measurement of the principal 

polarizabilities and depths.  In general, it was found that the object position can be 

estimated more precisely than the PDM’s for the same object depth.  The object position 

may be determined with only a single orientation of primary field, whereas estimating the 

full polarizability matrix requires illuminating the object with primary fields in at least 

three directions, each with a significant component in the direction orthogonal to the other 

two.  Consequently, object depth can be resolved within 10% to greater depths than PDM’s 

with the same uncertainty.  The following brief description and examples are taken from a 

comprehensive analysis of this problem that is discussed in more detail in the paper by 

Smith et al. (2005) that has been submitted for publication. 
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In this analysis, transmitter systems are comprised of one or several rectangular 

loops of fixed size, and a number of receiver coils approximated as point measurements.  

Three families of designs are presented: a) systems for use on a 2-D grid of positions with 

negligible error in relative instrument location, b) systems for use on a line of positions 

with negligible error in relative instrument location, and c) systems for stand alone use, 

insensitive to instrument positioning errors. 

 The general approach is summarized with reference to Figure 3.2.4 for a 2D grid of 

data.  The color plot shows the uncertainty in the determination of the principal 

polarizabilities for a test object (in this case a sphere for ease of illustration) of various 

diameters.  The data for the inversion are the responses for the simple in-loop configuration 

(similar to the commercial EM 61 system) at 81 positions of the 9 x 9 grid shown on the 

right.  The contours are drawn at locations in the vertical section beneath the array where 

the uncertainty in polarizability is equal to the polarizability itself – in effect a signal to 

noise ratio of one.  As mentioned above the depth can be determined with any specified 

uncertainty at greater depth than the polarizability.  Using Figure 3.2.1 as a guide, the depth 

of a 60 mm sphere can be determined to within 10% at a depth 50% greater than depth at 

which the polarizability is determined to within 10%.  Consequently the contours in plots 

like those of Figure 3.2.1 can be used as rough measures of the depth of detection of the 

relevant object.  For example the polarizability of a 40 mm sphere could be determined 

with an uncertainty of less than its polarizability anywhere in the section above the contour 

labeled 40 mm but the depth would be well determined below this contour.  The 40 mm 

sphere would consequently be well located anywhere to a depth of about one meter and in a 

swath of plus or minus 1.0 m around its horizontal position.  In comparing configurations 

for a specific target, the ‘best’ are those for which the contours for that target’s diameter are 

deepest in the section and flattest.  We have found this graphic presentation to be an 

excellent way to illustrate the range and accuracy of a particular configuration of 

transmitter and receiver. 
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Figure 3.2.4:  Rms uncertainty in polarizability as a function of position on 9 x 9 grid 

using simple in-loop configuration.   
 

 The improvement in detectability that accrues from using multiple transmitters and 

receivers is evident in the results shown in Figure 3.2.5 for a configuration with 3 

orthogonal transmitters and 3 orthogonal receivers deployed on the same 9 x 9 grid. The 

detectability of the 40 mm sphere is pushed down to 1.5 m and the 80 mm sphere, 

previously detectable to 1.5m is now pushed down, off the graph, to more than 2.0 m. 

 Next, in Figure 3.2.6, the uncertainty in polarizability is plotted for a simple two 

transmitter three receiver (vertical) configuration deployed at 21 positions along a line over 

the target.  In this and subsequent multi receiver configurations the inversion code was used 

to determine the location of the receivers that optimized the resulting uncertainty plot.  We 

found that the orientation of the sensors was less important than the number used and their 

spacing.  Since we have observed that ambient EM noise fields are predominantly in the 

horizontal plane, we have elected to use vertical receivers in the array studies.  Further, to 

minimize the footprint of the system we imposed penalties on the inversion for receivers 

outside the perimeter of the horizontal transmitter. 

 The results for the line system indicate that the depth range is reduced a little and 

the swath width is considerably reduced over the grid system of Figure 3.2.5.  Nevertheless 

it is important to note that comparable results would be obtained if successive lines were 

run with line spacing of 0.5 m.  The grid after all could be considered as multiple parallel 

lines with spacing of only 0.4 m.  If survey cost is proportional to the number of readings 
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then there are appreciable savings in the multi-element line profiling.  We will return later 

to the role of position uncertainty in this assessment.   

 
Figure 3.2.5:  Rms uncertainty in polarizability as a function of position on 9 x 9 grid 

using 3 orthogonal transmitters and 3 orthogonal receivers.   
 

 
Figure 3.2.6:  Rms uncertainty in polarizability as a function of position using two 

transmitters and three receivers in a profile mode.   
 

 Finally we experimented with single or stand alone configurations which could 

determine depth and polarizations from a single position in the vicinity of the target.  In all 

these systems we used a three component transmitter.  The results for a four receiver 

configuration are shown in Figure 3.2.7.  The depth of detection is reduced somewhat and 

the pattern is narrowed and skewed.  Another important measure of the design process is 

illustrated for this array in the plot of Figure 3.2.8.  Here the uncertainty in polarizability is 

 42



plotted as a function of orientation of an elongate target at a depth of one meter.  The plot 

clearly shows that there are ‘blind spots’ for this configuration – orientations for which the 

number of T-R pairs is inadequate to determine the orientation.  Smith et al. (2005) have 

determined theoretically that 13 T-R pairs are required to determine the polarizabilities so 

the 12 pairs are in fact not enough.  Adding a fifth receiver, in the optimized five element 

array of Figure 3.2.9, makes a dramatic improvement in the orientation determination.  

Even at a depth of 1.6 m there are no blind spots for this array as seen in Figure 3.2.10, 

although there is only a modest improvement in the depth of detectability, Figure 3.2.9.   

 
Figure 3.2.7:  Rms uncertainty in polarizability as a function of position using three 

transmitters and four receivers in a stand alone mode.   
 

 
Figure 3.2.8:  Rms uncertainty in polarizability as a function of orientation of an elongate 

target at a depth of 1 m.   
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Figure 3.2.9:  Rms uncertainty in polarizability as a function of position using three 

transmitters and five receivers in a stand alone mode.   
 

 
Figure 3.2.10:  Rms uncertainty in polarizability as a function of orientation of a target at 

1.6 m depth using three transmitters and five receivers in a stand alone mode.   
 

 Allowing the inversion code to ‘choose’ the location of the vertical receivers results 

in a rather irregular pattern as shown on the right of Figure 3.2.9 as an example.  From a 

fabrication viewpoint it might be simpler to arrange the sensors in a regular pattern dictated 

by the frame or structure of the transmitters.  We tried the regular pattern of Figure 3.2.11 

and found very little reduction in detectability compared to the optimum pattern.  The 

conclusion of studies such as this is that optimization is not a strong function of variation of 

sensor position around the optimum one. 
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Figure 3.2.11:  Rms uncertainty in polarizability as a function of position using three 

transmitters and five receivers in a regular pattern dictated by transmitter frame.   
 

 By using an ingenious combination of horizontal loops one can provide both a 

vertical and horizontal polarization of the incident field at a target beneath the array.  In 

Figure 3.2.12 the horizontal loops consist of four independent rectangular loops and a 

redundancy of 9 vertical receivers.  When two adjacent loops are energized with the same, 

say clockwise, current flow they sum to produce an equivalent large loop of the same 

polarity which produces a primary field directed vertically beneath the center of the loop.  

When energized with opposing current flows a multipole field is produced with field lines 

that are horizontal beneath the loops.  Similar energization of the orthogonal pair of loops 

produces the requisite third, horizontal, polarization of the field incident on the target.   

 The results (Figure 3.2.12), even with 9 receivers, are not as good as those obtained 

with the transmitter consisting of three orthogonal loops and 5 receivers, Figure 3.2.11. 

 Finally, to summarize these illustrative examples, it is important to note that the 

depth of detectability for the 3 transmitter 5 receiver stand alone system, Figure 2.2.11, is 

almost as good as the 3 transmitter 3 receiver system when the latter is deployed at 21 

positions along a line or profile.  It is also almost as good as the current industry standard 

EM61 system when the latter is deployed on a grid of 81 points, Figure 3.2.4.  On the other 

hand it is not nearly as good as the 3 transmitter 3 receiver configuration deployed on the 

same grid, Figure 3.2.5.   
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Figure 3.2.12:  Rms uncertainty in polarizability as a function of position using four 

independent horizontal loops and 9 vertical receivers.   
 

 The results to date were obtained assuming that there were no errors in the position 

of the system on the grid or along the line.  In a practical survey there are such errors, 

largest in the absolute position on the grid, less in relative position along a line segment and 

zero for the stand alone system (the latter finds the polarizability and the target location 

relative to the T-R system so the uncertainties are proportional only to the system noise).  

Figures 3.2.13 and 3.2.14 display the relative uncertainties in polarizability and depth 

respectively as a function of the position error for the three deployment arrays shown on 

the right of the figures.  The statistics were created by repeated inversions with random 

misplacements of each measurement point by the indicated position error.  The target in 

this experiment was a horizontal 22 mm shell with an aspect ratio of 8:1 at a depth of 0.75 

m. The relative uncertainties in polarizability and depth for both the line and grid 

configurations remain less than that of the stand alone system (about 5%) as long as the 

position uncertainty is less than about 2 cm.  Relative GPS positioning is at best a few cm 

so without expensive and logistically difficult laser or microwave positioning it appears 

that the stand alone system is superior to line and grid deployments.  But the stand alone 

system can also be operated in line or grid mode the results of which would be significantly 

better than any of the individual schemes discussed till now.  Since the stand alone system 

has the same footprint as the best current commercial system, the field operational issues 

are identical to the current systems but with vastly improved detection and identification 
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properties.  Further the system retains excellent detection and polarization determination 

from irregularly located single positions, which may be all that is available in terrain with 

obstacles to regular grids or profiles. 

 
Figure 3.2.13:  Relative rms polarizability uncertainty as a function of instrument location 

error for 22 mm 8:1 aspect ratio shell at 0.75 m depth at 610 µs after transmitter shut-
off.   

 

 
Figure 3.2.14:  Relative rms depth uncertainty as a function of instrument location error for 

22 mm 8:1 aspect ratio shell at 0.75 m depth at 610 µs after transmitter shut-off.   
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Given the position and polarizability matrix of an object, it is straightforward to 

calculate estimation uncertainties in polarizabilities and coordinates that would arise from 

detection with given transmitter and receiver configurations with specified source current 

and receiver noise levels.  One can compare performance of prospective systems using a 

simple statistic such as the total summed squared uncertainty in polarizability estimates 

for on object at a specific position relative to the detection system, or sum the squared 

polarizability uncertainties for test objects at a range of positions (‘control points’) to 

construct a somewhat more general measure of performance.  Since uncertainties 

typically vary greatly with the depth of an object below a system, it makes sense to 

include objects at number of depths in the sum, and to weight them differently according 

to depth, for example, using the weight function w2(z) = (z/zmax)-7 which results in 

roughly equal contributions from shallow and deep objects. 

As conceiving and comparing a large number of prospective configurations is a 

potentially burdensome task, we have automated the procedure, in effect, using general 

non-linear optimization methods to minimize the weighted summed squares of 

polarizability uncertainties for prospective objects over a range of depths below the 

system.  For simplicity, we keep the transmitter configuration fixed; for example, three 

orthogonal 1 m2 rectangular loop transmitters abutting the horizontal plane (z = 0), with 

centers at horizontal position x = y = 0, and allow receiver positions (and possibly 

orientations) to vary for a fixed number of receivers.  To model the typically larger 

amount of noise in horizontal field measurements compared to vertical field 

measurements we treat receiver noise as three times greater in horizontal than vertical 

receiver orientations with a sinusoidal variation in between. 

In general, we find that for spherical objects (three equal principal polarizabilities) 

receiver position and orientation optimization results in all receivers being oriented 

vertically.  Optimization is simplest for spherical test objects as spheres are rotationally 

invariant. Polarizability estimation uncertainties do depend on the polarizability matrix.  

Computing summed squared polarizability uncertainty for elongate test objects (with only 

a single non-zero principal polarizability in their limiting case) one can compare for 

uncertainties for elongate objects of any orientation.  Doing this for systems with four, 

five, or six receivers optimized for spherical targets, one finds that four receiver systems 
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have a continuous series of elongate object orientations for which the summed squared 

uncertainty is extremely large (or unbounded).  For five receiver systems, a few elongate 

object orientations remain with extremely large uncertainties.  And for six receivers the 

problem is greatly mitigated, but still one finds, for example, some horizontal orientations 

result in rms polarizability uncertainties 50 times greater than for the same elongate 

object in a near vertical orientation.   

In performing the same sort of optimization for non-spherical objects, one has the 

difficulty that polarizability uncertainty depends on object orientation.  A quick method 

to partially stem this difficulty is to simply sum squared polarizability uncertainties over 

the test object in a number of standard orientations at each of the control points at which 

uncertainties are computed for the test object, for example, orienting the object major 

axis along directions corresponding to the face centers and corners of a cube centered at 

the origin. For example, doing this in a six-receiver optimization for elongate objects 

over a range of test depths from 0.2 m to 1.6 m, reduces the variation in rms polarizability 

uncertainty with orientation for objects at 1 m depth from the factor of 50 to a factor of 5, 

with a 6.5 reduction of the largest rms polarizability uncertainty.  This analysis is 

reported in detail in Smith et al. (2005). 

 

Worst-case optimization 
 

Summing squared uncertainties over estimates for a number of orientations of an 

elongate object is a simple ad hoc method of adapting the minimization objective to find 

receiver arrays which perform better for elongate objects than systems which have only 

been optimized for resolving spheres.  Being ad hoc, it leaves some uncertainty as to 

whether there might be other objects with polarizabilities that would be unresolvable, 

despite having sizable polarizabilities.   

To first order in receiver noise level, for a given transmitter-receiver system and 

object position and orientation, the polarizability uncertainties are independent of the 

scale of the polarizability matrix (Smith and Morrison, 2004); the polarizability 

uncertainties for an object with small polarizabilities and for a similar object with large 

polarizabilities with the same orientation and the same ratios of principal polarizabilities 

are the same.  Of course, for an object with small polarizabilities, the relative 
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uncertainties in the polarizabilities are much greater than the relative uncertainties for the 

similar object with larger polarizabilities. So, in optimizing a system, one need not worry 

about the scale of the polarizability matrix for which it is optimized. 

Ostensibly, one might like to find systems that are optimal in a mini-max sense: 

giving the minimum summed squared polarizability uncertainty for whatever 

polarizability object has the greatest summed squared uncertainty. In general, as we 

consider both object polarizability and position as parameters to be estimated, 

uncertainties in one and the other are not independent, so a mini-max problem for 

uncertainties in one separate from the other is not convenient.  For mini-max 

minimization, instead of considering the summed squared uncertainty in all components, 

it is much more convenient to worry about only the squared uncertainty in the component 

that is least well constrained by a set of data.  In summing over squared uncertainties, this 

component would make the greatest contribution to the summed squared uncertainty.  

Given the structure of the sensitivity matrix (Jacobian) of data with respect to 

polarizabilities and position, as it depends on object polarizability, we find the worst-case 

polarizability matrix, which has the component with the largest uncertainty of all 

components of all polarizability matrices. In most cases examined, the worst case 

polarizabilities have one principal polarizability that is less than one hundredth of the 

largest principal polarizability, and a second principal polarizability that is less one tenth 

of the largest principal polarizability. 

For a given receiver-transmitter system and object location, once the worst case 

polarizability is in hand, it is straightforward to compute its summed squared 

polarizability uncertainty, and to use this summed over prospective object positions 

(control points) as an objective function in non-linear optimization.  More details are 

given in Smith and Morrison (2005b). 

 
3.3  Spectral properties of target response  
  

The analysis till now has concentrated on the detection of a target, and the 

determination of depth and principal polarizabilities of the target.  In the introduction we 

also described the vital step of measuring the polarizabilities as a function of frequency, or 

time, to determine the shape, size, metal content and even the wall thickness of the object.  
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Only the variation of the induced moments with frequency permit the determination of the 

various shapes shown in the cartoon of Figure 3.1.1.  This analysis immediately raises the 

issue of the necessary bandwidth.  To get an idea of the bandwidth over which the principal 

polarizabilities undergo their defining variation we again turned to the simulator to find the 

spectral and transient responses for some typical UXO.   

 The response of a target is defined here as the secondary field (B) at a given 

receiver for an incident field from a given transmitter.  The response is thus a function of 

the T-R pair as well as the properties of the target.  Induction coil sensors typically measure 

the time derivative of the secondary field B so the dB/dt response is often used.   

 

 
Figure 3.3.1:  Normalized secondary fields (real and imaginary components) as a function 

of frequency for 37 mm aluminum spherical shell of various thicknesses at 0.75 m 
depth.   

 

To illustrate the spectral response of a variety of targets, we have chosen to use a 

simple horizontal loop transmitter with an in-loop vertical receiver deployed directly above 

the target.  This is basically the model for the EM61 commercial system.  This 

configuration, the target size and shape, and the separation of the T-R system from the 

target are shown to the right of the response plots in the following figures.  In all cases the 

secondary fields in nano-Tesla (nT) are normalized by the transmitter moment.  We have 

plotted the frequency response real (or in-phase) and imaginary (out of phase or 
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quadrature) and the transient response for B and dB/dt to illustrate diagnostic behaviors in 

both domains.  We have studied the response of non-magnetic conductors as well as the 

more common permeable conductors and for the simple sphere we have analyzed the effect 

of changing shell thickness on the response.   

The first analysis shows the effect of shell thickness on the frequency response of 

an aluminum 37 mm spherical shell 0.75 m below the T-R pair.  For any body the high 

frequency response, so called inductive limit response, depends only on the size.  In the 

frequency domain, variations in the shell thickness produce characteristic changes in real 

and quadrature response at frequencies in the decade above and below the frequency of 

peak quadrature response.  In Figure 3.3.1 this band is between 30 and 3000 Hz.  The high 

frequency could be estimated at a frequency of 10 kHz so an ideal bandwidth for 

identifying this target would be 30 Hz to 10 kHz or 2.5 decades.   

In the time domain, Figure 3.3.2, the step function response in B clearly resolves 

thicknesses from the early time asymptote at 3x10-5 sec (which also determines the size) to 

about 3x10-3 sec.  The thinnest shell has a pure exponential decay while the solid sphere 

has a ‘stretched’ response becoming exponential only beyond 10-3 sec.  The sensor need 

only have a dynamic range of 1.5 decades to resolve the response.   

The time derivative dB/dt, measured by standard induction coil sensors, is shown in 

Figure 3.3.3.  Diagnostic changes in the response occur between 3x10-6 and 10-2 sec –– a 

much wider bandwidth than that for B and a dynamic range of at lest 2.5 decades is 

required to define the responses.  The time rate of change dB/dt can be measured in units of 

Tesla/sec.  A more convenient unit of dB/dt is the Volt/m2.  It can be shown directly from 

the Maxwell equations that 1 Volt/m2 = 1 Tesla/sec exactly.   
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Figure 3.3.2:  Normalized magnetic field response as a function of time for 37 mm 

aluminum spherical shell of various thicknesses at 0.75 m depth.   
 

 
Figure 3.3.3:  Normalized dB/dt response as a function of time for 37 mm aluminum 

spherical shell of various thicknesses at 0.75 m depth.   
 

The frequency domain response for the same spherical shells but with a magnetic 

permeability of 200 is shown in Figure 3.3.4.  The permeability introduces the opposing 

static magnetization which drives the real response negative at low frequencies and causes 
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small perturbations in the quadrature response also at low frequencies.  Resolution of shell 

thickness for a magnetic target is only possible at frequencies below about 300 Hz.  This 

simple model provides the first evidence that it may be difficult if not impossible to resolve 

shell thickness in magnetic targets in the frequency domain.   

The prospect is improved considerably in the time domain for B as shown in Figure 

3.3.5.  As expected, the thickness variations are manifested at late time, between 10-5 sec 

and 10-3 sec.  The thinnest shell develops an exponential decay by 3x10-5 sec while the 

solid hasn’t become exponential by 10-3 sec.  The intervening thicknesses could be well 

resolved with a dynamic range of 2 decades.  The resolution of shell thickness with dB/dt is 

markedly less than with B, Figure 3.3.6.  Curve separation is clear over only one decade of 

time, 10-3 to 10-2 sec, and over 3 decades of amplitude but the diagnostic separation only 

begins after over two decades of amplitude decay from shut-off.   

 

 
Figure 3.3.4:  Normalized magnetic field response as a function of frequency for 37 mm 

magnetic spherical shell of various thicknesses at 0.75 m depth.   
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Figure 3.3.5:  Normalized magnetic field response as a function of time for 37 mm 

magnetic spherical shell of various thicknesses at 0.75 m depth.   
 

 
Figure 3.3.6:  Normalized dB/dt response as a function of time for 37 mm magnetic 

spherical shell of various thicknesses at 0.75 m depth.   
 

These sample models illustrate some general practical conclusion:  B rather than 

dB/dt is more diagnostic of shell thickness for magnetic and non-magnetic objects, and 

shell thickness of magnetic objects is difficult to resolve in the frequency domain.   
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The general analysis for optimizing the T-R configuration in Section 3.2 used 

idealized dipoles (spheres) as the target.  It is important to know how well these results 

apply to the case of actual, usually elongate, UXO.  In Figure 3.3.7 we have shown the 

simulated results for an EM61 style in-loop system over a typical 37 mm shell 0.75 m 

below the system.  The shell is solid, steel, and has an aspect ratio (length/diameter) of 3:1.  

The plot shows the dB/dt response for both the horizontal and vertical orientation of the 

shell.  For comparison the response of the 37 mm sphere is included.  It is immediately 

evident that the actual shell response, for both orientations, is larger than the sphere 

responses.  It may be concluded that all the detectability analyses of Section 3.2 are worse 

case scenarios and so are excellent design guides for a working system. 

In Figure 3.3.7, and subsequent plots for other targets, we have also plotted the 

response from the conductive ground in which the target is immersed.  The responses for 

two ground resistivities, 10 and 100 Ohm-m, are plotted.  The ground response basically 

imposes an early time limit on the time window available for target discrimination. Once 

the target response falls below the ground response it will be poorly resolved, especially 

since the ground response itself will variable due to the inhomogeneous nature of the near 

surface.  (The role of magnetic ground is still being analyzed and will be described in a 

later report.)  For a conservative design approach we assume a ground of 10 Ohm-m.   

 
Figure 3.3.7: Amplitude of dB/dt response for 37 mm sphere, horizontal and vertical shells 

3:1 aspect ratio at the depth of 0.75 m as a function of time together with responses for 
10 Ω-m and 100 Ω-m half-space.   
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For this EM61 simulation we can also include the normalized practical noise level 

for this system at 610 µsec.  Since the noise level is not known at other times into the 

transient, we have simply assumed that the noise is constant at this level for all times and 

plotted this horizontal noise floor accordingly.   

The early time limit imposed by the ground and the later time limit imposed by the 

noise sets the time window over which the response can be measured.  For this target the 

window is roughly from 2x10-5 to 3x10-2 sec (for the horizontal shell).  Referring back to 

Figure 3.3.6, it can be seen that this window is adequate to define the size (early time 

asymptote) of the sphere and to resolve its thickness, but the dynamic range is almost five 

decades above the noise floor.  This may be difficult to achieve in practice.  Using only the 

later time data, say from 2x10-4 sec, may be satisfactory especially since it should be noted 

that the orientation has already been determined in the first stage of the inversion.  

The response of this elongate target also reveals the fact that the step response is 

different for the different polarizabilities of a non-spherical target.  The responses of the 

horizontal and vertical orientations of this 37 mm shell actually cross at a few 

microseconds, the horizontal shell giving a longer response at very early time than the 

vertical shell.  This is an excellent illustration of the fact that the ratio of the polarizabilities 

is not the same as the geometric aspect ratio of the body.  As can be seen in Figure 3.3.7 the 

ratio of the horizontal and vertical responses at later time is 10:1.  (An interesting 

observation is that the ratio of the horizontal responses for the target to that of a sphere of 

the same diameter is 3:1.  This appears to hold true for all the elongated targets we 

considered.  The result holds for the B response as well.)   

For B rather than dB/dt the window where the target response exceeds the ground 

response widens to 3x10-6 sec at the low end, Figure 3.3.8.  Since there are no existing 

systems that measure B we have no estimate of when the late time response meets the noise 

floor.  However, the horizontal and vertical responses still differ by a factor 10 and most 

importantly the observed separation (including very early time) is confined to less than 3 

decades of amplitude variation.  Instrumentally this is much more manageable than the 

much higher dynamic range required for a dB/dt system.   
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Figure 3.3.8: Amplitude of magnetic field response for 37 mm sphere, horizontal and 

vertical shells 3:1 aspect ratio at the depth of 0.75 m as a function of time together 
with responses for 10 Ω-m and 100 Ω-m half-space.   

 

Figures 3.3.9 through 3.3.14 show the B and dB/dt responses for three other targets 

representative of the extremes of UXO to be characterized – a 22 mm shell with an aspect 

ratio of 8:1 (Figures 3.3.9 and 3.3.10) at a depth of 0.75 m, a 105 mm shell with an aspect 

ratio of 4:1 at a depth of 2.65 m (Figures 3.3.11 and 3.3.12), and a larger 155 m shell with 

an aspect ratio of 4.4:1 at a depth of 4.55 m (Figure 3.3.13 and 3.3.14).  In all these 

simulations the ground response limits the early time response to microseconds in B and 

10’s of microseconds in dB/dt.  The dynamic range requirement is reduced in B and 

responses to at least 0.01 sec (10 msec) are required to clearly resolve the decay 

characteristics.  For the large target at greater depth the response must be obtained to at 

least 100 msec at which point, at least for this sample EM61–like system, the response in 

dB/dt is below the noise level (see Figure 3.3.13).   

 

 58



 
Figure 3.3.9: Amplitude of dB/dt response for 22 mm sphere, horizontal and vertical shells 

8:1 aspect ratio at the depth of 0.75 m as a function of time together with responses for 
10 Ω-m and 100 Ω-m half-space.   

 

 

 
Figure 3.3.10: Amplitude of magnetic field response for 22 mm sphere, horizontal and 

vertical shells 8:1 aspect ratio at the depth of 0.75 m as a function of time together 
with responses for 10 Ω-m and 100 Ω-m half-space.   
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Figure 3.3.11: Amplitude of dB/dt response for 105 mm sphere, horizontal and vertical 
shells 4:1 aspect ratio at the depth of 2.65 m as a function of time together with 
responses for 10 Ω-m and 100 Ω-m half-space.   

 

 

 
Figure 3.3.12: Amplitude of magnetic field response for 105 mm sphere, horizontal and 

vertical shells 4:1 aspect ratio at the depth of 2.65 m as a function of time together 
with responses for 10 Ω-m and 100 Ω-m half-space.   
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Figure 3.3.13: Amplitude of magnetic field response for 155 mm sphere, horizontal and 
vertical shells 4.4:1 aspect ratio at the depth of 4.55 m as a function of time together 
with responses for 10 Ω-m and 100 Ω-m half-space.   

 

 
Figure 3.3.14: Amplitude of magnetic field response for 155 mm sphere, horizontal and 

vertical shells 4.4:1 aspect ratio at the depth of 4.55 m as a function of time together 
with responses for 10 Ω-m and 100 Ω-m half-space.   
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These examples have been chosen to illustrate the properties of a particular system, in 

this case an EM61 simulation, in resolving elongate objects at a variety of depths and in 

showing the time window constraints imposed by the ground response and the system noise 

levels.  The results of Section 3.2, for example Figure 3.2.5 shows the dramatic 

improvement in detectability that occurs when a multi-element T-R configuration is used 

on a grid of stations.  Figure 3.2.1 for example shows that the 155 mm target at a depth of 

4.55 m would not be detectable with the simple in-loop system.  This of course is also seen 

in Figure 3.3.13 where only the vertical 155 mm elongated shell rises above the noise in the 

6x10-4 sec to 7x10-3 sec time window.  Figure 3.2.5 indicates that the three transmitter - 

three receiver configuration, occupying many locations, could easily determine the depth 

and polarizabilities to better than 10% for this 155 mm target.  A combination of 

detectability graphs such as Figure 3.2.5 or 3.2.11 and specific response plots such as those 

shown in the suite of Figures from 3.3.4 to 3.3.14 establish the bandwidth and moment 

requirements for an actual field system.   

In summary, it appears that for step function excitation, transients from 10 

microseconds to 100 milliseconds are to be detected for a practical range of UXO and a 

practical range of depths.   

 

 
3.4  The transient response of spheres and spheroids 

 

 Results presented hitherto are results of an algorithm for calculating the response of 

a conducting, permeable sphere (including a spherical shell of arbitrary thickness) in either 

a uniform field or the field from a finite source.  Much of our early analysis on the depth of 

detection, array configurations etc. was based on this spherical target.  UXOs are generally 

not spherical and so we devoted considerable effort to adapting, and improving numerical 

codes to model prolate and oblate spheroidal objects.  We now have reliable codes for 

modeling solid, conducting and permeable spheroids with aspect ratios (diameter to length) 

from 1:4 to 4:1.  For certain polarizations of incident field the results are accurate to an 

aspect ratio of 10:1.   
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 We simulated the target response of various transmitter-receiver configurations, 

with step function excitation, over these spheroids for various attitudes of the bodies.  For 

comparison we plotted the transient responses of spheres of the same radius as the 

equatorial radius of the spheroid and discovered that the transients were all of the same 

shape and were simply shifted versions of the sphere response.  A typical result of this 

analysis is shown in Figure 3.4.1.  Here we have plotted the vertical field transient 

response, in dB/dt for two targets located directly below a horizontal loop transmitter at the 

depth of 0.75 m.  The plot shows the transient response of a 37 mm (equatorial diameter) 

prolate spheroid with an aspect ratio of 3:1.  The length of the spheroid is thus 111 mm.  

The response is shown for the spheroid oriented vertically and horizontally.  For 

comparison the responses of a 37 mm and 111 mm sphere are also plotted.  Finally the two 

sphere responses are re-plotted after each is multiplied by a constant; 0.246 for the 111 mm 

sphere and 2.71 for the 37 mm sphere.  The shifted sphere responses lie almost exactly on 

the spheroidal responses over the whole transient window.  The spheres and spheroids 

preserve their conductivities and permeabilities through this scaling.   

 

 
Figure 3.4.1:  Equivalent sphere response.   
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 Smith and Morrison (2005a) have presented a detailed analysis of this empirical 

relationship and showed that the scaling factors are simple functions based on the volumes, 

dc magnetizations and high frequency limit responses of the spheres and spheroids.  The 

scaling is valid for highly conducting bodies with relative permeabilities above 50 and with 

aspect ratios up to 4 or 5 to one – in other words most UXOs. 

 The impact of this discovery on interpreting the apparent principal polarizabilities 

obtained from the data is enormous.  The numerical codes for obtaining the response of the 

ellipsoidal body are complex and are time consuming even on a large computer.  Fitting an 

ellipsoid to the data in an inversion scheme using these numerical forward models is even 

more time consuming and certainly not practical for real time processing during a survey.  

On the other hand the algorithm for the sphere response is a closed form analytic 

expression, which is very fast to execute.  Since the scaling factors are simple functions the 

dimensions of the actual spheroid are consequently derived almost instantly from the two 

principal apparent polarizabilities.  Thus the important properties, size and true aspect ratio 

can be determined very quickly from the data.  Finally, inversion for the conductivity and 

permeability can likewise be done very quickly for the equivalent spheres as described in 

Section 3.8.   

 

3.5  The effect of a repetitive transmitter waveform 
 

 The ideal transient is modified by the practical need to use some sort of repetitive 

waveform rather than the unrealizable infinite step function.  The usual choice is a square 

wave such as that shown in Figure 3.5.1.  We have chosen to illustrate this analysis using B 

rather than dB/dt because the results are more easily seen in the transient responses in B 

than in the more complex and rapidly decaying dB/dt responses.  The conclusions are the 

same in either domain.  The transients in B in the off-time of the waveform are plotted for 

the step response and for four progressively shorter periods of the repetitive waveform.  As 

the waveform shortens the dc component is removed and the low frequency content of the 

step function is cut-off.  Further, there is the effect that the transient from one turn off has 

not recovered before it is hit by the next turn-on.  Clearly the character of the transient is 

dramatically changed and the evident stages of the decay discussed for the step function in 

 64



Section 3.4 above are no longer as evident.  Consequently the deduction of the physical 

properties from the transient is compromised.  From Figure 3.5.1 it is clear that the longest 

period possible would be best.  However for optimum signal-to-noise we shall see that the 

waveform must be averaged, or stacked, and so the longer the waveform the longer the 

total time that the system must remain at a measurement point, and so the survey speed is 

reduced.  The gain in information from lengthening the waveform is perhaps only a 

theoretical gain since for a practical transmitter moment the transient at late time will have 

fallen below the noise floor. 

 One way to address this problem is to simply plot the initial amplitude of the B 

transient for some simple transmitter-receiver configuration over spheres of various sizes 

and at various depths.  The amplitudes for four representative spheres at four different 

depths are plotted as a function of repetition period in Figure 3.5.2.  This range of target 

size and depth encompasses the range required for useful UXO detection and 

characterization.  The amplitudes reach an asymptote with increasing period, the period at 

which this occurs, Tc, varies from about 10–2 seconds for the large sphere to 10–4 seconds 

for the small sphere.  The transition to the asymptotic amplitude is slow – the values drop 

less than order of magnitude when the period shrinks by two orders of magnitude.  For a 

practical system the period could lie between 10–3 and 10–2 seconds (repetitive rate of 1000 

Hz and 100 Hz).   

 

 
Figure 3.5.1:  Transient response of a repetitive square waveform.   
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Figure 3.5.2:  The amplitudes for four representative spheres at four different depths 

plotted as a function of repetition period.   
 

 We addressed this problem in a more formal matter by using the forward model 

simulator, now expanded to include the response of the band limited receiver and the 

square wave repetitive waveform, in an inverse mode to determine the accuracy of 

recovery of the physical properties for various periods of the waveform (Section 3.8).  This 

process basically allows us to find the shortest period for which the properties can be 

recovered with the best accuracy. 

 For this analysis we used the repetitive waveform of Figure 3.5.3.  The analysis 

included the repetition rate, 1/T, and the relative pulse length, a/b.  The current pulse 

amplitude was varied such that the product of the current squared and the pulse duration 

was kept constant – in other words the energy per pulse was the same.   
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Figure 3.5.3:  Repetitive waveform.   

 

 The receiver was critically damped and we used two resonant frequencies (f0), 3.2 

kHz and 33 kHz.  The target was a 160 mm diameter sphere.  The data were inverted to 

determine log(r), the log of the ratio of the conductivity to relative permeability, log(σ/µr), 

and the log of the product of conductivity and permeability, log(σµ).  As discussed in 

Section 3.6 the product σµ is not well resolved from practical transient data because the 

transient cannot be obtained at times large enough for the exponential decay to have 

occurred.  However for large σµ even if roughly estimated, the radius, r, and the ratio of 

σ/µ are well determined.  In other words the determination of σ/µ is very weakly dependent 

on the value of σµ.   

 The results are displayed in Figures 3.5.4 and 3.5.5 as contours of the uncertainty in 

the estimates of log(r), log(σ/µ), and log(σµ) as a function of the repetition rate in Hertz 

(on the horizontal axis) and relative pulse length (on the vertical axis).  The range of 

repetition rates was based on rough analysis such as that in Figure 3.5.2.   

 Figure 3.5.4a, b, and c show results for a resonant frequency of 3.2 kHz.  For both 

log(r) and log(σ/µ) there is a broad ‘valley’ of lowest uncertainty running diagonally up to 

the right for both parameters.  These results suggest that an optimum repetition rate is in the 

10 – 100 Hz range for relative pulse lengths from 0.03 to 0.1 respectively.   

 The practical choice is guided by the voltage and current waveforms for the 

constant energy pulse.  The short pulse (a/b = 0.03) would have to have a very high current 

with accompanying high voltages (V = L * dI/dt) on the switch.   

 The exercise is repeated for a resonant frequency of 32 kHz and the results are 

plotted in Figure 3.5.5a, b, and c.  Here the repetition rate range has been extended to slow 
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the rapid deterioration in the estimates of log(r) and log(σ/µ) above a few hundred Hertz.  

The optimum range is not dramatically different – a repetition rate of 100 Hz and a relative 

pulse length of 0.1 would still be adequate.   

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.5.4:  Uncertainties in (a) log(r), (b) log (σ/µ), and (c) log (σµ) for 160 mm sphere, 
resonant frequency f0= 3.2 kHz, and critically damped receiver.   
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(a) 

 
(b) 

 
(c) 

Figure 3.5.5:  Uncertainties in (a) log(r), (b) log (σ/µ), and (c) log (σµ) for 160 mm sphere, 
resonant frequency f0= 33 kHz, and critically damped receiver.   

 

3.6  Inversion for size, conductivity, and permeability 
 

 In preliminary analysis, data from a set of receivers and transmitters is reduced to 

estimates of equivalent dipole polarizability as a function of time in (estimated) principal 

coordinates of an object, with accompanying error estimates.  Given the good 
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approximation of spheroid responses by appropriately scaled sphere responses, axial and 

transverse spheroid responses can be interpreted in terms of equivalent spheres.  Dipole 

polarizability as a function of time is inverted for sphere radius, r, conductivity, σ, and 

relative permeability, µr, using the empirical distribution evolutionary algorithm of Smith 

et al. (1994), minimizing the weighted squared misfit between the measured dipole 

polarizability as a function of time and that of a sphere illuminated with a uniform 

incident magnetic fields with the same waveform as used for the measured data, and 

filtered through the same receiver transfer function as the measured data.  The empirical 

distribution evolutionary algorithm is a population based algorithm: initially a wide 

variety of spheres are modeled with randomly selected parameters r, σ, and µr, and in a 

sequence of successive iterations, the space of parameters is sampled increasingly 

densely in the vicinity of the better points found.  It is a real parameter genetic algorithm 

with arithmetic recombination, a high degree of tournament based elitism, with 

perturbations based on differences of retained population members and discarded 

population members.  More details are given in Smith and Morrison (2004). 

Once a set of sphere parameters r, σ, and µr minimizing the weighted data misfit 

is found, parameter uncertainties are estimated using a local analysis based on the partial 

derivatives of the data with respect to the parameters (the Jacobian) evaluated at the 

minimum.  Letting F be the Jacobian for the weighted data with respect to the logarithmic 

parameters log(r), log(σ) and 2log(µr), the covariance matrix of log parameter 

uncertainties is (FTF)-1, with squared log parameter uncertainties on its diagonal and log 

parameter error covariances on its off-diagonals.  In general, we find that estimated errors 

in log(σ) and log(µr) are highly correlated, and errors in log(r) essentially independent.  

More specifically, we have found the eigenvectors of the covariance matrix correspond 

very closely to log parameter combinations log(r), log(σ) - log(µr) = log(σ/µr), and log(σ) 

+ log(µr) = log(σµr), with log(r) best determined, log(σ/µr) moderately determined and 

log(σµr) generally very poorly determined.  We find that log(σµr) only becomes 

reasonably well determined as the length of data used in inversion approaches or exceeds 

the fundamental time constant of the sphere σµrµ0r2/d2 (with d ≈ 1.42π for highly 

permeable spheres, d ≈ π   for non-magnetic spheres). 
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Figure 3.6.1: Squared weighted data misfit as a function of trial sphere conductivity and 

relative permeability for bipolar data with an 80 Hz repetition rate, a 0.4 duty cycle 
square pulse and a 32 k radian/s resonant frequency critically damped receiver using 
data from 0.47 ms to 3.75 ms, for synthetic data from a 160 mm diameter steel sphere.   

 

A graphic example of the insensitivity of data to the product σµr is shown in 

Figure 3.6.1, which shows squared weighted data misfit as a function of trial sphere 

conductivity and relative permeability for bipolar data taken with an 80 Hz repetition 

rate, a 0.4 duty cycle square pulse (2.5 ms each half cycle), and a 32 k radian/s resonant 

frequency (ω0) critically damped receiver using data from when primary field transients 

are assumed to have sufficiently decayed at 0.47 ms (=15/ω0) to the beginning of the next 

half cycle at 3.75 ms, for synthetic data from a 160 mm diameter steel sphere, (σ = 107/ 

Ohm-m, µr = 180 ).  In this figure, for each point plotted trial sphere σ and µr have been 

specified and the sphere radius found minimizing the squared weighted misfit.  The misfit 

surface forms a very long narrow valley through the true σ and µr values.  Local analysis 

shows that the product σµr is essentially undetermined, corresponding to moving along 

the bottom of the valley, however, for σµr < 4 × 106 / Ohm-m the valley starts to slope up 

steeply.  This corresponds to trial spheres with time constants less than 2 ms starting to fit 

the data poorly, so although the σµr product is indeterminate, the data could still place a 
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floor on permissible σµr products.  Moving from the minimum at right angles to the 

valley corresponds to varying the ratio σ/µr, the misfit rises quickly as the σ/µr is much 

better determined.  

 

3.7  Choice of receiver bandwidth 
 

 The analysis of the role of pulse length and repetition period assumed a perfect 

receiver, that is a receiver that did not introduce additional distortion to the transient 

waveform.  Unfortunately realizable sensors for either B or dB/dt do not possess the 

essentially infinite bandwidth required to measure the transient without distortion.  Coils 

inherently have a distributed capacitance so that the voltage output is only strictly 

proportional to dB/dt below some ω0, called the resonant frequency of the coil.  Such a 

sensor is insensitive to dc and acts as a filter on dB/dt distorting the transient.  Some high 

frequency limit is desirable in any sensor to reduce the broadband ambient electromagnetic 

field noise.  For practical reasons there is no point in admitting noise of frequencies greater 

than the highest frequency needed to accurately represent the transient while maintaining a 

good signal-to-noise ratio.  Some balance must be found between moving the resonant 

frequency to a high value to accurately represent the transient while letting in significant 

noise to moving it to a low value and reducing noise but significantly distorting the 

transient.   

 A variant of this induction coil sensor uses a feedback winding around the primary 

sensor coil.  The output voltage is fed back to this auxiliary winding through a resistor in 

such a way as to create a field through the primary sensor which is equal and opposite to 

the external field being sensed.  The current in the feedback winding is thus largely 

proportional to the sensed field rather than its derivative.  These feedback sensors have 

been used for many years in geophysical exploration systems and are usually described as 

B sensors.  The feedback is not ideal and the resulting sensor response is bandwidth 

limited.  The bandwidth cannot obviously extend to dc and it would be undesirable to let in 

noise above those frequencies present in the desired transient.  Thus the B sensor also has a 

bandwidth which distorts the transient.   
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 To illustrate this discussion we consider two possible receivers.  The corresponding 

bandwidths are shown schematically in Figure 3.7.1.  The ideal infinite bandwidth is 

represented by the horizontal line.  The B-field coil (Figure 3.7.1a) has a center frequency, 

f0, of 3 kHz (this is actually the resonant frequency of the primary sensing coil) and has flat 

B response from f0/100 to 100*f0.  The critically damped dB/dt receiver (Figure 3.7.1b) has 

a resonant frequency of 300 kHz and its bandwidth is from (√2 –1) f0 to (√2 +1) f0.   

        
Figure 3.7.1:  Schematic of the bandwidths for (a) B sensor, and (b) critically damped 

dB/dt sensor.   
 

 We first note that there are two phenomena that have a major impact on the 

observed transient.  The first is the bandwidth distortion or filtering effect described above.  

There is also the fact that the receiver is subject to the sharp transient turn-on and turn-off 

of the transmitter.  The receiver, i.e. the physical coil of wire, develops an enormous emf 

during the transmitter transitions which persists in the coil-amplifier circuit after the 

cessation of the transmitter current.  In a critically damped dB/dt receiver this transient 

signal decays with the time constant of the coil – equal to the reciprocal of the resonant 

frequency of the coil, i.e. 1/ω0.  The amplitude of this “equipment” transient is enormous so 

it is likely to dominate any response from a buried target for a considerable time after the 

turn-on or turn-off at the transmitter.  This problem could be avoided by using a receiver 

coil oriented orthogonal to the primary field of the transmitter – the so-called minimum 

coupled configuration.  In practice however, this is difficult to do because the orthogonality 

must be achieved to milliradians or less and maintained at this level as the platform is 

moved over the surface.   

 Unfortunately the problem is exacerbated in the B, or feedback, receiver where the 

primary field transient is smaller but still dominates the target signal by many orders of 

magnitude throughout the observation interval.   
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 The following brief analysis of the response of a typical induction coil sensor to 

secondary field excitation shows in greater detail the role of the detector characteristics in 

the distortion of the target response.  

 A typical TEM system is shown in Figure 3.7.2.  It consists of a transmitter with a 

“step-off” current waveform, an induction sensor defined by its electrical parameters L, r, 

C, and a “loop” target defined by its time constant τ.  We will assume unity gain for the 

sensor amplifier so that the relationship between the sensor output and the secondary 

magnetic flux produced by the target is given by: 

V0 (t) = -dφ/dt     (3.7.1) 

For the purpose of the following discussion we will assume that the system is null coupled 

so that φ0 (t) = 0.  In the same instances it is convenient to normalize the sensor output 

voltage by the effective area of the sensing coil, Aef.  In that case, since φ = B·Aef we get  

V0/Aef = -dB/dt.  Once again we see that 1 nV/m2 = 1 nT/sec.   

 

 
 

Figure 3.7.2:  A typical TEM system: It consists of a transmitter with a “step-off” current 
waveform, an induction sensor defined by its electrical parameters L, r, C, and a 
“loop” target defined by its time constant τ.   
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3.7.1  The critically damped detector  

 
All conventional TEM systems use critically damped induction coil sensor to detect 

the target signal.  It is either self-resonant or tuned to a central frequency ω0. For this type 

of sensor shown in Figure 3.7.2 the resonant frequency, f0, is given by: 

2 π f0   =  ω0  =  (LC)-1/2     (3.7.2) 

while critical damping is assured by having  

ω0 L/r = 1/2     (3.7.3) 

In that case the detector response to a sinusoidal flux signal φ = φ0 sin(ωt) is given by: 

2
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As shown in Figure 3.7.3 the sensor bandwidth defined by the half-power points equals 2ω0 

and spans the range: 

00 )12()12( ω+<ω<ω−  

In this illustration ω0 is set to 105 s-1 corresponding to a central frequency of about 16 kHz 

so that the sensor has a bandwidth of about 32 kHz.   

 

 
Figure 3.7.3:  Bandpass characteristics for a critically damped detector from Figure 3.7.2 

with a central frequency ω0 = 105 s-1 (≈16 kHz).   
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 The time domain step response, i.e. the sensor response to the primary flux for this 

detector is shown in Figure 3.7.4.  For a unit step in the ambient flux this is given by:  

t
000 0et)(V ω−ωωφ=  

It rises from zero to a maximum value of 10 µsec corresponding to a detector rise time of 5 

µsec.  In spite of this fast detector response it should be noted that for a typical maximum 

coupled system no observations of the secondary field can be made until the primary field 

“leakage” i.e. the detector response falls by about four orders of magnitude which in this 

case occurs at about 100 µsec.   

 

 
Figure 3.7.4:  Sensor response to a step transition in primary flux for the induction detector 

from Figure 3.7.2.   
 

 Now let us turn to the effects of bandwidth on signal distortion.  This is the only 

bandwidth related effect seen where the transmitter and receiver are in minimum coupling.  

Let us consider a target signal which decays with a time constant τ: 

τ−φ= /t
s1 eS      (3.7.5) 

In this case the ideal induction detector would produce a voltage given by: 
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where δ(t/τ) is a delta function at signal onset which is related to the leading edge of the 

transient signal.  In normalized dimensionless form this can be written as: 
t
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with α = ω0τ.  On the other hand the voltage output for a practical critically damped 

detector is given by: 
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The first term of this expression corresponds to the decaying signal somewhat amplified by 

a factor of 
2

1
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
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α

= .  The second term is the detector response to the leading edge of 

the signal (i.e. its initial value).  It is a distorted version of the delta function part of the 

ideal detector response and closely resembles the actual detector step response. [The step 

response of an ideal detector is a delta function.] 

 The “ideal” and “actual” observed signals are shown in Figure 3.7.5 for a signal 

time constant of 100 µsec and a critically damped detector resonant frequency of about 16 

kHz (ω0 = 105 s–1).  The left hand side shows the signal distortion phenomenon in true 

shape on linear scales.  As predicted the initial part of the observed distorted signal indeed 

resembles a smeared out delta function while the late part of the observation is a scaled 

(augmented) version of the true signal.  As shown in the right hand portion of the 

illustration the signal distortion disappears at a time of about 100 µsec.  After this time one 

can extract the true time constant of the signal and, if desired, correct the observations by 

the appropriate “g” factor to extract the correct value of the target moment.   
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Figure 3.7.5:  Distortion of the secondary field transient for a 100 µs target by a critically 

damped detector tuned to about 16 kHz on linear and on log-linear scales. 
 

 We will call the instant at which the observed and augmented target signals 

coincide to within a given percentage the early observation time te.  It can be calculated 

numerically from equation (3.7.8).  The results for our sample 100 µsec target are shown in 

Figure 3.7.6.  Here, for ω0 = 105, we note that we can observe the augmented transient to an 

accuracy of 10% at about 80 µsec from the beginning of the transient while if an accuracy 

of 1% is needed then the earliest observation time is increased to 110 µsec.  One can derive 

a general, empirical relationship between the earliest observation time for the undistorted 

transient and the time constant (T=L/r) of the critically damped detector.  For 10% 

accuracy and situations such as this one, where τ≥ω0 , the earliest time only depends on 

the receiver time constant (T = ½ ω0) and is approximately given by te = 20T.  Thus the 

earliest time at which a signal can be correctly observed is at least equal to twenty times the 

receiver time constant.  This is so in the best of circumstances where the receiver time 

constant is already twenty times smaller than that of the target and we have a minimum 

coupled system.   
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Figure 3.7.6:  Earliest time of detection, to 1% or 10% accuracy for 100 µs target. 

 

 We thus conclude that at best the distortionless observation of the target signal is a 

difficult task.   

 In general the distortion introduced by the finite bandwidth of the sensor cannot be 

corrected by applying a system correction.  The data outside the pass band is reduced 

below the system noise and deconvolution operations simply bring back unacceptable 

noise.  Sensor bandwidth is reduced as much as possible, often using additional filtering in 

the following signal processing stages, to limit the noise but this carries the problem of 

distorting the transient response.  Too narrow a band can distort the signal to the point 

where it is actually useless for detailed characterization of the target.   

 The feedback coil is ideally suited for optimizing the bandwidth.  Depending on 

circumstances, the sensor can be tuned and critically damped so that it shows the 

conventional dB/dt behavior.  On the other hand, with the judicious use of feedback, the 

sensor can be made to have a flat response over many decades of frequency so that its 

behavior is more akin to that of magnetometer that measures B.  In either case the dc target 

response cannot be recovered.  

The idea for a sensor with wideband flat frequency response originated in France 

nearly forty years ago (Glerc and Gilbert, 1964).  As shown below,  
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Figure 3.7.7:  The wideband sensor.   

 

This induction device consists of a principal winding denoted by its inductance “L” and 

resistance “r”.  It is tuned by the capacitance “C” to a central frequency “ω0”.  The variable 

bandwidth feature is incorporated by feeding back the amplifier (gain A) output through a 

current limiting resistor R to an auxiliary winding, ”l”, which is inductively coupled to the 

principal winding by the mutual inductance “m”.  The receiver response is a function of the 

central frequency and the available feedback current.  It is the latter that controls the system 

bandwidth as defined by the ratio of the highest to the lowest frequencies in the pass band,  

ωH / ωL.  More precisely,   

ωH / ωL = ω0 m A / 2R = n2.    (3.7.9) 

 The frequency response for a variety of feedback settings as indicated by the 

parameter labels which correspond to values of ωH/ωL is shown below in Figure 3.7.8.   

 
Figure 3.7.8:  Frequency response of the wideband sensor.   

 80



 

Here we see how the sensor response varies, with the feedback parameter “n2”, as a 

function of the normalized frequency  ω/ω0.  A feedback parameter value of unity 

corresponds to the classical critically damped induction receiver with no feedback.  If ω0, 

the resonant frequency of the receiver, is much greater than the frequency of peak target 

quadrature response then the sensor will in fact output a very close replica of the time 

derivative of the target signal.  On the other hand, a sensor that is made to have a flat 

response over four decades of frequency by the application of massive feedback (n2 = 

10,000), will in fact have an output voltage that is closely proportional to the actual 

secondary magnetic field generated by the target.  

 The discussion to this point has considered only the goal of recovery the B 

response.  It is considerably easier to recover the true dB/dt response by moving the 

resonant frequency of the coil to a frequency much greater than the frequency of peak 

target quadrature response and using a feedback parameter of unity.   

 For a maximum coupled receiver the response is often dominated by the transient 

induced in the receiver by the primary filed shut-off.  This phenomenon is illustrated in 

Figures 3.7.9 and 3.7.10.  Here the sensor is in maximum coupling to a 1-m2 transmitter 

with a moment of 180 Am2.  The target is a 37 mm iron sphere located at 75 cm below the 

transmitter plane.  For the critically damped sensor the dB/dt response of the target alone, 

i.e. with an ideal infinite bandwidth receiver, is denoted as ‘unfiltered’.  The target as seen 

by the critically damped receiver of Figure 3.7.1b is denoted as ‘filtered’.  The primary 

field, equipment, transient, denoted as ‘primary step’, is over five orders of magnitude 

greater than the signal transient at times earlier than 10–5 seconds.  The distorting effect on 

the signal transient however, becomes insignificant for times greater than 25 µsec.   

 For the B sensor the primary step response is given by: 

( )tHtL
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2
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A
V ωω

ωω
ω −− −

−
=    (3.7.10) 

where ωH = n ω0, ωL = ω0/n, with n defined in equation (3.7.9), V is the measured signal, 

and Aef is the effective area of the sensing coil.   
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Even though the signal is now proportional to B over a large part of the frequency range it 

still has to be measured in Volt/m2 or Tesla/sec.  As shown in Figure 3.7.10 for the B 

sensor, with the bandwidth shown in Figure 3.7.1a, the primary step transient is about four 

decades of magnitude greater than the signal transient and it has essentially no decay up to 

10–3 seconds.  Any practical sensor would lack the dynamic range to separate these two 

phenomena.   

 
Figure 3.7.9:  Critically damped dB/dt sensor response.   

 

 
Figure 3.7.10:  Wideband B sensor response.   
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 As might be expected the signal-to-noise ratio for any receiver is a function of its 

resonant frequency and bandwidth.  We can see this by again taking the situation illustrated 

in Figure 3.7.9 and examining the effect of the resonant frequency for the critically damped 

receiver on the signal-to-noise ratio (SNR) and the required dynamic range.  For the 

critically damped 300 kHz receiver in question and ignoring system noise we find an SNR 

of about 25.  This estimate is based on a signal observation at about 12 µsec after the 

extinction of the primary field where the target signal has amplitude of about 25 µV/m2.  

For this bandwidth the natural observable noise is about 1 µV/m2.   

 Lowering the receiver resonant frequency to 30 kHz would indeed reduce the noise 

by a factor of five to about 200 nV/m2 but then the target signal would not be seen until 130 

µsec after extinction where its amplitude is only 900 nV/m2.  In this case lowering the 

receiver resonant frequency by a factor of ten would result in an SNR reduction by a factor 

of about five.   

 This is only an illustrative example done for external noise measured at a relatively 

quiet site.  In a presence of large noise it is quite likely that the 30 kHz receiver frequency 

would be optimal.  In either case the required dynamic range would be about 160 db.  The 

dynamic range requirement can be much relaxed by using a half sine transmitter with a 

much higher moment.   
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4.  LAB PROTOTYPE 
 

4.1  Introduction 

 

 The analyses developed in this project are applicable to AEM systems on any scale.  

We have found in this process that systems scale roughly with depth of burial and size of 

the target.  Thus the dimensions of the transmitter control the field strength at depth and 

spacing of receivers controls the accuracy of depth estimates.  On the other hand the 

detection of small near surface objects depends on having enough receivers deployed 

spatially so as not to miss their spatially small response pattern.  It appears that given the 

possibility of an arbitrary number of receivers that the overall system dimensions should be 

set by the size of the transmitter loop and the practicality of moving this loop over the 

ground.   

 We have decided in this preliminary design to choose the popular cart mounted 

configuration.  With a horizontal loop dimension on the order of 1.0 square meter this 

configuration has been shown to be maneuverable and to be capable of exciting responses 

from typical UXO to depths of a meter or two.  In a sense we have chosen a conservative 

design based on systems which have a demonstrated track record of detecting metallic 

objects to the depths of interest.  The important advances of the proposed design are that 

the data can be used to characterize the target and in so doing classify it as possible UXO or 

as scrap, and that the target can be located and identified from a single position of the 

multi-sensor system.  The following sections summarize the considerations included in the 

design process.   

 

4.2  Prototype system 
 

 We assembled a bench prototype system illustrated schematically in Figure 4.2.1.  

This system was not rigorously optimized along the lines suggested in Section 3, rather it 

was assembled with readily available components to get a working system whose 

performance could be used to confirm modeling results and to be a starting point for an 

optimized system.   
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Figure 4.2.1:  Schematics of the bench test acquisition setup.   

 

 The main transmitter loop is the one used in the Geonics EM-61 system.  It is 

roughly one meter square, has approximately 32 turns.  We used a half sine of 19 amperes 

peak for a moment of about 600.  We synthesized results from an orthogonal three-coil 

system by simply moving the one coil to three positions in the jig shown in Figure 4.2.2.   

 We used eight “pancake” receiver coils mounted within the footprint of the 

horizontal transmitter loop.  The receivers were originally designed for an EM scale model 

study and are not designed for this system.  Nonetheless they are adequate for this proof of 

concept.  In Figure 4.2.2 these receivers are the round wheel-like shapes.  The black centers 

are tapered plastic plugs, which, when screwed down on precisely located threaded posts 

on the horizontal platform assure that the coils are accurately relocated if they need to be 

removed.  The choice of location of the eight receivers was made following the 

optimization procedure of Section 3.2.   

 

 
Figure 4.2.2:  Photo of the prototype system.   
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 The current source is a repetitive bipolar half sine waveform the parameters of 

which are shown in Figure 4.2.3.  Again we used a half sine pulser developed in a previous 

project.  Based on the discussion of Section 3.5 the repetition rate is good but the relative 

pulse length is probably too large. 

 
Figure 4.2.3:  Half sine waveform of prototype system - repetition rate of 90 Hz, relative 

pulse length is 0.18, and maximum current A= 19 Amperes.   
 

 Each receiver in this prototype is connected to a channel of a multi-channel 

oscilloscope by a simple twisted pair cable.  The trigger for the oscilloscope is yet another 

receiver coil mounted essentially on the transmitter winding.  The scope is thus triggered 

on the trailing sharp edge of the half sine derivative.  Recording is delayed by 20 µsec to 

avoid switching transients and the equipment transients discussed in Section 3.4. 

 The transient is digitized with a sampling interval of 2 µsec.  The digitized transient 

is averaged, or stacked, over 100 records and the averaged transient is sent to a computer 

for storage and processing.   

 The system has a response from all metallic objects within a radius of two or three 

dimensions of the object.  Unfortunately, this means that there will be spurious response 

from the laboratory equipment, nearby filing cabinets or rebar in the floor etc.  We decided 

to deal with this problem by recording a set of averaged transients with no test target 

present and then subtracting this transient from that obtained with the target present.  All 

the transients obtained in the following test were treated in this manner.   

 The transmitter-receiver system was mounted about one meter off the floor and 

various target objects were placed beneath it.  The individual points of this transient were 
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further averaged into time windows whose width is equal to 25% of the center of the center 

frequency of the window.  This reduced the number of points representing the transient to 

about 30.  The averaged transients for each receiver, and for three orthogonal positions of 

the transmitter were then used to invert for the location and principal polarizabilities (and 

the orientation, azimuth, and dip of the major polarizability).   

 The inversion stopped at this stage.  With the polarizabilities determined as a 

function of time it is possible to utilize the results of Sections 3.3 and 3.6 to determine the 

physical aspect ratio, log(r) and log(σ/µ).  These results were for a repetitive square wave 

and algorithms have not yet been modified for the half sine waveform used in the 

prototype.   

 

4.3  Test model results 
 

 We used three simple targets in the initial tests; a simple multi-turn coil 18 cm in 

diameter, a copper sphere 138 mm in diameter and a steel ellipsoid (Figure 4.3.1) 9 inches 

long and 3 inches in diameter (aspect ratio of 3:1).  For each target the location (x, y, z), the 

three principal moments and the orientation of the three principal axes are plotted as a 

function of time on the transient.  The estimates are plotted as solid, colored, lines and 

dashed lines of the same color indicate the variability of the estimate.  On each plot the 

actual value of the parameters plotted is listed.   

 
Figure 4.3.1:  The 9 inch (23 cm) long and 3 inches (7.6 cm) in diameter steel ellipsoid.   

 

 Figures 4.3.2a, b, c are plots of the location, principal moments and principal axes 

directions (sometimes given as direction cosines) for the 18 cm diameter shorted multi-turn 

loop.  The loop was positioned about 30 cm below, and coaxial with, the horizontal 
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transmitter loop.  The location, Figure 4.3.2a, is recovered very accurately between 5×10 –5 

sec and 5×10 –4 sec.  The principal moment, Figure 4.3.2b, there should be only one for a 

planar loop, is well recovered over the same time interval, and the minor moments, which 

should be zero, are about two orders of magnitude less than the principal moment – they 

are in the noise of the estimate.  Finally, the direction cosines, Figure 4.3.2c, are well 

recovered.   

 
Figure 4.3.2a:  Inversion results for the position of 18 cm diameter shorted multi-turn loop.   
 

 
Figure 4.3.2b:  Inversion results for the principal moments of 18 cm diameter shorted 

multi-turn loop.   
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Figure 4.3.2c:  Inversion results for the moment orientations of 18 cm diameter shorted 

multi-turn loop.   
 

 The results for the 138 mm diameter copper sphere are plotted in Figures 4.3.3a and 

4.3.3b.  The sphere center in this case is only 20 cm (200 mm) below the plane of the 

horizontal coil so it might be wondered whether the dipole representation is accurate.  

Indeed the inverted parameters at ‘early’ time, from 5×10-5 to 10-4 seconds, seem to depart 

in a well defined way from the true values.  Nonetheless the location is well recovered 

(Figure 4.3.3a), and the principal dipole moments, which should all be equal, fall roughly 

within each others error bounds between 5×10-4 and 10-4 seconds (Figure 4.3.3b).  The 

moment orientations are meaningless in this case.   
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Figure 4.3.3a:  Inversion results for the position of 138 mm diameter copper sphere.   

 

 
Figure 4.3.3b:  Inversion results for the principal moments of 138 mm diameter copper 

sphere.   
 

 Finally, we positioned the 9 inch (23 cm) steel ellipsoid first directly below the 

center of the transmitter at the depth of 30 cm, with its long axis horizontal (dip = 0°) and at 

an angle of 45° to the principal coordinates of the system (azimuth).  This test was done in 

an all-wood building at our Richmond Field Station and in general the noise was less.  The 

location, Figure 4.3.4a, is recovered very well over the entire transient window, the 
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principal polarizabilities are equally well resolved, Figure 4.3.4b.  Finally the dip and 

azimuth are recovered very well, Figure 4.3.4c, – so well in fact that it appears that 

ellipsoid was in fact 2° off its intended 45° azimuth.   

 
Figure 4.3.4a:  Inversion results for the position of 9 inch (23 cm) steel ellipsoid.   

 
Figure 4.3.4b:  Inversion results for the principal polarizabilities of 9 inch (23 cm) steel 

ellipsoid.   
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Figure 4.3.4c:  Inversion results for the orientation of 9 inch (23 cm) steel ellipsoid.   

 

 Although the system is by no means optimized and the noise levels are well above 

those anticipated in a final system, we then placed the ellipsoid at a depth of 45 cm and 

again horizontal and at an azimuth of 45°.  This time the center of the ellipsoid was 

displaced 25 cm in x and y from the centerline, or z-axis.  These positions were not 

measured with high accuracy so the location, Figure 4.3.5a, at early time can be assumed to 

be more accurate than the intended value.  The recovered polarizabilities, Figure 4.3.5b, 

clearly show the correct apparent aspect ratio but there is a difference in the two minor 

polarizabilities that is larger than their respective errors.  We do not understand this result 

at present.  Early time estimates of the dip (error less than ±1°) and azimuth (error less than 

±5°), Figure 4.3.5c, are excellent.  All the results become very noisy beyond about 2× 10-4 

seconds as the transient signals from such a relatively deep target drop into the noise.   

 These results, especially the last for an off-center oriented ellipsoid at the depth of 

45 cm, clearly show that the multi element system can detect the object and more 

importantly, determine its principal polarizabilities and their directions.  Moreover, it is 

evident that these quantities can be obtained over a time window that will allow subsequent 

inversion for the true physical aspect ratio, the size and the ratio of σ/µ.   
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Figure 4.3.5a:  Inversion results for the position of 9 inch (23 cm) steel ellipsoid with 

offset.   
 

 
Figure 4.3.5b:  Inversion results for the principal polarizabilities of 9 inch (23 cm) steel 

ellipsoid with offset.   
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Figure 4.3.5c:  Inversion results for the orientation of 9 inch (23 cm) steel ellipsoid with 

offset.   
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5.  CONCLUSIONS AND ACCOMPLISHMENTS 

 

 The most significant finding are detailed in Section 2 of this report where we use 

the principal dipole moments model to evaluate the improvements in system performance 

that can be obtained with use of multiple receivers and/or transmitters.  The other most 

significant result here is that the depth of detection can be doubled compared to a 

conventional coaxial transmitter – receiver system if one uses a 3 component transmitter as 

well as a 3 component receiver.   

 An optimal system is one that allows the most accurate location and classification 

of the target at the lowest cost in terms of the system size, weight, and power.  Basically we 

are taking the “most bang for your buck” approach.  Although we are beginning to see 

traditional optimization possibilities in coil size and system bandwidth, i.e. a particular 

setting is better than all others, a more limited approach may have to be taken to the overall 

system design.  This implies increasing system complexity, weight, and power to the point 

of diminishing returns because an absolutely optimum value for some of the parameters 

may not exist.  Thus increasing the number of sensors and/or transmitters beyond a certain 

level may not detract from system performance but does not improve it either.   

 A powerful simulator has been implemented for determining the optimum 

transmitter-receiver configuration for UXO detection and characterization.  Another 

simulator has been developed for analyzing the role of bandwidth and noise in determining 

the spectral response of the principal dipole moments.   

 The major conclusions from research and development are: 

1) A multicomponent transmitter-receiver system is essential for the identification of the 

principal dipole moments of a target, be it UXO or clutter.  A complex target can be 

detected, located, and defined.   

2) A three component loop transmitter with 5 small vector sensors suffices to uniquely 

determine the principal dipole moments of a target.  Stand-alone equipment recovers all 

target parameters from a single position.   

3) Similar detection/characterization results can be obtained, with different configurations, 

using deployment on a 2D grid, on a profile line, or in a stand alone mode. 

4) The utility of grid or line deployment is limited by positioning accuracy. 
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5) For maximum utility a system capable of stand alone detection/characterization seems 

best because:   

i) it can be used effectively when access does not permit precise line or grid operation. 

ii) its sensitivity is independent of absolute position. 

iii) when used in line or grid mode its sensitivity is superior to any other configuration. 

6) )  A dB/dt sensor is preferable. 

7) The bandwidth of the receiver and its associated electronics have a profound effect on 

the secondary field transient and, in-turn, on the accurate recovery of the distinctive 

properties of the transient that enable the identification of the spectral properties of the 

target. 

8) A bandwidth of at least four decades appears to be necessary to describe adequately the 

spectral response of the principal moments.  Low frequencies are required to identify the 

permeability of the target and this in-turn requires a low pulse repetition rate for the 

transmitted fields. 

9) The large bandwidth admits more noise and thus requires higher transmitter power to 

maintain an adequate signal to noise ratio.  

10) Target size, ratio σ/µr, and true physical aspect ratio can be determined. 

11) The ground response imposes an early time limit on the time window for target 

discrimination.   
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APPENDIX 1:  NUMERICAL MODELS 

 
A.1.1  Improvements to the Weichman-Blackhawk MFT Code  

P.B. Weichman of Blackhawk Geophysics made available source code for an integral 

equation method for computing the secondary (scattered) fields due to electromagnetic 

induction in conductive and possibly magnetic spheroids.  The code expands Cartesian 

components of the electric field (and of the magnetic field when necessary) in terms of a set 

of polynomials fi(r);   
3

ij i j
i 1 j 1

ˆ( ) f ( )
∞

= =
= η∑∑E r r x   ,    (A.1.1) 

where  is a unit vector in the j′th Cartesian coordinate direction.  In its course of 

computations, the code finds eigenvalues and eigenfunctions of an equation of form  

jx̂

b
b b2

b spheroid

4( ) ( ) g ( , ) ( ) d
c

E r I r r E r r
 πµ λ ∇∇ ⋅′ ′ ′= σ − σ − ′σ 

∫ ′    (A.1.2) 

(in Gaussian units), where  

4
λε′σ = σ −
π

  ,      (A.1.3) 

and gb(r,r ) is the Green’s function for a scalar Helmholz equation in the background 

medium ( σ

′

b, εb, µb).  Terms involving (µ - µb) H (r′ ), arising for magnetic spheroids, have 

been omitted for simplicity of exposition.  Integrals of form   

i k b k i
spheroid

I ( ) g ( , ) f ( ) dr r r r r′ ′≡ ∫ ′     (A.1.4) 

are evaluated over a set of m points rk, (k = 1,m), with the Green’s function approximated 

within the spheroid as 1/(4 )r r′π − ;   

i
i i

spheroid

1 f ( )I ( ) I ( ) d '
4

′
′≈ ≡

′π −∫
rr r

r r
r

i r

  .    (A.1.5) 

For fi (r′) a polynomial of order p in x, y, and z (e.g., xα yβ zp-α-β), I′i (r) is a polynomial of 

order p+2 or lower within the spheroid, so can be expanded as   

p 2n
(i)

i i
i 1

I ( ) f ( )
+

′′
′=

′ = γ∑r   ,     (A.1.6) 

 106



where np+2 is the number of linearly independent polynomials in x, y, and z, of order p+2 or 

less.  Coefficients γi′
(i) are found by numerically integrating (A.1.5) at the points rk, (k = 

1,m), for m ≥ np+2, and inverting (A.1.6) for γi′
(i), i′ = 1, np+2.  With γi′

(i) computed, it is 

straightforward to evaluate   

p+2n
(i)

j i j ii
i =1

ˆ ˆI ( ) f ( )′′
′

′∇∇ ⋅ = γ ∇∇ ⋅∑x r x r   .   (A.1.7) 

This is re-expanded in the form 

pn 3
(i)

j i i ki jk
i 1 k=1

ˆ I ( ) f ( )x r r x′′
′=

′ ′∇∇ ⋅ = γ∑ ∑ ˆ   ,   (A.1.8) 

by expressing the needed derivatives of each function fi(r) in terms of the basis functions 

fi(r).  Using expansions (A.1.1), (A.1.6), and (A.1.8) in equation (A.1.2) yields (A.1.9)   

3 3 3
(i) (i)b

ij i j b i j i k iji i jk2
bi 1 j 3 i 1 j 1 i 1 i 1k 1

4 1ˆ ˆf ( ) ( ) f ( ) f ( )
c

r x r x r x
∞ ∞ ∞ ∞

′ ′′ ′
′ ′= = = = = = =

ˆ
 πµ λ′ ′ ′η = σ − σ γ − γ η ′σ 

∑∑ ∑∑ ∑ ∑ ∑  . 

(A.1.9) 

Truncating the expansion to the np polynomials of order p or less yields (A.1.10) 

p p p pn n n n3 3 3
(i) (i)b

ij i j b i j i k iji i jk2
bi 1 j 3 i 1 j 1 i 1 i 1k 1

4 1ˆ ˆf ( ) ( ) f ( ) f ( )
c

r x r x r x′ ′′ ′
′ ′= = = = = = =

ˆ
 πµ λ′ ′ ′ η = σ − σ γ − γ

′σ
η

  
∑∑ ∑∑ ∑ ∑ ∑  . 

(A.1.10) 

As originally programmed, integral (A.1.6) was fitted by least squares to the np 

polynomials of order p or less, at points rk, k = 1,m, yielding approximate values for the 

first np coefficients γi′
(i).  As a consequence, the final summation over i′ in equation 

(A.1.10), was missing terms of orders p-1 and p arising from the ∇∇⋅ term in equation 

(A.1.2).   

Equation (A.1.10) is satisfied throughout the spheroid when satisfied separately for 

the coefficients of each pair fi(r) , i = 1, njx̂ p, j = 1,3, yielding a matrix equation in a vector 

e of coefficients ηij ;  

ˆ=e K e   ,      (A.1.11) 

(sic).  When the set of polynomials, fi(r), is orthogonal over the spheroid (and normalized), 

the resulting matrix  is symmetric, so has real eigenvalues and eigenvectors.   K̂
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As originally programmed, the expansion was in terms of monomials 

 with αi i i
if ( ) x y zα β γ=r

ˆ

i + βi + γi ≤ p.  In that basis, truncation of equation (A.1.9) in 

equation (A.1.10) and formation of equation (A.1.11), results in a matrix  which is not 

symmetric, and has complex eigenvalues.  Keeping terms up to i = n

K̂

p+2 in expansion 

(A.1.6), and the corresponding terms in the first summation over i′ on the right hand side of 

equation (A.1.10) by summing to i′= np+2, expressing (A.1.10) in a basis of polynomials 

orthogonal over the spheroid, truncating in that basis to polynomials of order less than or 

equal to np, and re-expressing in the monomial basis, is sufficient to ensure that the 

eigenvalues of K  are real within round-off error.  It is, however, simpler to leave the 

problem expressed in terms of the orthogonal basis, as then subroutines taking advantage of 

the symmetry of  can be used to find its eigenvalues and eigenvectors.  With these 

changes, the leading eigenvalues are stable up to aspect ratios of 28:1 for non-magnetic 

prolate spheroids (Figure A.1.1.1).   

K̂

 

 

Figure A.1.1.1:  Largest 26 eigenvalues of K  scaled to inverse decay times λ as a function 
of aspect ratio, for prolate spheroids of conductivity σ = 3.5 10

ˆ
7 Ω-1m-1 and with a 6 

cm equatorial radius, with equation (A.1.10) truncated at polynomial order p= 7. 
 

 108



Once values of inverse decay time λ are found for which matrix  has unit 

eigenvalue(s), the corresponding eigenvectors give the expansion coefficients for the 

corresponding mode of the spheroid.  The excitation of the modes by a transmitter loop of a 

specified geometry is computed for a ramp-on/ramp-off transmitter current, and the 

contributions of the different modes to voltages observed in a receiver coil are summed 

over modes.  Figure A.1.1.2 shows results from the modified code (dashed line) using the 

lowest 196 modes for a 6 cm radius sphere of conductivity σ = 3.5 10

K̂

7 Ω-1m-1 (with 

fundamental time constant τ ≈ 15 ms) at 12 cm depth below a simulated Geonics EM-61 

system.  Also shown, are analytic results for the same sphere (solid line), and results from 

the unmodified code (large circles), both for the same simulated transmitter-receiver 

system.  The modified code results agree to within 10 % 0.5 ms (τ/30) after transmitter 

pulse end, and to within 2 % 3 ms (τ/5) after pulse end.  In contrast results for the 

unmodified code are accurate to within 20 % 4 ms (≈ τ/4) after pulse end, and worse before 

that.   

 

 
Figure A.1.1.2:  Receiver coil voltage as a function of time for a simulated Geonics EM-61 

system with coils 0.6 m above a 6 cm radius aluminum sphere.  Previous results (large 
circles).  Modified code results summed over 196 modes (dashed).  Analytic (solid). 
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Using the modified code to simulate EM-61 responses on a grid of system locations 

above a 8 cm by 24 cm aluminum prolate spheroid, and inverting for equivalent dipole 

polarizability, yields an equivalent dipole polarizability that is consistent with the 

symmetry properties of the spheroid.  The resultant equivalent dipole polarizability is 

centered at the spheroid center, has two equal principal moments and a third, smaller, 

principal moment with principal direction parallel to the spheroid symmetry axis (see 

Estimating Equivalent Dipole Polarizabilities Section for details).   

 

A.1.2  Loop-Loop over Dipole Targets  

We have developed a general code for modeling the response of any configuration 

of finite loops over a target represented by orthogonal dipole moments of any magnitude.  

An example of the EM-61 response at early time over a simple vertical moment target (e.g. 

a small horizontal circular sheet) is shown in Figure A.1.2.1.  This is the general code for 

modeling specific T-R configurations such as those described in Section 3. 

 
Figure A.1.2.1:  EM-61 simulation. 

 

A.1.3  Sheet in layered half space  

We have included a finite loop source in our general code for determining the 

response of a finite rectangular thin sheet in a layered and conductive half space.  This is a 
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useful general model for evaluating the ratio of the target response to the half space 

response and we have used it to show that this ratio decreases as the transmitter receiver 

separation, or the size of the transmitter loop, increases. 

 

A.1.4  Conductive, permeable spherical shell 

We have completed an analysis of the spectral response of a conductive, permeable, 

shell in a conductive whole space using the closed form solution we programmed in the 

Phase 1 part of this project.  The source is either a uniform field (approximately valid when 

the size of the sphere is small compared to the distance to the source) or the field of a 

dipole (and by superposition, the field of a finite loop). 

This code is particularly useful in showing that for typical UXO (usually shells), the 

response is significantly different at intermediate to late times compared to solids of the 

same materials.  This code has also shown some of the inherent properties of conductive 

target responses that may influence fundamental system design.  For example for a 

conductive, permeable steel sphere, the transient responses for the field, B, and the time 

derivative of the field, dB/dt, are plotted in Figure A.1.4.1 below.  Over six decades of time 

B falls by only 3 orders of magnitude, whereas dB/dt falls by over 6 orders of magnitude.   

 
Figure A.1.4.1:  Transient responses for B and dB/dt for 6 cm conductive, permeable steel 

sphere, at 1 m depth.   

 

The other important result seen in Figure A.1.4.2, for the same sphere but for 

varying shell thickness, is that the dB/dt response becomes exponential at about 10 msec 

for a thin shell, whereas it becomes exponential almost a decade earlier in B.  From an 

identification point of view, the properties of the shell are identifiable at earlier times and at 
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higher signal levels in B than in dB/dt.  Identifying a target through its spectral response 

clearly must be done with a shell.  To our knowledge, no programs currently exist that can 

model spheroidal or other shells.   

 

 
Figure A.1.4.2:  Transient responses for B and dB/dt for 6 cm conductive permeable steel 

sphere, for varying shell thickness, at 1 m depth. 
 

We have built a graphical user interface for this modeling code to make it more 

accessible to the UXO community.  A snapshot of the interface is shown in Figure A.1.4.3.  

(Parties interested in using this software need to send a formal request to LBNL.)  The 

graphical user interface allows the user to model a response of either a solid sphere or a 

spherical shell at a specified depth.  The source can be a dipole, a plane wave, or a loop.  

The receivers are vertical dipoles that can be placed in any arbitrary position.  The response 

can be calculated either in frequency or time domain.  For a stand-alone configuration, the 

program will calculate a response over a specified range of frequencies or times.  In a 

profile configuration, a response is calculated at one particular frequency or time along the 

length of the profile.  Time domain calculations allow for a “step off,” “step on,” or “square 

wave” transmitter current waveform signal.  Moreover, the code has the option to calculate 

a dB/dt response as seen through an inductive receiver of a specified center frequency and 

bandwidth.   
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Figure A.1.4.3:  Graphical user interface for calculating responses of a spherical target 

with an arbitrary transmitter-receiver configuration. 
 

A.1.5  3-D  half-space of arbitrary conductivity and permeability  

We have obtained the general finite difference 3D code developed by Greg 

Newman at Sandia National Labs (Newman and Alumbaugh, 1997).  We will use this code 

to model the effects of inhomogeneous ground, particularly inhomogeneities in magnetic 

susceptibility, on loop-loop systems.  This code was recently modified by Newman and 

promises to greatly accelerate our analysis and understanding of the role of geologic noise 

in AEM systems for UXO.   
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