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1 Introduction

The observation by the ATLAS [1] and the CMS [2] Collaborations of a new boson with

a mass around 125 GeV, compatible with the long-sought Higgs boson [3–6], opens up

the possibility of searching for the decay of a top quark to a Higgs boson plus an up-

type (c, u) quark. Such a decay would proceed via a flavour-changing neutral current

(FCNC). According to the Standard Model (SM), FCNC processes are forbidden at tree

level and very much suppressed at higher orders due to the Glashow-Iliopoulos-Maiani

(GIM) mechanism [7]. For instance, the expectation for the t → cH branching ratio is

∼ 3 · 10−15 (see ref. [8] and references therein). Observations of FCNC decays of the top

quark would therefore provide a clear signal of new physics.

Previous searches for FCNC were conducted in particular for the t → c(u)Z decay

mode by the LEP and HERA experiments [9–14] (via the crossed processes), CDF [15],

ATLAS [16] and CMS [17]. The current best limit for the branching ratio is 0.05% at the

95% confidence level [17].
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In models beyond the SM, the GIM suppression can be relaxed, and loop diagrams

mediated by new bosons may contribute, yielding effective couplings λtqH orders of magni-

tude larger than those of the SM. Examples of such extensions are the quark-singlet model

(QS) [18–20], two-Higgs-doublet models (2HDM) of type I, with explicit flavour conserva-

tion, and of type II, such as the minimal supersymmetric standard model (MSSM) [21–27].

In 2HDM without explicit flavour conservation (type III) [28–36], the tc(u)H couplings are

present at tree level. For a review of the different models see ref. [8].

Among the published extensions of the SM, the largest branching ratio (∼ 0.15%) is

specific to the t → cH decay. It appears in 2HDM of type III and corresponds to a non-

flavour-diagonal Yukawa coupling which scales with top-quark and light-quark masses, mt

and mq, as λtqH =
√

2mqmt/v, as proposed in ref. [28], where v/
√
2 = 174 GeV is the

Higgs field vacuum expectation value. In the other models discussed in ref. [8], the largest

branching ratios for the t → qH decays are of the order of a few 10−5.

In this paper a search for t → qH decays in tt production is undertaken using the

H → γγ decay channel. The analysis does not distinguish between the t → cH and

t → uH final states which have similar acceptances. As theory favours t → cH, this

mode is used as reference throughout this work, unless otherwise stated. Despite its small

branching ratio (∼ 0.23% for a Higgs boson mass around 125 GeV), the H → γγ channel

was chosen because of its demonstrated high importance for inclusive Higgs boson studies,

with a rather large number of events and a clean signature [1, 37]. The remaining top

quark in the event is searched for in two final states: a bottom quark and a hadronically

decaying W boson, giving rise to events with four jets, or a leptonically decaying W boson,

giving two jets, a lepton and missing transverse energy.

The branching ratio B of the t → qH process is estimated as the ratio of its partial

width to the t → bW width, assumed to be dominant,

B = (λ2
tcH + λ2

tuH)/(g2 · |Vtb|2 · χ2), (1.1)

where |Vtb| is taken equal to 1, χ is a kinematic factor1 and g = 2mW /v is the weak coupling

constant. Using PDG averages [38] and applying NLO corrections to both the t → qH

partial width [39] and the top quark total decay width [40] leads to χg = 1.92±0.02, which

is used in the extraction of the coupling.

2 Detector and data set

The ATLAS detector [41] consists of an inner tracking detector (ID) surrounded by a

superconducting solenoid providing a 2T magnetic field, electromagnetic and hadronic

calorimeters, and a muon spectrometer. The ID provides tracking in the pseudorapidity2

1χ2 = (1− 3x4 +2x6)(1− y2)−2x−2/2, where x = mW /mt, y = mH/mt, mW and mH are the W -boson

and Higgs boson masses and the masses of the other quarks are neglected.
2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP)

in the centre of the detector and the z-axis along the beam line. Observables labelled as transverse are

projected onto the xy plane. The x-axis points from the IP to the centre of the LHC ring, and the y-axis

points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle

around the beam line. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan θ
2
. The

∆R distance is defined as ∆R =
√

(∆η)2 + (∆φ)2.

– 2 –
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region |η| < 2.5 and consists of silicon pixel- and microstrip-detectors inside a transition

radiation tracker. The electromagnetic calorimeter, a lead/liquid-argon sampling device, is

divided into one barrel (|η| < 1.475) and two end-cap (1.375 < |η| < 3.2) sections. Longi-

tudinally, it is divided into three layers. The first layer, referred to as the strip layer, has a

fine segmentation in the regions |η| < 1.4 and 1.5 < |η| < 2.4 to facilitate the separation of

photons from neutral hadrons and to allow shower directions to be measured, while most

of the energy is deposited in the second layer. In the range of |η| < 1.8 a presampler layer

inside the cryostat allows for the correction of energy losses upstream of the calorimeter.

The barrel (|η| < 1.7) hadronic calorimeter consists of steel and scintillating tiles, while

the end-cap sections (1.5 < |η| < 3.2) are composed of copper and liquid argon. The

forward calorimeter (3.1 < |η| < 4.9) uses copper and tungsten as absorber with liquid

argon as active material. The muon spectrometer consists of precision (|η| < 2.7) and

trigger (|η| < 2.4) chambers embedded in a toroidal magnet system which surrounds the

hadronic calorimeter.

This analysis uses the full proton-proton data set recorded by ATLAS in 2011 and

2012. After application of data-quality requirements, the integrated luminosity amounts

to 4.7 fb−1 at
√
s = 7 TeV, with a relative uncertainty of 1.8% [42], and 20.3 fb−1at

√
s = 8

TeV, with a relative uncertainty of 2.8%.3 The data were recorded with instantaneous

luminosities varying between 1× 1032 cm−2s−1 and 7.8× 1033 cm−2s−1. The mean number

of interactions per bunch crossing was 9.1 in 2011 and 20.4 in 2012. The inelastic collisions

that occur in addition to the hard interaction produce mainly low transverse momentum

particles that form the so-called “pile-up” background.

The data considered here were selected using a diphoton trigger in which two clusters

formed from energy depositions in the electromagnetic calorimeter are required. A trans-

verse energy (ET) threshold of 20 GeV was required at 7 TeV, while at 8 TeV the thresholds

were increased to 35 GeV and 25 GeV on the leading (sorted in ET) and sub-leading clus-

ters. In addition, loose criteria were applied on the shape of the clusters requiring that

they match the expectations for electromagnetic showers initiated by photons. For events

satisfying the off-line selection, the efficiency of the diphoton trigger is measured to be

(98.9± 0.2)% for
√
s = 7 TeV data and (99.6± 0.5)% at 8 TeV.

3 Experimental techniques

3.1 Photon reconstruction and identification

The photon reconstruction is seeded from clusters of energy deposits in the electromagnetic

calorimeter. Clusters without any matching track in the ID are classified as unconverted

photon candidates. Clusters with a matching conversion reconstructed from one or two

tracks are classified as converted photon candidates [43]. The efficiency of the photon

reconstruction is about 96.5% averaged over the ET and η spectra expected for photons

from a mH = 125 GeV Higgs boson decay.

3The luminosity of the 2012 data set is derived, following the same methodology as that detailed in

ref. [42], from a preliminary calibration of the luminosity scale derived from beam-separation scans per-

formed in November 2012.
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The identification of photons (PID) is based on the shape of their showers in the

electromagnetic calorimeter. An initial loose selection, also used at trigger level, is based

on shower shapes in the second layer of the electromagnetic calorimeter and on the energy

deposition in the hadronic calorimeter. The tight identification adds information from the

finely segmented strip layer. The PID efficiency, averaged over η, ranges between 85% and

95% for the ET range of interest.

The measurement of the uncertainty on the PID efficiency is based on the comparison

of the efficiency obtained in the simulation and the combination of three data-driven mea-

surements [44]. Taking into account possible correlations in η, ET and conversion status,

the resulting uncertainty on the diphoton inclusive signal yield is estimated to be 8.4%

at 7 TeV and, owing to the larger sample and several analysis improvements, 2.4% at 8

TeV [37]. For the hadronic channel analysis, where four or more jets are required, the

systematic uncertainty is 9.3% at 7 TeV and 4.6% at 8 TeV.

To further suppress jets faking photons, calorimetric and track isolation requirements

are applied. The isolation-ET is estimated by summing the ET of positive-energy topolog-

ical clusters4 reconstructed in the electromagnetic and hadronic calorimeters in a cone of

∆R = 0.4 around the photon candidate, where the region of size 0.125 × 0.175 in η × φ

around the photon barycentre is excluded. The isolation-ET is corrected for leakage of the

photon energy outside of the excluded region and for pile-up [46], and it is required to be

below 4 GeV (6 GeV) for the 2011 (2012) data. For the 2012 data set, the scalar sum of

the transverse momentum (pT) of all tracks consistent with the primary vertex (see below),

with pT above 1 GeV and in a ∆R = 0.2 cone around the photon direction is required to be

below 2.6 GeV. Comparing data and simulation using electrons from Z → e+e− candidate

events, and photons from Z → ℓ+ℓ−γ events, where ℓ = e or µ, a good agreement between

efficiencies is found and the remaining small difference is accounted for as a systematic

uncertainty of 1% on the diphoton signal yield for inclusive production. For events with

four or more jets, the efficiency of the calorimetric isolation selection was found to be

slightly smaller in data than in the simulation, resulting in a correction factor of 0.98 with

a systematic uncertainty of ±3%.

The energies of the clusters are calibrated separately for unconverted and converted

photon candidates and for electrons.

The energy calibration for data is refined by applying η-dependent correction factors,

which are about ±1%, determined from Z → e+e− events. The simulation is corrected to

reflect the energy resolution observed using Z → e+e− events in data, which requires an

additional energy smearing of about 1% in the barrel region and between 1.5% and 2.5%

in the end-cap region to account for the constant term in the calorimeter energy resolution

and the imperfect description of the material in front of the calorimeter.

3.2 Other physics objects

The kinematic properties of all objects are determined with respect to a primary vertex

selected [37] by combining:

4Topological clusters are three-dimensional clusters of variable size, built by associating calorimeter cells

on the basis of the signal-to-noise ratio [45].
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- an estimate of its z position obtained from the intersection of the beam line with

the direction of the photons, as determined by the measurement using the longitu-

dinal segmentation of the calorimeter, and the conversion point or hits in the ID

when available;

- the scalar sum of the transverse momenta and the sum of the squared transverse

momenta of the tracks associated with each reconstructed vertex;

- and, at 8 TeV, the difference in azimuth between the direction of the vector sum of

the tracks momenta and the di-photon system.

In addition to photons, the analysis requires also jets, electrons or muons and missing

transverse energy, Emiss
T . The main inputs to identify and measure these objects are sum-

marised below.

• Jets are reconstructed from topological clusters in the calorimeters [45, 47], using the

anti-kt algorithm [48] with a radius parameter R = 0.4. They must have |η| < 4.5 and

pT > 25 GeV. For the 8 TeV data set, this threshold is increased to 30 GeV for jets

with |η| > 2.4. The dependence of the jet response on the number of reconstructed

primary vertices and on the expected average number of interactions is removed, at√
s = 8 TeV where the pile-up is largest, by applying an event-by-event subtraction

procedure based on the jet area method [49]. In order to suppress jets produced in

additional pile-up interactions, each jet is also required to have a sufficiently high jet

vertex fraction (JVF) defined as the scalar sum of pT of the tracks consistent with the

primary vertex that fall into the jet area over the sum of track pT from all primary

vertices falling into the same jet area. A JVF larger than 0.75 (0.25) for the 7 TeV

(8 TeV) data set is required. At 8 TeV, this cut is only applied for jets with |η| < 2.4

and pT < 50 GeV.

• The tagging of bottom quark jets is performed using a neural network identifier [50],

which includes information from the impact parameter of tracks and from displaced

vertices from hadron decays. The threshold values are set so as to give, on average,

a 70% efficiency for jets containing a bottom hadron in tt events. The efficiency for

charm jets is about 20%, and it is less than 1% for light-quark jets. Small differences

between data and simulation are taken into account by a global factor determined

by propagating to the simulated signal samples the differences between data and

simulation measured on dedicated samples (tt in particular).

• Electron candidates consist of clusters of energy deposited in the electromagnetic

calorimeter that are associated with ID tracks [51]. Their transverse energy is com-

puted from the cluster energy and the track direction at the interaction point, and

they are required to satisfy |η| < 2.47 and ET > 15 GeV.

Electron candidates have to pass a set of requirements on the hadronic leakage, shower

shapes, track quality and track-cluster matching variables. Furthermore, they must

be isolated: the calorimetric isolation ET in a ∆R = 0.4 cone divided by the electron

– 5 –
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candidate’s ET is required to be less than 0.2, and the scalar sum of the pT of

tracks consistent with the primary vertex, in a cone of ∆R = 0.2 around the electron

candidate’s track, divided by its ET, has to be less than 0.15.

• Muon candidates are required to pass the conditions |η| < 2.7 and pT > 10 GeV,

and they must be isolated with the same criteria as for electrons. The muon tracks

must have a transverse impact parameter |d0| < 1 mm and a longitudinal impact

parameter |z0| < 10 mm.

• The missing transverse energy is calculated as the magnitude of the sum of the ~pT
of all identified objects in an event. Clusters of calorimeter cells with |η| < 4.9 not

associated with any of the objects described above are also added.

A given particle may be reconstructed as more than one object (for example both as

a photon and a jet). This possible duplication, as well as any real overlap in a narrow

∆R interval, is suppressed by an overlap removal procedure (within ∆R = 0.2 between

photons and electrons, 0.4 between photons and jets, 0.4 between muons and either jets or

photons) in which the highest priority is given to photons, followed by electrons, jets and

finally muons.

3.3 Signal and background simulation

The simulations of the signal and of the SM Higgs boson production (resonant background)

are used to estimate the corresponding acceptances. The relevant non-resonant back-

grounds are due to diphoton production and tt and W production. These backgrounds are

simulated in order to constrain the shape of the fitted non-resonant background in control

regions of the data.

Signal events corresponding to tt production, with one top quark decaying into a charm

quark and a Higgs boson (which is constrained to decay into two photons) were generated

using PROTOS 2.2 [52], with PYTHIA6 [53] for parton shower (PS), multiple interactions

(MI) and hadronisation, with a set of parameters as defined by the Perugia2011C tune [54].

A top quark mass of 172.5 GeV and a Higgs boson mass of 125 GeV were chosen.

Four samples of 30,000 events were generated: two samples correspond to
√
s = 8

TeV and the other two to
√
s = 7 TeV. At each energy there is one sample for which

the second top quark decays only hadronically and one sample where the W boson from

the second top quark decays leptonically, including tau leptons which are decayed using

TAUOLA [55]. The hadronic and the leptonic samples are added with weights correspond-

ing to the respective decay fractions of the W boson. At 8 TeV, two additional samples

were generated where one top quark decays to an up quark (instead of a charm quark)

and a Higgs boson, which allow for the determination of the ratio of the acceptances of the

t → uH and t → cH decay modes.

The contributions of known SM sources of Higgs boson production are estimated sim-

ulating Higgs boson production by gluon fusion (ggF ), by vector boson fusion (VBF),

Higgs-strahlung associated production (WH and ZH), and associated production of Higgs

boson and a tt pair (ttH). The first two were produced using POWHEG [56, 57] interfaced

– 6 –
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to PYTHIA8 [58] for the Higgs boson decay, PS, MI and hadronisation, and the last three

by PYTHIA8.

Non-resonant production of two-photon final states with several additional jets dom-

inates the background in the hadronic selection. This was simulated using SHERPA [59]

with up to three additional partons in the primary hard interaction (this sample, of about

107 events, is called Sγγj in the following). The same final state where one of the photons is

a fake photon candidate resulting from jet misidentification also contributes to the hadronic

background (see refs. [37, 60]). The level of this additional contribution, for final states

with several jets, is estimated by data-driven methods to be about 18% of the background

with two real photons. Comparative studies using dedicated simulations for the hadronic

background with fake photon candidates show that, within the limited statistical precision

of these simulations due to the high rejection power of the photon identification, the distri-

butions relevant for the hadronic analysis (see section 4.1) are compatible with those from

the Sγγj sample. The latter is thus used in the following to represent both backgrounds.

Finally samples of tt (∼ 1.5 · 107 events) and W (γ) (∼ 2.3 · 107 events) production

simulated with MC@NLO [61] and ALPGEN [62], respectively, interfaced to HERWIG [63]

and JIMMY [64], were used to estimate the contribution of these processes.

The W (γ) sample is a W sample in which the production of one photon at the matrix

element level is imposed, and a lepton filter is applied.

In all samples but the Sγγj one, PHOTOS [65] is employed to describe additional

photon radiation from charged leptons.

All samples were processed through a full simulation of the ATLAS detector [66] based

on the GEANT4 package [67]. A modelling of the event pile-up from the same and nearby

bunch crossings, tuned to the data, is also included. The simulations are corrected using

weights to reflect the number of interactions per bunch crossing and the spread of the z

position of the primary vertex observed in data. Differences in efficiencies between data

and simulation for object reconstruction and identification are corrected in the same way.

4 Analysis strategy and candidate event selection

Events are first required to fulfill the criteria used for the Higgs boson analysis in the γγ

channel [37], namely to contain at least two reconstructed photon candidates in the fiducial

region of the calorimeter |η| < 2.37, but excluding the transition region between the barrel

and endcap calorimeters, 1.37 < |η| < 1.56. The leading (subleading) photon candidate

is required to have ET > 40 GeV (30 GeV). Tight identification and isolation criteria, as

described above, are applied to both photon candidates.

Additional requirements are applied in order to select events compatible with a tt

intermediate state.

Finally the diphoton mass distribution of the selected events is analysed using a side-

band technique in order to estimate the background in the signal region.

In the
√
s = 8 TeV data set, candidates which contain one and only one lepton are

treated in the leptonic analysis while events having no leptons are treated in the hadronic

analysis, and events with two or more leptons are rejected. At 7 TeV no analysis in the
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Figure 1. (a) Distribution of the invariant mass mγγj (Top1 ), for events selected by the hadronic

analysis (see text for details) in the
√
s = 8 TeV data set, with at least one b-tagged jet. For each

event there are four mγγj combinations, and all four are displayed. (b) Distribution of the invariant

mass mjjj for the complementary top candidates (Top2 ) decaying into 3 jets; only combinations

for which mγγj is between 156 and 191 GeV enter in the distribution.

leptonic channel was performed. Due to the smaller data sample and the lower sensitivity

of the leptonic channel compared to the hadronic one, this has no significant impact on the

precision of the final results.

4.1 Selection of hadronically decaying top quarks

Events are required to have at least four jets among which at least one is b-tagged. In case

of more than four jets, the four leading ones (ordered in decreasing pT) are considered.

However, the jet ranked 4th in pT is replaced by the 5th one if the former is not b-tagged

and the latter is. This procedure is extended to the 6th jet if the 5th is not b-tagged either.

The signal sample shows that such a jet replacement happens for about 6% of the events,

and that the acceptance is increased by about the same amount.

After the selection of four jets, one top-quark candidate, Top1, is constructed from the

two photons and one jet, and another top-quark candidate, Top2, is formed from the three

remaining jets. At least one of the four possible pairs must have masses m1 ≡ mγγj and

m2 ≡ mjjj that lie within certain mass windows of size ∆m1 and ∆m2 around the top-

quark mass (see below). Additional requirements, such as associating the b-tagged jet with

Top2 and imposing the invariant mass of the remaining two jets of Top2 to be compatible

with the W -boson mass were considered but not retained as they did not significantly

improve the expected significance.

Figure 1(a) shows the distribution of m1 (four entries per event) for all selected events

before mass cuts in the
√
s = 8 TeV data set.

In the simulated signal sample, normalised to the expectation for an arbitrary 5%

t → cH branching ratio, the narrow peak associated with the top quark is clearly visible.

The combinatorial background has a shape similar to the distribution obtained with the

Sγγj sample (normalised to data in the mass region [0,500] GeV). The background from tt

and W (γ) production is negligible. The chosen ∆m1 interval is [156,191] GeV.
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t → cH (%) Data (events)

7 TeV 8 TeV 7 TeV 8 TeV

γγ selection 34.5 34.2 23683 118500

Njets ≥ 4 15.2 15.1 227 1349

Mass requirements 5.9 6.1 36 210

At least 1 b-tag 4.2±0.1 4.0±0.1 7 43

Table 1. Efficiency (in percent) for t → cH signal simulation and number of events for data, at√
s = 7 TeV and

√
s = 8 TeV for the hadronic selection, at different stages of the event selection.

The uncertainties on the efficiencies for the full selection, shown in the last row, are statistical only.
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Figure 2. Distribution of the invariant mass of the two photons, mγγ , for events passing the full

hadronic selection (see text for details). The Sγγj background sample is normalised to data.

The distribution of m2 is shown in figure 1(b). Only combinations for which m1 fulfills

the ∆m1 condition enter in this figure. The simulated signal distribution shows that the

peak associated with Top2 is broader than for Top1. The combinatorial background has

a shape similar to the distribution obtained with the Sγγj sample (normalised as for the

Top1 case). The chosen ∆m2 interval is [130,210] GeV. The ∆m1 and ∆m2 intervals are

determined on the basis of the mass resolutions observed in the simulation. The expected

significance is stable with respect to moderate variations of the mass criteria around the

chosen values. The reconstructed mass distributions of top candidates at
√
s = 7 TeV are

similar to the ones shown at 8 TeV, and the same mass intervals are used.

An overview of the hadronic selection at various stages of the analysis is shown in

table 1 for both the
√
s = 7 TeV and

√
s = 8 TeV samples.

The γγ mass (mγγ) spectrum for data after the complete selection is shown in figure 2

together with the corresponding distribution for the Sγγj sample. The latter shows a

satisfactory modeling of the background outside the expected signal mass range, as is also

the case at earlier stages of the analysis with much larger statistics.
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Figure 3. Distributions of (a) the missing transverse energy Emiss
T and (b) the transverse mass

mT of the W candidates for events with two high pT photons and one lepton. The tt&W (γ) and

Sγγj→ℓ background samples are defined in the text.

4.2 Selection of leptonically decaying top quarks

The aim of the leptonic analysis is to identify candidate events in which the W boson

from the second top quark decays leptonically. Only electrons and muons are considered

as identified leptons, and only events with exactly one lepton are considered. Events with

two or more jets are retained for the subsequent steps. The lepton pT is used together

with Emiss
T to calculate the transverse mass mT of the W candidate, and mT > 30 GeV is

required. At this stage, no event is selected in the Sγγj sample, due to the high rejection

power of the electron and muon identification requirements. In order to have a larger event

sample to represent this background, one randomly chosen jet per event, among jets with

|η| < 2.5 and pT > 15 GeV, was replaced by a lepton with the same momentum vector.

This sample, named Sγγj→ℓ, gives a good description of the data, as shown in figure 3(a)

for Emiss
T and figure 3(b) for mT. In figure 3 the sample referred to as tt&W (γ) originates

from the tt and W (γ) simulations, normalised to the luminosity of the data set, while the

Sγγj→ℓ sample is normalised to data, after subtraction of the tt&W (γ) background.

The two leading jets are considered. However, as for the hadronic selection, some

priority is given to b-tagged jets: if the jet ranked second is not b-tagged and if there is a

b-tagged third jet that passes all other requirements, the second jet is replaced by the third.

The replacement procedure is repeated in case there is a 4th b-tagged jet and the second

and third were not b-tagged. The signal simulation shows that such a jet replacement

happens for about 9% of the events and that the acceptance is increased by about the

same amount.

After the above selection of two jets, one top-quark candidate, Top1, is constructed

from the two photons and one jet; its invariant mass is m1 ≡ mγγj . Another top-quark

candidate, Top2, is built from the remaining selected jet, the lepton and the neutrino,

with invariant mass m2 ≡ mℓνj . The longitudinal momentum of the neutrino is estimated

using a W -mass constraint. In the case of two real solutions,5 the one giving m2 closer

5In case no real solution exists, the constraint is applied by replacing mW by mT + 100 MeV, which

ensures two, almost degenerate, real solutions.
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Figure 4. (a) Distribution of the invariant massmγγj (Top1 ) candidates , for events selected by the

leptonic analysis (see text for details) in the
√
s = 8 TeV data set, before b-tagging requirement. For

each event there are two combinations, and both are displayed. (b) Distribution of the invariant

mass mlνj for the complementary top candidates (Top2 ) decaying into one jet, a lepton and a

neutrino; only combinations for which mγγj is between 156 and 191 GeV enter in the distribution.

to the top-quark mass is chosen. At least one of the two possible (Top1, Top2 ) pairs

must have masses that lie within certain windows around the top-quark mass (see below).

Furthermore it is required that at least one of the two jets is b-tagged.

Figure 4(a) shows the invariant mass distribution of the Top1 combinations (two en-

tries per event) for all selected events before the mass selections, and without the b-tagging

requirement. In the signal sample, normalised to the expectation for a 5% t → cH branch-

ing ratio, the narrow peak associated with the top quark is clearly visible, as well as a

tail at higher masses corresponding to the wrong combination of final state objects. The

Sγγj→ℓ sample, together with the tt and W (γ) contributions give a reasonable description

of the data. The interval ∆m1 chosen for the m1 selection is [156,191] GeV, as in the

hadronic case. Only combinations for which m1 fulfills the ∆m1 selection enter in the

Top2 distribution (figure 4(b)). Based on the width of the peak in the signal simulation,

the interval ∆m2 is chosen to be [135,205] GeV, a little narrower than for the hadronic

mode.

Table 2 shows an overview of the leptonic selection at various stages of the analysis.

Inclusive tt and W (γ) production, normalised to the luminosity of the data, are expected

to contribute about 0.7 and 0.3 events, respectively, and the Sγγj→ℓ background about half

an event. In the data a single event remains with a γγ mass of 147 GeV and a muon with

pT of 47 GeV.

The satisfactory agreement observed between data and background expectations in-

dicates a good understanding of the background composition. However, as a sideband

technique is used, only the shape of the background is relevant. Out of the three main con-

tributions to the background (tt, W (γ) and hadronic) the first two suffer from low statistics

in the simulation. At earlier stages of the analysis, where more events are available, the

distributions are smooth and exhibit a decreasing slope, compatible with the function used

in section 5.2 to describe the background shape.
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t → cH tt &W (γ) Sγγj→ℓ Data

(%) Events

γγ selection 34.9 313.7 118500

1 lepton 6.0 21.8 188.2 210

Njets ≥ 2, mT > 30 GeV 3.8 3.4 18.8 30

Mass requirements 1.9 1.2 3.5 4

At least 1 b-tag 1.3±0.1 0.9±0.5 0.5±0.2 1

Table 2. Efficiency (in percent) for t → cH signal simulation and numbers of events selected for

data or expected (tt&W (γ), Sγγj→ℓ) at different stages of the analysis, in the leptonic selection. The

column denoted by “tt&W (γ)” is normalised to the luminosity of the data. The column denoted

by Sγγj→ℓ is normalised to data after subtraction of the expected background from tt and W (γ) at

the “2 photons + 1 lepton” selection step. The uncertainties are statistical only for t → cH and

tt&W (γ), but include the normalisation uncertainty for Sγγj→ℓ.

5 Statistical analysis and results

The parameter of interest is the branching ratio B of the decay t → c(u)H. A fit to the data

is performed using a likelihood function defined as the product of the likelihoods for the

individual search channels, whose sensitivities as a function of B are given in section 5.1.

Hypothesised values of B are evaluated with a test statistic based on the profile likelihood

ratio [68]. In the hadronic selection, which combines the 7 and 8 TeV data, mγγ is used as

discriminating variable in the fit. The analysis in the leptonic selection is based on event

counting in two mγγ regions: the signal region (SR) from 122 to 129 GeV, and the control

region (CR) from 100 to 122 GeV and from 129 to 160 GeV.

The theoretical uncertainties enter mainly through the tt production cross-section, the

Higgs boson branching ratio to γγ, the background due to SM Higgs production (sec-

tion 5.3) and the signal generator uncertainties (section 5.4). The experimental systematic

uncertainties are detailed in section 5.4. All these uncertainties are introduced as nuisance

parameters in the likelihood.

5.1 Expected signal event yields

The expected signal event yields in the three channels (hadronic 7 TeV, hadronic 8 TeV

and leptonic 8 TeV) are estimated using the signal efficiencies given in tables 1 and 2, the

tt production cross-sections at 7 and 8 TeV [69, 70], and the integrated luminosities of the

corresponding data sets. They are listed in table 3, where they are expressed in terms of

the number of events expected for a t → cH branching ratio of 1%. The same study with

t → uH shows that the efficiency of the hadronic analysis is 1% higher than for t → cH,

while it is 6% lower for the leptonic analysis. These variations are small enough to justify

taking the same sensitivity for both modes.

The sensitivities are evaluated for a Higgs boson mass of 125.5 GeV [37]. A correction

of -1% (+1.5%) is applied on the hadronic (leptonic) efficiency, obtained from a linear
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Selection Hadronic Leptonic

Centre of mass energy 7 TeV 8 TeV

tt cross-section (pb) 177 +10
−11 253+13

−15

H → γγ Br (%) 0.23±0.01

Signal efficiency (%) 4.2±0.1 4.0±0.1 1.3±0.1

Exp. events for B = 1% 1.6±0.1 9.3±0.7 3.0±0.3

Table 3. Expected signal efficiencies and event yields for a t → cH branching ratio of 1% and

mt=172.5 GeV in the three analysis channels. The values used for the tt cross-section and the

H → γγ branching fraction are quoted for completeness.

interpolation of the acceptances estimated at particle level for simulations with masses of

125 and 126.8 GeV. Changing the top quark mass from 172.5 to 173.1 GeV increases the

acceptances by about 1.6% while the tt production cross-section is decreased by about 1.8%.

The net effect is thus neglected. The effect of small differences between data and simulation

in b-tagging and photon isolation efficiencies is also included in table 3. The generator

and the experimental systematic uncertainties, not included in table 3, are described in

section 5.4. As pointed out above, the 7 TeV and the 8 TeV hadronic channels are treated

as a single channel, whose combined expected event yield is 10.9± 0.8 events for B = 1%.

5.2 Signal and background modelling

The shape of the signal diphoton mass distribution is similar to the shape used in the H →
γγ inclusive analysis [37], for a signal mass hypothesis mH = 125.5 GeV. It is described

by the sum of a wide Gaussian and a Crystal Ball function with width σ ≃ 1.7 GeV, and

differs slightly between the 7 and 8 TeV analyses. The fraction of the signal that falls into

the SR is estimated to be ∼ 90%. The same shape is used for the resonant background

from SM Higgs boson production.

Background estimate for the hadronic channel. Due to low statistics the data

distribution in the CR alone cannot be used to constrain the background shape. Instead, the

diphoton mass spectrum from the Sγγj sample (see figure 2) smoothed using the algorithm

of ref. [71] is employed. Pseudo-data have been generated following this distribution,

with on average 45.2 events (given by the sum of the 38 data events in the CR and the

associated SR contribution of 7.2 events assuming that the true probability density function

is the smoothed one). The corresponding mγγ spectra have been fitted with different

parametrisations for the background shape. For fits with only the background, a bias

has been defined as the difference, in the SR, between the true number of events and the

number of events predicted by the fit. For fits including the signal, the bias is defined as the

number of fitted signal events. The criterion used to select a background parametrisation

as valid is that these biases should be smaller than 10% of the number of signal events at

the expected limit (∼ 6 events). The background-only and the signal+background fits give
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consistent results. Both 2nd and 3rd order polynomial distributions satisfy the criterion,

and the 2nd order polynomial was chosen. The associated bias with respect to the smoothed

Sγγj distribution is ∼ 0.6 event. It is added as a systematic uncertainty in the final fit.

Background estimate for the leptonic analysis. The background in the leptonic

channel is estimated via a transfer factor α, defined as the ratio of the background shape

integral over the SR and its integral over the CR. The central value of α in the fit is

given by the smoothed function used for the hadronic analysis, α = 0.15. For a flat mγγ

distribution α ≃ 0.13 would be obtained. A Gaussian constraint on α with a conservative

width of 30% is included in the likelihood function.

5.3 Background from SM Higgs production

The estimate of the expected number of background events from SM Higgs production is

obtained by combining the cross-sections for Higgs boson production via the ggF , VBF,

WH, ZH and ttH processes [72, 73], assuming they all follow the SM predictions, the

integrated luminosities of the 7 TeV and 8 TeV data sets, and the event selection effi-

ciencies determined using full simulation for each production mode (see section 3.3). The

uncertainties on the cross-sections are obtained by a linear sum of the renormalisation and

factorisation scale uncertainties on one hand, and of the parton distribution functions and

αs uncertainties on the other hand, as they appear in refs. [72, 73]. The VBF process

gives a negligible contribution. In the absence of fully simulated samples for the tH pro-

duction, for which the cross-section was only recently calculated [74, 75], the acceptance

is obtained from particle level simulation, scaled by the ratio of acceptances for full and

particle level simulations obtained for topologically similar final states (tcH and ttH final

states were used).

Since the ggF and WH processes produce a Higgs boson with a small number of jets,

among which there is in general no b-jet, an additional systematic uncertainty is added. For

the ggF mode, several variations of POWHEG+PYTHIA8 [76] with up to three partons

at the matrix element level were compared, from which a 40% uncertainty was deduced.

For the WH process, which is simulated at LO, the uncertainty is enlarged to 100%. The

uncertainty on ZH is not increased as this process produces b-jets from the Z-boson decay.

In total, for the hadronic selection, the background from SM Higgs production is

0.24±0.05 event at 8 TeV and 0.04±0.01 at 7 TeV, with uncertainties taken as fully corre-

lated. The largest contribution is from the ttH mode, which represents about 60% of the

total. In the leptonic selection, the total background due to SM Higgs production amounts

to 0.05±0.01 event, and 90% of this background arises from ttH production.

5.4 Experimental systematic uncertainties

The experimental systematic uncertainties are listed in table 4.

• The uncertainties related to photons are described in section 2 for the trigger effi-

ciency, and in section 3.1 for the photon identification and isolation.
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Selection Hadronic Leptonic

Centre of mass energy 7 TeV 8 TeV 8 TeV

Trigger efficiency ±0.2 ±0.5 ±0.5

Photon identification ±9.3 ±4.6 ±2.4

Photon isolation ±3.0 ±1.0

Jet Energy Scale ±5.4 +7.4
−4.5

+3.2
−2.8

Jet Energy Resolution ±0.2 ±0.2

Jet Vertex Fraction ±1.0 ±1.0

b-tagging ±3.5 ±4.8 ±5.2

Lepton reco./ID/scale — — ±0.6

Emiss
T scale — — +1.4

−0.4

ISR/FSR +7.0
−3.0

+8.0
−2.0

Underlying event ±3.5 ±1.8

Combined uncertainty +14.1
−12.6

+13.1
−9.8

+10.6
−7.1

Table 4. Summary of experimental and generator (see text) uncertainties on the signal and SM

Higgs boson background yields (in percent, per event). The last row gives the sum in quadrature

of all these uncertainties.

• The systematic uncertainty associated with the Jet Energy Scale (JES) is determined

by changing by one standard deviation, in each direction and one at a time, each of

the parameters to which the energy scale is sensitive. The most sensitive parameters

are associated with pile-up and jet flavour. At 8 TeV the quadratic sum of the

uncertainties obtained from all variations gives a total effect on the expected signal

yield of (+7.4%,−4.5%). At 7 TeV the global effect is more symmetric (±5.4%). The

smaller JES uncertainty in the leptonic channel was obtained in the same way and

includes its impact on Emiss
T . The same methodology was used for the Jet Energy

Resolution (JER), whose uncertainty has a smaller impact on the signal yield.

• The systematic uncertainty associated with the JVF selection is estimated by vary-

ing the corresponding requirement within the boundaries resulting from dedicated

studies [77]. It amounts to 1% for both the hadronic and the leptonic selections. The

same uncertainty is also used at 7 TeV.

• In order to take into account the small differences in b-tagging efficiency between

data and simulation for each jet flavour (light, charm and bottom-quark jets) [50],

the nominal values of the associated scale factors are included in the event weights

of the simulated samples. Replacing the nominal scale factors by the values obtained

when adding (subtracting) their uncertainty induces variations of the expected signal

yield of the order of 5%.
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• The uncertainty associated with the lepton energy scale, identification and recon-

struction efficiency, averaged for electrons and muons, is 0.6%.

• The uncertainty, of about 1%, associated with Emiss
T was obtained with the same

methodology as that used for the jet energy scale, applied to low-ET topological

clusters included in the estimate of Emiss
T and which are not associated with any of

the objects used to reconstruct the final state.

The generator uncertainties are evaluated as follows:

• The uncertainty labelled “ISR/FSR” in table 4 corresponds to the variation of the

signal acceptance observed at particle level when the parameters governing QCD

initial and final state radiation in PYTHIA6 are varied within the allowed range [78].

• The systematic uncertainty associated with the underlying event modelling is esti-

mated by scaling, in the simulation, the transverse momenta of particles produced at

|η| > 2 within the range allowed by the differences between tunes6 and re-estimating

the selection efficiency.

5.5 Results

A fit using the likelihood described at the beginning of this section is performed on the

selected data sample, consisting of 50 events in the hadronic channel and one event in the

leptonic channel.

The diphoton mass spectrum in the hadronic channel is shown in figure 5, together

with the fitted background shape and the signal shape for a Higgs boson mass fixed at 125.5

GeV. The fitted branching ratio is B = 0.22+0.31
−0.26%, which corresponds to a total number

of signal events (hadronic and leptonic) of 3.1+4.3
−3.7. The probability that the background

can produce a fluctuation greater than or equal to the excess observed in data is 18%. As

no significant signal is found, limits on the t → cH and t → uH branching ratios are set

based on the CLs prescription [79].

The evolution of the signal confidence level CLs as a function of the branching fraction

B for t → qH is shown in figure 6. Pseudo-experiments have been used to determine the

distributions of the test statistic under the signal+background and the background-only

hypotheses. The green and yellow areas represent the one and two standard deviation

bands around the expectation. The observed (expected) limit on B is 0.79 (0.51)% at the

95% confidence level. The observed limit is not as stringent as the expectation due to a

slight excess over the total background expectation in the vicinity of mγγ∼ 126 GeV, as

seen in figure 5. From this limit, an upper limit on the λtcH coupling of 0.17 was obtained,

with an expected value of 0.14. As the analysis is equally sensitive to the t → uH and

t → cH modes, the limit obtained on the couplings can be written as
√

λ2
tcH + λ2

tuH < 0.17,

with an expectation of 0.14.

6The particle flow observed in various data samples for |η| < 2 is well described by standard QCD PS

and MI tunes.
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Figure 5. Distribution of mγγ for the selected events in the hadronic channel. The result of

a fit to the data of the sum of a signal component with the mass of the Higgs boson fixed to

mH = 125.5 GeV and a background component (dashed) described by a second-order polynomial

is superimposed. The small contribution from SM Higgs boson production, included in the fit, is

also shown (difference between the dotted and dashed lines).
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Figure 6. Evolution of CLs as a function of the branching fraction B of the t → qH decay for

the observation of a signal at 125.5 GeV (solid line) and the expectation in the absence of signal

(dashed line). The 1 and 2 σ uncertainty bands around the expected curve are also shown.

6 Conclusions

The FCNC t → qH decay, followed by H → γγ, has been searched for in a data set

of proton-proton collisions recorded by the ATLAS experiment, consisting of 4.7 fb−1 at√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV.

Candidate events were selected by requiring the presence of two high-ET isolated pho-

tons. Further selection criteria included the presence of four jets (at least one b-tagged) for
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the hadronic selection, or two jets (at least one b-tagged), Emiss
T and an isolated lepton for

the leptonic selection, plus kinematic conditions designed to enhance the fraction of events

with a tt topology.

A sideband technique was used to constrain the background, and an expected upper

limit on the t → cH decay branching ratio in the absence of signal of 0.51% was calculated.

No statistically significant excess was observed in the data, and a limit of 0.79% was set at

the 95% confidence level for mH = 125.5 GeV. From this limit, an upper limit on the λtcH

coupling of 0.17 was obtained, with an expected value of 0.14. As the analysis is equally

sensitive to the t → uH and t → cH modes, the limit obtained can more generally be

expressed as
√

λ2
tcH + λ2

tuH < 0.17.
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[53] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual,

JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

[54] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes,

Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

[55] S. Jadach, J.H. Kuhn and Z. Was, TAUOLA: a library of Monte Carlo programs to simulate

decays of polarized τ leptons, Comput. Phys. Commun. 64 (1990) 275 [INSPIRE].

[56] S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion

matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

[57] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with

shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].

– 21 –

http://dx.doi.org/10.1103/PhysRevD.88.054005
http://arxiv.org/abs/1305.7386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7386
http://dx.doi.org/10.1016/0550-3213(91)90530-B
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B358,46
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://inspirehep.net/search?p=find+J+JINST,3,S08003
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4393
http://dx.doi.org/10.1103/PhysRevD.89.052004
http://arxiv.org/abs/1311.1440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1440
http://cds.cern.ch/record/1473426
http://cds.cern.ch/record/1099735
http://dx.doi.org/10.1103/PhysRevD.83.052005
http://arxiv.org/abs/1012.4389
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4389
http://dx.doi.org/10.1140/epjc/s10052-013-2304-2
http://arxiv.org/abs/1112.6426
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6426
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1189
http://dx.doi.org/10.1016/j.physletb.2007.09.077
http://arxiv.org/abs/0707.1378
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1378
http://cds.cern.ch/record/1369219
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://arxiv.org/abs/1110.3174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3174
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.022
http://arxiv.org/abs/0904.2387
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2387
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://arxiv.org/abs/1005.3457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3457
http://dx.doi.org/10.1016/0010-4655(91)90038-M
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,64,275
http://dx.doi.org/10.1088/1126-6708/2009/04/002
http://arxiv.org/abs/0812.0578
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0578
http://dx.doi.org/10.1007/JHEP02(2010)037
http://arxiv.org/abs/0911.5299
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5299


J
H
E
P
0
6
(
2
0
1
4
)
0
0
8
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Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States

of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für

technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City IA, United States of America
63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de F́ısica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce,
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134 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor
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