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Abstract

Deviatoric stress generated within subducting slabs by the olivine–spinel
transformation has been modeled by assuming the phases to be simply con-
nected rather than comprising a mixture in which one phase is embedded
within another. Here, we use a simplified model to explain how transfor-
mation strain is incorporated into a continuum model, and we then use the
simplified model to explain quantitatively the origin of the unreasonably
large deviatoric stresses predicted by existing slab models. We review exper-
iments on the transformation of single-crystal samples and argue that they
are consistent with the occurrence, at the grain scale, of deviatoric stresses
comparable with those predicted (erroneously) to exist at the slab scale by
those slab models. Using a simple example, we show that although large
deviatoric stresses can exist at the grain scale, their average over a sample
containing many grains can be hydrostatic. This leads us to the problem of
modeling the microscale structure. We outline the thermodynamics needed
for such nonhydrostatic systems, and we illustrate their use and implications
with examples.
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1. INTRODUCTION

A crystalline solid can generally exist stably in more than one form (or phase), the stable lattice
being determined by conditions of temperature and pressure: Diamond and graphite, as well as
the various phases of ice and of silica, are examples. Here, we consider transformations that are
heterogeneous: At a given time, a sample in the process of transforming can be divided into sub-
regions, some of which have transformed and others not. Because the lattices differ between these
subregions, strains develop within the transforming solid. In geodynamics, it has been assumed
implicitly that the corresponding small-scale stress field is unimportant on the timescale of mantle
convection and that, to the extent transformation kinetics are of interest, they can be studied by
means of experiments in which the effects of the small-scale stress would, in any case, be minimal;
for discussion, see Ringwood & Major (1970, section 3.3), Ringwood (1972, p. 237), and Rubie
(1993, p. 252). The results of these kinetics experiments are used to estimate the depth to which
the low-pressure phase olivine can persist in cold subducting slabs (e.g., Sung & Burns 1976, Rubie
& Ross 1994, Devaux et al. 1997, Mosenfelder et al. 2001, Kubo et al. 2009). As discussed by,
e.g., Frohlich (2006), the occurrence of deep earthquakes within a slab might be explained by the
persistence within the slab of a wedge of metastable olivine which, owing to the thermally activated
kinetics, could transform rapidly once sufficiently hot. The conceptual problem is then to find a
mechanism allowing faulting when the deviatoric stress is small compared with the pressure; as
discussed by Schubnel et al. (2013), transformational faulting is a possible mechanism.

When the problem is formulated as one of the existence of a metastable wedge, emphasis is
placed on the kinetics of the transformation; none of the studies cited above attempts to calculate
the stress field within the slab itself. Schubert and coworkers (Devaux et al. 2000; Guest et al. 2003,
2004), by contrast, model the stress field induced within the slab by the olivine–spinel series of
transformations. To emphasize that the volume change occurring on transformation induces large
stresses (even in the absence of kinetic delays), Guest et al. (2003) assume transformation to occur at
thermodynamic equilibrium. In that model, deviatoric stress is generated by two transformations
(olivine–modified spinel–spinel); with increasing depth, it is relaxed at a rate controlled by the
nonlinear rheology of the slab. Guest et al. (2004) subsequently included interface kinetics. In
both cases, the deviatoric stress is large; within a slab, stresses of ∼1 GPa are predicted to occur
at depths of ∼700 km. Guest et al. (2004, p. 265) conclude that “model shear stresses seem to be
too high in comparison with the assumed strength of the lithosphere,” and suggest that deviatoric
stress might be decreased, “for example, by considering complex mineralogy, water content, etc.”
We argue here that overprediction of deviatoric stress is a consequence of the implicit assumption
in those studies that the phases are not dispersed, but continuous.

In Section 2, we discuss the formulation of constitutive relations appropriate to a material
undergoing polymorphism. In Section 3, as an example, we discuss a model problem posed by
Guest et al. (2003). Using the solution to the model problem, we point out that, for an elastic slab,
the stress field induced by the transformation extends above and below the transition depth by a
distance of the order of the slab thickness. Creep appears to decrease the magnitude of the shear
stress but to increase the distance over which the stress is nonzero. We then use a simple example
to argue that, when the phases are dispersed, the large stresses generated along phase interfaces
during transformation average over many crystal grains to give smaller mean stresses. The need
to resolve that internal structure provides one reason for studying the topic of this review.

Because the solutions of Guest et al. (2003, 2004) predict that, for any realistic distribution of
effective viscosity, deviatoric stresses on the order of a gigapascal are generated by phase trans-
formation, in Section 4 we review experiments demonstrating the existence of such stresses at
the grain scale. Because such grain-scale stresses alter the coexistence condition for the phases,
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in Section 5 we discuss thermodynamics and interface kinetics in the presence of nonhydrostatic
stress. In Section 6, we introduce the distinction between coherent and incoherent interfaces and
explain its implications for the thermodynamics.

In Section 7, to illustrate the preceding discussion and the implications of the constitutive
relation posed in Section 2, we consider two models of phase transformation in which the phases
form a composite sphere: (a) the product occupies the central sphere and grows into a spherical
annulus of the parent (Lifshitz & Gulida 1952, Truskinovskiy 1984b, Roitburd & Temkin 1986);
(b) the product occupies the outer rim and grows into the central sphere of the parent (Morris
2014). As in the experiments reviewed in Section 4, a uniform pressure is applied to the outer
surface of the sample. We show that, because these models correctly treat the physical issues
identified in Sections 2 and 5, the chief conclusions are insensitive to configuration. In particular,
within a certain range of applied pressure, no transformation is possible in an elastic body; outside
that range, the sample transforms at a rate controlled by interface kinetics. Experiments by Du
Frane et al. (2013) on nominally anhydrous (<6 ppmw) olivine were performed at sufficiently
large applied pressures that, if the material properties entering into the interface kinetics were
independent of time, the sample would have transformed completely. Instead, Du Frane et al.
found an extremely thin and apparently stationary rim of high-pressure phase. The inconsistency
between theory and observation leads us to consider the effect of water on the rate constant.

In Section 8, we return to the concept of the incoherent interface. We argue that if, as a
material element crosses the phase interface, the lattice is completely reconstructed, all record
of strain occurring prior to, or during, transformation should be eliminated. In an elastic body,
therefore, deviatoric stress within the product should vanish at the phase interface; elsewhere
within the product, deviatoric stress in a material element should depend only on the deviatoric
strain experienced by that element since its transformation. We summarize the analysis of Morris
(2017), showing that, according to this model of an elastic body, if the applied pressure pa exceeds
the Clapeyron pressure p̄ , the rim thickness increases with time, but ultimately reaches a steady
value that is itself a continuous function of pa − p̄ . Unlike the model discussed above, this one does
not predict a complete transformation for the conditions in the experiments of Du Frane et al.
(2013); however, it predicts a much thicker rim than is observed. Both models are therefore
consistent in suggesting that interface kinetics may, at least in nominally anhydrous samples, be
important in limiting rim growth.

The models described in Sections 7 and 8 provide the second reason for studying the topic
of this review: The magnitude of the small-scale stress field depends on the nature of the phase
interface, and spatial averaging of that small-scale stress field determines the tectonic-scale stress
field. Moreover, the models discussed above suggest that water has a significant effect on interface
kinetics; through that effect, it could influence the small-scale stress field.

We outline the kinetic model used to fit experiments on polycrystals and to extrapolate the
results to geophysical conditions. The model is geometric. It is assumed that, for constant ex-
perimental conditions, spheres of product nucleate at a constant rate Ṅ and that, following the
nucleation of a sphere, the radius of the sphere increases with a constant speed c . Under these
assumptions, grains that nucleated at different times must eventually overlap, and new grains of
product must eventually nucleate within the transformed material. The problem of correcting for
these effects was solved first, in the context of homogeneous nucleation of crystals within a melt,
by Kolmogorov (1937). The model was later extended to cover the case in which product nucle-
ates only on the faces of crystal grains. Using that form, Rubie et al. (1990) fit their experiments
on the olivine–spinel transformation in Ni2SiO4, thereby determining values of Ṅ and c at the
experimental temperature and pressure. By repeating experiments at different temperatures, one
can determine the activation energy and other constants entering into the reaction kinetics.
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x1

x2

O

P

P'

Initial

Current

Figure 1
Initial and current state of a body undergoing polymorphic change.

2. CONSTITUTIVE RELATIONS AND POLYMORPHISM

Using examples from the literature, we show how transformation strain and creep have, so far,
been included in the constitutive relation for the bulk phases. For the phase interface itself, a
separate constitutive assumption is necessary, and we discuss it in Section 5.

For simplicity, we assume infinitesimal strain. We use suffix notation: {x1, x2, x3} correspond
to {x, y , z}. Roman suffixes run from 1 to 3; Greek, from 1 to 2 only. We use the summation
convention. For the stress tensor σi j , we use the sign convention most usual in mechanics: Tensile
stresses are positive. The unit tensor is represented by δi j .

Figure 1 shows the initial and current states of a body. In the initial state, the entire body
consists of phase A at a uniform pressure p0, and the material element of interest is at point P . In
the current state, that material element has moved to P ′; the components of its displacement P ′ P
are denoted by ui . As is usual in the theory of infinitesimal strain, the strain tensor ei j is defined
in terms of ui by

2ei j = ∂ui

∂x j
+ ∂u j

∂xi
. (1)

We note that ei j is calculated using the entire displacement ui of the material element from its
initial position; phase does not enter into this part of the calculation.

2.1. Polymorphism with Reversible Shape Change: Model Constitutive Relation

We first treat the case in which a given material element consists either of pure phase A or of pure
phase B. To specify the phase, we introduce an indicator function: ξ = 0 if the material element
consists of A, and otherwise ξ = 1. For simplicity, we take the phases to be isotropic and linearly
elastic; to emphasize this limitation, we use the word “model” in the heading above.

There are two contributions to the stress tensor: the hydrostatic stress −p0δi j in the initial
state and an additional contribution σi j that causes deformation from that state. We refer to σi j as
the reduced stress tensor. Rather than verbally describing the characteristics of a particular type
of transformation, we pose a constitutive equation and then describe the behavior of the material
to which it corresponds. Following Eshelby (1961), we suppose that ei j is given in terms of the
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reduced stress tensor σi j as follows:

ei j − ξ eT
i j = 1

2μ

(
σi j − ν

ν + 1
σkkδi j

)
. (2)

In Equation 2, ν and μ denote the Poisson ratio and the rigidity (shear modulus). The tensor eT
i j

is a constant characteristic of the transformation; it is variously called the transformation, stress-
free, or Bain strain. Equation 2 is equivalent to equations 2.18 and 2.19 of Eshelby (1961); in the
Eshelby problem, the product occupies the inclusion, and the transformation strain is subtracted
from the strain in the inclusion; this is consistent with Equation 2.

According to Equation 2, at a given instant, the strain is uniquely determined by the state of
the material as specified by the phase ξ and the components of the stress tensor. Thus, Equation 2
describes a transformation that has the property that the strain is reversible: A body having a given
initial shape can be returned to that shape by reversing the transformation, and the stress. To be
definite, let σi j = 0; the stress is currently identical to that in the initial hydrostatic state. In this
case, we see that ei j = ξ eT

i j . If ξ = 0, so that the material element currently consists of the same
phase A as in its initial state, then the strain is zero. The state ξ = 0 could occur if the element had
never changed phase at all, or if it had changed to phase B and then subsequently changed back to
phase A. Similarly, if ξ = 1, so that the element has changed phase (any odd number of times), the
strain tensor is given by eT

i j . Of course, although σi j = 0 in the current state, at some time between
the initial and current states the element has been subject to stress that induced the phase change.
This confirms that Equation 2 describes a transformation producing a reversible change of shape:
The change of shape is specified by the tensor eT

i j . James & Hane (2000) and Bhattacharya (2003)
give the components of eT

i j for transformations between specific crystal lattices.
To a first approximation, when silica converts from its low quartz to its high quartz polymorph,

the shape change is reversible, as Le Chatelier (1890) and Mallard & Le Chatelier (1890) write in
describing its discovery:

At a temperature of about 570 ◦C, this substance undergoes a reversible change of state . . . . This change
of state has the notable property of leaving the crystal lattice intact, and, thus, of not affecting even
such a remarkable property as rotatory polarization [Mallard & Le Chatelier 1890, p. 123]. The same
phenomenon always occurs each time the critical temperature is reached, either from below or from
above [Le Chatelier 1890, p. 119].

Dolino (1990) and Heaney & Veblen (1991) give more complete descriptions of this transition;
James (1986) gives the components of eT

i j .
Equation 2 is analogous to the Duhamel–Neumann constitutive relation for thermoelasticity,

as given by Sokolnikoff (1956, p. 359). Eshelby (1961, p. 92) points out the analogy between his
problem and that of thermal stresses: Thermoelastic strain is reversible in the sense that we apply
to Equation 2, and the displacement field is continuous. Eshelby (1961, p. 91) emphasizes that his
analysis applies provided that “the inclusion is ‘bonded’ to the matrix before, during and after the
transformation.” Stresses induced by volume change also occur in the process of metamictization,
i.e., structural change induced within a crystal by radioactive decay of atoms within the structure.
In that context, Lee & Tromp (1995, equation 24) formulate a constitutive equation equivalent
to Equation 2 and use it to predict stresses developed when metamictization occurs either as a
central core or as a rim. Of course, in metamictization, the interface between altered and unal-
tered lattices does not propagate through the mineral; in this, the process differs from a phase
change.
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As for the olivine–spinel transformation, if the stress applied to the sample is sufficiently close
to hydrostatic, then only the volume change is reversible (Vaughan et al. 1982, 1984; Green 1986;
Green et al. 1992). The transformation has been modeled using Equation 2 with eT

i j = 1
3 θ0δi j , where

θ0 = (V B
0 − V A

0 )/V A
0 is the fractional change in specific volume. In this context, Equation 2 has

the advantage of stating explicitly that eT
i j enters through the constitutive relation for the product

phase, not through that for the parent: When modeling growth of a spinel rim on a particle of
olivine, eT

i j must be subtracted from the strain in the rim, not from that in the parent olivine.
Although, with hindsight, this is obvious, Morris (2014, appendix) has shown that early attempts
to model rim growth incorrectly include transformation strain.

There is, however, something troubling about using Equation 2 to describe a transformation
in which only the volume change is reversible. Equation 2 relates the strain experienced by a ma-
terial element as a result of its displacement from the initial state to its current state. According to
Equation 2, if the element changes phase during that displacement, the total strain is unchanged,
apart from the reversible dilatation associated with the transformation: Almost all the strain ex-
perienced by the material element during its existence in the initial phase is retained despite the
reorganization of the crystal lattice that occurs during transformation. As we discuss further in
Section 7, although it is self-consistent to use Equation 2 with eT

i j = 1
3 θ0 δi j , the resulting model

may not describe the physical process correctly.

2.2. Modeling Transformation Strain at the Tectonic Scale

Kirby et al. (1996, p. 286) draw an analogy between thermoelasticity and the generation of stress
within a subducting slab owing to the volume change in the olivine–spinel transformation. The
analogy is developed by Schubert and coworkers (Devaux et al. 2000; Guest et al. 2003, 2004): It is
assumed (implicitly) that within a region of mixed phase, both phases are at the same pressure p and
temperature T . Let the densities of the phases be ρA(p , T ) and ρB(p , T ) and let the volume fraction
of phase B be ξ . Then, denoting the mixture density by ρ, we have ρ = (1−ξ )ρA(p , T ) + ξρB(p , T )
(as in Devaux et al. 2000, equation 21). Expanding this expression to first order in a Taylor series
in p and T (but not in ξ ) about the reference state p0, T0, in which ρ = ρA(p0, T0), we find that

ρ

ρA0
− 1 = −ξθ0 + (p − p0)κ0 − (T − T0)α0;

as defined above,

θ0 = (V B
0 − V A

0 )/V A
0 .

The mixture compressibility is κ0 = (1 − ξ )κA0 + ξκB0, and likewise for the mixture expansivity
α0; these equations are special cases of equation 21 of Devaux et al. (2000). Compressibility and
expansivity are as defined by Pippard (1957, p. 61). Using the relations ekk = 1 − ρ/ρA0 and
p − p0 = − 1

3 σkk, we obtain the linearized equation of state:

ekk = 1
3 κ0 σkk + α0 (T − T0) + ξθ0. (3a)

For T = T0 and eT
i j = 1

3 θ0δi j , Equation 3a reduces to the dilatational part of Equation 2, with ξ

then being either zero or unity. We note that the form of Equation 3a is consistent with subtracting
transformation strain from strain in the product, but not in the parent.

For the deviatoric components, Schubert and coworkers (Devaux et al. 2000; Guest et al. 2003,
2004) take the slab material to behave as a Maxwell body. That constitutive relation is stated for a
material that is stationary relative to the laboratory; application to the slab is covered in Section 3.
For infinitesimal strain, the deviatoric strain tensor e ′

i j = ei j − 1
3 ekkδi j is related to the deviatoric
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stress tensor σ ′
i j = σi j − 1

3 σkkδi j as follows:

2μ
∂e ′

i j

∂t
= ∂σ ′

i j

∂t
+ μ

η
σ ′

i j ; (3b)

here, μ and η denote respectively the volume-weighted average of the rigidities and of the effective
viscosities of the separate phases, as given by equation 21 of Devaux et al. (2000). Apart from that
modification of μ and η, Equation 3b is identical to the corresponding expression for a single-phase
Maxwell body.

Although it is consistent with the use of the geometric model of kinetics to predict the volume
fraction of product, the assumption, implicit in Equations 3a and 3b, that both phases are at
common pressure is not trivial. In Section 4, we discuss experimental evidence suggesting the
existence of large pressure gradients at the grain scale. In Section 3, we discuss why that assumption
may lead to the prediction of an unreasonably large macroscopic stress.

3. EXAMPLE: TRANSFORMATION STRESS IN A SUBDUCTING SLAB

Figure 2a shows the test problem formulated by Guest et al. (2003) as part of their analysis of the
stress induced within a subducting slab by the olivine–post-spinel series of transformations. To
explain the behavior found in their detailed simulations, the authors consider a simplified model,
retaining only the essential feature of the volume change due to transformation. The following
assumptions are made: The slab descends vertically; mantle density is uniform; buoyancy is neg-
ligible; transformation occurs at thermodynamic equilibrium; the latent heat of transformation is
zero; the temperature is uniform; and the viscosity of the surrounding mantle is negligibly small
compared with that of the slab, so that on the slab sides and tip, the mantle imposes a hydrostatic
pressure increasing linearly with depth. The slab material undergoes a single transformation from
phase A to phase B at a pressure existing within the surrounding mantle at a depth indicated, in
Figure 2a, by the horizontal broken line. Because it clarifies the mechanism by which deviatoric

x = −d1

p = ρg(x+d1)

σxy = 0

x = d2

v0

y

x

O

x

y
Β

Α

a

b c

Α

Β

Figure 2
(a) Geometry of the test problem. (b,c) Relation between deviatoric stress and volume change. (b) Perfect slip: no deviatoric stress.
(c) Continuous displacement: Arrows show the normal stress σyy required on the faces of the shaded rectangle for the displacement to
be continuous across the interface at x = 0.
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stress is generated, and the scale on which it decreases, we carefully discuss this simplified problem,
assuming elasticity. Creep modifies the stress field, but does not alter the generation mechanism.

In Figure 2a, the coordinate origin O is at the transition depth; x1 increases downward; x2

increases across the thin dimension of the slab; and x3 is directed out of the page. For brevity, we
call x3 the trenchwise direction. Where convenient, {x1, x2, x3} = {x, y , z}.

Figure 2b,c is used to explain how deviatoric stress arises in the test problem. Suppose the
phases are free to slip along the phase interface at x = 0, as in Figure 2b. Because the interface
is assumed to be flat, transformation can then occur without causing deviatoric stress. Removing
the resulting discontinuity in displacement requires column B to be stretched and column A to
be compressed, as in Figure 2c. Continuity of the displacement vector therefore requires the
component σ22 of the stress tensor to be discontinuous in an elastic body, and likewise for σ33.
Because, as shown in Figure 2a, the outer ends of each column are subject to the same pure
pressure, the discontinuity in σ22 is, of course, not due to an external applied force. Rather, being
in compression, column A tends to pull column B outward; column B, being in tension, tends
to pull column A inward. We note that this stress state is consistent with the balance of linear
momentum, which requires only that σ11, σ12, and σ13 each be continuous across the plane x = 0.
This argument is formalized below.

For any property f , the notation [ f ]B
A represents the difference between the value taken by f

on the B side of the interface and the value taken on the A side.
The magnitude of [σ22]B

A sets the scale for deviatoric stress. To determine it, we use the con-
stitutive equation and the condition that the displacement vector be continuous. Initially, in the
model problem, a material element is in phase A at uniform hydrostatic pressure far above the
transition depth. As the material element descends, it suffers a deformation that can be resolved
into two parts: an isotropic contraction caused by the background hydrostatic stress and a de-
formation caused by the stress resulting from the phase change. Assuming that the strain in the
second part is infinitesimal, Guest et al. (2003) (implicitly) invoke the principle of superposition
and solve a boundary-value problem for it. For this component, the initial (reference) state is one
of zero strain and stress.

Let σi j denote the reduced stress tensor, i.e., the difference between the total stress and the
hydrostatic stress σi j = −ρg(x + d1)δi j applied by the mantle to the slab. If there were no phase
change, an element of the slab would translate with the uniform speed v0 of the slab. For the
geometry shown in Figure 2, at time t, an element whose initial position was ai would be at
position xi = ai + v0δi1 t at time t. The displacement ui introduced by Devaux et al. (2000,
equation 4) is defined (here) by xi = ai + v0δi1t + ui ; here ui is the displacement of the element
from the position it would have if there were no phase change.

We show that the magnitude of the deviatoric stress can be determined directly from the
constitutive equation and the condition that displacements be continuous across the interface.
Because ui is continuous across the interface, [e22]B

A = 0 = [e33]B
A. Applying these conditions to

Hooke’s law (Equation 2), we obtain two simultaneous equations for the unknowns [σ22]B
A, [σ33]B

A:

0 = 1
3
μθ0 + [σ22]B

A − ν

1 + ν
[σ22 + σ33]B

A, (4a)

0 = 1
3
μθ0 + [σ33]B

A − ν

1 + ν
[σ22 + σ33]B

A. (4b)

The expression [σ11]B
A = 0 has been used. By solving Equation 4b, we obtain

[σ22]B
A = [σ33]B

A = −2
3
μ

1 + ν

1 − ν
θ0. (5)
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Equation 5 is a property of the phase transformation; it holds only if [u2]B
A = 0 = [u3]B

A. For the
olivine–post-spinel series of transformations, θ0 < 0; according to Equation 5, both components
of normal stress transverse to the slab increase across the phase interface.

For μ = 100 GPa, |θ0| = 0.06, and a Poisson ratio of ν = 1
4 , the stress jump predicted by

Equation 5 is ∼7 GPa. Guest et al. (2003, figure 5e) show the stress distribution for their test
problem. Although that calculation is for a Maxwell body, the viscosity of 1029 Pa · s is sufficiently
large for the response to be effectively elastic (Guest et al. 2003, ¶38). Owing to a different choice
of coordinates, their σ11 corresponds to our σ22 and vice versa. According to their figure, the jump
in σ33 (measured from peak to peak) is 2.1 GPa; the jump in their σ11 (also from peak to peak)
is 1.7 GPa (∼20% smaller than that in σ33). Their values are about one-third those predicted by
Equation 5.

As noted by Kirby et al. (1996, p. 262), it has been argued that deep earthquakes could not be
caused by metastable phase changes because the source mechanism is consistent with failure under
shear rather than with implosion. The virtue of the model of Guest et al. (2003) is in demonstrating
that volume reduction generates shear stress. This large shear stress could be relaxed by creep or
by faulting, raising the issue of why faulting should occur far below the location of the maximum
stress.

Guest et al. (2003) model the stress field in a subducting slab in two cases: plane deformation
(the component u3 of displacement along the trench axis is taken as zero) and a version of plane
stress in which the trenchwise stress component σ33 is taken as zero. But, because their form of
the plane stress assumption cannot satisfy both members of Equation 4, it seems that, whenever
conditions are such that the material behaves elastically at the interface, at least one component
of the displacement vector must be discontinuous in their plane stress solutions.

We consider only plane deformation. For it, u3 = 0 and ∂/∂x3 = 0; so 0 = e31 = e32 = e33.
Substituting e33 = 0 into Equation 2, we obtain

σ33 = νσλλ − 2
3
μ(1 + ν)ξθ0. (6)

We eliminate σ33 between Equations 2 and 6:

eαβ = 1
3

(1 + ν)θ0ξ δαβ + 1
2μ

(σαβ − νσλλ δαβ ). (7)

To obtain the factors determining the magnitude of the stress, and the length scale on which
it varies, we formulate the boundary-value problem for it. Although σ33 is nonzero for plane
deformation, it is independent of x3. Consequently, when expressed in terms of the reduced stress
tensor, the conditions of equilibrium become ∂σαβ/∂xβ = 0. They are satisfied identically by
introducing the stress function χ , defined thus:

σxx = ∂2χ

∂y2
, σxy = − ∂2χ

∂x∂y
, σyy = ∂2χ

∂x2
. (8a,b,c)

Here {x, y , z} = {x1, x2, x3}. Substituting Equation 8 into the equation of compatibility (Fung
1965, pp. 103, 235), we find that, as in the theory of plane strain for a single phase, χ satisfies the
biharmonic equation below (Equation 9a). Because that equation does not define a length scale,
the reduced stress must vary with vertical distance x1 on the single length scale imposed by the
boundary conditions, i.e., the slab thickness 2a .

Both above and below the phase interface, χ proves to approach a limiting value when |x| ∼ a
(see Guest et al. 2003, figure 5e). To determine the reduced stress, we may thus take the slab to be
infinite in length. For the geometry shown in Figure 2, but now with −∞ < x < ∞, χ satisfies
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the following problem:

For |y | < a and x �= 0, ∇2∇2χ = 0; (9a)

at x = 0, [χ ]B
A = 0 =

[
∂χ

∂x

]B

A

; (9b,c)

[
∂2χ

∂x2

]B

A

+ 2
3
μ

1 + ν

1 − ν
θ0 = 0; (9d)

at |y | = a , χ = 0 = ∂χ

∂y
; (9e,f)

as x → ∞, χ → 0. (9g)

The simplified problem is now reduced to a well-known form. Similar mathematical problems
describe the stress in a thin elastic plate loaded at one end, or the slow viscous flow driven by end
stresses (or a thermal plume) in a cavity (see, e.g., Bloor & Wilson 2006). The jump condition
(Equation 9d) explicitly displays the magnitude of the stress. The other equations are standard:
Equations 9b and 9c express continuity of the stress components σxx and σxy , and Equations 9e
and 9f state that the ambient mantle applies a pure hydrostatic stress to the slab tip and sides.

The problem described by Equations 9a–g is satisfied if χ is an odd function of x satisfying
Equations 9a, 9e, 9f, and 9g within the half-strip 0 < x < ∞, |y | < a , subject at x = 0 to the
conditions

χ = 0,
∂2χ

∂x2
+ 1

3
μ

1 + ν

1 − ν
θ0 = 0. (10a,b)

For this work, the problem for the half-strip was solved by taking the Fourier sine transform, then
using the residue theorem to evaluate the inversion integral.

Figure 3 shows values of σxx(x, 0) and σyy (x, 0) so obtained (as a function of x/a). Stress is
given in a unit equalling half the jump in σ22 described previously:

σs = 1
3
μ|θ0|1 + ν

1 − ν
. (11)

Expressed in the scales {σs , a}, Equation 10b states that σyy → −sgn θ0 as x → 0+; for the
olivine–spinel transformation, θ0 < 0. Dimensionless stress components are independent of
the rigidity μ and Poisson ratio ν. Dimensionless displacements are obtained by substituting the
stress components in the dimensionless form of Hooke’s law (Equation 7); these displacements
necessarily depend on ν (but not on μ).

According to Figure 3, both σxx and σyy are positive (tensile) for θ0 < 0; the axial stress σxx

has a maximum value of 0.1713, about one-fifth the maximum value of σyy . The corresponding
dimensional value for the axial stress is σxx ∼ 0.5 GPa for ν = 1

4 , μ = 100 GPa, and θ0 = −0.06.
[The corresponding value estimated from figure 5e of Guest et al. (2003) is ∼0.2 GPa.]

For x large compared with the slab thickness, σxx and σyy both vanish, for the following reason.
At the interface x = 0, the parent (in compression) applies to the product (in tension) a shear stress
σxy that is directed outward: σxy ≷ 0 for y ≷ 0. Because the resultant shear force exerted across
the interface for 0 < y < a is equal in magnitude, but opposite in sign, to that exerted across
−a < y < 0, the effect of these opposing forces cancels with increasing x, and the cancellation
occurs over a distance of the order of the scale on which the variation in σxy (0, y) occurs. This is
consistent with the Saint-Venant principle.
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0

0.5

1.0

0 1 2 3

0

0.1

0.2

x

σyy σxx

Figure 3
Dimensionless stress components σxx , σyy on the centerline y = 0 as functions of distance x down the slab.
For the scales used to define dimensionless variables, see Equation 11.

The trenchwise stress component σzz is the largest of the three normal stresses and does not
vanish with depth (in the elastic solution). Substituting the values of σxx and σyy at x = 0 into
Equation 6 and using the identity sgn x = 2ξ − 1, we obtain

σzz = −1
3
μθ0

1 + ν

1 − ν
(1 − ν + sgn x). (12)

This result has implications for the phase boundary. Unlike the other nonzero components of
the stress tensor, the trenchwise component σzz is neither odd nor even. Because strain energy
depends on the squares of the stress components, the contributions made by σxx , σyy , and σxy are
continuous across the interface. By contrast, σzz

2 is discontinuous. As a unit mass is transformed,
its strain energy therefore increases abruptly; this increase must be balanced by power supplied by
the stress. As a result, a higher pressure is required to induce the transformation: The equilibrium
phase boundary is shifted downward, giving rise to metastability. In Section 7.2, we discuss the
relation between strain energy and metastability in detail.

We now discuss creep. For the geometry shown in Figure 2, in which the slab translates in the
x direction with uniform speed v0, but in which the axes are fixed in the phase interface, partial
derivatives with respect to time in the Maxwell constitutive relation (Equation 3b) are replaced by
∂/∂t + v0(∂/∂x). For the cases illustrated in figure 5 of Guest et al. (2003), the tip of the slab is far
below the phase interface, and the stress field is steady. Then Equation 3b becomes

2μ
∂e ′

i j

∂x
= ∂σ ′

i j

∂x
+ μ

ηv0
σ ′

i j . (13)

According to Equation 13, the elastic strain rate and the creep strain rate balance when the
deviatoric stress varies with x on the length scale Ls = η v0/μ.

For the simplified model (Figure 2), Guest et al. (2003) take η to be independent of stress and
temperature. Comparing their figures 5e (elastic) and 5f (η = 1024 Pa · s), we see that, as in the
elastic solution, the trenchwise stress component σzz rises to a maximum value; although creep
barely alters the height of that maximum, it does permit σzz to relax to zero with increasing x.
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According to Devaux (2000, caption to figure 5), the stress measure being graphed is the
second invariant J′

2 of the deviatoric stress tensor: For the plane deformation being considered
here, J′

2 = 1
6 [(σxx − σyy )2 + (σyy − σzz)2 + (σzz − σxx)2] + σxy

2 (see, e.g., Fung 1965, p. 80). Because
σzz is large compared with the other stress components, graphs of shear stress in the works of
Guest et al. (2003, 2004) are, roughly speaking, graphs of the trenchwise component σzz.

We have discussed the model problem illustrated in Figure 2 with and without creep. Using the
insight thus gained, we interpret the main studies by Schubert and coworkers (Devaux et al. 2000;
Guest et al. 2003, 2004). In these, laboratory studies of rheology are used to define an effective
viscosity for use in the Maxwell constitutive relation (Equation 3); T is predicted using the thermal
model of Devaux et al. (1997), and an appropriate phase diagram is used.

Comparing the results of Guest et al. (2003) with those of Guest et al. (2004), we see that the
chief conclusions are independent of interface kinetics. Having assumed thermodynamic equilib-
rium, Guest et al. (2003) conclude:

Our model predicts high shear stress in the depth range 400–700 km with two maxima, one below the
uppermost phase transformation . . . at 400 km depth and the other one below the phase transformation
at 480 km depth [¶41]. Maximum model shear stress (1.4 GPa) . . . occurs just below the phase boundary
at 480 km depth . . . . Shear stress magnitudes in the rest of the transition zone [are] 0.9–1.2 GPa for
plane strain and a “cold” mantle . . . and 0.5–0.7 GPa for a “hot” mantle [¶45].

This quotation is supported by figure 10 of Guest et al. (2003), in which a tongue of deviatoric
stress in the range 0.8–1 GPa extends to about 700 km.

Using their model with kinetics included, Guest et al. (2004, p. 260) reach similar conclusions:
“Maximum shear stress (1–1.4 GPa) is concentrated inside the bottom part of the metastable
wedge . . . in the depth range 380–430 km and along the phase boundaries . . . in the depth range
380–450 km.” Guest et al. also report high shear stress in the depth range 450–640 km. In
figure 4 of Guest et al. (2004) (cold mantle), a tongue of shear stress in the range 0.8–1 GPa
extends to about 700 km, as in the equilibrium model of Guest et al. (2003). This suggests that
the structure of the stress field is dominated by creep rather than by kinetics. We suggest that the
important effect of kinetics, and the grain-scale deformation with which kinetics interact, is to set
the scale for the mixed-phase region.

Physical reasoning suggests that the large deviatoric stresses predicted by the model of Guest
et al. (2003, 2004) are a consequence of the topology assumed by them. Consider a sample in
which transformation is driven by applying a uniform hydrostatic pressure to the sample surface.
To show the effect of a phase not being simply connected, we use the simplest example, in which
dense product B nucleates as isolated particles within a matrix of less-dense parent A, so that
phase B is not simply connected. Because mass conservation requires each growing particle of B
to incorporate mass, the ambient phase A is deformed, and the stress is locally nonhydrostatic.

The boundary condition, however, implies that the volume-averaged stress is hydrostatic.
Indeed, averaged over the entire sample volume V ′, σik satisfies the identity

1
V ′

∫
V ′

σik dV ′ = −p0δik. (14)

This identity is obtained by multiplying the equation of equilibrium ∂σi j /∂x j = 0 by xk, inte-
grating, and then using the divergence theorem and the boundary condition at the sample surface
(see, e.g., Hill 1963, p. 362). Physically, large deviatoric stresses on one side of a grain cancel with
stresses of opposite sign on the opposite side; this cancellation occurs even if B forms as a rim on
grains in a polycrystal of A.
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Of course, Equation 14 also applies to the geometry of the test problem shown in Figure 2.
In that case, Equation 14 is satisfied because, as we have seen, the stress function χ is an odd
function of x but an even function of y . But, because each phase is simply connected for that
geometry, Equation 14 is compatible with the occurrence of large shear stress at the scale of the
entire sample.

Although, in Equation 14, V ′ refers to an entire sample, the same identity should apply to any
subregion of a sample, provided that the sample is statistically homogeneous and the subregion
is large enough to contain many grains. Seismic stress drop represents the average stress over a
volume whose dimension is comparable to that of the rupture zone. That dimension is on the
scale of kilometers for small earthquakes and increases with magnitude; even for the smallest
earthquakes, there is a large separation of length scales between the grains and the size of the
rupture zone. It seems, therefore, that one should include microstructure in models used to predict
stress at tectonic scales. Doing so requires us to understand the processes operating at the grain
scale.

4. EXPERIMENTS ON SINGLE CRYSTALS

The analyses of Schubert and coworkers (Devaux et al. 2000; Guest et al. 2003, 2004) predict the
generation of large deviatoric stresses within a transforming solid. Laboratory experiments on the
olivine–spinel transformation in single crystals demonstrate the physical existence of local stresses
of comparable magnitude. In these experiments, the pressure medium was NaCl, Ag, or Au. For
the purpose of such experiments, these solids are inert and soft; they do not themselves transform
at the experimental pressures, and each has an athermal flow strength, i.e., a shear strength in
the absence of thermal energy (Karato 2008, p. 33) that is small compared with that of olivine.
Were this condition not satisfied, the loading device would apply a nonhydrostatic stress, tending
to deform the sample. Even with this precaution, some recovered samples show deformation:
Compare figure 2 of Du Frane et al. (2013) with figure 2 of Mosenfelder et al. (2000).

As an example of sensitivity to experimental conditions, we note that Diedrich et al. (2009,
figure 11) observe some limited intracrystalline nucleation in the olivine core within their hydrated
samples, but not within their nominally anhydrous samples. Du Frane et al. (2013, p. 5) note that
the spectra of some hydrated samples might suggest the occurrence of intracrystalline nucleation,
but add nothing more definite. By contrast, in experiments using fine-grained olivine as a pressure
medium (and with, presumably, unknown water content), Kerschhofer et al. (1998, p. 625) find
that in “all samples from experiments at T > 900◦C intracrystalline transformation occurred in
the olivine single crystals.”

When water content and applied shear stress are controlled, experiments on single crystals
are qualitatively consistent in showing that as the spinel rim grows into the olivine, the interface
speed decreases. This decrease is not consistent with the assumptions of the geometric theory of
kinetics discussed in Section 1.

Kubo et al. (1998b) transformed an ensemble consisting of 19 1-mm cubes of single-crystal
(Mg0.89Fe0.11)2SiO4 at four combinations of applied pressure and temperature. Rim thickness was
measured by quenching and then sectioning the sample. Each measurement corresponded to a
different sample and experiment. Kubo et al. (1998b, p. 3) and Mosenfelder et al. (2000, p. 67)
report that there is no evidence for crystallographic relation between the olivine and wadsleyite
phases and infer that the interface is incoherent (see Section 5). For runs at 1,303 K and 13.5 GPa
and at 1,503 K and 14 GPa, Kubo et al. (1998b) followed rim growth in a series of experiments
lasting 10 h. Because, in these experiments, all growth observed at 10 h had already occurred
within the first 1–2 h, Kubo et al. (1998b, p. 1) conclude that “growth eventually ceased.”
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Dislocation densities provide the evidence for large local stresses within the rim. Kubo et al.
(1998b, p. 4) report a dislocation density within the product rim of between 1013 and 1014 m−2;
they describe this density as being “comparable with that of β-phase [i.e., wadsleyite] deformed
experimentally.” We note that, although, according to Rubie et al. (1993, p. 318), preparing
samples from single crystals itself induces dislocations within a distance of ∼10–20 μm from the
surface, the resulting densities are about four orders of magnitude less than those seen by Kubo
et al. (1998b). It can be reasonably inferred, then, that the high dislocation densities observed in
the experiments of Kubo et al. (1998b) were generated within the sample by the transformation
itself.

This conclusion is supported by the effect of water on the microstructure. By hydrating the
pressure medium, Kubo et al. (1998a) showed that water strongly increases the interface speed in
the olivine–wadsleyite transformation. At fixed temperature and pressure (1,303 K and 13.5 GPa),
increasing the Mg(OH)2/NaCl ratio of the pressure medium caused an increase in the water
content of the wadsleyite rim, as measured1 in recovered samples. Both dislocation density and
structure were affected. At 200 ppmw of H2O to (Mg0.9Fe0.1)2SiO4 (olivine), dislocation density was
high (at ∼1014 m−2). The dislocations were tangled; according to Kubo et al. (1998a, p. 86), tangling
implies that the wadsleyite rim has undergone strain hardening (some creep, at least, must have
occurred). At 500 ppmw, dislocation density was an order of magnitude less, and the dislocations
were organized into subgrains; dislocation recovery had therefore occurred, thereby facilitating
creep and permitting more of the sample to transform. At 2,100 ppmw, the sample transformed
completely after 3 h (Kubo et al. 1998a, figure 2). These observations show that deviatoric stress
is generated within the sample by the transformation; that it impedes transformation; and that
the olivine–spinel transformation is sensitive to the presence of hydrogen: 200 ppmw of H2O
corresponds to about three H atoms for every thousand Si atoms.

In a significant addition to this work, Diedrich et al. (2009) and Du Frane et al. (2013) studied the
effect of water at lower concentrations. Their technique differed from that of Kubo et al. (1998a).
In the experiments of Kubo et al., water was absorbed into the rim from the pressure medium
during the experiment. In the more recent experiments of Diedrich et al. and Du Frane et al., the
sample was hydrated in a separate experiment, and the concentration was then measured to ensure
that water was uniformly distributed across the sample. This is significant because water is more
soluble in the rim phase (ringwoodite in the more recent experiments) than in the parent olivine,
and as the rim grows, water is drawn from the olivine core into the rim (see Diedrich et al. 2009,
figure 12).

We compare figure 4a of Du Frane et al. (2013) with figure 6 of Kubo et al. (1998b). For
the former, temperature, pressure, and bulk water content were 1,273 K, 18 GPa, and less than
6 ppmw (see Du Frane et al. 2013, table 1). For the latter, the corresponding values were 1,303 K,
13.5 GPa, and ∼200 ppmw. In both cases, rim growth appears to have ceased after ∼100 min,
and the experiments were continued for a sufficiently long time to show that growth had ceased.
In the experiments of Kubo et al., the final rim thickness was ∼50 μm; in that of Du Frane
et al., it was only ∼10 μm. However, the potential difference driving the transformation was over
10 times greater in the experiments of Du Frane et al. than in the experiments of Kubo et al.;
Mosenfelder et al. (2001, table 1) give values of the potential difference of the phases. (Owing
to the difference in experimental pressures, the phases in the rim were, of course, different in
the two experimental settings: The phase was wadsleyite in the experiments of Kubo et al. and

1This measurement was done using infrared spectroscopy. According to Karato (2008, p. 184), what is actually detected is the
absorption of light of a given wavelength by a sample containing OH bonds (in any form).
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ringwoodite in the experiments of Du Frane et al.) The difference suggests that nearly anhydrous
ringwoodite may be significantly stronger than hydrous wadsleyite. Water might, however, affect
the transformation, either by influencing the reaction rate at the phase interface or by weakening
the entire rim.

These alternatives are not mutually exclusive. As shown by Kohlstedt et al. (1996), water is
more soluble in the high-pressure phases, wadsleyite and ringwoodite, than in the parent olivine.
Consequently, as the rim grows, water is drawn from the olivine core into the rim, as shown in
figure 12 of Diedrich et al. (2009). As stated by Mosenfelder et al. (2001, p. 169) in a discussion
of the experiments of Kubo et al. (1998a), “partitioning of water into the wadsleyite may promote
hydrolytic weakening during the transformation, but may also result in depletion of hydrogen at
the interface . . . thus slowing the growth rate.”

In Section 7, we discuss the modeling of these experiments; to do so, we first need to treat
thermodynamics and kinetics in the presence of deviatoric stress.

5. THERMODYNAMICS AND KINETICS

We follow Paterson (1973, section D), Vaughan et al. (1984, p. 311), and Heidug & Lehner
(1985). To derive the condition for phase equilibrium, and to identify the potential to be used in
kinetic relations, these authors use only the interfacial balances of mass, momentum, and energy,
together with the second law of thermodynamics. Like the Cauchy equation of motion for bulk
phases, these results for the interface hold for an arbitrary continuum; application to a specific
material requires additional constitutive assumptions. For the special case of an elastic body,
equivalent results are derived by Gibbs (1928, pp. 184–196) and by Grinfeld (1981) using Gibbs’s
principle: At equilibrium, internal energy is minimized, subject to the constraint of constant
entropy. Formulating the corresponding minimization problem requires that the state variables
be identified; for this reason, the Gibbs approach is applicable only if the solid is elastic.

In these papers, the balance argument is presented either for a specific application (Paterson
1973, Vaughan et al. 1984) or for a particular class of transformation (in the case of Heidug &
Lehner 1985, coherent transformation). To free the result from those contexts, we rederive it.

Figure 4 shows the control volume used here. It is fixed in the interface, its faces tangent
to the interface have unit area, and its thickness δ normal to the interface is vanishingly small.

Mass flux J

y

x

Α Β

Figure 4
Control volume fixed in the interface.
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We use local Cartesian coordinates {x, y , z}, with x perpendicular to the interface and increasing
into the product B. We do not assume plane deformation. Specific energy (internal energy per
unit mass), specific entropy, heat flow per unit area in the x direction, temperature, velocity, and
specific volume are denoted, respectively, by E, S, q , T , v, and V = ρ−1. Temperature is assumed
to be continuous; surface energy, negligibly small. For the meaning of the functions E and S of
thermodynamic state, in an arbitrary continuum, see Truesdell & Toupin (1960, sections 240,
246, 258). By definition, the mass flux J from parent A to product B is non-negative.

Applied to the matter in the control volume, balances of mass, momentum, and total (internal
plus kinetic) energy require that

ρAvA
x = ρBvB

x = J,

[σi x]B
A = 0,

J[E]B
A = [q ]A

B + [viσi x]B
A.

(15a,b,c)

We interpret Equation 15. Rearranging Equation 15a, we see that vA
x = JV A and vB

x = JVB; con-
servation of mass requires the normal component vx of velocity to be discontinuous. Of course, the
component ux of displacement normal to the interface must be continuous. (Assuming otherwise
leads to a contradiction: If a void were to open, the pressure within it would drop to the equilibrium
vapor pressure, and transformation would cease.) Next, the balance of linear momentum requires
the net outflow of momentum to equal the resultant surface force, J[vi ]B

A = [σi x]B
A; in this form, the

momentum balance forms part of the Rankine–Hugoniot relations describing a shock wave. The
simplified form (Equation 15b) holds, provided that |v| is sufficiently small for the momentum flux
to be negligible. Last, the first law of thermodynamics requires that J[E + 1

2 v2]B
A = [q ]A

B + [viσi x]B
A :

Energy (internal and kinetic) flows out of the volume at a rate balancing the sum of the heat inflow
[q ]A

B and the power supplied by the total stress σi j . Equation 15c follows if v2 � 2E.
In the form of the Clausius inequality (Pippard 1957, p. 94; Truesdell & Toupin, section 258),

the second law of thermodynamics requires that

[q ]A
B ≤ JT [S]B

A. (16)

(Continuity of the absolute temperature T has been used.) In Equation 16, equality holds in the
limit as thermodynamic equilibrium is approached; the equation then amounts to the definition
of entropy.

Eliminating [q ]A
B between Equations 15c and 16 and then using Equation 15b, we obtain the

inequality relating the Helmholtz function F = E −TS, the mass flow rate J, and the stress power:

J[F ]B
A ≤ [vi ]B

Aσi x . (17)

To interpret Equation 17, first consider its implication for transformation occurring arbitrarily
close to equilibrium. In this case, the equality holds, and Equation 17 states that if a unit mass is
transferred from phase A to B, the increase in Helmholtz free energy (left side of Equation 17)
exactly balances the work done by the stress. Farther from equilibrium, the inequality applies in
Equation 17. Then the increase in F = E − TS is less because part of the stress power goes to
increasing S. This increase in entropy implies that the change of structure occurring across the
phase interface is thermodynamically irreversible, even for those transformations in which the
transformation strain itself is reversible, as is the case for the coherent transformations described
by Equation 2.

To proceed, we must specify the nature of the phase interface. At this point, Vaughan et al.
(1984) argue, in effect, that because the olivine–spinel transformation can be induced by applying
sufficient hydrostatic pressure at a fixed temperature, one may assume that the shear stress does
no work at the phase interface. We return to this assumption in the next section.
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With this assumption, the right side of Equation 17 simplifies to [vx]B
Aσxx = J[V ]B

Aσxx . The
mass balance (Equation 15a) has been used here. Equation 17 now requires the mass flux J across
the interface from A into B to satisfy

J[�]B
A ≤ 0, � = F − Vσ xx . (18a,b)

Equation 18 can be satisfied for an arbitrary transformation only if J is a function of [�]B
A. The

balance argument thus identifies the potential difference driving rebuilding of the lattice at the
interface: Because, as already stated above Equation 15, J ≥ 0, Equation 18a requires that �A ≥
�B. We see that mass flows from the phase having the higher potential to that having the lower
potential. The passage of matter across the interface releases the potential energy difference,
allowing it to be used in reconstructing the lattice.

The balance argument provides the interpretation of the potential difference [�]B
A = [F ]B

A −
σxx[V ]B

A. The term [F ]B
A represents the increase in stored strain energy (Helmholtz function) as

a unit mass crosses the interface; σxx[V ]B
A represents the work done on that mass in compressing

it from volume VA to volume VB. If the compression work exceeds the increase in stored energy,
then [�]B

A < 0, and mass is converted from A to B. For a hydrostatic stress state, σxx = −p ; �

then reduces to the usual Gibbs function (free energy).
General principles require the mass flux J across the interface to be a function of [�]B

A, but do
not determine the form of that function. Vaughan et al. (1984) assume the functional form to be
the same as that for a hydrostatic stress state; when the potential difference is small compared with
the thermal energy, that expression (Turnbull 1956, equation 10.1) can be linearized to give the
following (Vaughan et al. 1984, equation 3c):

J = −λ[�]B
A. (19)

The (positive) rate constant λ depends on T , p , and water concentration; it is a measured quantity,
as discussed by Mosenfelder et al. (2001).

In the argument of Vaughan et al. (1984), the only assumption is that the shear stress does
no work at the phase interface if the transformation of a sample (possibly a polycrystal) can be
induced by purely hydrostatic loading.

6. INTERFACES: COHERENT AND INCOHERENT

In the previous section, we followed Vaughan et al. (1984) in assuming that the shear stress
vanishes at the interface. As noted in the discussion of the mass balance (Equation 15a), the normal
component of the displacement vector u must be continuous across the interface, but there is no
such constraint on the component of u tangent to the interface. There are two extremes: In
continuum mechanics, an interface between phases of identical chemical composition is called
coherent if the vector u is continuous across it and incoherent if the shear stress vanishes on it
(see, e.g, Grinfeld 1981, Truskinovskiy 1984a). In crystallography, the same terms are used in
what seems, initially, to be a different sense: As described by, e.g., Christian (1965, section 38),
a coherent interface is defined crystallographically as being one across which lattice planes are
continuous; an incoherent interface separates phases having no crystallographic relation. Olson
& Cohen (1979, p. 1908) argue that the definitions of coherence are consistent; as for the concept
of an incoherent interface, they trace it to the work of Nabarro (1940) on precipitation of a
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particle of pure metal within the interior of its parent alloy.2 Because there is no direct evidence
that the shear stress vanishes on an incoherent interface, we summarize Nabarro’s argument
here.

Assuming that elasticity is isotropic and that the lattices of the alloy and the precipitate are
identical, so that only change in volume but not shape is involved, Nabarro (1940) reasons as
follows: (a) For a coherent interface,3 strain energy is independent of precipitate shape if the shear
moduli of the precipitate and the parent are equal; (b) a sphere of precipitate cannot form because
its strain energy typically exceeds the difference in chemical free energy driving precipitation;
(c) after considering (and excluding) other possible explanations, Nabarro (p. 530) concludes “the
strain can only be effectively released by allowing the precipitate to break away, that is by allowing
its lattice to become discontinuous with that of the matrix . . . . The particle recrystallizes in such a
way that the shear strain in it vanishes, and only a uniform compression remains.” Nabarro (p. 523)
gives a physical argument showing that growth of the precipitate particle is accomplished with the
minimum increase in strain energy if the shear stress at the interface vanishes.

By extending an argument given by Gibbs (1928, p. 184) in his treatment of the thermodynamic
equilibrium of an elastic body in contact with a fluid, Grinfeld (1981) complements the physical
argument of Nabarro (1940). Following Gibbs (equation 354), Grinfeld assumes only that, in an
elastic body, strain energy per unit volume is uniquely determined by the entropy per unit volume
and the components of the deformation gradient. To impose the Gibbs condition that in the state
of thermodynamic equilibrium, strain energy is minimized subject to the constraint of fixed total
entropy, Grinfeld defines an incoherent interface as being one on which the only constraint is that
imposed by mass conservation (as in Equation 15a). Using standard arguments from variational
calculus, Grinfeld proves that, at equilibrium, the shear stress indeed vanishes on an incoherent
interface (see Grinfeld 1981, equation 2.5). Although his result confirms the physical argument
given by Nabarro, both arguments are based on elasticity, and both apply at equilibrium. Nothing
in either argument excludes a constitutive equation such as that used to describe grain boundary
sliding; in that equation, shear stress at the interface is proportional to the jump in tangential
velocity across the interface. Ashby (1972, section 3.2) gives an atomistic model leading to that
constitutive relation for a high-angle grain boundary; Christian (1965, p. 332) notes the analogy
between a high-angle grain boundary and an incoherent interface.

Although Bos et al. (2005) and Mishin et al. (2010) describe recent work in atomistic modeling
of interfaces, I do not know of any attempts to use simulations to test the physical arguments of
Nabarro (1940).

7. COUPLING OF LOCAL DEFORMATION TO KINETICS

Motivated by the observation that, in single-crystal tin, melt nuclei first appear when the temper-
ature exceeds by 1–2 K the melting temperature in polycrystalline tin, Lifshitz & Gulida (1952)
analyze the coupling between thermodynamics and deformation caused by volume change. In
their work, melt is assumed to nucleate as an isolated sphere with a given pressure at infinity; using
a composite sphere model, Gulida & Lifshitz (1952) examine the effect of the outer boundary
condition, i.e., fixed volume versus fixed pressure.

2Lee & Johnson (1978, p. 542) state that “precipitate is stressed in a purely hydrostatic fashion along the precipitate–matric
interface.” Also, according to Lee et al. (2010, p. 441), “an incoherent precipitate is assumed to be a particle whose interface
can support the normal stress but no shear stress.”
3The words of Nabarro (p. 519) are, “if the lattice of the precipitate remains continuous with that of the matrix.”
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For the olivine–spinel transformation, the analogous problem is solved by Truskinovskiy
(1984b) and Morris (2014). Both authors use a constitutive equation equivalent to Equation 2
and assume that the phases occupy a composite sphere. The sample of parent A is initially at
uniform pressure p0; in the analysis of Morris, the pressure applied to the outer surface of the
sample remains at the same constant value p0, but Truskinovskiy takes the volume of the sample to
remain constant as the sample transforms. The configurations also differ: Whereas Truskinovskiy
treats growth of a spherical core of product, Morris studies growth of a product rim on a sphere.
Because Equation 2 describes a transformation for which the strain is reversible and because the
assumption of spherical symmetry implies that the displacement is purely radial, that model does
not include the distinction between coherent and incoherent interfaces. This limitation is dis-
cussed in the next section. Here, we summarize the properties of the model: Because Equation 2
describes transformations in which the strain is reversible, growth of a core and growth of a rim
are equivalent processes if the applied pressure is fixed; within a certain pressure range, a phase
can exist metastably; and outside that range, transformation occurs rapidly, on a single timescale
set by interface kinetics. The properties described here are obtained by calculating [�] and then
equating the rate of mass conversion J to the rate at which the mass of B in the sample increases
(Morris 2014, 2017). Properties of the equilibria are obtained by setting [�]B

A = 0; the result is
an expression for [G0]B

A = GB
0 − GA

0 , i.e., the difference between the Gibbs function (free energy)
of the phases in the hydrostatic initial state. (The coexistence pressure p̄ determined from the
Clausius–Clapeyron relation is, as usual, the value of p0 for which [G0]B

A = 0.)
These properties are deduced from the model by analysis, but are explained here in physical

terms.

7.1. Equivalence of Rim and Core Growth

Figure 5a,b shows the product B following nucleation; in Figure 5b, rapid nucleation on the
sample surface has produced a continuous rim of the type seen in the experiments discussed in
Section 4. In Figure 5a,b, the volume fraction of phase B is vanishingly small. For the configuration
shown in Figure 5a, the phases are in equilibrium across their interface if p0 is adjusted so that

[G0]B
A = −

1
2 V 0θ

2
0

κB + 3
4 μ−1

A

. (20)

For further details on this expression, see Morris (2017, equation 21). Truskinovskiy (1984b,
equation 6) gives an equivalent result in terms of p0; also, Morris (2014, equation 27) gives the
result for the special case of incompressible phases. For the configuration shown in Figure 5b,
the corresponding expression is obtained by replacing μA in Equation 20 by μB.

According to Equation 20, for the equilibrium in the configuration shown in Figure 5a, the
Gibbs free energy of phase B in the initial hydrostatic state must be less than that of phase A
by an amount depending on the rigidity μA of A; the compressibility κB of the nucleus; the
mean specific volume V 0 = 1

2 (V A
0 + V B

0 ); and the fractional difference θ0 in specific volume,
θ0 = (V B

0 − V A
0 )/V A

0 . The subscript 0 denotes a quantity evaluated at the reference pressure p0.
Owing to the spherical symmetry, the mean stress relation (Hill 1963, p. 362) requires that the
pressure within the parent phase approach the pressure p0 applied to the sample surface because,
for either configuration, the volume fraction of the product phase is vanishingly small. As a result,
the compressibility of the parent phase does not enter into Equation 20. By contrast, because (for
spherical symmetry) the deviatoric strain vanishes within the central sphere, independent of the
phase occupying it, only the rigidity of the phase within the rim enters into Equation 20. For
the configuration in Figure 5a, these two principles explain why analysis yields the expression
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A
Applied pressure p0

B
A

B

A

B

a c

b d

Β

A

Figure 5
Trivial dependence on configuration of the conditions for A and B to coexist in equilibrium. (a,b)
Configurations in which the volume fraction of product B is vanishingly small: fB → 0. (c,d ) Configurations
in which fB → 1. As discussed in the text, if B is taken as the dense, high-pressure phase, p0 must decrease
from left to right for the equilibria shown here to exist.

for Equation 20 in which κA and μB do not appear; they also explain why analysis of rim growth
(Figure 5b) yields an expression differing from Equation 20 only in that μA is replaced by μB.

7.2. Metastability

Figure 5c shows the end state in which a vanishingly thin rim of parent A is in equilibrium with
product B across their interface. This equilibrium corresponds to

[G0]B
A =

1
2 V 0θ

2
0

κA + 3
4 μ−1

A

= −[G0]A
B . (21a,b)

According to Equation 21a, for this particular configuration, [G0]B
A > 0. Because we are always

considering A to be the low-pressure phase, [V 0]B
A < 0, so that [G0]B

A > 0 corresponds to the
applied pressure p0 being less than the Clapeyron pressure p̄ . To interpret this result, we recall
that our model (Equation 2) describes a process in which the strains are reversible. Consequently,
one could not tell (even by examining microstructure) whether the material within the thin rim of
A had never been transformed or, instead, whether it was newly generated low-pressure product.
But in the latter case, we see from the logic used to explain Equation 20 that [G0]A

B must be given
by Equation 21b.

According to Equation 2, for the configuration shown in Figure 5a, in which A occupies the
rim, the A–B transformation occurs over a range of applied pressures p0, so that

−
1
2 V 0θ

2
0

κB + 3
4 μ−1

A

≤ [G0]B
A ≤

1
2 V 0θ

2
0

κA + 3
4 μ−1

A

. (22a,b)
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In Figure 5a, Equation 22a corresponds to sample density ρ = ρA and to p0 > p̄ ; in Figure 5b,
Equation 22b corresponds to ρ = ρB and to p0 < p̄ . Analysis shows that the model admits
a solution in which A and B coexist within this pressure range; according to this solution, the
volume fraction fB of the dense high-pressure product increases as p0 is decreased (not increased).
This behavior is consistent with the end states described by Equation 22. Because the density of
the sample as a whole increases with fB, i.e., from left to right in Figure 5, whereas p0 decreases
from left to right, these equilibria existing for 0 < fB < 1 correspond to a composite material
whose density decreases with increasing pressure. The equilibria are unstable; the composite
would separate into regions either of pure phase A or of pure phase B were a sound wave to
pass through it. The constitutive relation (Equation 2) describes a material for which there exists
a range of pressures in which either phase A or phase B can occupy the entire sample; if that
range were entered by increasing p0, phase A would persist, and otherwise phase B. Within that
range, A and B are said to exist metastably. This effect was first predicted by Gulida & Lifshitz
(1952).

7.3. Behavior Outside the Metastable Range

If the applied pressure is such that [G0]B
A lies outside the range given by Equation 22, the sample

transforms completely at a rate determined by interface kinetics (Morris 2017). It is interesting to
compare the behavior found in the experiments of Du Frane et al. (2013) on anhydrous samples
(<6 ppmw water) with this prediction. According to figure 4a of Du Frane et al. (2013), for samples
at 18 GPa and 1,273 K, rim thickness grew to about 10 μm within 1 h, but then remained at about
that value for up to 6 h (the longest time for which the authors consider their experiments to be
unaffected by gain of water). From table 1 of Mosenfelder et al. (2001), we find that at an applied
pressure of p0 = 18 GPa at 1,273 K, the difference in the Gibbs free energies for olivine (phase A)
and ringwoodite (phase B) is [G0]B

A = −14 kJ/mol (with an uncertainty of 2 kJ/mol). Using, for the
ringwoodite rim, μB = 126 GPa, KB = 247 GPa, and ρB = 3.93 Mg/m3 (Higo et al. 2008) and, for
the olivine core, KA = 192 KPa and ρA = 3.68 Mg/m3 (Núñez-Valdez et al. 2013), we find that
|θ0| = −0.067 and V 0 = 38.6 cm3/mol. By Equation 22b, with A and B inverted because B now
occupies the rim, the sample should convert completely on a timescale determined by interface
kinetics if [G0]B

A ≤ −8.63 kJ/mol. Because the bound in Equation 22b varies as θ2
0 , we note that

table 1 of Mosenfelder et al. (2001) does not include values of θ0. Section 2.3 of Mosenfelder et al.
(2001), however, refers to a value of |θ0| ∼ 0.08 (the notation is theirs). For that value, the bound
in Equation 22b becomes −12 kJ/mol. For either value of θ0, the model in Equation 2 predicts that
the sample should have transformed completely; the thin and apparently stationary rim observed
by Du Frane et al. should not occur.

Although the model is an idealization, the discrepancy at least suggests that further experiments
on nominally anhydrous samples at the same temperature but at higher pressure would be of
interest. Morris (2017) suggests that the slowing of growth in the anhydrous experiments of Du
Frane et al. (2013) could be explained if the rate constant λ decreases in time. Because water is more
soluble in ringwoodite than in olivine, the growing rim absorbs water, as shown experimentally by
Diedrich et al. (2009); if water is essential to the reconstructive process occurring at the interface,
the small amount of water present in the nominally anhydrous samples could be rapidly transferred
to the ringwoodite, causing growth to cease.

Peslier & Bizimis (2015) argue that unmetasomatized oceanic lithosphere on the Pacific plate
contains less than 50 ppmw of water. This raises the possibility that diffusion of water, rather than
heat conduction or rheology, might determine the structure of the metastable wedge. Experiments
on the effect of water contents in the range 5–50 ppmw would be of interest.
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8. INCOHERENT INTERFACE

As the fourth item in their list of properties exhibited by the olivine–spinel transformation in
Mg2GeO4, under quasi-hydrostatic stress (stress difference 0.28 GPa), Vaughan et al. (1982) state
that spinel grows preferentially in the direction of maximum compressive applied stress. However,
at least for the special case of growth of a spherically symmetric rim, the constitutive relation
(Equation 2) leads to the prediction that the maximum deviatoric radial strain occurs immediately
on the product side of the phase interface (Morris 2014, p. 131). If the product behaved elastically,
the corresponding stress would be about an order of magnitude larger than the applied deviatoric
stress described by Vaughan et al. (1982). It is not obvious how growth could be correlated with
the applied stress field in that case.

This observation by itself suggests that Equation 2 does not correctly describe the reconstruc-
tive mechanism occurring when olivine transforms to its spinel phase under quasi-hydrostatic
stress. Further, as described in Section 6, the physical picture of Nabarro (1940) implies that,
across an incoherent interface of the type observed in the experiments of Vaughan et al. (1982),
there is recrystallization, i.e., reconstruction of the lattice across the phase interface. The example
of spherically symmetric growth is now particularly instructive: Because, in that problem, the
deviatoric strain is zero within the central sphere, the large deviatoric strain occurring immedi-
ately on the product side of the interface is generated entirely within the interface itself (Morris
2014, Section 7.1). Once that aspect of the process is recognized, it becomes difficult to believe
that the constitutive relationship (Equation 2) can be applicable, even with the addition of creep.
Morris (2017) proposes instead that, if the rim behaves elastically, the increment in deviatoric
strain subsequent to transformation should be related to the increment in deviatoric stress.

The new constitutive relation is consistent with the observation of Vaughan et al. (1982):
Because the deviatoric stress at the interface now vanishes within the product, crystal growth is
permitted to respond to whatever external deviatoric stress is present there. Further, when the
new constitutive relation is applied to the problem of rim growth, instead of a pressure range in
which transformation is prevented (see Equation 22), for any value of p0 > p̄ , some transformation
occurs. The rim thickness grows to approach a constant value; this value increases with increasing
p0 − p̄ . The new relation is, at least qualitatively, consistent with the observations of Kubo et al.
(1998b); however, when applied to the experiments of Du Frane et al. (2013) on nominally anhy-
drous samples, it predicts rim thickness about an order of magnitude larger than those observed.
This again suggests that, for these experiments, water plays a significant part in controlling rim
growth.

Lastly, we note that if the lattice is in fact reconstructed by the transformation, under suit-
able conditions, dislocation density might actually decrease, rather than increase, as a result of
transformation. This idea appears to be experimentally testable.
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