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ABSTRACT 

 

Ecology of a Host-Parasite System in the Rocky Intertidal Zone 

by 

Caitlin Ryan Fong 

 

 The field of ecology seeks to understand and predict the patterns and processes 

shaping the distribution and abundance of populations, the structure and organization of 

communities, and the dynamics and energetics of ecosystems structure. Parasitism is 

understudied as an interaction driving these patterns and processes in spite of research 

demonstrating that parasitism is the most common type of consumer interaction and 

numerous case studies clearly documenting that parasitism impacts populations, 

communities, and has a role in ecosystem energetics. 

 Ecologists have used the rocky intertidal zone as a model for understanding basic 

ecological processes and theories; thus, elucidating the role of infectious processes in this 

system will provide researchers with novel insights that may translate into broad structuring 

principles in the field. However, there is very little research on infectious processes in the 

rocky intertidal zone. Thus, in spite of decades of ecological research in this system, 

parasitic interactions remain unexplored and research may yet reveal a strong structuring 

role of infections in this system.  

 Barnacles are infected by a protandrous, semelparous, castrator that affects only 

female function; this parasite is largely unexplored but potentially strongly impacts barnacle 
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ecology. In this thesis, I addressed basic questions concerning the ecology of this host-

parasite system.  

First, I explored behavioral defenses of the barnacle host, Chthamalus fissus, versus 

its isopod parasite, Hemioniscus balani. I found when infectious stages were present, 

barnacles decreased filtration rate by ~ 50% when they were at high risk of infection. 

Barnacles not at risk did not respond to the presence of an infectious stage. The difference in 

response based on barnacle condition implies a high cost of reduced feeding as a parasite 

avoidance behavior.  

 Second, I explored how barnacle sex allocation varied with size, and how this 

differential allocation affected patterns of parasitism. The barnacle host is hermaphroditic, 

where gender is not fixed and individuals allocate variable energy to male or female 

functions. Since the parasite requires ovarian fluid, only barnacles with female reproductive 

function should be appropriate hosts. We documented a unimodal relationship between 

barnacle size and female reproductive function. This female function-size relationship was 

mirrored by patterns of parasitism. Further, we found within the subset of suitable hosts, 

parasitism increased with size.  

Third, I explored spatial patterns of parasitism in the field as mediated by parasite 

predators. I investigated whether a sea anemone, protects an associated barnacles from 

parasitism. Barnacles associated with anemones had reduced parasitism and higher 

reproductive productivity than did barnacles remote from sea anemones. In the laboratory, 

anemones readily consumed the transmission stage cryptoniscus larvae of the parasite. 

Hence, anemone consumption of parasite transmission stages may provide a mechanism by 

which community context regulates, and in this case reduces, parasitism at a local scale.  
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CHAPTER 1: Fear and feeding: risk of infection predicts parasite avoidance behavior 

ABSTRACT 

Animals have a nested sequence of defenses to guard against parasitism. Behavior is 

often the first line of defense. Parasitism and parasite avoidance behaviors are costly; thus, 

the strength of parasite avoidance behavior should reflect the uncertain risk of infection and 

the likely cost of such an infection. We experimentally evaluate the parasite avoidance 

behavior of a barnacle, Chthamalus fissus, versus its isopod parasite, Hemioniscus balani. H. 

balani is an ephemeral semelparous parasitic castrator, a single parasite prevents its host 

from producing eggs. Thus, the cost of infection is high. We conducted experimental 

observations in a laboratory setting of C. fissus to quantify the effects of infection status and 

reproduction status on filtration rates in the presence of an infectious stage of H. balani. 

When infectious stages were present, barnacles decreased filtration rate by ~ 50% when they 

were uninfected and were non-reproductive, conditions associated with high risk of 

infection. Infected and reproductive barnacles did not respond to the presence of an 

infectious stage. The difference in response based on barnacle condition implies a high cost 

of reduced feeding as a parasite avoidance behavior.  

INTRODUCTION 

To minimize fitness reduction due to parasitism organisms have a sequential 

defensive strategy to reduce encounter with infectious stages, and if this does not succeed 

mitigate the compatibility of the parasite regarding immune defenses and its nutritional costs 

(a paradigm developed by Combes 2001). Encounter with a parasite can be eliminated or 

reduced if the host does not live in the same place as the parasite or the host avoids contact 

with the parasite due to behavior (Combes 2001). Compatibility with a parasite can be 
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eliminated or reduced if the host does not have sufficient resources for the parasite or the 

host is able to defend against parasitism (for review see Combes 2001). Implementations of 

these tactics range broadly and have been heavily investigated by parasite ecologists.  

Avoidance of encounter by parasites must generally be the first line of defense. Such 

behaviors take a diversity of forms at multiple scales that result in physical avoidance and 

minimal encounter with infectious stages (reviewed by Hart 1990). For example, migration, 

a population-level relocation, may minimize encounter with infections. Migration allows 

animals to leave infected areas and effectively reduces prevalence in a population by culling 

infected individuals unable to withstand the rigors of travel (for review see Altizer et al. 

2011). In some cases, human activity has disrupted migration and eliminated this benefit. 

For instance, sedentary populations of monarch butterflies have higher prevalence of a 

specialist protozoan parasite (Satterfield et al. 2015), underscoring the importance of this 

parasite avoidance behavior. Herding may be another behavioral response to minimize 

encounter with infectious stages. A ‘selfish herd’ dilutes the per-capita risk of parasitism 

(Fauchald et al. 2007). At a smaller scale, some birds may change roosting sites regularly to 

avoid encounter with parasites (Rohner et al. 2000). Similarly, pelagic marine larval 

dispersal may avoid localized infection risk (Strathmann et al. 2002). Additionally, research 

has demonstrated that selective foraging by herbivores minimizes contact with infectious 

stages of gastrointestinal parasites present in feces (Cooper et al. 2000, Fleurance et al. 

2007, Ezenwa 2004). While a diversity of parasite avoidance behaviors have been 

documented across a range of taxonomically diverse animals, the condition of the individual 

host and subsequent impact on individual risk remains an open question. 
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Both parasitism and parasite avoidance behaviors are energetically costly; thus, 

display of parasite avoidance behavior should balance (i) the cost of parasite avoidance, (ii) 

the cost of parasitism, and (iii) the risk of parasitism. (i) Parasite avoidance behavior costs 

include increased energy expenditure, increased risk of predation, and reduced reproductive 

success (for review see Hart 1990, Rigby et al. 2002). Given these costs, we expect the 

strength of display to be contingent on (ii) the cost of parasitism and (iii) the risk of 

parasitism. (ii) The cost of parasitism depends on both the parasite’s trophic strategy and 

host condition. Parasites have a diversity of trophic strategies that vary in cost to the host 

(Lafferty and Kuris 2002). For example, typical macroparasites (such as adult trematodes) 

impact the host in an intensity-dependent manner— more parasites means greater cost 

(Lafferty and Kuris 2002). For this reason, host condition may play a regulatory role on the 

cost of infection if an additional infection bears greater cost to already infected hosts than to 

uninfected hosts. Other infectious consumer strategies act in an intensity-independent 

fashion, such as parasitoids, pathogens, and parasitic castrators (Lafferty and Kuris 2002, 

Lafferty and Kuris 2009). In this case, a single infection produces the totality of the cost, a 

complete loss of fitness for a parasitoid or a castrator. Thus, the cost of a single infection 

varies widely based on the type of parasite, where infection by a single macroparasite bears 

relatively little cost compared to infection by a single parasitoid or castrator.  

The risk of parasitism can vary within a population based on individual 

characteristics such as size (Bell et al. 2005) or age (He and Wang 2006). Additionally, 

certain host behaviors can also increase risk of infection. For example, Daphnia with higher 

feeding rates are more likely to become infected by ingesting more infective bacterial spores 

(Hall et al. 2007). Thus, the cost of parasite avoidance behavior, cost of parasitism, and risk 



 

 4 

of parasitism vary among individuals in a population. Given the requisite value of feeding to 

the fitness of an organism, and the inherent risk of infection caused by feeding, there is a 

lack of investigations of behavior to modulate feeding in the context of risk of infection. 

Here we experimentally investigate the influence of risk of infection on avoidance 

behavior of a barnacle, Chthamalus fissus (Darwin 1854) to Hemioniscus balani (Buchholz 

1866), an isopod parasite that infects at least 11 species of barnacles. C. fissus is the most 

frequently infected host on the California coast of the United States (Crisp 1968, Blower and 

Roughgarden 1988). H. balani enters the mantle cavity of the barnacle, attaches to cuticle 

near the ovaries, draining ovarian fluid and rendering the barnacle unable to reproduce as a 

female. After the isopod matures, it releases its offspring, and then dies. Hence, H. balani is 

an ephemeral, semelparous, parasitic castrator. This parasite has a cosmopolitan distribution 

and is recorded from the East and West Coast of the United States, Western Europe, and 

South Africa (Crisp 1968).  

The H. balani- C. fissus system is ideal for evaluating the relationships among the 

cost of parasite avoidance behavior, the cost of parasitism to host fitness, and the risk of 

parasitism because we can quantify the behavior, we know the cost of parasitism, and we 

can directly assess the risk of parasitism. Because parasites enter through the barnacle’s 

scutum and tergum, on first principles, we assume barnacles with a closed aperture can 

avoid encounter with a parasite. Thus, barnacles can avoid parasites by reducing filtration 

rate, in essence reducing their encounter probability with parasitic infectious stages, despite 

the intrinsic cost due to cessation of feeding. Hosts infected by a single H. balani are no 

longer able to produce eggs. Thus, the fitness cost of infection is high and intensity-

independent (Lafferty and Kuris 2009). Risk of infection should vary among individual 
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barnacles based on both infection status and reproductive condition. Previously infected 

barnacles are not at risk of a further cost of infection since a single H. balani blocks host 

reproduction (Kuris 1974). Barnacles with ovoposited eggs, or with ripe ova, are also not at 

risk for infection only occurs in unripe barnacles. Thus, barnacles without eggs are at risk of 

parasitism because they have ovarian fluid for the parasite to consume. Here we conducted 

experiments to evaluate how host infection and reproductive condition affect parasite 

avoidance behavior. 

METHODS 

Experimental Design 

To obtain specimens, we collected barnacles from rocks at low tide in Santa Barbara 

County, CA, USA from June 2014 to March 2015. Barnacles were isolated in individual 

wells filled with seawater and returned to the laboratory, where they were placed in a plastic 

cup with 20 mL of seawater and acclimated to light levels and water temperature for 5 

minutes. After the acclimation period, we observed filtration through a dissecting 

microscope. A barnacle was recorded as filtering when its cirri emerged and swept the 

water. We counted the number of times a barnacle filtered in five 20-second intervals, 

averaging them. In experimental treatments we added an infectious cryptoniscus larva to the 

water with forceps. In the control treatment we disturbed the water with forceps to mimic 

disturbance associated with transferring a cryptoniscus into the cup with forceps. After a 30 

min. to one-hour acclimation we averaged filtration rates for the five 20-second intervals. 

Change in filtration rate was average final filtration rate minus the average initial filtration 

rate. Negative values indicated a reduction in filtration rate while positive values were an 

increased rate. 
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 We measured each barnacle to the nearest ¼ mm and assessed their reproductive and 

infection status. To control for size-specific variability in filtration rate, we only used 

barnacles 2.5 mm to 4 mm long. For reproductive status we reported the presence of 

oviposited eggs or ovaries with ripe (mature) ova, or unripe ovaries. For infection status, we 

inspected the mantle cavity for H. balani. Thus, we had three types of classified barnacles, 

infected (I), uninfected/non-reproductive (UI/NR), or uninfected/reproductive (UI/R).  

Baseline filtration rates 

To establish a baseline filtration rate, we collected barnacles from Miramar Beach in 

Santa Barbara County CA, USA and measured filtration rate of infected, 

uninfected/reproductive, and uninfected/non-reproductive barnacles (n=69). We conducted a 

1-Factor ANOVA followed by a Tukey HSD post hoc analysis to analyze the difference in 

baseline filtration rate among I, UI/R, UI/NR barnacles. 

Infected versus Uninfected/Non-Reproductive Barnacles 

To quantify the effect of the presence of an infective cryptoniscus larva on filtration 

rate, we introduced an infectious cryptoniscus larva to a compartment with a barnacle and 

quantified the change in filtration rate. We used a fully crossed experimental design, varying 

infection status (I or UI/NR) and introduction of a cryptoniscus larva stage (+/- Parasite) 

(n=26). The proportion of uninfected/reproductive barnacles at Miramar Beach was too low 

to obtain sufficient specimens to include this treatment (prevalence of H. balani at Miramar 

Beach can reach 90% for barnacles between 2.5 and 4 mm CRF, personal observation of 

>6000 individuals). We randomly assigned individuals to a +/- Parasite treatment and 

measured change in filtration rate. These data were analyzed with a 2- Factor ANOVA 
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where the first factor was category (I or UI/NR) and the second factor was parasite addition 

(+/- Parasite). 

Uninfected/Reproductive versus Uninfected/Non-Reproductive Barnacles 

To explore the effect of reproductive status on filtration rate, we collected barnacles 

from Campus Point, Santa Barbara County, CA, USA. We used this location because only 

~4% of barnacles were infected by H. balani compared to 90% of barnacles at Miramar 

Beach in the size classes examined. We used a fully crossed experimental design, varying 

reproductive status (UI/R or UI/NR) and introduction of a cryptoniscus larva (+/- Parasite) 

and measured change in filtration rate (n=46). These data were analyzed with a 2- Factor 

ANOVA where the first factor was category (UI/R or UI/NR) and the second factor was 

parasite addition (+/- Parasite). 

RESULTS 

 Both actively reproductive and infected barnacles had significantly lower rates of 

filtration than did barnacles that were not in an active reproductive state (ANOVA, F= 

3.819, df= 2, p= 0.027, Tukey HSD). On average, both infection and reproduction had ~50% 

reduced filtration rate (Fig. 1). 

The response of a barnacle to the presence of a cryptoniscus larva was dependent on 

whether or not the barnacle was already infected (2-F ANOVA, F=3.4105, df=3, interaction 

p=0.022). Absent an infectious larva, neither infected nor uninfected/non-reproductive 

barnacles changed their mean filtration rate from the initial measurement (Fig 2). When an 

infectious stage was present, filtration rate of the already infected barnacles did not change, 

while filtration rate of the uninfected/non-reproductive barnacle was reduced an average of 

5.2+/- 1.4 SE per 20 seconds, a 50% reduction in filtration rate from baseline. 
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The response of a barnacle to the presence of a cryptoniscus larvae also depended on 

whether or not the barnacle was reproductive (2-F ANOVA, F=3.0213, df= 3, interaction 

p=0.0402). Absent an infectious larva, neither reproductive nor non-reproductive barnacles 

changed their mean rate of filtration (Fig 3). In contrast, in the presence of an infectious 

cryptoniscus stage, the filtration rate of the barnacle depended on its reproductive status. 

Reproductive barnacles did not respond to the presence of a cryptoniscus larva whereas non-

reproductive barnacles reduced their filtration rate an average of 4.7+/- 2.1 SE per 20 

seconds, a reduction of ~40% from the baseline rate. 

DISCUSSION 

 At risk barnacles substantially reduced their filtration rate when in the presence of an 

infectious parasite. This is likely a strong, direct fitness cost 40-50% less energy consumed 

when at risk of infection. In other systems hosts have been shown to avoid parasitism. 

However, these costs are not as direct as is diminished food consumption. For example, 

selective foraging by herbivores (Cooper et al. 2000, Fleurance et al. 2007, Ezenwa 2004) 

avoids discrete, small patches of contaminated plants, but presumably bears a low cost 

compared to a direct reduction in feeding rate. Frog tadpoles expend energy to swim away 

from parasites, but this movement simultaneously results in physical separation of the 

tadpole from the parasite (Daly and Johnson 2011, Koprivnikar et al. 2006). Migration is 

costly, but this behavior also physically removes individuals from parasites and migration 

costs are also borne by requirements to migrate for better resources or appropriate breeding 

conditions (examples reviewed in Altizer et al. 2011). One possible reason for the high cost 

of the parasite avoidance behavior lies in the parasite’s trophic strategy. H. balani is a 

parasitic castrator, so infection by one parasite eliminates the barnacle’s ability to produce 
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eggs. When contrasted with the high cost of infection, a 40-50% reduction in energy intake 

appears to be cost effective. An additional, and not mutually exclusive, explanation is that 

reduced feeding is the only solution for a sessile marine animal. Selective foraging, 

swimming away, and migration are not options. Associated with this problem, the 

hypothesis that pelagic larval dispersal evolved to escape local natural enemies may be 

particularly applicable to sessile marine animals (Strathmann et al. 2002, McCallum et al. 

2004).  

 We found only at-risk barnacles reduced filtration rate in the presence of 

cryptoniscus larvae, which underscores the cost of reducing food intake. Risk of infection is 

not even among individual barnacles, and the specificity of the reduced filtration response 

highlights this heterogeneity. Parasites with mobile infectious stages capable of detecting 

variation in host quality can select hosts based on factors that maximize its reproductive 

success (Bell et al. 2005, He and Wang 2006, Liu et al. 2011). This has received most 

attention in studies of parasitoid selectivity. The parasite in this study has a highly mobile 

infectious stage, and castrators share many characteristics with parasitoids (Kuris 1974). For 

castrators and parasitoids, the entirety of their fitness depends on the quality of the host; how 

much host energy the castrator can extract and convert to the production of parasite 

offspring. From this perspective, such parasites should display high selectivity in host 

selection because the impact of host quality on parasite fitness is so high (Bell et al. 2005, 

He and Wang 2006, Liu et al. 2011). This is particularly true for H. balani because it is 

ephemeral, making the quality of the host upon infection crucial to parasite fitness. 

Lost feeding opportunity to avoid parasites should result in slower-growing, less 

reproductive barnacles. Barnacles with greater access to food grow more rapidly (for review 



 

 10 

see Crisp & Bourget 1985), and larger barnacles have larger broods (Hines 1978). 

Additionally, barnacle populations supplied with higher doses of food have a higher fraction 

of brooding individuals and more broods than those with lower doses of food. Barnacles 

with restricted food rations by 1/3 were half as likely to be reproductive (Hines 1978). This 

effect translates to the field, where barnacles have a higher fraction of individuals brooding 

eggs at sites with higher near shore productivity (Leslie et al. 2005, Bertness et al. 1991). 

Thus, parasite avoidance behavior directly reducing feeding likely substantially impacts 

reduces barnacle fitness.  

As a baseline, barnacles that were are infected or uninfected/reproductive had 

reduced filtration rates compared to uninfected/non-reproductive barnacles. The effects of 

infection on feeding rates are diverse and complex. Anorexia, or the reduction in feeding, is 

common in infected animals across a range of host and parasite taxa (for review see Symons 

1985). Multiple functional explanations have been proposed to explain how anorexia may 

benefit either host or parasite (for review see Kyriazakis et al. 1998). For example, reduced 

feeding can be an anti-parasite defense; mice experimentally infected with bacteria reduced 

feeding rates, effectively driving resources down too low and killing the infection (Murray 

and Murray 1979). The reduced performance of parasitized hosts is largely due to anorexia 

(Coop and Holmes 1996), making this an active area of research. In some cases, animals 

increase feeding rates to offset the energetic effects of infection and mounting an immune 

defense. For example, damselflies infected with bacteria compensated by increasing feeding 

rate (González-Tokman et al. 2011). Blue tit parents increase feeding rates to heavily 

infected chicks to offset the cost of parasitism by blowflies (Hurtrez-Boussès et al. 1998). 

While we do not know the underlying cause, anorexia is common in parasitized organisms. 
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Additionally, reproductive barnacles had reduced filtration rates. Brood protection is a 

common phenomenon that can result in reduced feeding rates (Yanagisawa and Ochi 1991, 

Fernald and Hirata 1979, Schürch and Taborsky 2005, Groscolas and Robin 2001). Based on 

the data presented here, we are unable to discriminate if the reduction in filtration rate of 

infected barnacles results from infection or is a property of having a full brood cavity.  

Behavior is necessarily the first line of defense against parasites, making this a 

model system for understand the interactions between risk of infection, cost of infection, and 

cost of parasite avoidance behavior. We find the display of parasite avoidance behavior of 

C. fissus against H. balani is directly related to the risk of infection. Additionally, the 

specificity of the behavior underscores the implicit cost of avoiding parasites in this system. 
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Figure 1 a.) Mean baseline filtration rate +/- standard error of infected (white), 

uninfected/reproductive (hatched) and uninfected/non-reproductive (black) barnacles per 20 

seconds. Letters represent significantly different groups based on Tukey’s HSD (n=69). b.) 

Mean change in filtration rates +/- standard error of infected (white) and uninfected/non-

reproductive (black) barnacles per 20 seconds when infectious stages were not present (- 

Parasite) or present (+ Parasite) (n=21). Zero values indicate no change in filtration rate, 

positive values and increase in filtration rate, negative values are a decrease in filtration rate. 

c.) Mean change in filtration rates +/- standard error of uninfected/reproductive (hatched) 

and uninfected/non-reproductive (black) barnacles per 20 seconds when infectious stages 

were not present (- Parasite) or present (+ Parasite) (n=26). Zero values indicate no change 

in filtration rate, positive values and increase in filtration rate, negative values are a decrease 

in filtration rate. 
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CHAPTER 2: Hermaphrodites and parasitism: size-specific female reproduction drives 

infection by an ephemeral parasitic castrator 

ABSTRACT 

Gender can influence patterns of parasitism because males and females can differ 

regarding both encounter and susceptibility. We investigate an isopod parasite (Hemioniscus 

balani) that consumes ovarian fluid, blocking reproduction of its host barnacle (Chthamalus 

fissus), a simultaneous hermaphrodite. As a hermaphroditic species, where gender is not 

fixed and individuals allocate variable energy to male or female functions, C. fissus may be 

able to allocate energy differentially to male versus female reproduction. Since H. balani 

requires ovarian fluid, only barnacles with female reproductive function should be 

appropriate hosts. We surveyed 24 populations spanning roughly 400 km of coastline of 

southern California and documented a unimodal relationship between barnacle size and 

female reproductive function. This female function-size relationship was mirrored by 

patterns of parasitism by H. balani. This was consistent with the hypotheses that the parasite 

can only infect barnacles actively functioning as females, and that the distribution of female 

reproductive function among individuals primarily dictates patterns of infection within the 

entire barnacle population. Further, we found within the subset of suitable hosts, parasitism 

increased with size. We suggest physiological compatibility (female reproductive function) 

and host choice (for larger susceptible hosts) drive the documented patterns of parasitism.  

INTRODUCTION 

Host gender can drive patterns of parasitism in populations for two overarching 

reasons. First, males and females can vary in how much they encounter parasite transmission 

stages. Differential exposure could, for instance, be driven by gender differences in behavior 
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(e.g. Tinsley 1989, Poole et al. 1983, Wilson et al. 2001). Second, males and females can 

differ in how compatible they are as hosts after encounter. For example, males generally 

have weaker immune systems than do females and are often more parasitized (Klien 2004). 

These sorts of gender differences in parasitism may be associated with other factors such as 

body size. For instance, if males and females differ in size or in spatial distribution, 

differential parasitism of males and females could drive size-related or spatial patterns of 

parasitism within host populations. An interesting twist to this theme occurs for species 

where gender is not fixed. In hermaphroditic species, individuals allocate variable energy to 

male or female function (e.g. Charnov 1982). In such cases, an individual can vary in 

gender-based differences in parasitism over a single lifetime. Here, we examine barnacle 

hosts that can switch from being male to being simultaneous hermaphrodites. The 

distribution of female function in these hosts influences patterns of infection by a parasite 

that specializes on female reproductive tissue.  

Hemioniscus balani is an isopod parasite reported to infect and block reproduction in 

at least 14 barnacle species (Crisp 1968, Goudeau 1970, Blower and Roughgarden 1988). 

Infection by a single parasitic castrator eliminates host reproduction for the duration of the 

infection (Lafferty and Kuris 2009). Hemioniscus balani infects the barnacle with a highly 

mobile stage, the cryptoniscus larva, and attaches to the ovaries, draining ovarian fluid and 

rendering the barnacle unable to reproduce as a female. After the isopod matures, it releases 

its offspring and then dies, permitting the host to recover its female reproductive capability. 

Hence, this isopod is an ephemeral, semelparous parasitic castrator. Male reproductive 

function is retained (Goudeau 1972, Blower and Roughgarden 1988). This is a distinctive 

parasitic trophic strategy, with no other examples known to us (other parasitic castrators are 
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long-lived and iteroparous, see lists in Kuris 1974, Lafferty and Kuris 2009). This unusual 

parasitic strategy is even more interesting given the complex sexuality of its barnacle hosts.  

Barnacles have diverse sexual systems (reviewed in Darwin 1854, Yusa et al. 2013, 

Yamaguchi et al. 2008). Many species are hermaphroditic, and individuals beginning their 

lives as males (Yamaguchi et al. 2008, Hines 1987). With increasing age and size, 

individuals allocate increasing amounts of energy to female function and become 

simultaneous hermaphrodites (Yamaguchi et al. 2008, Hines 1987). Additionally, barnacle 

sex allocation can be context dependent. For instance, though empirical evidence is limited 

and mixed (Raimondi and Martin 1991, Hoch 2009, Hoch and Levinton 2012, Yusa et al. 

2013), theoretical models predict increased allocation to male function when barnacles find 

themselves in larger mating groups (Charnov 1982). Hence, the amount of energy barnacles 

allocate to female function can vary with age, size, and extent of aggregation.  

We hypothesized that variation in female function in barnacles would be mirrored by 

patterns of infection by H. balani because this parasite is an ovarian specialist. We examine 

the acorn barnacle, Chthamalus fissus, a host for H. balani (Blower and Roughgarden 1988). 

We first quantified how allocation to female function varies with body size in C. fissus. As 

for other hermaphroditic barnacle species (e.g., Raimondi and Martin 1991, but see Hoch 

and Levington 2012), we expected variable investment in male versus female function. We 

then tested the hypothesis that the documented relationship between size and female 

function mirrors the relationship between size and probability of being infected, because 

only barnacles with active female function should be suitable hosts. We hypothesized that 

the distribution of suitable hosts primarily dictates patterns of infection within the entire 

barnacle population. However, within the subset of suitable hosts, we hypothesized that the 
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probability of being infected increases with body size because larger hosts are larger targets. 

This could result in higher infection rates in larger barnacles even under random encounter 

scenarios. Also, parasites might prefer and actively infect larger hosts, because, consistent 

with other parasitic castrators (e.g., Kuris 1974, Muñoz and George-Nascimento 1999, Kuris 

and Lafferty 2000, Hechinger et al. 2009), the size and fecundity of H. balani increases with 

host size (Fong, unpubished data).  

To test these hypotheses, we surveyed 12 populations of C. fissus for parasitism by 

H. balani from 6 localities along the Southern California Bight. We measured barnacle size, 

female reproductive function, and infection status. We then documented the relationship 

between female function, parasitism, and barnacle size. 

METHODS 

Over a three-day period (16-18 Sep 2013), we collected barnacles from 2 habitat 

types (1 natural rock and one pier piling) at each of 6 localities spread throughout the 

Southern California Bight (Fig. 1, 12 sites in total). We sampled 2 habitat types because 

Sites were chosen based on accessibility and because they had both habitat types. To 

minimize tidal differences and differences in encounter rate within a site, barnacles were 

collected in a stratified random design from the lower 10 cm of their elevational range. We 

collected all barnacles encountered in 10 haphazardly placed circular 11.34 cm2 cores. 

Barnacles were frozen immediately after collection, remaining frozen until dissection. 

At the laboratory, all barnacles were thawed and dissected. Barnacle length was 

measured as the widest shell diameter to the nearest 0.25 mm. Barnacles were recorded as 

infected or uninfected, and as “non-reproductive” or “reproductive,” based on female 

reproductive function, where reproductive individuals had ripe ovaries (as indicated by 
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yellow/orange fluid within the ovary), developing eggs, or oviposited eggs. We only 

included barnacles ≥  1 mm, thereby avoiding barnacles that are typically pre-reproductive 

(Hines 1978, Fong, personal observations).  

We determined whether the size frequency distribution of infected hosts was a non-

random subset of the size frequency distribution characterizing the entire barnacle 

population using a Kolmogorov-Smirnoff test.  

We examined the influence of size, habitat type, and locality on the probability of 

female reproductive function and infection using logistic regression and AICc model 

selection. We first estimated the probability of female reproductive function only among 

uninfected barnacles. However, disproportionate infection of barnacles with female function 

would cause us to underestimate this probability. For instance, in the extreme case of 100% 

infection of barnacles with female function, there would be zero probability of female 

reproductive function. Hence, we also calculated the probability of female reproductive 

function by counting infected barnacles as reproductive females. This is sensible given the 

specialization of the parasites on female ovaries, which necessarily implies that the barnacle 

was a functional female. The probability curves from both analyses were generally very 

similar as expected given the typical low prevalence of infection. Because the curves were 

similar, in the main text we present the results counting infected individuals as barnacles 

with female reproductive function, because that likely provided the best representation of the 

pattern. We present a comparison of the two probability curves (Fig. 4). Because the size 

with the predicted maximum probability of female reproduction varied between sites (see 

results), we used a regression approach to determine the relationship between the size of the 
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largest individual at a site and the size with the predicted maximum probability of female 

reproduction at a site (Fig. 5).  

 We used the regression equations from the favored models to extract the host sizes 

corresponding to the maximum probabilities of female reproductive function and infection 

for each site. We then compared the size of maximum probability of female reproductive 

function for each population to the maximum probability of infection at each site using a 1-

sample t-test because the maximum probability of infection was statistically invariant (see 

results).  

Additionally, we examined the influence of size, habitat type, and locality on the 

probability individuals in the susceptible class were infected using logistic regression and 

AICc model selection. Because H. balani infection blocks female reproduction, susceptible 

barnacles were those that were uninfected/reproductive plus infected barnacles.  

RESULTS  

We dissected 6,381 barnacles, of which 362 were infected, a regional prevalence, 

percentage infected, of 5.67% [5.12, 6.26 95% CI] (Table 1). However, prevalence varied 

substantially between sites and ranged from 0 to 23.9%. The size frequency distribution of 

infected barnacles was significantly different from uninfected barnacles at all sites at which 

there were at least 10 infections (Table 1). Thus, the distribution of infected individuals is 

not a random subset of the population of hosts.  

The model for predicting female reproductive function with the lowest AICc score 

included size of the barnacle host, habitat type, and locality (Table 2). The probability of 

female reproduction varied non-linearly with size (size*size p<0.0001) reflecting the 

unimodal nature of the predicted probability distribution. Barnacles of intermediate size 
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always had the highest probability of being reproductive females (Fig. 2). However, the size 

of barnacle with the predicted maximum probability of being such a female varied among 

localities and habitat types, ranging from 3.00-8.00 mm (locality * size * size interaction 

p<0.0001, habitat type * size * size interaction p<0.0001) (Fig. 3). While the size-specific 

probability of female reproductive function differed between natural rock and pier habitats, 

one habitat type did not consistently have higher probabilities of female reproductive 

function (locality * habitat type interaction p<0.0001). However, among populations, the 

size of barnacles most likely to be reproducing as females was linearly related to the largest 

size of barnacle at that site (y=0.4x+1.3, R2= 0.67, Fig. 5).  

The model predicting the probability of infection with the lowest AICc score 

included barnacle host size, habitat type, and locality (Table 3). Similar to the probability of 

active female reproduction, the probability of infection responded non-linearly to host size 

(size * size interaction p<0.0001), such that 4 mm barnacles always had the highest 

probability of infection, irrespective of site (i.e., size never interacted with habitat or 

locality) (Fig. 2) (Table 3). However, the magnitude of the probability of infection varied 

among sites, with the maximum probability ranging from ~0-0.60. While sites had different 

maximum probabilities of infection, differences between natural rock and pier habitats were 

not consistent and varied among localities (habitat*locality interaction p<0.0001).  

We observed no H. balani infections above 5mm, even though there are appropriate 

hosts (18 of 50 large barnacles were actively reproducing as females). This was significantly 

different from the prevalence observed within 4.75 mm barnacles, the next smallest size 

class (binomial test, p=0.002).  
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The size with the maximum probability of infection did not differ significantly from 

the size having the peak proportion of reproducing females (1-sample t-test, p=0.22) (Fig. 

3). Across all sites, the average maximum probability of active reproduction was 4.2 ±	
 SE 

0.38 mm while the maximum probability of infection was 4.0 mm. 

The model best predicting the probability of infection within the class of susceptible 

barnacles included site, habitat, and size. In general, we found that the probability of 

infection increased with size (Fig. 2), though the shape of these curves varied among 

localities (locality * size, p=0.002), but not consistently among habitat types 

(locality*habitat, p<0.0001) (Table 4).  

DISCUSSION 

We first discuss our findings concerning an unexpected, unimodal, size-specific 

distribution of reproductive females, which is counter to models of barnacle reproductive 

allocation (Charnov 1982, Yusa et al. 2013, Yamaguchi et al. 2012, Yusa et al. 2013). We 

then focus on how that distribution intersected with patterns of infection.  

Patterns of female reproductive function 

The proportion of reproducing female Chthamalus fissus reached a unimodal peak at 

a body size less than the maximum barnacle size in the sampled populations. This conflicts 

with theoretical models of hermaphroditic barnacle reproductive allocation (Charnov 1982, 

Yusa et al. 2013, Yamaguchi et al. 2012, Yusa et al. 2013), in which the largest barnacles 

simultaneous allocate resources to both to male and female functions.  

Intermediate-sized barnacles were most likely to be actively functioning as females. 

There is nothing surprising about the left side of the curve, as small barnacles likely have not 

yet reached female reproductive maturity (Hines 1978, Yamaguchi et al. 2012). However, 



 

 26 

what is the explanation for the larger barnacles to be less likely to be actively reproducing as 

females?  

We posit that it is advantageous for some barnacles, including C. fissus, to 

disproportionally invest in male function when large. Barnacle penis length scales with 

barnacle size, and limits a barnacle’s mating success as a male (Hoch 2009). Hence, it may 

be favorable for an individual to be predominantly male when it is the largest member of a 

mating group and can dominate sperm competition. While the mechanism varies, there are 

other hermaphroditic mating systems that show such a pattern where large individuals have 

increased reproductive success as males due to dominance (e.g. Warner 1988). The results 

are clear: intermediate-sized barnacles had the greatest chance to allocate substantial 

resources to female function across 24 populations spanning roughly 400 km of the southern 

California coast, a pattern we are the first to document. 

The specific maximum size of barnacles reproducing as females varied among 

populations. This maximum was not correlated with mean barnacle size. Hence, there was 

no general tendency for the female function vs. size curve to simply track overall shifts in 

the population size-frequency distributions. However, size of maximum probability of 

female function was correlated with the size of the largest individual at each site. These 

largest individuals were invariably males, and were usually scarce. These males could 

therefore set a social environment that favors increased allocation to female function in the 

surrounding, smaller, barnacles, which would not be competitive as males. This explains the 

shift in size of the barnacles most likely to actively allocate resources to the female function 

in each barnacle population. 
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The peak probability of female reproduction also varied among sites. One possible 

explanation for this pattern is among-site differences in food availability. Increased food 

availability leads directly to increased barnacle female reproductive productivity (Hines 

1978). For example, the fraction of barnacles brooding eggs can be 5 times higher at sites 

with higher near-shore primary productivity (Leslie et al. 2005). While we do not have 

evidence for differential productivity across our sites, we suggest bottom-up forcing may 

have increased female reproduction and been a source of variation among sites. 

Relationship between female function and infection risk  

The size-specific relationship for reproductive females was related to the size-

specific pattern of infection of Hemioniscus balani. Intermediate-sized barnacles were most 

likely to be actively functioning as females and also to be infected. However, in contrast to 

the maximum probability of female function, which varied among sites, infection risk 

appeared to peak at a constant barnacle size throughout the entire Southern California Bight. 

C. fissus barnacles of 4 mm are most likely to be infected. These findings are consistent with 

our hypotheses that the parasite can only infect barnacles actively functioning as females, 

and that the distribution of female reproductive function among individuals primarily 

dictates patterns of infection within the entire barnacle population. The data were further 

consistent with our hypothesis concerning infection being most likely in suitable hosts of 

larger size. 

As H. balani consumes on ovarian fluid, the distribution of parasites within the 

population should reflect the distribution of appropriate hosts (females with ovarian fluid). 

While the sub-maximum size of reproductive females in all populations was unexpected, the 
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distribution of parasites was not unexpected because it mirrored the availability of 

appropriate hosts.  

Although the parasite has a nutritional requirement that appears to explain its size-

specific patterns of infection in barnacle populations, there are alternative explanations for a 

unimodal pattern. These include differences among host individuals in the likelihood that 

parasites can encounter them, and in aspects of compatibility, other than meeting the 

nutritional requirement of ripe ovaries, such as host immunological defenses and genetic 

aspects of compatibility. Variable encounter can drive patterns of parasitism (see Combes 

2001 for examples). However, barnacles are sessile and our samples were all taken from a 

single tidal height at each site, reducing differences in exposure risk among hosts of 

different sizes. Hence, differential exposure to infectious propagules is an unlikely factor in 

this study. It is plausible that smaller and larger barnacles are less likely to be parasitized for 

reasons independent of, but covarying with, female function. Could smaller and larger 

barnacles be less suitable hosts due to aspects of immune defense or to structural aspects of 

resistance? This explanation would require different reasoning for the large and small sized 

barnacles and thus seems unlikely. Small barnacles may be less apparent to the searching 

cryptoniscus larvae and they may not be of sufficient size to house a developing parasite. 

Searching isopod larvae may be able to detect and avoid such unsuitable hosts since, for 

barnacles, there is a high probability that a suitably sized host is nearby. The largest 

barnacles may be better defended against these parasites as they are likely to have a stronger 

cellular immune response. But, the extent to which a large barnacle can mount a cellular 

defense against a parasite whose body is actually in the mantle cavity seems unlikely. A 

hypothesis based on genetic differences among barnacle size classes is unlikely, as it would 
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require that smaller and larger barnacles at the 12 different localities consistently originated 

from a resistant recruitment stock. In sum, we favor the parsimonious, “bottom-up” 

explanation as the driver for a unimodal pattern of infection in the host populations. This 

general explanation is also consistent with the observation that while the modal peak in 

barnacle host reproduction varies among populations, the peak of barnacle infective success 

is not significantly different across host geography and habitat types. In other words, it 

appears that the parasite is under selective pressure at a large geographic scale to maximize 

its infection success across a range of host sizes that vary locally, but are close to the 

optimum host size for the parasite. 

Patterns of infection among reproductive females 

In contrast to the unimodal distribution of infection risk with size throughout entire 

barnacle populations, among appropriate hosts (reproductive females), the probability of 

infection generally increased with size. There are several plausible explanations for this 

pattern. First, prevalence of parasitism often increases with host size because the cumulative 

risk of infection is higher for older (larger) individuals (Wilson et al. 2001). This is unlikely 

here because H. balani is short-lived, the host loses the semelparous parasite after its short 

reproductive period. Thus, all infections were recent, precluding accumulation over time. 

Second, parasitism could be more likely in larger hosts because those hosts are larger 

targets. Finally, parasites may actively target larger hosts. Generally, larger hosts result in 

increased body size or reproductive output for parasitic castrators (reviewed in Kuris 1974). 

This appears to be the case for H. balani, as their body size and fecundity are larger in larger 

hosts (Fong, unpublished data). H. balani has a highly mobile searching stage that appears 

to have physical and behavioral capabilities to select among hosts. Actively searching stages 
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of other parasitic species can also be highly selective; for example, adult female wasps are 

capable of selecting hosts for their parasitoid offspring based on a range of host 

characteristics (e.g. Liu et al. 2011, Bell et al. 2005, He and Wang 2006). Hence, the 

probable fitness gains and the searching capability of H. balani larvae to select among hosts 

suggest host selection as the most likely mechanism for the increased risk of infection of 

relatively large but not the largest, susceptible hosts.  

Conclusion 

The barnacle, C. fissus, exhibits a unimodal relationship between size and female 

reproductive function with maxima at intermediate sizes among individuals in the 12 

barnacle populations surveyed in this study. This is counter to the widely accepted model of 

barnacle sexual allocation that predicts maximum female reproduction at the maximum 

barnacle size. The risk of infection by H. balani, an ephemeral, semelparous, parasitic 

castrator largely mirrors the probability of female reproductive function. The relationship of 

sexual allocation and parasitism in a simultaneously hermaphroditic host indicates that both 

the host and this parasite are able to maximize their respective reproductive success although 

these outcomes are in conflict within and among populations.  
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TABLE 1 Sites sampled, number of Chthamalus fissus barnacles examined (N), number 

infected by of Hemioniscus balani and parasitism prevalence. Kolmogorov-Smirnoff (KS) 

test probabilities comparing the size frequency distribution of infected and uninfected 

barnacles at each site. N also indicates barnacle density (number in 10 randomly placed 

circular 11.34 cm2 cores). 

 

SITE KS P-VALUE # INFECTED N PREVALENCE (%) 

Gaviota Rock 0.9973 2 629 0.3 [0.1,1.2 95% CI] 

Gaviota Pier <0.0001 75 536 14.0 [11.3,17.2 95% CI] 

Goleta Rock 0.0005 25 615 4.1 [2.8, 5.9 95% CI] 

Goleta Pier 0.0003 31 201 15.4 [7.3,14.2 95% CI] 

Santa Barbara Rock <0.0001 143 598 23.9 [20.1, 27.5 95% CI] 

Santa Barbara Pier <0.0001 52 614 8.5 [6.5, 10.9 95% CI] 

Ventura Rock 0.0003 10 743 1.3 [0.7, 2.5 95% CI] 

Ventura Pier 0.4317 4 410 1.0 [0.4, 2.5 95% CI] 

San Clemente Rock 0.4846 8 308 2.6 [1.3, 5.0 95% CI] 

San Clemente Pier 0.0198 10 572 1.7 [1.0, 3.2 95% CI] 

Scripps Rock 0.8701 2 413 0.5 [0.1, 1.7 95% CI] 

Scripps Pier --- 0 642 0.0 [0, 0.6 95% CI] 
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TABLE 2 Results of the logistic regression with reproductive function as the response 

variable. 

 

SOURCE DF L-R CHISQUARE P-VALUE 

Locality 5 68.35 <.0001 

Habitat Type 1 0.09294 0.7605 

Locality*Habitat Type 5 195.1 <.0001 

Size 1 862.3 <.0001 

Locality*Size 5 14.12 0.0149 

Habitat Type*Size 1 6.208 0.0127 

Locality*Habitat Type*Size 5 38.21 <.0001 

Size*Size 1 251.0 <.0001 

Locality*Size*Size 5 46.23 <.0001 

Habitat Type*Size*Size 1 18.14 <.0001 
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TABLE 3 Results of the logistic regression with infection status as the response variable. 

 

SOURCE DF L-R CHISQUARE P-VALUE 

Size 1 218.1 <0.0001 

Size*Size 1 62.88 <0.0001 

Locality 5 305.1 <0.0001 

Habitat Type 1 0.176 0.6746 

Habitat Type* Locality 5 272.2 <0.0001 
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TABLE 4 Results of the logistic regression for the probability of being infected within the 

susceptible class. 

 

SOURCE DF L-R CHISQUARE P-VALUE 

Site 5 376.2 <.0001 

Habitat Type 1 0.3645 0.546 

Site*Habitat Type 5 217.6 <.0001 

Size 1 0.8590 0.354 

Site*Size 5 18.69 0.0022 
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Figure 1 Locations of the 12 survey sites, which were at six localities spread throughout the 

Southern California Bight. Localities included Gaviota (a,b), Goleta (c,d), Santa Barbara 

(e,f), Ventura (g,h), San Clemente (i,j), and La Jolla (k,l). 

 

Figure 2. Size-frequency distributions, probabilities of reproduction, and probabilities of 

infection for barnacles at the 12 study sites located throughout the Southern California 

Bight. Bars indicate number of barnacles while curves indicate predicted probabilities from 

the logistic regressions Natural rock habitats are on the left, while pier habitats are on the 

right. Sites are ordered from north to south: Gaviota (a,b), Goleta (c,d), Santa Barbara (e,f), 

Ventura (g,h), San Clemente (i,j), and La Jolla (k,l). 

 

Figure 3 Line graph indicating the barnacle size (basal diameter) with the maximum 

probability of active reproduction for each of the 12 sites (mean =4.2 ±	
 0.38 mm SE). Red 

arrow signifies the average of 4 mm among all 12 sites, which corresponds to the maximum 

infection risk at 4 mm.  

 

Figure 4 Probabilities of reproduction when excluding infected barnacles (solid curves) and 

including infected barnacles as reproductive females (dashed curves, which are the same as 

those in Figure 2) for Chthamalus fissus at the 12 study sites located throughout the 

Southern California Bight. Natural rock habitats are on the left (panels a, c, e, g, i, k), while 

pier habitats are on the right (panels b, d, f, h, j, l). Sites are ordered from north to south: 

Gaviota (a,b), Goleta (c,d), Santa Barbara (e,f), Ventura (g,h), San Clemente (i,j), and La 

Jolla (k,l). 
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Figure 5 Maximum sized barnacle (mm) compared to the size of barnacle with the highest 

probability of female reproductive function (mm) for each site. 
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Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 
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CHAPTER 3: Predation on transmission stages reduces parasitism: sea anemones consume 

larval transmission stages of a parasitic castrator of barnacles 

ABSTRACT  

While parasites may serve as prey, does the spatial distribution of predators on parasites 

provide transmission control and influence patterns of parasitism? Because many of its 

organisms are sessile the rocky intertidal zone is a valuable but little used system to 

understand spatial patterns of parasitism and elucidate the underlying mechanisms driving 

these patterns. Sea anemones and barnacles are important space competitors in the upper 

rocky intertidal zone along the Pacific coast of North America. Anemones are voracious, 

indiscriminate, sit-and-wait predators; thus, they may intercept infectious stages of parasites 

before they reach a host. Here, we investigate whether a sea anemone, Anthopleura 

elegantissima, protects an associated barnacle, Chthamalus fissus, from parasitism by 

Hemioniscus balani, an isopod parasitic castrator. At Coal Oil Point in Santa Barbara, 

California USA, 29% of barnacles were within 1 cm from an anemone at the surveyed tidal 

height. Barnacles associated with anemones had reduced parasitism and higher reproductive 

productivity than did barnacles remote from sea anemones. In the laboratory, anemones 

readily consumed the transmission stage cryptoniscus larvae of the parasite. Hence, 

anemone consumption of parasite transmission stages may provide a mechanism by which 

community context regulates, and in this case reduces, parasitism at a local scale. Thus, our 

results suggest predation may be an important process providing parasite transmission 

control in nature.  

INTRODUCTION 
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Predation on parasites may be a key mechanism by which community context can 

regulate the impact of parasitism. This may have important implications for diseases of 

public health and commercial importance. Predation can be a major source of mortality for 

adult parasites, can reduce parasite burden in hosts, and can reduce transmission stages in 

the environment and thus transmission rates. Predation on parasites may be common in 

ecological communities; for example, Lafferty et al. (2006) showed that 44% of food web 

links in a Southern California estuary comprised predation on parasites. Increasing predation 

on parasites may be a useful approach for disease control, incorporating top-down control on 

transmission dynamics. For example, predation on hosts has been investigated as a 

management strategy to control transmission of human infectious diseases. Mkoji et al. 

(1999) and Sokolow et al. (2015) found support for controlling schistosomiasis in human 

population by controlling transmission; in these cases, crayfish and prawns consumed snails 

(intermediate hosts), which shed transmission stages into the water where they come in 

contact with humans. In these studies, reducing snail densities could reduce the number of 

transmission stages in the water, reducing schistosomiasis in local human population. Thus, 

consumption of parasites may interrupt transmission dynamics, highlighting the potential 

importance of studying parasitism within the context of a community (Johnson et al. 2010).  

Multiple laboratory studies document examples of predators of parasite transmission 

stages across a diverse group of animals. In Southern California estuaries, predation on free-

living transmission stages comprises 7% of food web links (Hechinger et al. 2011). Sea 

anemones (Hopper et al. 2008, Prinz et al. 2009), barnacles (Prinz et al. 2009), bivalves 

(Faust et al. 2009), crabs (Thieltges et al. 2008), fishes (Kaplan et al. 2009), and shrimp 

(Thieltges et al. 2008) can all be predators on parasite transmission stages; however, all of 
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these studies measure predation with laboratory feeding trials (but see Kaplan et al. 2009 for 

gut content) without directly correlating predator abundance to parasitism in the field. Thus, 

direct consumption of transmission stages of parasites has been theorized to reduce 

parasitism (Johnson et al. 2010), quantification in the field remains unknown. While some 

research has documented predation on parasite transmission stages in the field (Kaplan et al. 

2009), researcher have not related this predation to reduced parasitism in the field. Thus, it 

remains unknown how natural community contexts shape predation on parasite transmission 

stages and drives spatial patterns of parasitism and there is a lack of studies providing an 

estimate, based on field data, for the role of predation on transmission. Here, we use a 

survey approach in the field to assess the effect of association with a parasite predator on 

parasitism in a barnacle host. 

Spatial epidemiology—the description, quantification, and explanation for spatial 

differences in diseases—is a burgeoning area of research; however, local predation on 

parasite transmission stages has yet to be considered in this area of research. Recently, 

epidemiology models have begun to consider the effects of spatial patterns of transmission 

on parasitism. Regionally, transmission dynamics can be strongly influenced by abiotic 

factors such as climate (e.g. Brooker et al. 2006, Brooker 2007, Mordecai et al. 2013), which 

have been incorporated into models of spatial epidemiology. However, these have all been 

large-scale spatial investigations, unable to reveal the mechanisms whereby these patterns 

are regulated. Locally, the distribution of parasite predators may control spatial patterns in 

transmission and may provide a control for parasites. Further support for the role of 

proximity to parasite predators is offered by Mouritsen and Poulin (2003), who found 
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increased density of anemones in tidal mudflats reduced parasitism of the bivalves by larval 

trematode parasites. 

Here we investigate the relationship between risk of parasitism and association with 

an anemone, Anthopleura elegantissima, on infection of a rocky intertidal barnacle, 

Chthamalus fissus by an isopod parasite, Hemioniscus balani. Barnacles in the rocky 

intertidal zone are a classic system for studying basic ecological processes with a long 

history of study (e.g., Cranwele and Moore 1938, Connell 1961, Hooper et al. 2016). H. 

balani is an isopod parasite that infects at least 14 species of barnacles and C. fissus is the 

most frequently infected host on the California coast of the United States (Crisp 1968, 

Goudeau 1970, Blower and Roughgarden 1988). The isopod enters the mantle cavity of the 

barnacle and attaches to cuticle near the ovaries. The parasite then drains the ovarian fluid, 

rendering the barnacle unable to reproduce as a female (Goudeau 1972). After the parasite 

matures, it releases its offspring, and then dies. Hence, H. balani is an ephemeral, 

semelparous, parasitic castrator. In this study, we test whether association with a non-host 

species, Anthopleura elegantissima, protects the barnacle host from infection by consuming 

cryptonisci, the transmission stage of the parasite. This anemone reproduces clonally and 

can reach high densities in the rocky intertidal zone (54.4±34 individuals per m2, Dayton 

1971). It is an abundant and generalist predator, largely of zooplantkton (Zamer 1986). 

Both host and anemone are sessile occupiers of limited hard substrate space in the rocky 

intertidal zone (Dayton 1971). We show that associations between barnacles and anemones 

are common and we test the hypotheses that parasitism is reduced close to anemones and 

that anemones actively consume parasites. 

METHODS 
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To determine the frequency with which barnacles were associated with anemones, we 

surveyed the natural populations at Coal Oil Point, Santa Barbara County, California at a 

single tidal height, at which organisms are submerged an estimated 64% of the time. We ran 

five 1m transects parallel to shore and sampled five random 5x5 cm quadrats per transect (n 

= 25). Chthalamus fissus barnacles were considered associated with anemones if they were 

≤ 1 cm from an anemone, which approximated the length of the anemone’s tentacles. We 

counted the total number of barnacles in each quadrat associated with an anemone or not 

associated with an anemone. We then calculated the average density of barnacles and the 

percentage of barnacles associated with anemones and not associated with anemones within 

each quadrat. 

To quantify the relationship between association with an anemone and parasitism, we 

hapahazardly collected 125 barnacles associated (≤1 cm away) and unassociated (>10 cm 

away) with anemones (total n=250) (Fig. 1). All barnacles sampled were >2 mm, as smaller 

barnacles are infrequently infected (Hines 1978, Fong et al. in prep). Barnacles were placed 

into individual wells in the field, returned to lab, and immediately processed. Each barnacle 

was measured to the nearest ¼ mm, assessed for the presence of Hemioniscus balani, and 

scored as either reprodutive as females (with ripe ovaries or with eggs in the mantle cavity), 

or not. Because H. balani blocks reproduction, we were able to categorize barnacles as 

infected, uninfected/reproductive, or uninfected/non-reproductive. Data met assumptions of 

normality and homogeneity, and we used a t-test to determine if barnacle size varied 

between the two groups. To test whether parasitism and reproduction varied with respect to 

association with anemones, we analyzed infection and reproduction data and whether double 

infections varied with association with anemones with Fisher’s Exact Test.  
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By multiplying host density (survey data) and parasite prevalence (the percentage of 

infected hosts), we estimated the number of barnacles actively reproducing in each quadrat. 

We then compared the estimated number of barnacles actively reproducing that were 

associated with anemones versus the number of such barnacles not associated with 

anemones using a t-test. 

To determine whether anemones were capable of consuming parasites, we collected 3 

anemones from the field and isolated them in individual finger bowls with 150 mL of 

seawater and allowed the anemones to acclimate for 30 min. We collected the cryptoniscus 

larva mobile transmission stage of H. balani from the field by chiseling off sections of rock 

from the field, rinsing off the rock in seawater in the laboratory, and collecting free-living 

parasites from the water. After the anemone had acclimated, we added 10 cryptoniscus 

larvae in 25 mL of seawater to the finger bowl. As a control, we also placed 10 cryptoniscus 

larvae in 25 mL of seawater to 3 finger bowls without anemones. After 30 min., we counted 

the number of cryptoniscus larvae remaining in the water and calculated a consumption rate 

(no./ hr.). We then averaged individual anemone consumption rates for a mean larval 

consumption rate. Because no larvae were lost in the controls, we performed a one sample t-

test comparing our anemone predation rates to zero to determine if the anemones consumed 

significantly more than zero cryptonisci on average.  

RESULTS  

We surveyed a total of 1262 barnacles at Coal Oil Point. Their average density was 50.5 

± SE 10.4 barnacles per 25 cm2. Of all barnacles surveyed at the site (n=370), 29% were ≤ 1 

cm away from an anemone and thus associated with the anemone. On average, 39.7 ± SE 

7.8% of the barnacles within the 25 cm2 quadrat were ≤ 1 cm away from an anemone. 
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Barnacles associated with anemones were similar in size to barnacles not associated with 

anemones (t-test, p=0.25). 

Barnacles associated with anemones were significantly less likely to be infected (Fisher’s 

Exact Test, p<0.0001). Whereas 69.6% (87/125) of the barnacles not associated with 

anemones were infected, only 28.0% (35/125) of barnacles associated with anemones were 

infected. Thus, barnacles not associated with anemones were 2.5 times more likely to be 

infected (Fig. 2). Additionally, double infections differed with association with anemones 

(Fisher’s Exact Test, p=0.0393). Near anemones, 2.9% of barnacles were infected by more 

than 1 parasite, compared to 22.5% of barnacles distant from anemones (n=1, n=16 

respectively). Thus, multiple infections increased 7.7 times away from anemones, and 

double infections increased with increased prevalence. 

When associated with anemones, barnacles were more likely to be actively reproducing 

(Fisher’s Exact Test, p=0.0007). 23.2% of barnacles associated with anemones were actively 

reproducing (n=29) compared to only 7.2% of barnacles not associated with anemones 

(n=9). Thus, barnacles near anemones were 3.2 times more likely to be actively reproducing 

(Figure 2). However, among uninfected barnacles, the same fraction of individuals were 

actively reproducing, when adjacent or away from anemones (Fisher’s Exact Test, 

p=0.4005).  

The density of actively reproducing barnacles that were associated with anemones was 

not significantly different from barnacles that were not associated with anemones (t-test, 

p=0.46). Hence, while only 30% of the barnacles were associated with an anemone in the 25 

cm2 quadrats, the number of reproductive barnacles reproducing was equivalent between the 

two groups. 
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In laboratory trials, anemones consumed parasite transmission stages. On average, under 

these conditions, anemones consumed cryptoniscus larvae at a rate of 8.7 ± SE 1.3 per hour 

(n=3), while in the control treatment, no cryptonisci were lost (1 sample t-test, p=0.0136). 

DISCUSSION 

Barnacles associated with anemones had reduced parasitism and this resulted in higher 

reproduction, presumably due to predation on parasite transmission stages. In a community 

context this factor reduces parasitism at a local scale. Thus, anemones provide a spatial 

refuge for barnacles from parasites. It is possible that other factors result in the spatial 

patterns of parasitism we documented in the field. For example, it is possible that anemones 

settle in microhabitats inaccessible to parasite transmission stages. Similarly, it is possible 

that parasite transmission stages actively avoid areas colonized by anemones. However, 

parasites are delivered to hosts by water and we collected all barnacles from a narrow tidal 

height in the rocky intertidal zone with no obvious microhabitats. Further, because 

parasitism was reduced and not eliminated near anemones, at least some parasites do reach 

barnacles near anemones. It is also possible that parasitism was reduced near anemones 

because barnacles near anemones were of lower quality. For example, if barnacles adjacent 

to anemones were less likely to be actively reproducing as females, possibly due to 

competition with the anemone for food, they would be inappropriate hosts for a parasite that 

consumes ovarian fluid. However, we found increased reproduction in barnacles adjacent to 

anemones; thus, barnacles adjacent to anemones were compatible hosts, making reduced 

host quality an unlikely explanation. Further, barnacles next to anemones were similar in 

size to barnacles away from anemones, making size-based differences in host quality or 

compatibility unlikely. While genetic differences can drive patterns of resistance (e.g. Little 
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and Ebert 2000) we find it unlikely that barnacles collected from a single site and a single 

tidal height are genetically distinct, though we can not exclude this possibility. Finally, 

barnacle density could be lower adjacent to anemones, reducing any signaling cue required 

by the parasite to find the host. However, previous work has demonstrated parasitism does 

not increase with density or aggregation of this barnacle host in the field (Fong 2016). Thus, 

we find predation by anemones to be the simplest explanation for the documented spatial 

patterns of parasitism. 

Similarly to our results, Mouritsen and Poulin (2003) showed that anemones attached to 

bivalves in New Zealand tidal flats reduced infection of the bivalves by larval trematode 

parasites, presumably because the anemone consumed cercaria transmission stages, though 

this was not demonstrated. While only two field studies relate predator and parasite 

distributions (this and Mouritsen and Poulin 2003), laboratory trials generally corroborate 

our assessment that predation on parasites may control parasite transmission. Kaplan et al. 

(2009) found predation on trematode cercariae in the laboratory and detected this 

consumption in the field. Also, in laboratory trials, Prinz et al. (2009) found that barnacles 

were able to consume cercariae that infect bivalves, Schotthoefer et al. (2007) showed 

multiple species of stream invertebrates to consume cercariae that infect frogs, and Thieltges 

et al. (2008) used mesocosm experiments to determine the presence of a crab and shrimp 

species reduced parasitism in a bivalve host, and attributed this effect to the directly 

observed predation. Finally, Faust et al. (2009) found that in mesocosms, bivalves were able 

to filter avian influenza virions and reduce transmission of the virus to ducks. Thus, while 

there was evidence predators can consume parasite infectious stages, we are the first to 
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provide evidence that predation may translate to fine-scale spatial patterns of parasitism in 

nature. 

Multiple infections were substantially higher away from anemones, suggesting 

anemones may be quite effective at locally reducing parasite abundance and providing 

protection to the associated barnacles. A single castrator consumes all of the reproductive 

energy of the host; thus, multiple infections necessarily result in competition between the 

parasites (for review see Lafferty and Kuris 2009). As for parasitoids and predators, parasitic 

castrators face severe resource limitation with increasing prevalence and can approach 

saturation of a host population as uninfected hosts become unavailable. Kuris et al. (1980) 

found that multiple infections by an entoniscid isopod, a parasitic castrator of crabs, only 

became common at sites where >70% of the hosts were infected. The high incidence of 

multiple infections in the barnacles not associated with anemones suggests that the parasite 

may approach saturation of the available susceptible hosts at this particular site.  

Barnacle reproduction varies substantially in space, and many studies have sought 

explanations for this spatial variation (e.g. Hines 1978, Leslie et al. 2005, Berger 2009, 

Freuchet et al. 2015). Despite their lower abundance near anemones, those barnacles appear 

to contribute reproductive productivity equivalent to the more numerous barnacles in the 

sampled quadrats that were relatively distant from anemones. Food availability (Leslie et al. 

2005, Hines 1978), salinity gradient (Berger 2009), and temperature stress (Freuchet et al. 

2015) all influence barnacle reproduction, both at regional and local scales. We show that 

parasitism can contribute strongly to these spatial patterns since Anthopleura elegantissima 

and Chthamalus fissus are both widespread, abundant and often co-occur at a fine scale in 

the rocky intertidal zone along the Pacific coast of North America. Thus, we suggest future 
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studies examining factors influencing barnacle reproduction should consider parasitism. 

Additional factors that potentially influence the success of barnacles include the possible 

reduction in plankton available to barnacles near anemones, reducing growth or 

reproduction, and the possible differential predation on barnacle nauplii released from 

barnacles adjacent to or more distant from the anemones. 

Additionally, the effects of diversity on disease are likely strongly depend on 

transmission and life history (Wood et al. 2014) and any emergent effect is likely a 

composite of multiple complex interactions. However, work like this study is crucial to 

arriving at generalizable patterns, such as a role for anemones, and potentially other 

generalist predators, in reducing disease by consuming infectious parasite stages and 

disrupting transmission.  

Spatial epidemiology focuses on the description, quantification, and explanation for 

spatial differences in diseases. The rocky intertidal zone is a classic ecological system with 

high biodiversity. We suggest that this offers a powerful opportunity to study of spatial 

epidemiology. In many environments, movement of the host can decouple risk of infection 

from the subsequently observed patterns of infection (e.g. Byers et al. 2015). The rocky 

intertidal zone with its array of sessile organisms makes it an ideal system to evaluate 

drivers of spatial epidemiology. These relationships are durable due to the longevity of 

many of the space competitors, which will allow researchers to directly test the effects of 

these spatial associations on parasitism. Here, we initiate exploration of parasitism in this 

ecosystem and were able to correlate association with an anemone on parasitism, host 

reproduction, and hence, the potential fitness of the barnacles.  
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Figure 1 Photo of barnacles and anemones at Coal Oil Point, Santa Barbara County, 

California at low tide. A group of anemones are outlined while the two arrows point out 

examples of barnacles considered to be associated with anemones (i.e., those <1cm away 

from an anemone). 

 

Figure 2 Number of barnacles infected (I), uninfected but not actively reproducing (UI/NR), 

and uninfected and actively reproducing (UI/R) when associated (+A) or not associated (-A) 

with an anemone. 
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