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Repeated quantum error correction on
a continuously encoded qubit by real-time
feedback
J. Cramer1,2, N. Kalb1,2, M.A. Rol1,2, B. Hensen1,2, M.S. Blok1,2, M. Markham3, D.J. Twitchen3, R. Hanson1,2

& T.H. Taminiau1,2

Reliable quantum information processing in the face of errors is a major fundamental and

technological challenge. Quantum error correction protects quantum states by encoding a

logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-

tolerant computations, it is essential that states remain encoded at all times and that errors

are actively corrected. Here we demonstrate such active error correction on a continuously

protected logical qubit using a diamond quantum processor. We encode the logical qubit in

three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measure-

ments, and apply corrections by real-time feedback. The actively error-corrected qubit is

robust against errors and encoded quantum superposition states are preserved beyond the

natural dephasing time of the best physical qubit in the encoding. These results establish a

powerful platform to investigate error correction under different types of noise and mark an

important step towards fault-tolerant quantum information processing.
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L
arge-scale quantum information processing requires the
correction of errors during computations. In quantum error
correction, a logical quantum bit (qubit) is encoded in a

subspace of multiple physical qubits so that errors can be actively
corrected without affecting the encoded information. A promis-
ing way to correct errors in encoded quantum states is to perform
feedback based on multi-qubit measurements known as stabilizer
measurements1–3 (see Fig. 1a for details). These measurements
are performed non-destructively using extra qubits (ancillas) and
are frequently repeated to detect errors before they accumulate.
The measurement outcomes are then processed in classical logic
that identifies the error syndrome, and, in order to enable
universal computations1, active feedback is applied to the
encoded system to correct errors where needed. The key
experimental challenge is to perform such complete error-
correction cycles including non-destructive stabilizer
measurements and real-time feedback well within the coherence
time.

Quantum-error-correction protocols have been explored across
a range of platforms4–14. Pioneering experiments bypassed
stabilizer measurements by reversing the encoding to correct
errors, thus leaving the quantum state unprotected5–11. Recent
breakthroughs have enabled the use of stabilizer measurements to
passively track errors in quantum states and retrieve stored
information afterwards through post processing12–15.

Here we realize complete rounds of active quantum error
correction on a continuously encoded logical qubit by exploiting
newly developed stabilizer measurements based on an electron
spin ancilla with high-fidelity non-demolition readout, by
encoding in long-lived nuclear spins, and by applying real-time
correction of errors through fast classical logic. We show that the
actively error-corrected logical qubit is robust against errors and
that multiple rounds of error correction prevent errors from
accumulating. Finally, by correcting time-correlated phase errors
naturally induced by the environment, we demonstrate that
encoded quantum superposition states are preserved beyond the
dephasing time of the best physical qubit used in the encoding.

Results
Error correction code. The three-qubit code considered here
corrects a single phase error on any one of the physical qubits. To
protect against such errors, we encode the logical
qubit in states for which all physical qubits have the same
phase: cj iL¼a 0j iLþ b 1j iL with 0j iL¼ þXj i1 þXj i2 þXj i3

�

þ �Xj i1 �Xj i2 �Xj i3Þ=
ffiffiffi
2
p

; 1j iL¼ þXj i1 þXj i2 þXj i3�
�

�Xj i1 �Xj i2 �Xj i3Þ=
ffiffiffi
2
p

and �Xj i¼ 0j i � 1j ið Þ=
ffiffiffi
2
p

. Errors
(Z operations) are detected by measuring the two stabilizer
generators X1X2I3 and I1X2X3 via an ancilla. These measurements,
respectively, compare the phases of qubits 1 and 2 and qubits 2
and 3. For an uncorrupted state, both measurements yield
outcome þ 1 (same phase, no error), but for a phase error on just
one of the qubits, the two measurements give a unique syndrome
of � 1 outcomes that identifies the error. For example, an error
on the first qubit results in outcome � 1 for the first stabilizer
measurement and outcome þ 1 for the second. The logical qubit
operators are XL¼X1I2I3, YL¼Y1Z2Z3 and ZL¼Z1Z2Z3 (or their
permutations).

Stabilizer measurements and real-time feedback. Our qubits are
three 13C nuclear spins (I¼ 1/2, 1.1% abundance) surrounding a
single nitrogen-vacancy (NV) centre in diamond, whose elec-
tronic spin we use as ancilla (S¼ 1; 0j ia:ms¼0 and 1j ia:ms¼� 1;
Fig. 1b). At 4 K, the ancilla combines fast control16, optical single-
shot readout17 and long coherence times18 (425 ms, Methods).
We use relatively remote nuclear qubits (coupling to the ancilla

20–50 kHz) that are robust against optical excitation of the ancilla
and design decoherence-protected gates to control them9,19

(Methods). All three qubits show long dephasing times T�2 with
the dominant natural errors being phase errors (Fig. 1c).

The key challenge for implementing stabilizer measurements in
this system is that the ancilla–qubit interaction is always present:
imperfect knowledge of the ancilla state during or after readout
dephases the qubits20–22. To minimize this dephasing, we
implement quantum non-demolition measurements of the
ancilla by resonant optical excitation of 0j ia and by stopping
the excitation within 2 ms upon photon detection (outcome 0j ia)
to minimize uncontrolled spin flips in the optically excited state23

(Methods). The resulting readout fidelities are F0¼ 0.890(4) for
0j ia and F1¼ 0.988(2) for 1j ia (average: F¼ 0.939(2)). Crucially,

the post-measurement fidelity after correctly assigning 0j ia is
0.992, demonstrating the desired non-demolition character.

To benchmark the stabilizer measurements and real-time
feedback, we deterministically entangle two qubits by projecting
into a Bell state, that is, a simultaneous eigenstate of XX and
ZZ21,24,25. First, the qubits are initialized in 00j i, an eigenstate of
ZZ, with fidelity 0.910(6). Then, a XX stabilizer measurement
projects the qubits onto one of two Bell states (Fig. 1d). We
interpret the � 1 outcome as an error in the desired state and
correct it through feedback before performing two-qubit
tomography. The deterministically generated entangled state,
with fidelity F¼ 0.824(7) (Fig. 1e), demonstrates the non-
destructive nature of the measurement; coherence within the
subspaces is maintained throughout the measurement and
feedback cycle. The complete cycle can be repeated up to six
times within the shortest qubit T�2 .

Active quantum error correction on a logical qubit. We now
turn to quantum error correction by stabilizer measurements. The
logical qubit is encoded by mapping an arbitrary state
cj ia¼a 0j iaþ b 1j ia prepared on the ancilla to the three-qubit

state cj iL¼a 0j iLþb 1j iL (Fig. 2a). We characterize the encoding
by preparing six basis states 0j iL, 1j iL, �Xj iL¼ 0j iL� 1j iL

� �
=
ffiffiffi
2
p

and �Yj iL¼ 0j iL� i 1j iL
� �

=
ffiffiffi
2
p

and performing three-qubit state
tomography. The fidelities with the ideal states confirm successful
encoding and genuine three-qubit entanglement (Fig. 2b).

We first investigate the recovery of arbitrary logical qubit states
from phase errors. To emulate a general process causing
dephasing, uncorrelated incoherent errors are applied with
variable probability pe to each physical qubit simultaneously
(Fig. 3a); for each qubit, the error process is E rð Þ¼ 1� peð Þ
IrIþ peZrZ, with r the single-qubit density matrix. By
controllably applying such errors, we characterize the effective-
ness of the error correction for any process causing uncorrelated
errors with equal probability to the qubits. We then measure the
stabilizers X1X2I3 and I1X2X3, identify potential errors and correct
them through feedback. The probabilities to obtain the four
different error syndromes (inset in Fig. 3b) show the expected
symmetry around pe¼ 0.5 and match the theoretical prediction
based on the errors present in the initial states (Fig. 2b) and the
average ancilla readout fidelity.

The protection of the logical qubit is characterized by the process
fidelity with the identity (Fig. 3b; Methods). We quantitatively
analyse the results by fitting to wFQECþ 1�wð ÞFlinear, where
FQEC(pe) and Flinear(pe) are the theoretical curves with and without
error correction (w¼ 1 indicates ideal robustness against applied
single-qubit errors). When no error correction is applied we
observe the expected linear dependence on the error probability:
wE0. In contrast, with quantum error correction w is 0.81(3), and
a nonlinear curve shape that is characteristic for robustness against
single-qubit errors is obtained. This result demonstrates that the
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entropy associated to the applied errors is successfully removed
from the system.

Comparisons to an unencoded qubit and the logical qubit
without error correction reveal that adding quantum error
correction on top of a computation does not yet provide a net
improvement (Fig. 3b), because of additional errors introduced by
the initialization, encoding and stabilizer measurements (total of
13 two-qubit gates, 488 ancilla refocusing pulses and 6 ancilla
readouts/resets). To isolate the errors due to the stabilizer
measurements, we compare the error-corrected logical qubit to
the logical qubit left idle. We further optimize the error
correction, by assigning the ancilla state with the best readout

fidelity ( 1j ia, F1¼ 0.988(2)) to the most likely error syndrome
(þ 1, þ 1—no error, inset Fig. 3b), instead of averaging over all
assignments as in Fig. 3b. With this improvement, error
correction outperforms idling for a range of pe (Fig. 3c); once
the logical qubit is encoded, quantum error correction can be
beneficial.

Multiple rounds of active error correction. Because a complete
round of error correction (2.99 ms) fits well within the dephasing
time of the physical qubits, we can concatenate multiple rounds
to improve the coherence of continuously encoded quantum
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Figure 1 | Quantum error correction and implementation of stabilizer measurements. (a) A quantum state is encoded in a logical qubit consisting of

three physical qubits. Errors inevitably occur, for example, during computations. An ancilla is used to repeatedly perform measurements that detect errors.

Errors are corrected through classical logic and feedback, while the quantum state remains coherent and encoded. (b) Device: chemical-vapour-deposition-

grown single-crystal diamond with a solid-immersion lens37 and on-chip lines for microwave control. Scale bar, 5 mm. Ancilla: the optically addressable

electronic spin of a nitrogen vacancy (NV) centre. Qubits: three 13C nuclear spins that are controlled and measured through the hyperfine coupling to the

ancilla (Methods). (c) Free induction decay (Ramsey) experiments. Gaussian fits yield dephasing times T�2 ¼ 12.0(9), 9.1(6) and 18.2(9) ms for qubits 1, 2

and 3, respectively. (d) Deterministic entanglement of two qubits by XX stabilizer measurement and feedback. The ±x gates are p/2 rotations around x

with the sign controlled by the ancilla state. The final X operations reset the ancilla and account for an additional X flip for the þ 1 outcome (Methods). (e)

State tomography of the generated entangled state for qubits 2 and 3. The fidelity with the ideal state is F¼0.824(7)

(see Supplementary Fig. 6 for other qubit combinations and post-selected results). All error bars are one statistical s.d.
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superpositions by preventing the accumulation of errors (Fig. 4a).
Three new elements are introduced. First, the total error
probability pe is distributed over n rounds, so that the error
probability per round is pn¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2pe
n
pð Þ=2 (Methods). This

error model corresponds to errors occurring incoherently, for

example with a constant rate in time. Second, to investigate
dephasing we focus on the protection of the two states
�Xj iL¼ �X; �X; �Xj i (that is, a classical bit stored in the

phase of a quantum superposition). Third, we exploit the intrinsic
robustness of the logical qubit to single Z errors by redefining
XL¼ X1I2I3þ I1X2I3þ I1I2X3�X1X2X3ð Þ=2, which is equivalent
to performing a round of error correction by majority voting at
the end of the experiment13,14.

For a single round of error correction (majority vote only), the
average fidelity is higher than for an unencoded qubit for any pe

(Fig. 4b); adding more (identical) qubits is always beneficial in the
repetition code. For pe¼ 0, additional rounds of quantum error
correction can only introduce errors, reducing the fidelity
(Fig. 4b). For larger pe, however, multiple rounds prevent errors
from accumulating by dividing the error process in parts that are
more likely to contain only single errors, which are corrected. In
addition, unlike error detection with post processing13,14, active
correction between rounds keeps the probability to obtain þ 1
(no error) high (inset Fig. 4b) and thus maintains the advantage
of assigning the highest-fidelity ancilla readout to that outcome.
Preventing errors by maximizing the probability that the ancilla
qubits reside in the optimal state is a key general advantage of
real-time feedback in quantum error correction. As a result, for
pe40.3, multiple rounds outperform a single round of error
correction.

Correcting natural dephasing. Finally, as an example of
suppressing errors naturally present in the environment, we let
the qubits evolve freely instead of applying errors (Fig. 4c). The
resulting errors are still spatially uncorrelated across the qubits,
but the error probabilities are now different for each qubit
because their intrinsic T�2 differ because of their local environ-
ments (Fig. 1c). In addition, the errors arise from quasistatic
detunings because of the slowly fluctuating 13C spin bath so that
the errors in a given experimental run evolve coherently and are
correlated in time. Like most environmental errors, such errors
might also be suppressed by other methods than quantum error
correction, for example, by polarizing the spin environment26,27,
by refocusing pulses28 or by isotopic purification28–31.

The fidelity for the logical qubit with majority voting again
starts above the best unencoded qubit, but drops below it for
larger evolution times (Fig. 4d). Because the error probabilities
vary between qubits, an error detected on the best qubit becomes
more likely to actually correspond to errors on both other qubits
and the wrong correction is made. An additional round of
quantum error correction in the middle of the evolution time now
not only prevents errors from accumulating by intermediately
correcting them, but also interrupts any coherent build-up by
projecting the errors, thus suppressing them (Fig. 4d). Owing to
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Figure 2 | Encoding of the logical qubit. (a) Encoding an arbitrary quantum

state cj i¼a 0j iþ b 1j i prepared on the ancilla into cj iL¼a 0j iL þb 1j iL.

Successful encoding is heralded by outcome 0j ia. (b) Characterization of

the logical states þXj iL, þYj iL and 0j iL. Only the logical qubit operators

and stabilizers are shown (see Supplementary Fig. 7 for complete

tomography of all 6 logical basis states). The fidelities with the ideal three-

qubit states are F¼0.810(5), 0.759(5)and 0.739(5), respectively,

demonstrating three-qubit entanglement10. The logical state fidelities are

FþX¼ 1þ XLh ið Þ=2¼0:916 6ð Þ, FþY¼ 1þ YLh ið Þ=2¼0:822 7ð Þ and

F0¼ 1þ ZLh ið Þ=2¼0:813 9ð Þ. Ideally, all the encoded states are þ 1

eigenstates of the stabilizers X1X2I3 and I1X2X3. The fidelity to this code

space, Fs¼ 1þ X1X2I3h iþ I1X2X3h iþ X1I2X3h ið Þ=4, is 0.839(3) averaged

over all states and gives the probability that the starting state is free of

detectable errors. All error bars are one statistical s.d.
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this combination, the logical qubit shows an enhanced dephasing
time (24.2(2) ms against 18.2(9) ms for the best physical qubit)
and yields the highest average state fidelity for total evolution
times between 5 and 19 ms (Fig. 4d). This result demonstrates an
actively error-corrected logical qubit with an improved dephasing
time over the best qubit used in the encoding.

Discussion
The presented non-destructive measurements and real-time
feedback on encoded quantum states are the key primitives for
universal computations on logical qubits and for error-correcting

codes that correct both phase and bit-flip errors. To reach
scalability thresholds, readout and gate fidelities should be further
increased, for example, by: improving the optical collection
efficiency through optical cavities32, enhancing coherence times
through implantation33 or selective growth of defects and
isotopes in purified diamonds28,29, and improving gate design
through optimal control33. In a wider perspective, our results can
be combined with recently demonstrated entanglement between
distant NV centres34,35 to form quantum networks with error-
corrected nodes for entanglement purification, quantum
communication and networked quantum computation36.
Therefore, these results establish a promising platform to
experimentally investigate protocols for fault-tolerant quantum
information processing under different types of noise and error
correlations in diverse settings.

Methods
Sample and setup. We use a naturally occurring NV in high-purity type IIa
chemical-vapour-deposition-grown diamond with a 1.1% natural abundance of 13C
and a o1114 crystal orientation (Element Six). To enhance the collection effi-
ciency, a solid-immersion lens was fabricated on top of the NV centre17,37 (Fig. 1b)
and a single-layer aluminum-oxide anti-reflection coating was deposited34,38. The
sample temperature is TE4.2 K and a magnetic field of 403.553(3) G is applied
along the NV symmetry axis.

The ancilla NV electron spin is characterized by a Rabi frequency of 4.3 MHz, a
dephasing time T�2¼4:6 2ð Þ ms, a Hahn echo time T2¼ 1.03(3) ms and a
longitudinal relaxation time of 0.43(6) s (due to microwave noise and laser
background). The coherence time of the ancilla under dynamical decoupling
exceeds 25 ms and does not limit the experiments (Supplementary Fig. 1). We
initialize and readout the ancilla through resonant excitation of the zero-phonon
transitions of the NV centre (Supplementary Fig. 2). Before every experiment, the
14N nuclear spin is initialized by measurement with a fidelity of FN¼ 0.94(3) in
mI¼ � 1 (ref. 17). No external electric fields are applied: the gates in Fig. 1b are
grounded.

Nuclear spin qubit control. The hyperfine interactions for the three nuclear spins
are estimated by dynamical decoupling spectroscopy9 (Supplementary Table 1).
Building on previous gate designs9, nuclear gates are realized by applying sequences
of p-pulses on the electron spin of the form (t� p� 2t� p� t)N/2. The number of
pulses N sets the rotation angle. The inter-pulse delay 2t determines which qubit is
controlled and whether the rotation is conditional on the ancilla state. In contrast
to the previous work9, we allow the gates to be detuned, providing greater flexibility
to optimize t and N for gate selectivity and minimal discretization errors. The gate
parameters are listed in Supplementary Tables 1 and 2.

The nuclear spins are initialized by swapping with the ancilla electron spin
(Supplementary Fig. 3) and are read out by mapping the required correlation to the
ancilla before reading it out (Supplementary Fig. 4). To obtain best estimates for
the actual states, the results are corrected for the fidelity of the gates used in the
final readout (tomography; details in Supplementary Note 3). Uncorrected data are
shown in Supplementary Fig. 11.
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(a) All qubits are simultaneously subjected to uncorrelated phase errors E

with probability pe. Errors are detected by measuring X1X2I3 and I1X2X3 and

subsequently corrected by Z operations through feedback. Finally, we

measure the process fidelity with the identity. (b) Process fidelities for: an

unencoded qubit (averaged over the three qubits), the logical qubit without

stabilizer measurements, the error-corrected logical qubit and the logical

qubit without feedback (that is, errors are detected but not corrected). We

average over the logical qubit permutations, for example, XL¼X1I2I3, I1X2I3
and I1I2X3, and the four ways to assign the ancilla states to the error

syndromes (see Supplementary Fig. 8 for individual curves). Inset:

probabilities for the error syndromes with theoretically predicted curves

based on the state tomography in Fig. 2b (Supplementary Note 2).

(c) Comparison between the error-corrected logical qubit and the logical

qubit with the stabilizer measurements replaced by an equivalent idle time

(2.99 ms). Compared with b, the effective readout fidelity is optimized by

associating syndrome þ 1, þ 1 (no error) to obtaining 1j ia for both stabilizer

measurements. Curves in b,c are fits described in the Methods. All error

bars are one statistical s.d.
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Feedback. Real-time feedback is implemented through a programmable micro-
processor (ADwin Pro II) that controls the experimental sequence (Supplementary
Fig. 5). We exploit feedback in four different ways. First, detected phase errors are
corrected directly after the stabilizer measurements. Note that analysing errors over
multiple rounds14 would additionally enable real-time correction of ancilla readout
errors, but that this is not implemented here. Second, depending the ancilla
measurement outcome, the qubits pick up a deterministic phase shift due to
the hyperfine interaction, which is corrected in the same way. Third, for an odd
number of þ 1 outcomes, the operations in the stabilizer measurements imprint a
bit flip on the logical qubit, which we correct by transforming the logical qubit basis
in real time. Fourth, to start each measurement sequence with the ancilla in 0j ia, it
is flipped back to 0j ia when the previous measurement returned 1j ia.

Importantly, we perform real-time feedback either by adapting the qubit bases
for all subsequent gates and measurements (for correcting Z errors and for the
logical qubit) or by absorbing the feedback operations into the next gate acting on
the same qubit (for the ancilla). Therefore, the physical control sequence is directly
adapted based on the measurement outcomes without introducing any unnecessary
gate operations that would cause additional errors. In the circuit diagrams, we
sometimes display the gates for the feedback separately for clarity.

Quantum error correction analysis. The process fidelity with the identity is given
by Fp¼ F0 þ F1 þ FþX þ F�X þ FþY þ F�Y � 2ð Þ=4, with Fa¼ ah raj jai, the six
fidelities of the final states ra with the ideal states aj iL. The results of Fig. 3
are analysed by fitting to wFQEC peð Þþ 1�wð ÞFlinear peð Þ, with FQEC peð Þ¼Oþ
A 1� 3p2

e þ 2p3
e

� �
and Flinear peð Þ¼OþA 1� peð Þ. A and O account for the experi-

mental fidelities (Supplementary Note 1).
The state fidelities for multiple rounds of error correction and incoherent

errors (Fig. 4b) are fitted to the same equation using FQEC peð Þ¼ 1
2 1þAð

ð1� 6p2
n þ 4p3

nÞ
nÞ; with n the number of rounds, pn the error per round and

Flinear peð Þ¼ 1
2 1þA 1� 2peð Þð Þ. The error per round pn is obtained as follows. An

error process with total error probability (pe) reduces the expectation value by a
factor of (1� 2pe). For incoherent errors, a process can be divided in n equal
rounds using (1� 2pe)¼ (1� 2pn)n, which results in pn¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2pe
n
pð Þ=2 (for

per0.5). In Figs 3c and 4b, A depends on the error-probability pe, because we
optimize the effective readout fidelity by associating the most likely error syndrome
to the best ancilla readout (Supplementary Note 1). See Supplementary Notes 1 and
2 for further details on all theoretical analysis, including the error syndrome
probabilities and numerical simulations of Fig. 4d.
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