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The Accuracy of Survival Time Prediction for Patients
with Glioma Is Improved by Measuring Mitotic Spindle
Checkpoint Gene Expression
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Abstract

Identification of gene expression changes that improve prediction of survival time across all glioma grades would be
clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples
representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript
changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38
additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major
mitotic spindle assembly checkpoint (SAC) genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) significantly
correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B
expression was highly correlated with survival time (p,0.0001), and significantly outperformed all other measured
parameters, including two standards; WHO grade and MIB-1 (Ki-67) labeling index. Measurement of the expression levels of
a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time.
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Introduction

Glioma tumors are the most common of central nervous system

(CNS) neoplasms. The median survival times for low grade (stage

I–II) patients average 6–8 years [1,2] but are only about 3 and 1

year for patients with anaplastic astrocytoma (WHO grade III) and

glioblastoma (WHO grade IV), respectively [3,4,5].

In a widely used measure, the level of Ki-67 protein is

determined using an antibody called MIB-1 in a labeling index

(MIB Li) that correlates with aggression and survival time in

gliomas [6,7,8,9,10] and many other cancers [11,12,13,14,15,16].

Furthermore, one report indicated that RNA expression of Ki-67

correlated with survival time better than the antibody test, MIB Li,

in colorectal carcinoma [17].

In this study, we looked at glioma grades II, III, and IV to

uncover additional genes whose RNA expression correlated with

grade and survival time. First, we used the statistical analysis suite

WebArrayDB (http://www.WebArrayDB.org) [18] to analyze

available microarray datasets of glioma RNA expression from

various platforms that had already been used to identify hundreds

of significant correlations of RNA levels with increasing glioma

grade [19,20,21], including data stored at the Cancer Genome

Anatomy Project (http://cgap.nci.nih.gov/Genes).

We found eight genes involved in the mitotic spindle assembly

checkpoint (SAC) which were positively and reliably correlated

with grade. SAC proteins are used in chromosome segregation

during mitosis [22,23,24]. These genes were of interest because an

increase in their expression likely implied increased cell division, a

phenotype with the potential to correlate with survival in almost

any glioma. Crucially, a few of these genes outperformed the

current standard for proliferation measurement, Ki-67 (a gene

expressed at the same time in the cell cycle [25,26,27,28]),

measured either using MIB-1 antibody as a labeling index (MIB

Li) or measured at the RNA expression level. Furthermore, these

genes had not previously been studied for their behavior in glioma.

We used 38 additional glioma samples to further evaluate the

association of transcript levels of eight SAC genes with glioma

grade and patient survival time.

Materials and Methods

Patient samples
Forty four samples, including 38 human glioma specimens (12

for grade II, 13 for grade III, 13 for grade IV) and 6 control

samples, were collected from 2003 to 2005 by the Department of

Neurosurgery, 1st Affiliated Hospital of Jilin University, China.
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Tumor tissues were from newly-diagnosed glioma patients, who

had received no therapy before sample collection. Samples were

collected immediately after surgical resection, snap frozen, and

stored at 280uC. Survival time was defined as the period from the

date of surgery to the date of death. All surviving patients were

followed up for at least five years. All histological diagnoses were

made on formalin fixed, paraffin-embedded H&E sections and Ki-

67 immunostain, and were categorized according to the 2007

WHO classification, again [29]. Six control samples (normal brain)

were obtained from patients undergoing surgery for brain trauma

(n = 4) and epilepsy (n = 2). They were reviewed to verify the

absence of tumor.

Ethics statement
Informed written consent was obtained from all patients after an

explanation of the study. Samples were collected only when

necessary as part of treatment. Only samples in excess of what was

needed for pathological assessment were used for research. All

samples were coded and handled anonymously. Use of patient

material was approved by the Institutional Review Board of Jilin

University.

Cell proliferation evaluated using MIB Li and Mitotic
Index

Slides cut from each glioma used in the study were evaluated by

two experienced pathologists independently using direct light

microscopy. The measurement of Ki-67using the MIB Labeling

index (MIB Li) [30] was calculated by determining the percentage

of neoplastic cells that were immunopositive. More than 1000 cells

were counted in ten separate fields at 4006magnification for each

specimen. Only strong nuclear stain was regarded as positive, and

weak nuclear or cytoplasmic stain was regarded as negative. The

mitotic index (MI) was counted in HE stained slides using scores

from 0 to 3, 0: no mitotic figures; 1: #2 mitotic figures/field; 2: (3–

4) mitotic figures/field; 3: $5 mitotic figures/field [6].

RNA isolation and quality evaluation
Total RNA was isolated using TRIzol Reagent (Invitrogen,

CA), following the manufacturer’s instructions. The concentration

and purity of isolated RNAs were assessed by absorbance (A)

readings on a UV spectrophotometer (Hitachi) at 260 and

280 nm, and electrophoresis on a Bio-Rad Experion automated

electrophoresis system(Bio-Rad Laboratories, Hercules, CA). The

mean ratio value of A260/280 for all RNA samples was

1.80(60.10); the 28S/18S ratio of samples$1.5, and no evidence

of ribosomal peak degradation was observed.

Real-time quantitative reverse transcription PCR
Exactly 500 ng total RNA from each sample was used to

generate cDNA using SuperScript II Reverse Transcriptase

(Invitrogen, Carlsbad, CA). Pairs of PCR primers of 18 to 25 bp

in length were designed using AlleleID Version 7.0 software

(Premierbiosoft, Palo Alto, CA, Information S1). Real-time

quantitative PCR (qPCR) was then carried out using an ABI Prism

7900 Sequence Detection System (Applied Biosystems, Carlsbad,

CA). A quantity of 15 ng of cDNA was used in a 25 ml PCR

reaction containing the appropriate primers and 16SYBR Green

PCR Super mix (BioPioneer, San Diego, CA). Parallel experi-

ments were done using an 18S and HPRT1 primer set [31]. Each

sample was run in triplicate, and each PCR experiment included

one no-template negative control. The Pfaffl [32] method was used

to determine the relative ratio of gene expression for each gene,

corrected using expression of two controls by incorporating a

normalization factor = (quant[18S]*quant[HPRT1])1/2, and refer-

enced to non-neoplasic brain tissues. All primer pairs used in this

study had.90% amplification efficiency (Information S1).

Statistical analysis of qPCR data
The qPCR CT values were used to calculate the fold changes of

RNA abundance for SAC genes normalized to the reference genes

(18S+HPRT1). Before fitting to regression models, the adjusted

fold change values for each gene were standardized by subtracting

the mean of all values obtained from all samples for each gene and

then divided by their standard deviation.

Differential analysis
For each gene, the differences in expression levels across

different WHO grades were tested using one-way ANOVA, and

further pair-wise comparisons were made through a simultaneous

interface using general parametric models [33].

Relationship of SAC genes and WHO grades
Linear models were used to explore the relationship between

SAC genes and WHO grade. The WHO grades were mapped to

numbers using 1 for grade II, 2 for grade III, and 3 for grade IV.

These numbers for grades were log-transformed before fitting to

the models. Models were fitted to data using leave-one-out cross-

validation, i.e., to predict the grade for each of the 38 samples,

models were trained with data from the other 37samples. All

possible combinations of the eight SAC genes were tested to obtain

the models with the most accurate predictions of WHO grade.

Cox regression analysis
Cox proportional hazards regression was used to model the

relationship between survival and all available parameters,

including age, sex, WHO grade, tumor diameter, and the level

of mitotic checkpoint gene mRNA expression. The optimized

model was established from all possible combinations of all

variables and factors according to the Akaike information criterion

(AIC) [34]. Cox regression was performed using the survival

package for the R software environment. Overall survival curves

(from diagnosis to death) were obtained using the Kaplan-Meier

method. In each survival curve, maximally selected log-rank

statistics [35] was used to determine the cutoff-point, an expression

value which separates the low-expression samples from the high-

expression samples. A p value of less than 0.05 was considered

statistically significant.

Prediction of survival time based on SAC genes
34 samples of known survival time (in months) were used to

build the linear model for prediction of survival time by SAC

genes. Four samples were excluded due to having a last doctor visit

but not an exact date of death. The model that best fit the data was

selected from all possible combinations using least squares

estimates (LSE).

Results

Genes chosen for qPCR assays
In order to select genes of potential interest, four independent

microarray datasets [19,20,36,37] were used (Table 1). These

datasets consisted, in total, of 8normal control, 29 grade II, 116

grade III and 618 grade IV gliomas.

Data were analyzed on the WebArrayDB cross-platform

analysis suite [18] using an ANCOVA model. Genes were sorted

in ascending order according to the p values for WHO grade, after

Checkpoint Gene Expression Predicts Survival Time
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taking into account gender and patient age as variables. The2000

genes that correlated most significantly with grade were clustered

using DAVID [38,39] and KEGG [39]. Among these most highly

ranked genes were at least 25genes associated with cell cycle; for

example, TGFb, MDM2, Smc3, p300, PTTG, HDAC, Cdc6,

Cdc14, CDC25A, GADD45, Kip1,2, ORCs, ATMATR, CDK2,

CycA, CycB, CycD, MCMs, Wee1, and including four genes that

are specifically related to mitotic spindle assembly; BUB1, BUB1B,

CDC20, and TTK. Other highly ranked genes included RRM2,

FOXM1, p53, and TOP2A. This observation was expected

because cancer is a proliferative disease. Expression of these genes

is of particular practical interest as markers of progression because

it may be altered in most tumors, regardless of the causative

mutations. Such markers might be quite reliable for staging tumors

despite otherwise massive tumor heterogeneity.

The SAC pathway had not been investigated previously for

biomarkers of progression in glioma. Thus, we focused our

attention on the SAC genes in this study. We added four

additional genes, CENPE, BUB3, MAD1L1 and MAD2L1, which

are part of the SAC pathway and highly correlated with glioma

grade but were not among the 2000 top genes correlating with

grade identified in the microarray survey (Table 2).

RNA expression of SAC genes increases with grade
The expression levels of eight SAC genes were examined in 38

human glioma samples and 6 normal brain tissues by qPCR

(Information S2 and S3). The 44 samples were classified into

four groups: normal, grade II, grade III, and grade IV glioma. For

each of the selected genes, the differences in expression levels

across the four groups were evaluated using ANOVA. The

significance was adjusted for the false discovery (Table 3). Not all

pairs in this table are significant because the distance between

sample classes is different. Normal and grade IV have a large

biological difference, and we can see very significant changes for

many genes, whereas the difference between normal and grade II

is subtle and we find only two genes that rise to the highest level of

significance.

Overall, expression of the eight SAC genes showed a significant

increase with increasing WHO grades (Table 3). In contrast to

normal samples, overexpression is observed for all genes in grade

IV and for most genes, except CENPE, MAD1L1 and MAD2L1,

in grade III (p,0.05). BUB1 and TTK overexpression in grade II

reached statistical significance (p,0.05). Further research may

indicate if these two genes have potential utility in classifying early

stage tumors.

In pairwise comparisons of glioma samples, two genes (BUB1B,

CDC20) showed significant difference between grade II and grade

IV (p,0.05), while expression in grade III does not significantly

differ from grade II or grade IV for most genes. This might be

explained by the small sample size. The only two exceptions are

CDC20 and BUB1B, which changed significantly between all

Table 1. Independent glioma RNA expression microarray
datasets.

# of cases Sample Type GEO ID
Affymetrix
Platform

85 Tumor tissue
(frozen)

GSE4412 HG-U133A

265 & 7 controls Tumor tissue
(frozen)

GSE16011 HG-U133Plus2.0

15 & 1 control Tumor tissue
(frozen)

GSE19728 HG-U133Plus2.0

398 Tumor tissue
(frozen)

TCGA_GBM HT_HG-U133A

doi:10.1371/journal.pone.0025631.t001

Table 2. Correlation of SAC gene expression with glioma grade using four independent Affymetrix GeneChip datasets.

Gene symbol synonyms
Sequence
Accession ID

Affymetrix
Probe Set ID

Gene rank. 22277
probe sets p value* Description

BUB1 BUB1A/BUB1L/hBUB1 NM_004336 209642_at 1146 1.07E-26 BUB1 budding uninhibited
by benzimidazoles 1
homolog

BUB1B BUBR1/hBUBR1/SSK1 NM_001211 203755_at 1629 2.05E-27 BUB1 budding uninhibited
by benzimidazoles 1
homolog beta

BUB3 BUB3L/hBUB3 NM_004725 201456_s_at 6467 2.75E-09 BUB3 budding uninhibited
by benzimidazoles 3
homolog

CDC20 CDC20A/p55CDC NM_001255 205046_at 99 5.24E-27 Cell division cycle 20
homolog

CENPE KIF10 NM_001813 202870_s_at 3122 7.12E-44 Centromer protein E,
312 kDa

MAD1L1 MAD1/PIG9 NM_003550 204857_at 2469 1.68E-07 MAD1 mitotic arrest
deficient-like 1

MAD2L1 MAD2/HSMAD2 NM_002358 203362_s_at 8813 4.22E-19 MAD2 mitotic arrest
deficient-like 1

TTK MSP1/MPS1L1 NM_003318 204822_at 820 1.29E-26 TTK protein kinase

Ki-67 Mki67 NM_002417 212022_at 3820 1.28E-17 antigen identified by
monoclonal antibody Ki-
67

*p value calculated using ANCOVA.
doi:10.1371/journal.pone.0025631.t002

Checkpoint Gene Expression Predicts Survival Time
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grades (p,0.05). To ensure the sample of patients was of adequate

size, random groups of only half of the patient samples were tested

and all statistically significant observations about the top three

genes were supported (data not shown).

We also measuredKi-67 RNA levels because the corresponding

protein is currently used to determine a labeling index for glioma

[6,7,8,9,10,11,12,13,14,15,16] and previous work indicated the

RNA might be a better prognosticator [17]. Interestingly, Ki-67

RNA level was outperformed by BUB1B and CDC20, overall, and

by BUB1 and TTK when applied to grade II gliomas (Table 3).

Identification of WHO grades by SAC genes
Expression of six SAC genes, BUB1, BUB1B, CDC20, CENPE,

MAD1L1 and TTK were found to be significantly positively

correlated with WHO grades of glioma patients (p,0.01,

Table 3). RNA expression levels of both CDC20 and BUB1B

had a Pearson’s correlation coefficient with grade of higher than

0.8. After screening all possible combinations of eight SAC genes,

we formulated a four-gene model with the highest accuracy in

identification of the WHO grades of gliomas (Information S4):

Grade~floor 0:5ð

ze0:6130z0:1273�BUB1Bz0:2878�CDC20z0:0587�MAD1L1{0:0297�TTK
� ð1Þ

In which a value of 1 predicts grade II, 2 predicts grade III, and

3 or a greater value predicts grade IV. The values for BUB1B,

CDC20, MAD1 L1 and TTK are normalized expression ratios

(see Materials and Methods). BUB1B and CDC20 are the most

important factors in this model and they have a much bigger

weight than MAD2L1. Among the 38 patients used for regression,

34 (89.4%) are classified as expected by this model, and four

patients were classified to grades adjacent to observed grades.

Using leave-one-out cross-validation, 34 samples were classified in

the same grade as estimated by histological examinations by the

pathologists, giving 89.4% accuracy, and the other 4 predictions

were all adjacent to observed grades (Information S5).

CDC20 was the only gene included in all of these 35combinations

while the second most frequently occurring gene, BUB1B, was

found in 29 of these combinations. This highlights the possibly

useful role of CDC20 and BUB1B in estimating grades of glioma

samples.

Multivariate analysis of the correlation between
prognostic parameters and survival time

Cox multivariate proportional hazards models with different

combinations of factors were obtained for the 38 patient samples

where survival time was known (Table 4).

In the first model in Table 4, which excluded SAC gene

expression data, WHO grade were significantly correlated with

survival time, but age and sex were not. In models that included

SAC gene expression (model 2 and model 3) grades no longer

added information and only BUB1B was identified as a significant

factor with the highest risk ratio (p,0.01). Indeed, even Ki-67

protein as measured by the labeling index (MIB Li) and mitotic

index (MI), which significantly correlate with survival time

(Information S6), did not add additional information when

SAC genes were included (model 2). In model 3 each combination

of factors is examined to determine the minimum number of

factors that capture the most information about survival time.

Only factors that add any information to the prediction are

retained. BUB1B dominated this regression, with small adjust-

ments from CDC20 and from MIB Li. Thus, it appears that

BUB1B is an independent prognostic factor for survival time.

Prediction of survival time using SAC gene expression
By applying linear regression to all possible gene combinations,

we obtained a four-gene combination with the minimal least

squares estimate (LSE, 34.96) in leave-one-out cross-validation:

BUB1, BUB1B, CENPE, and TTK (Information S7). The

regression equation for these patients is:

Survival months½ �~20:1184z2:4820 � BUB1

{10:8036 � BUB1B{3:0840 � CENPEz1:6618 � TTK
ð2Þ

The predicted months of survival closely matched the observed

values for most patients (Four-Gene Model in Figures 1, 2).

Coefficients used in cross-validation and prediction for each

sample is listed in Information S8. Among the four genes used in

this model, the coefficient for BUB1B was much higher than that

of the other genes, which consequently contributed little additional

information.

BUB1B is the only gene that appeared in all gene combinations

that can be used to make survival time predictions with the lowest

Table 3. Validation of the mitotic checkpoint genes in glioma tumors by qPCR.

Gene P (ANOVA) III/II IV/II IV/III II/normal III/normal IV/normal

Fold p Fold p Fold p Fold p Fold p Fold p

BUB1 1.35E-06 0.39 1.00E+00 1.01 3.76E-01 0.62 1.00E+00 3.13 5.46E-04 3.53 1.32E-05 4.14 8.31E-07

BUB1B 4.02E-10 1.30 1.18E-03 2.11 9.18E-08 0.81 1.27E-01 0.75 2.43E-01 2.05 1.22E-05 2.86 1.11E-09

BUB3 2.08E-02 0.46 1.00E+00 0.38 9.94E-01 0.08 1.00E+00 1.18 2.39E-01 1.64 2.89E-02 1.56 2.62E-02

CDC20 1.66E-13 1.41 4.58E-07 2.14 3.59E-13 0.73 4.97E-02 0.43 3.95E-01 1.84 9.73E-08 2.58 2.17E-12

CENPE 5.78E-04 0.22 1.00E+00 1.28 6.46E-02 1.06 2.57E-01 1.14 2.43E-01 1.36 6.16E-02 2.42 3.93E-04

MAD1L1 8.76E-03 0.12 1.00E+00 1.38 1.87E-01 1.26 3.29E-01 0.99 5.01E-01 1.10 3.39E-01 2.37 8.85E-03

MAD2L1 2.08E-02 0.44 1.00E+00 1.27 2.22E-01 0.83 1.00E+00 0.87 5.81E-01 1.31 2.16E-01 2.14 1.97E-02

TTK 4.80E-05 0.03 1.00E+00 0.38 9.94E-01 0.41 1.00E+00 2.13 1.07E-03 2.10 4.04E-04 2.51 6.66E-05

Ki-67 1.35E-06 1.07 1.05E-01 1.71 6.47E-04 0.64 8.49E-01 1.06 2.27E-01 2.12 3.92E-04 2.76 1.68E-06

p,0.05 are shown in bold. p values were adjusted with FDR.
doi:10.1371/journal.pone.0025631.t003

Checkpoint Gene Expression Predicts Survival Time
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Table 4. Multivariate analysis on survival time.

Model Parameter Risk ratio 95% CI p

1. Cox regression without genes Sex (male vs female) 0.35 0.60–2.63 0.56

Age 0.53 0.98–1.04 0.47

WHO (Grade III vs Grade II) 1.08 0.19–1.03 0.59

WHO (Grade IV vs Grade II) 3.56 0.07–0.49 0.01*

2. Cox regression with genes Sex (male vs female) 0.57 0.19–1.72 0.32

Age 1.03 0.99–1.07 0.12

WHO (Grade III vs Grade II) 0.43 0.06–3.10 0.58

WHO (Grade IV vs Grade II) 0.19 0.01–2.79 0.23

BUB1 1.07 0.54–2.12 0.84

BUB1B 7.38 1.72–31.65 0.01*

BUB3 0.88 0.54–1.44 0.62

CDC20 0.60 0.15–2.32 0.46

CENPE 1.30 0.69–2.46 0.41

MAD1L1 0.73 0.32–1.64 0.44

MAD2L1 1.58 0.66–3.77 0.30

TTK 0.65 0.31–1.34 0.24

MIB Li (Ki-67 antibody) 1.08 0.98–1.21 0.13

MI 1.32 0.45–3.85 0.61

3. Optimized Cox regression BUB1B 10.98 2.87–17.10 1.90E-05*

CDC20 0.38 0.20–0.69 1.69E-03*

MIB Li (Ki-67 antibody) 1.57 1.02–1.14 4.72E-03*

Asterisk (*) for p,0.01, n = 38.
doi:10.1371/journal.pone.0025631.t004

Figure 1. Observed versus predicted survival times using the four gene model.
doi:10.1371/journal.pone.0025631.g001

Checkpoint Gene Expression Predicts Survival Time
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least square errors (LSE) (Information S9). Thus, we also fitted

BUB1B alone to a regression model:

Survival months½ �~20:119811:2606 � BUB1B ð3Þ

This single gene model obtains a LSE of 45.64 in cross-

validation, and the plots of predicted versus observed survival time

look very similar to the plots using the four-gene model in equation

(2) (Figure 2).

Kaplan-Meier survival curves for BUB1B and MIB Li
In the analysis presented in Figure 3, six charts are plotted

using grade II, grade III, and grade IV with separate curves for

low BUB1B levels, high BUB1B levels, low MIB Li and high MIB

Li. The cutoffs points within each grade are selected to maximize

discrimination in each set of data. If there were no correlation

between BUB1B expression or MIB Li and survival time then no

significant cutoff would be found. All BUB1B expression charts

display significantly different survival time between low expression

BUB1B samples and high expression BUB1B samples (p,0.01) in

three WHO grade. Thus, the expression level of BUB1B reveals

information on the survival probability for glioma patients beyond

that revealed by grade alone. In contrast, MIB Li showed little or

no significant difference for any grade and was outperformed by

BUB1B for all grades.

SAC protein levels increases with grade
The Human Protein Atlas (HPA, http://www.proteinatlas.org/)

collects information on proteins detected by antibodies in a wide

variety of tissue samples arranged as tissue microarrays, including

gliomas. The result of immunohistochemistry for antibodies

directed against seven of the SAC proteins in our study (all except

CENPE) are available for 11 grade III/IV glioma and three normal

brain cores in the HPA database. The level of staining by each

antibody was scored by board certified pathologists as: negative,

weak, moderate, or strong. Example images are shown in

Information S10. We translated the four different categories to

0, 1, 2, and 3 to permit analysis using a Wilcox rank sum test. The

demarcations of scoring categories are imprecise and subjective.

Nevertheless, antibody stains for proteinsBUB1, BUB1B, BUB3,

CDC20, and TTK were at significantly higher levels in high grade

glioma than in normal brain by this test (Table 5). This data is

consistent with the higher mRNA expression levels we observed in

both grade III and grade IV for these five genes compared to

normal brains. Antibody staining of two proteins, MAD1L1 and

MAD2L1, appeared to experience less increase with grade, which is

also consistent with our observation that for these two genes RNA

overexpression was significant relative to normal tissue only in grade

IV and not in grade III (Table 3).

Discussion

WHO grade of gliomas is currently the major indicator used for

prognosis and for treatment protocols. The 2007 WHO grading

system [29] uses histopathological characteristics such as brisk

mitotic activity (Ki-67: MIB Li) [40], increased cellularity,

necrosis, and frequent invasion of brain parenchyma to classify

gliomas into four broad grades. Sophisticated methods of assessing

survival based on other clinical parameters have also been

developed [41].

In combination with the current clinical methods, gene

expression profiles are potentially powerful predictors of survival

[19,20,21] with additional potential as markers for diagnosis, as a

guide to therapy, and even as potential therapeutic targets.

Genetic analyses over the past several years have defined the

major targets that are associated with the formation of glioma

including EGRF, PTEN, TP53, IDH1/2, CDKN2A, MGMT,

and others [42], which likely have downstream effects on other

genes to improve tumor survival. For example, p53 inhibits tumor

cell growth through the indirect regulation of CDC20, one of the

genes of interest in this report [43]. While the lesions involved in

causing progression in glioma may vary from patient to patient,

these changes likely converge on a few critical regulatory

pathways. Any expression changes in these common pathways

Figure 2. Scatter plots of observed and predicted survival times using leave-one-out cross-validation on 34 deceased glioma
patients.
doi:10.1371/journal.pone.0025631.g002
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could prove useful in prognosis because the changes may occur in

most tumors, regardless of the prime movers in disease progression

in any particular tumor.

We further investigated hundreds of microarray profiles of

glioma and a few normal brain tissues that had previously been

used successfully to predict survival time in gliomas [19,20,21].

Our goal was to identify a small subset of markers that could

reliably substitute for or improve uponKi-67 measurements using

MIB Li [6,7] or multigene expression profiles, and then to confirm

these markers on independent samples.

To identify pathways that might undergo changes in RNA

expression with increasing grade using the WebarrayDB cross-

platform analysis suite [18]. Among a number of different groups

of functionally related genes that correlated with grade, one group

contained genes associated with the spindle assembly checkpoint

(SAC). Importantly, if these genes were to be of potential clinical

utility, expression of at least two of these SAC genes appeared to

correlate better with grade than did Ki-67 RNA (Table 2). The

SAC is involved in accurate chromosome segregation between two

daughter cells during mitosis. There are already data in the

literature that suggest that SAC gene expression may be associated

with aggressiveness of cancers. Studies of malignant bladder

cancer and breast cancer suggested that increased mRNA levels of

mitotic checkpoint genes are correlated with tumor progression

[44,45]. A strong correlation between expression of BUB and

gastric cancer cell proliferation has been observed [46]. Combined

expression of BUB1B and PINK1 was the best predictor of overall

survival in adrenocortical tumors by microarray [47]. Many

immunohistochemistry investigations have shown that overexpres-

sion of BUBR1, the protein of BUB1B, significantly correlates with

higher histological grade, advanced pathological stage, and high

cell proliferation in different types of tumors, e.g. with tumor

recurrence and disease progression in bladder cancer [44]; with

deep invasion, lymph node metastasis, liver metastasis, and poor

prognosis in gastric cancer [48]; and with advanced stage, serous

histology and high grade in ovarian cancer [49]. On the other

hand, a lower level of BUBR1 correlated with low recurrence-free

survival rates in ovarian cancer [49] and aneuploidy in colorectal

cancer [50]. BUBR1 was used as an independent predictor for

poor prognosis in pancreatobiliary-type tumors by tissue micro-

array [51]. However, correlations of SAC gene expression with

aggressiveness have not been reported for glioma except for

CDC20 that has higher expression in glioblastoma than in low

grade glioma [52].

To validate the RNA expression changes in SAC genes in the

microarray data (Table 2), we performed qPCR analysis on RNA

from six additional normal brain samples and 38 additional

gliomas that had survival time data. The eight SAC genes were

significantly overexpressed at the RNA level in glioblastomas

(grade IV) in comparison to controls (Table 3), and all were

almost monotonically increased in expression along with grade,

indicating that they might serve as prognostic glioma markers.

Two genes, BUB1B and CDC20, outperformed Ki-67 RNA. This

is consistent with past reports for colorectal carcimona in

whichMIB-1 Li had no significant correlation with Ki-67 mRNA

expression [17,53]

Figure 3. Kaplan-Meier estimates of overall survival time. Panels A, B, and C use BUB1BRNA expression as determined by qPCR. Panels D, E,
and F use the MIB labeling index (MIB Li) that measures Ki-67 protein. Log-rank statistics is used to determine the cutoff-point, which is the expression
value that divides low-expression samples from high-expression samples. OS = Overall survival.
doi:10.1371/journal.pone.0025631.g003
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BUB1 and TTK were significantly differentially expressed

between low grade gliomas and normal brain tissues (p,0.01,

Table 3). Further research will indicate if these two genes have

utility in classifying early stage tumors. These genes have

previously been associated with cancer though not glioma;

BUB1 mutation was associated with lymph node metastasis and

shorter relapse-free survival after surgery in colorectal cancers

[54], TTK had an increased expression level in anaplastic thyroid

carcinoma [55], and TTK expression correlated with tumor node

metastasis (TNM) stage in gastric cancer [56].

We used gene expression of SAC genes to build models that

correlate with grade. A4-gene regression model (Equation 1) was

sufficient to generate 92.1% identity with grade. Considering the

potential bias in identification of grades by histological diagnoses

and the arbitrary boundaries between adjacent grades, this

performance is extremely good.

In a multivariate proportional hazards model without genes

(Model 1 in Table 4) WHO grade is identified as a significant

factor for survival (p,0.05). However, WHO grade adds no power

to classification when SAC gene expression profiles are added to

the model (Model 2 in Table 4). MIB labeling index and mitotic

index (MI) also add no additional information in model 2. WHO

grade is not present when this model is optimized to identify

factors that best predict outcome (Model 3 in Table 4). Although

MIB Li is retained in this model, it is a minor factor compared to

BUB1B expression. Thus, qPCR assays of SAC genes, particularly

BUB1B, might be used as an objective complement to histological

diagnosis for identification of glioma grades, MIB Li, MI, and the

multigene RNA profiles that have been proposed [19,20,21].

Figure 3 illustrates that BUB1B was able to distinguish among

grade IV samples with significance (p = 0.003). Two previous

studies are used microarray data to subclassify glioblastomas

(grade IV) [57,58]. The SAC genes were not prominent among

these genes. However, given that our study encompassed all

grades, this lack of concordance is not surprising. We will need

larger datasets in order to validate whether we are able to define

subclasses of glioblastoma using just SAC genes. In the future, it

will be worth studying whether all three sets of predictors can be

combined into an even more powerful predictor, at least for grade

IV glioblastomas.

Our model of BUB1B RNA expression provided median

survival estimates very close to the observed median survival rate

for the WHO grades in leave-one-out cross validation. There are

inevitably some outliers in any model of clinical data (Figure 2)

because the models cannot take into account other important

factors such as differences in sample sources, treatments, genes in

other pathways, and other potential biological factors. This issue

can be addressed by using samples with more detailed follow-up

examinations and qPCR assays for more related genes. It is

notable how few outliers are seen even without this additional

information.

Why do SAC gene expression levels increase with increasing

grade in gliomas? The simplest explanation is that expression is

simply correlated with the rate of cell division, which is, in turn

correlated with survival time.

Another possibility is that increased SAC gene expression is a

homeostatic response to defects in other molecular components.

The mitotic spindle assembly checkpoint ensures that cells with

defective mitotic spindles or defective interaction between the

spindles and kinetochores do not initiate chromosomal segregation

during mitosis. The SAC can protect the cell from chromosome

mis-segregation and aneuploidy during cell division [59,60].

Increased chromosomal instability is a major driving force for

tumor development and progression [28,54,61]. In general, tumor

cells become increasingly aneuploid with tumor progression

[62,63]. Increased SAC gene expression is correlated with

aneuploidy in breast cancer [45]. Previous studies have proven

that defects in the mitotic checkpoint might contribute to

tumorigenesis [59,64]. However, total loss of checkpoint gene

function can be catastrophic even for cancer cells [65], making the

SAC a potentially interesting target for therapy in brains, where

the side effect of inhibiting cell division may have little

consequence.

Another possible mechanism for the changes in expression we

observed would be mutations in one or more SAC gene. To date,

only one study has found such mutations; BUB1 mutation is

associated with lymph node metastasis and shorter relapse-free

survival after surgery in colorectal cancers [54]. In contrast, studies

have failed to find mutations in BUB1, BUB1B and BUB3 as a

significant causation of chromosomal instability in glioblastomas

[66]. Mutations were not found in mitotic checkpoint genes in

breast cancer [45], bladder cancer [67] or gastric cancer [68].

Thus, change in SAC gene expression could be due to lesion in

other genes that act to increase cell division. A search for

epigenetic changes in SAC genes may be fruitful.

Preliminary immunohistochemistry evidence indicates that the

proteins encoded by the SAC genes investigated here are also

induced in gliomas, with BUB1B again being the most significant

(Table 5). Thus immunohistochemistry might be useful as an

alternative to qPCR as a prognostic assay. Furthermore, the

spatial resolution of immunohistochemistry within cells or across a

tumor might identify tumors where only a portion is highly

Table 5. Wilcox rank sum test of proteins between normal samples and malignant glioma samples.

Proteins Normal samples Grade III+IV glioma samples p

Negative Weak Moderate Negative Weak Moderate Strong

BUB1 0 0 3 0 0 4 7 0.036*

BUB1B 0 3 0 0 0 10 2 0.001*

BUB3 0 0 3 0 0 4 7 0.036*

CDC20 3 0 0 4 1 6 0 0.041*

MAD1L1 0 0 3 0 2 4 6 0.193

MAD2L1 3 0 0 9 1 0 0 0.358

TTK 0 3 0 1 2 8 0 0.038*

*p,0.05. Examples of immunohistochemical stains are shown in Information S10.
doi:10.1371/journal.pone.0025631.t005
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aggressive, leading to a more accurate survival time prediction

compared to qPCR-based estimates from bulk samples.

A single marker such as BUB1B will not capture all the

variability in subtypes of glioma. Instead, such a gene may be

useful in combination with other markers. Over the past decade,

there has been an increasing use of molecular markers in the

assessment and management of glioma patients [69]. For example,

the methylation of MGMT has been shown to be useful as a

prognostic biomarker in some circumstances [70]; EGFR vIII

expression enables identification of a subgroup of tumors with

more aggressive behavior [71]; and IDH1/IDH2 mutations have

strong prognostic value in grade III astrocytomas and in

glioblastomas [72]. A recent study identified a classifier based on

the RNA levels of nine genes that has potential value for therapy

optimization in glioblastoma (grade IV), the most advanced form

of glioma [57]. Another report divided glioblastoma into different

subtypes using cluster analysis of microarray expression data from

the literature [58]. Such differentiation into subclasses could lead

to different therapy strategies [42] as well as better clinical trial

designs.

In conclusion, two SAC genes, BUB1 and TTK, showed

increased RNA expression compared to normal brain even in the

lowest grades of glioma, perhaps indicating their future utility for

differentiating among low grade gliomas. Another SAC gene,

BUB1B is highly correlated with survival time, outperforming

other markers, including grade and Ki-67 mRNA level. Measuring

the expression of BUB1B gene might be a useful addition to the

repertoire of clinicians for staging gliomas. This ability to use just

one or a small handful of genes to predict outcome could have an

impact on clinical trials where matching patients across treatment

arms more accurately would lead to a considerable increase in

power.
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