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Figure 1 – Table summarizing the contingency
between a cause (C) and an effect (E).  A tilde
indicates absence.
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Abstract

Current psychological models of causal induction assume that

causal relationships are inferred based on observations about

whether the cause and effect are present or absent. The

current study investigated how people infer the causal roles of

unobserved events. In Experiment 1 we demonstrate that

participants are indeed willing to evaluate the causal roles of

unobserved events. We then suggest that the basis for these

judgments may be situations in which effects occur in the

absence of observed causes. Experiment 2 provides evidence

that such information does influence participants’ judgments

about unobserved causes.

Introduction

People oftentimes infer causal relationships between two

events based on information on how these two events co-

vary. For instance, new parents seek out things that make

their baby sleep through the night. A parent might

hypothesize that giving their child a bath in the evening

would facilitate sleeping. To evaluate this possibility, the

parent gathers data on whether or not the baby takes a bath

in the evening and whether or not the baby sleeps through

that night. Further suppose that the parent discovers that an

evening bath does not make the baby sleep through the night

and instead hypothesizes that it is the amount of exposure to

sunlight that facilitates nighttime sleeping. Yet, in the

initial set of observations about evening baths, the parent

did not keep track of the amount of sunlight the baby

received each day. Will this initial set of data influence

inferences about the causal efficacy of the unobserved

quantity (e.g., sunlight)?

The current study examines what people do when

inferring the causal efficacy of an event that is not observed

in the data. Because no observations have been made about

this variable, one highly plausible possibility is that people

would be reluctant in making any inferences about the

causal role of the unobserved variable. The current study,

however, provides evidence that people are willing to make

inferences about the causal efficacy of an unobserved

variable. In this introduction, we will first describe an

experimental design involving unobserved variables. We

will then describe why this situation may present

difficulties.

Our study employs a design similar to many causal

learning experiments. Participants are told about a cause, in

this case a colored button, and an effect, in this case a light.

Participants are presented with a series of observations each

of which portrays the causal candidate and the effect as

either present or absent. This design results in four possible

observations (see Figure 1; hereafter, a tilde indicates the

absence of that variable). After viewing the series of

observations participants are asked to evaluate the casual

relationship between the cause and effect.

Our design is modified to explore how participants deal

with unobserved causes. To do this, participants are told

that there are two causal candidates for an effect but receive

no presence/absence information about one of the causes.

Intuitively, evaluating the role of unobserved causes poses

a problem. How is one to determine the causal role of an

event that has never been observed? Even if there is only

one unobserved cause and participants assume that the two

buttons are the only possible causes of the light, the

statistical relationship between the unobserved causal

candidate and the effect is undefined.

If the two buttons are the only possible causes, trials on

which the effect is present and the observed cause is absent
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(~CE) logically imply the presence of the unobserved cause.

This certainty does not, however, imply an unambiguous

answer about the overall relationship between the

unobserved cause and effect. This is because on all other

trials (i.e., CE and ~C~E) the state of the unobserved cause

is indeterminate.

We will illustrate this more concretely using one common

measure of contingency, DP, which is defined as the

difference between the probability that an effect is present in

the presence of a causal candidate and the probability that

an effect is present in the absence of the same causal

candidate (Jenkins & Ward, 1965; Cheng & Novick, 1992).

According to DP, unobserved causes and the associated

ambiguity leads to a range of possible relationships between

the unobserved cause and the effect. Assume that a

participant receives 40 observations, 10 from each cells of

the contingency matrix (Figure 1) and that the two buttons

are the only possible causes. This was the design used in

our Experiment 1. In this situation the state of the

unobserved cause is implied in 10 trials (~CE). If, on the

remaining 30 trials, the unobserved cause is perfectly

correlated with the effect, the resulting DP between the

unobserved cause and the effect is 1.0 (e.g. the unobserved

cause tends to lead to the effect). If, on the other hand, the

unobserved cause is negatively correlated on the remaining

trials, the resulting DP is –0.5 (the unobserved cause tends

to prevent the effect). Thus, it can be proven that certainty

about the unobserved cause on a subset of observations does

not lead to certainty about the unobserved cause in general

(see the conclusion section for more discussion on other

models of causal learning).

Despite the difficulty involving unobserved causes,

people cannot, in general, avoid such situations in everyday

life. For example, you may hear about a car accident, but

not be told about the infinite number of potential causes

(e.g. consumption of alcohol, road conditions, mechanical

problems with the vehicle, mobile phone use, etc.).

Furthermore, even if people were free to make any

observations in a given situation, cognitive limitations

would not allow them to keep track of information about all

possible causes.

One way of getting around such limitations is to make the

best use of all available information. We suggest that

people evaluate every experience as possible evidence with

respect to multiple causal hypotheses. Specifically, we

argue that when people make causal inferences about

unobserved causes, the basis for these inferences comes

from situations in which an effect occurs in the absence an

observed cause (i.e., ~CE or cell C in Figure 1).

Returning to our previous example, ~CE corresponds to

situations in which a baby did not take a bath in the evening,

but slept through the night. Henceforth we refer to these

situations as “unexplained effects”. Our suggestion is that

when unexplained effects occur, people infer that an

unobserved, but plausible cause is present. For instance, the

parent, who suspects an influence of sunlight exposure,

might infer that the baby was exposed to lots of sunlight on

days when the baby did not take an evening bath but slept

well.

The intuition behind this claim can be seen in another

naturalistic example. When investigating possible causes of

lung cancer, some have suggested that genetic factors could

play a role. This hypothesis was generated, in part, because

there were cases of lung cancer that occurred in the absence

of any obvious cause (e.g. smoking). With no obvious

cause, one possible conclusion is that an unobserved factor,

such as genetics, is at least partially responsible for the

cancer.

To summarize, unobserved causes create an ambiguity

with regards to causal relations. Because of this, explicitly

asking participants about events they have not witnessed

may seem unnatural and raise objections. However, we

argue that complete observability is unlikely to be found in

many real-life situations. We further argue that there may

be a basis for making causal inferences about unobserved

events. Specifically, our proposal is that unexplained

effects (i.e., ~CE) serve as basis for hypotheses about

alternative, unobserved causes. If people indeed use such

information, they may be willing to make causal inferences

about an event that they did not observe at all. In

Experiment 1, participants were explicitly provided with an

option to say that they could not determine the causal

potency of an unobserved cause in order to test this idea.

Experiment 2 specifically examines whether inferences

about unobserved causes are dependent on unexplained

effects.

Experiment 1

Method

Twenty participants were told about 3 electrical systems

each consisting of a number of colored buttons (i.e. 2, 3, or

4 buttons) and a light (see Figure 2 for a system involving 2

buttons and a light). Participants were told that it was their

Figure 2 – Example stimuli from Experiment 1
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Figure 3 – Table summarizing the
contingency between a cause (C) and
an effect (E) Experiment 1.

job to discover how each system worked. Each participant

saw all three systems in a counterbalanced order.

Participants were told that they would view a series of tests

(i.e. trials) that had been run on the systems and that each

test would contain which buttons had been pressed and

whether or not the light had turned on.

Participants were then told that the data pertaining to

some of the buttons had been lost and that because of this

loss, information about only one of the buttons and the light

would be presented for each system. The “lost” data were

represented by a question mark over each appropriate button

(see Figure 2).

The statistical relationship between the observed button

and the light was fixed at ∆P = 0.5 by using identical

frequencies for each of the systems. These frequencies are

illustrated in Figure 3.

After viewing all the trials for each system, participants

were asked to rate the causal role of each button. For

example, for the unobserved cause in Figure 2 participants

were asked to judge, “the extent to which pressing the white

button caused the light to turn on.” Participants responded

on a scale from –100 (White button prevented the light from

turning on) to 100 (White button caused the light to turn

on), with zero labeled as, “White button had no influence on

the light.” To get an estimate of participants’ willingness to

respond, below the response scale of each question,

participants were reminded that, “If you cannot make a

judgment, please write ‘N/A’.”

Results

The question of interest was whether participants would

be willing to give any judgments concerning unobserved

causes. Figure 4 shows the percentage of judgments that

received “N/A” responses, indicating that no judgment

could be made. First and most surprisingly, all participants

gave a causal strength judgment on both the observed and

unobserved causes in the system with only one unobserved

cause (e.g. Figure 2). Thus, people are willing to estimate

the causal efficacy of a factor for which they have

ambiguous information. Despite the fact that, as

demonstrated above, this relationship has no correct answer,

participants apparently felt they had enough information to

make a reasonable judgment.

This result, however, could be due to participants’ overall

unwillingness to use the “N/A” response due to unforeseen

demand characteristics present in the experiment. This

possibility prompts the second observation, that participants

were willing to use the “N/A” response when evaluating

systems with greater uncertainty (i.e. 2 or more unobserved

buttons). Participants were significantly more likely to give

an “N/A” response when there were 2 and 3 unobserved

causes than when there was only one unobserved cause,

c2
(1, N=20)=9, p<.001 and c 2

(1, N=20)=13, p<.001,

respectively using McNemer’s test (McNemar, 1947).

For responses other than “N/A”, the causal estimates

are summarized in Figure 5. Here too, the influence of

increasing complexity can be seen. Participants indicated

that an unobserved cause played less of a role when there

were multiple unobserved causes than when there was only

one unobserved cause. While participants’ responses show

a discernable pattern, the large number of “N/A” responses

(and the resulting small number of numerical responses) in

two of the conditions makes interpretation of this data

difficult. Regardless, our main focus is on participants’

willingness to respond at all. Our results show that

participants are indeed willing to give causal estimates in at

least some situations that include unobserved causes

Number of Unobserved Causes

Estimated Cause 1 2 3

Observed 0 0 10

Unobserved 0 45 65

Figure 4 - Percentage of N/A responses per judgment
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Figure 5 – Causal strength rating from Experiment 1
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indicating that missing data per se does not lead to a refusal

to respond.

Our predictions, however, go beyond this demonstration.

As explained in the introduction, we argue that participants

may base inferences to an unobserved, alternative cause on

unexplained effects (~CE). Experiment 2 tests this

prediction.

Experiment 2

Method

Procedure Twenty-four participants received instructions

similar to Experiment 1 except for the following changes.

All systems contained exactly two buttons and one light. To

rule out any possible ambiguity in the method, participants

were told that nothing other than the two buttons could

activate the light and that on each trial any combination of

buttons could be pressed (i.e. neither, one, or both).

After viewing the tests for each system, participants were

asked to rate the causal role of each of the buttons. For

example, for the observed cause in Figure 2 participants

were asked, “Imagine running 100 new tests in which the

gray button was pressed and the white button was not. On

how many of these tests do you expect the light to turn on?”

Participants responded with a number between 0 and 100.

Unlike Experiment 1, participants were not allowed

“N/A” responses because that was not the main concern of

Experiment 2. Although no participant in Experiment 1

gave N/A responses for systems involving one unobserved

variable, we wished to maximize the number of numerical

responses in Experiment 2 because we are primarily

interested in comparing strength estimates across the

conditions. In an attempt to disentangle participants’ causal

beliefs from confidence in those beliefs, participants were

asked to provide a confidence rating on a 7-point scale

ranging from 1 (“Not at all confident”) to 7 (“Very

confident”).

Design and Materials Four conditions were used. The

statistical relationships between the observed button (C) and

the light (E) are summarized in Figure 6. Unexplained

effects are represented by the ~CE cell of the contingency

matrix.

As explained above, we predict that the occurrence of

unexplained effects (~CE information) will influence

participants’ causal judgments of the unobserved cause.

Situations that have unexplained effects should lead to

beliefs about the causal role of unobserved causes. Thus, in

the C~E present/~CE absent and C~E present/~CE present

conditions, where unexplained effects occur, stronger causal

attributions for the unobserved causes should be elicited

than in the C~E absent/~CE absent and C~E absent/~CE

present conditions where there are no unexplained effects.

However, simply varying the frequency of ~CE also

modulates the statistical relationship between the observed

cause and the effect. To eliminate this confound we

manipulated ~CE as well as C~E information.

Figure 6 shows the predictions of DP for the observed

cause. Thus, the C~E present/~CE absent and C~E

absent/~CE present conditions equate DP, but because the

former has unexplained effects (~CE) and the latter does

not, we predict that participants will believe that the

unobserved cause has a greater causal role in the former

condition than in the latter.

Results and Discussion

Figure 7 shows mean causal strength estimates for the

unobserved cause in each condition. A 2 (C~E presented

vs. C~E not presented) by 2 (~CE presented vs. ~CE not

presented) ANOVA was conducted on causal judgments of

unobserved causes. This analysis revealed a significant

Figure 7 – Causal strength rating for the

unobserved cause in Experiment 2
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main effect of ~CE information, F(1, 23) = 43.19, p<.0001.

No other main effects or interactions were significant.

The results show that the presentation of unexplained

effects (~CE) led participants to believe that the unobserved

cause was capable of exerting a causal influence on the

light. However, it is possible that participants held these

beliefs with little confidence.

Turning to participants’ confidence ratings (see Figure 8),

the first result of note is that confidence ratings for

unobserved causes were significantly greater than the

midpoint of the scale (i.e., 3.5), t(95)=8.60, p<.0001.

Secondly, we compared participants’ confidence ratings for

observed causes with their confidence ratings for

unobserved causes separately within each condition. There

were no significant differences between these ratings in any

of the conditions (all p’s>.3). Thus, participants not only

made causal judgments about unobserved causes according

to our predictions, but they were just as confident in these

judgments as they were in their judgments about observed

causes.

Conclusion

The two current experiments demonstrate that people are

willing to estimate the strength of unobserved causes.

Participants apparently believe that, despite the lack of

direct observation, they had enough information to make

causal judgments about unobserved causes.

In response to this finding, we have suggested that one

possible source of information about the causal strength of

unobserved causes is unexplained effects (~CE). These

situations provide evidence for the influence of an

unobserved cause. Our second study demonstrated that

participants’ estimates of unobserved causes are indeed

influenced by the frequency of unexplained effects. In our

original example, a parent who observes their child sleeping

through the night without a bath might adopt a hypothesis

about an alternative cause (e.g. sunlight). Of course our

methodology constrained the possible alternative causes, but

this constraint does not yield in a correct answer (as shown

above) and ongoing studies demonstrate that the trend holds

even when such constraints are omitted.

The situation set out to our participants is beyond the

boundary conditions of current models of causal induction.

As we will show, current theories rely on information about

the presence and absence of causes and effects. Situations

with unobservable causes result in ambiguity that prevents

these models from making any predictions.

There are currently two main classes of models of causal

induction. The first of these classes does not calculate

causal relations per se, but rather calculates the associative

strength of relationships between causes and effects. The

Rescorla-Wagner model is the most well known of these

models (Rescorla & Wagner, 1972). In calculating the

association (V) between events, learners are theorized to

update this association in proportion to the difference

between the “expected” and actual outcomes. Formally, this

updating is calculated according to Equation 1.

DVn =ab l- Vn -1Â( ) (1)
Equation 1 states that the association change experienced

on the n
th

trial is equal to the difference between the

outcome (l) and the associative strength present on the n
th

trial (SVn-1) weighted by two learning parameters (a and b).

If on a given trial, an outcome is present (i.e. l = 1) and the

associative strengths predict otherwise (i.e. SVn-1 < 1), the

left-hand side of equation 1 will be positive and thus

increase the associative strength of the present cues for

future trials.

The second class of models suggests that people’s causal

judgments are based on statistical information about the

presence and absence of causes and effects. According to

these models, people evaluate cause-effect relationships by
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accumulating experience with a cause-effect pair and

performing a calculation on the data represented in the

covariation matrix (i.e. Figure 1).

One measure of covariation, as mentioned above, is DP.

Because covariation does not necessarily imply causality,

Cheng (1997) proposed the power PC model, which

calculates causal power (i.e. the probability that a cause will

lead to an effect in the absence of other causes). When the

cause in question is independent of other causes, causal

power can be calculated according to Equation 1. That is,

causal power is DP, weighted by the presence of the effect

in the absence of the cause.

Causal Power =
P E |C( )-P E |~C( )

1-P E |~C( )
(2)

It should be clear from this brief overview that both

associative and statistical models assume that the relevant

data are fully observable. Going back to our initial example

of a new parent, these models may predict the associative

strength or the causal power of an evening bath over

sleeping through the night from the data about co-

occurrence of these two events. However, if information is

not available about the amount of sunlight the baby was

exposed to each day, it is unclear whether the Rescorla-

Wagner model should include sunlight as a cue in the

summation used to predict the outcome
1
. Similarly, because

we do not know whether the baby was exposed to sunlight

each day, the causal power of sunlight cannot be calculated

using the power PC model.

Thus, in their current forms, these models cannot (and

were not designed to) deal with the ambiguity created by

unobserved data. Our findings suggest the need for

something akin to the Bayesian approach (Glymour, 2001)

in which a wide variety of evidence can be evaluated with

regards to multiple causal hypotheses.

Our findings suggest that observations can be used to

evaluate hypotheses even about variables not included in

those observations. Future research will be needed to

determine exactly how people estimate the causal strength

of unobserved causes. One possibility is that people’s initial

hypothesis about an unobserved cause, as formed by

presence or absence of earlier ~CE trials, would guide their

assumptions about presence or absence of the unobserved

causes in other three types of trials. For example, if they

believe that an unobserved variable is likely to be a cause,

1
One might think that Recorla-Wagner could use the context cue

to make predictions about unobserved causes. The context cue is

present on every trial. We have since verified that participants, on

the other hand, do not believe the unobserved cause to be

constantly present. Conversely, one could think of the context cue

as a composite cue that includes context and any unobserved

causes. This remains problematic because it is still unclear

whether any given unobserved cause is present or absent in CE,

C~E, and ~C~E trials, as illustrated in the introduction, and

because it is unclear how to partial out the context cue’s predicted

associative strength to each member of the composite.

they should be more likely to believe that it is present when

E is present (i.e., CE trials) and it is absent when E is absent

(i.e., C~E and ~C~E trials). If people initially believe that

an unobserved variable is unlikely to be a cause, different

assumptions might be made about presence of an

unobserved variable. Such dynamic updating of beliefs

would be consistent with a constraint-based coherency

account (e.g. Thagard, 1989; Hagmeyer & Waldmann,

2002).

Author Note
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