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Abstract: Glioblastoma (GBM) is a common and deadly brain tumor with late diagnoses and poor
prognoses. Machine learning (ML) is an emerging tool that can create highly accurate diagnostic
and prognostic prediction models. This paper aimed to systematically search the literature on ML
for GBM metabolism and assess recent advancements. A literature search was performed using
predetermined search terms. Articles describing the use of an ML algorithm for GBM metabolism
were included. Ten studies met the inclusion criteria for analysis: diagnostic (n = 3, 30%), prognostic
(n = 6, 60%), or both (n = 1, 10%). Most studies analyzed data from multiple databases, while 50%
(n = 5) included additional original samples. At least 2536 data samples were run through an ML
algorithm. Twenty-seven ML algorithms were recorded with a mean of 2.8 algorithms per study.
Algorithms were supervised (n = 24, 89%), unsupervised (n = 3, 11%), continuous (n = 19, 70%),
or categorical (n = 8, 30%). The mean reported accuracy and AUC of ROC were 95.63% and 0.779,
respectively. One hundred six metabolic markers were identified, but only EMP3 was reported
in multiple studies. Many studies have identified potential biomarkers for GBM diagnosis and
prognostication. These algorithms show promise; however, a consensus on even a handful of
biomarkers has not yet been made.

Keywords: glioblastoma; metabolism; biomarker; machine learning; artificial intelligence; deep
learning; diagnosis; prognosis

1. Introduction

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor
in the United States, accounting for approximately 56.6% of all gliomas and 47.7% of all
primary malignant central nervous system tumors [1]. GBM is 1.58 times more common in
males than females, and the annual incidence of GBM is 2.53 per 100,000 population. The
highest rate of diagnosis falls with the group aged 75 to 84 years; however, the median age
of diagnosis is 65 years. Globally, the incidence is highest in North America, Northern and
Western Europe, and Australia [2]. When accounting for race and ethnicity, incidence rates
are highest among non-Hispanic whites and lowest among American Indians and Alaskan
Natives. Furthermore, 1- and 5-year survival rates are lowest among non-Hispanic whites
and highest among American Indians and Alaskan Natives [3].

The prognosis of GBM is notably grim, with a 1-year relative survival rate of 41.4%
and a 5-year survival rate of 5.8% following diagnosis [1,3,4]. Negative prognostic factors
include advanced age, incomplete resection, and poor mental performance status while
the inverse of these factors each indicates a slightly better prognosis [4]. Furthermore,
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biomarkers indicating isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations indicate a
longer survivability [5].

Currently, no screening method for GBM prior to clinical presentation exists. Only
once clinical symptoms are present does magnetic resonance imaging (MRI) become the
gold standard for diagnosis [6]. This lack of reliable screening leads to diagnoses late into
the progression of cancer. The development of techniques leading to early detection of
GBM may play an integral role in improving patient outcomes following diagnosis. Current
research suggests that early interventions with surgical resection, radiation therapy, and
pharmacological targeting of the neoplasm may improve patient outcomes [7]. Additional
research suggests that early resection of the tumor may play a role in preventing disease
progression as GBM tumors display rapid early progression (REP) indicating that early
phases of tumor growth are crucial to the growth of the neoplasm [8]. The identification of
metabolic biomarkers such as IDH, platelet-derived growth factor (PDGF), and epidermal
growth factor receptor (EGFR) provides an opportunity for early detection of risk factors
and prognostic factors relating to GBM [6].

Traditional cancer diagnoses are determined by a physician via clinical, imaging,
and population-based data, with confirmation via histology upon biopsy or autopsy [9].
Recently, machine learning (ML, a subset of artificial intelligence [AI]) is improving the
diagnostic and prognostic processes for various cancers [10–13]. Machine learning is a
method of teaching computers to learn from data without explicit programming. Instead,
algorithms are fed massive amounts of training data to identify patterns and make clas-
sifications and predictions about new, untested data. This is accomplished by creating
mathematical models that can learn from existing data and then use these models to
predict new data.

The first mention of AI was in 1956 during a seminar at Dartmouth College [14,15].
Decades later, ML was born in the mid-1980s after Valiant’s theory of the learnable (1984)
and Hopfield’s neural network model of associative memory (1982) first connected statisti-
cal mechanics to learning theory, thereby replacing the previous AI approach centered on
logic and rules [16]. The first applications of ML in neurosurgery began in the 1990s [17].
An early proof-of-concept by Floyd et al. in 1992 demonstrated that artificial neural
networks (ANN) could outperform human efforts in detecting circular lesions in stimu-
lated single-photon emission CT imagery [17,18]. In 1995, ML was utilized in a study by
Christy et al. for grading and distinguishing between high and low-grade supratentorial
astrocytomas [17,19]. The results of this study, though nonsignificant, further demonstrated
the diagnostic capabilities of ML with an accuracy of 61% when compared to 57% for
neuroradiologists [17,19].

Cancer gene expression has been a prominent focus of ML in addition to MRI/CT
imaging analysis, cancer susceptibility testing, radiation resistance, mortality risk percent-
ages, and tumor grade [10,20–23]. The ML techniques commonly utilized within cancer
research include ANN, K-nearest neighbors (KNN), Bayesian network (BN), Naïve Bayes
(NB), support vector machine (SVM), and decision trees (DT). Of these approaches, ANNs,
KNN, and SVMs exhibit popular use among researchers working to ascertain a cancer
diagnosis [9,20]. Traditional ML methods including DTs, KNNs, NB, and SVMs are more
simplistic, which results in greater computational speed, efficiency, and cost savings [20].
Past attempts to diagnose GMB include a notable two-stage ML-based study that created a
multimodel, multichannel predictive model consisting of a convolution neural network
(CNN) (a subset of ANN) connected to an SVM. The two systems analyzed MRI images (T1,
diffusion tensor imaging, and resting state MRI) along with tumor histology and patient
age. This ML model projected preoperative high-grade glioma survival rates that were
90.66% accurate (N = 68) [24].

The exponential advancement of AI has led to the creation of ML models that utilize
electronic health record data to achieve a 60% positive predictive value (PPV) for a 3-month
mortality rate in an advanced cancer population (N = 2041) prognostic algorithm [25]. The
algorithm’s PPV markedly surpassed the 34.8% PPV attained by oncologists and advanced



Metabolites 2023, 13, 161 3 of 15

practice clinicians [25]. For diagnostic applications, a study from Zhou et al. incorporated
liquid chromatography and mass spectrometry into an SVM-based ML algorithm to di-
agnose malignant brain gliomas (MBGs) by means of plasma lipid biomarker analysis.
This method was shown to be a reliable noninvasive screening method for the diagnosis
of MBGs [26]. The enhancement of diagnostic/prognostic methods integrated with ML
algorithms allows physicians to assign patients more accurate prognoses for the expeditious
implementation of treatment plans and conceivably better patient care as the technology
continues to improve [4,10].

The heterogeneous nature of GBM along with high rates of re-incidence and thera-
peutic resistance necessitate the timely identification of novel therapeutic targets in the
metabolism of GBM to remain ahead of this rapidly evolving disease [27]. Recent efforts to
identify such targets have utilized tumor omics data integrated with clinical information
by use of ML techniques [27]. However, there is still a paucity of literature concerning
GBM metabolism and ML. To our knowledge, there has been no review on ML and GBM
metabolism. Therefore, in this review, the authors systematically search the literature on
ML and GBM metabolism and assess recent advancements with commentary on future
developments in this novel and the emerging field of study.

2. Methods
2.1. Strategy and Registration

This study was performed in accordance with the Preferred Reporting Items for Systematic
reviews and Meta-analyses (PRISMA) guidelines. This systematic review was registered on
PROSPERO, with details of our initial protocol, and can be accessed at https://www.crd.
york.ac.uk/prospero/display_record.php?ID=CRD42022367758 (accessed on 25 December
2022) [28].

2.2. Search and Data Sources

A literature search was performed using PubMed (Medline), Embase, Cochrane, OVID,
and Web of Science databases from 1975 to October 2022. The following predetermined
search terms were used: “metabolism” or “biomarkers” and “glioblastoma” and “artificial
intelligence” or “machine learning” or “deep learning” or “predictive model” as title and
abstract keywords (Supplementary Materials S1).

2.3. Selection Criteria

Articles obtained from searching the specified databases were imported into the Covi-
dence platform (Veritas Health Innovation) for screening. The screening was independently
performed by two investigators (Z.D.N. and C.B.) by title and abstract, and later by full-text
review. Conflicts were resolved by consensus. When consensus could not be obtained, a
third reviewer (N.P.) broke the tie. Articles describing the use of an ML algorithm for GBM
metabolism were included. Additional inclusion criteria included research on human GBM
metabolism and a confirmatory diagnosis of GBM for validity. Review articles, case reports,
commentary, conference abstracts, unpublished articles, editorials, and purely technical
descriptions were excluded. The language was restricted to English.

2.4. Data Extraction

Using a data extraction form, a quality and bias assessment was performed based
on the quality assessment of diagnostic accuracy studies 2 (QUADAS-2) [29] for diag-
nostic studies and the quality assessment of prognostic accuracy studies (QUAPAS) [30]
for prognostic studies. QUAPAS is adapted from QUADAS-2 and thus, the two can be
compared together. Studies that featured both diagnostic and prognostic models were
assessed with both assessments and combined. All studies were also assigned a level of
evidence rating based on the American Association of Neurological Surgeons (AANS) and
Congress of Neurological Surgeons (CNS) joint guidelines for diagnostic and prognostic
studies organized into classes (I, II, and III) [31].

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022367758
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022367758
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The following variables were extracted from the included studies: publication year,
lead author, country of origin, study population, the origin of patient data (original or
database), type of ML algorithm used, and source of biologic sample (plasma, tissue, etc).
Our primary outcome was the accuracy of the ML algorithm. The secondary outcome, if
reported, included the top metabolic markers identified by each study.

3. Results
3.1. Search Results

Our initial search yielded 317 records with 235 articles remaining after the removal of
duplicates (Figure 1). These articles were screened by title and abstract, which returned
46 articles for a full-text review. Thirty-one articles were excluded, leaving 14 final studies
included in this review, ten of which were included in the analysis [32–41]. Four studies
were not included in the analysis because they did not perform an ML algorithm on GBM;
however, they did discuss the topic [21,42–46].
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Figure 1. PRISMA Diagram. PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) diagram representing the screening process.

Extraction results from each paper are tabulated below (Table 1). All of the ten
analyzed papers were published on or after 2018, except one (2012). The nationalities of
the papers were as follows: one Canadian, four Chinese, and one Indian, Pakistani, Polish,
Swiss, and American. Three papers (30%) were diagnostic, six were prognostic (60%), and
one featured both (10%).

3.2. Quality and Bias and Level of Evidence

A quality and bias assessment was performed as described above with results tabu-
lated in the Supplementary Materials (Table S1). Weakness in the included studies was
most significant for the lack of data in the study design. Fifty-one percent (n = 24) of risk
of bias questions were answered as “unsure” due to insufficient information (Figure 2).
Patient selection was also a substantial source of bias as most studies used some form of
a national database with little information provided on the patient population or control
population if used. Conversely, 78% (n = 29) of applicability concern questions were rated
as “low” risk of bias (Figure 3). Nine studies (90%) received a level of evidence rating of II,
while one study (10%) received a rating of I, based on AANS and CNS joint guidelines for
diagnostic and prognostic studies.
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Table 1. Data extracted from ten studies were included for analysis. ACE (atlas correlation explorer), ANN (artificial neural network), BPNN (backpropagation
neural network), AUC of ROC (area under the curve of the receiver operating characteristic curve), CGGA (Chinese glioma genome atlas), CNN (convolutional
neural network), GEO (gene expression omnibus), LASSO (least absolute selection and shrinkage operator), NN (neural network), PASNet (pathway-associated
sparse deep neural network), PCA (principal component analysis), PLS-DA (partial least-squares discriminant analysis), RSF-SRC (random survival forest–survival
regression and classification), SVM (support vector machine), TCGA (The Cancer Genome Atlas), XGBoost (eXtreme gradient boosting).

Study Country Type Experimental
n/Control n (Total n)

Database
(Location) Category Classification Type of ML Accuracy AUC of ROC Identified Metabolic Makers Sample

Origin

Ishwar [32]
(2022) Canada Diagnostic 14/23 (37) Original

Supervised Categorical PLS-DA 98.38% 0.957 Immune checkpoint markers: PDL1
and CTLA-

4 in GBM Natural killer cell circulating
immune vesicles

SerumUnsupervised Continuous PCA

Supervised Continuous ANN 100% 1.000

McInerney
[33] (2022) Switzerland Both n/a TCGA Supervised Continuous ACE (Linear

Regression)
Prognostic: TSPYL2, JAKMIP1, CIT,

TMTC1 Diagnostic: MINK1,
PLEKHM3, BZW1, RCF2

Tissue

Firdous
[34] (2021) Pakistan Diagnostic 26/16 (42) Original

Supervised Continuous Extra Tree Classifier 100% 0.760 alanine, glutamine, valine, methionine,
N-acetyl aspartate (NAA),

γ-aminobutyric acid (GABA), serine,
α-glucose, lactate, and arginine

PlasmaSupervised Continuous Random Forest 100% 0.780

Supervised Categorical Logistic Regression 98% 0.860

Jia [35]
(2021) China Prognostic 154 TCGA

Supervised Continuous BPNN 0.865

GPX8, CCDC109B, IGFBP2, LINC00152,
LOC541471, METTL7B, S100A4, EMP3,

CLIC1, TAGLN2
Tissue

Supervised Categorical SVM 0.862

Supervised Continuous CNN

Supervised Continuous XGBoost 0.718

Supervised Continuous Random Forest 0.724

Supervised Continuous LASSO 0.874

Kaluzinska
[36] (2021) Poland Prognostic n/a Original Supervised Categorical SVM 0.935

PLEK2, RRM2, GCSH, BMP4, CCL11,
CUX2, DUSP7, FAM92B, GRIN2B,
HOXA1, HOXA10, KIF20A, NF2,

SPOCK1, TTR, UHRF1
Tissue

He [37]
(2020) China Prognostic 381 TCGA,

CGGA, GEO

Unsupervised Continuous PCA ACADS, ADRA2A, ALAS1, APOD,
ARSF, ESRRB, FOXO3, HSPH1, KLF15,

NR1H4, PCSK1, PIK3R1, RNASEL,
RUFY1, SFN, SH3GLB1, SPTSSA

Tissue
Supervised Continuous LASSO-Penalized

Cox regression 0.752

Zeng [38]
(2019) China Prognostic 252 TCGA, GEO Unsupervised Categorical RSF-SRC

UGP2, TUBB2A, FABP3, SLC17A7,
NAGPA, PRKCB, DNM1, NEFM,

TIMP1, ITGB1, MRC2, TAF9B, MAT2A,
HSPD1, PDLA4

Tissue

Hao [39]
(2018) USA Prognostic 522 TCGA

Supervised Continuous PASNet 0.662

CDC42, PRKCQ, RAC1, AKT1, AKT2,
AKT3, C3, CREB1, GRB2, HRAS, KRAS,
NRAS, PRKACA, PRKACB, PRKACG,

RAF1, and YWHAB,
Tissue

Supervised Continuous Logistic LASSO 0.590

Supervised Continuous Random LASSO 0.621

Supervised Categorical SVM 0.634

Supervised Continuous Dropout NN 0.641
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Table 1. Cont.

Study Country Type Experimental
n/Control n (Total n)

Database
(Location) Category Classification Type of ML Accuracy AUC of ROC Identified Metabolic Makers Sample

Origin

Shu [40]
(2018) China Prognostic 193 original, 875

databases (1068)

Original,
CGGA,

TCGA, GEO
Supervised Continuous LASSO 0.778 Genes: WEE1, EMP3, IGFBP3

Biomarker: WEE1 Tissue

Gollapalli
[41] (2012) India Diagnostic 40/40 (80) Original

Supervised Continuous PLS-DA 92.85% haptoglobin, plasminogen precursor,
apolipoprotein A-1, and M,
transthyretin, cholesterol,

triacylglycerol, and low-density
lipoproteins

Serum
Supervised Categorical SVM 92.85%

Supervised Continuous Decision Tree 92.85%

Supervised Categorical Naïve Bayes 85.70%
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Figure 2. Risk of Bias. Risk of bias assessment summary based on quality assessment of diagnostic
accuracy studies 2 (QUADAS-2) for diagnostic studies and the quality assessment of prognostic
accuracy studies (QUAPAS) for prognostic studies.
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3.3. Patient Samples and Databases

Samples were collected from patients as either tumor/healthy brain tissue (n = 7,
70%) or serum/plasma (n = 3, 30%). Most studies analyzed data from multiple national
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databases such as The Cancer Genome Atlas (TCGA) (National Institutes of Health) (n = 6,
60%), Chinese Glioma Genome Atlas (CGGA) (Beijing Neurosurgical Institute) (n = 2, 20%),
Gene Expression Omnibus (GEO) (National Institutes of Health) (n = 3, 30%), as well as
from original samples (n = 5, 50%). However, only three articles (30%) analyzed data from
multiple sources. At least 2536 data samples were run through an ML algorithm; however,
due to the usage of the same databases by multiple papers at various points of database
completeness, an exact number of unique samples could not be determined.

3.4. Machine Learning and Accuracy

Twenty-seven ML algorithms were found in our analysis, 18 of which were unique
(67%) (Figure 4). The least absolute selection and shrinkage operator (LASSO) and support
vector machine (SVM) were the two most common methods and were featured in five
and four studies, respectively. A mean of 2.7 ML methods was utilized in each study;
however, only 50% (n = 5) of papers featured more than two methods of ML. Of the 27 ML
methods used, 24 were supervised (89%) and three were unsupervised (11%), while 19
were continuous (70%) and eight were categorical (30%). A summary of each ML method
is listed in (Table 2).
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Figure 4. Classification of machine learning algorithms. Twenty-seven machine learning algorithms
reported in this paper were classified: 24 were supervised (89%) and three were unsupervised (11%),
19 were continuous (70%), and eight were categorical (30%). ANN (artificial neural network), BPNN
(backpropagation neural network), CNN (convolutional neural network), LASSO (least absolute
selection and shrinkage operator), NN (neural network), PASNet (pathway-associated sparse deep
neural network), PCA (principal component analysis), PLS-DA (partial least-squares discriminant
analysis), RSF-SRC* (random survival forest–survival regression and classification), SVM (support
vector machine), XGBoost (eXtreme gradient boosting). *RSF-SRC can be unsupervised or supervised
depending on the variation.
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Table 2. A summary of each ML method is listed in these studies. This includes methods that
were mentioned; however, some may not have been utilized, but are still included for educational
purposes [32–41]. * Duplicate methods omitted.

Machine Learning Algorithm Definition

Linear Regression (ACE)

Linear regression is a type of supervised ML algorithm used for predictive modeling. It is used to
match observed data with a linear equation to model the correlation between the independent
variables and the dependent variable [45]. ACE is a linear regression algorithm specifically
designed for use with gene expression data.

Logistic Regression

Logistic regression is a statistical method that we use to construct a regression model when the
response variable is in binary. It is integrated into a supervised machine learning algorithm to
hypothesize an outcome along with a binary response (e.g., Yes/No, True/False) using a set of
independent variables [46].

Random Forest *
Random forest is a supervised ML method that creates decision trees and combines them to
improve the accuracy of the predictions. It uses a technique called bagging, where each tree is
trained on a random grouping of the data [45].

Extra Tree Classifier

Extra tree classifier is a supervised ML algorithm that utilizes a decision tree-based ensemble
method. It operates by constructing a set of decision trees and then training them with a random
subset of the features. The final class prediction is created by combining all of the trees’
individual class predictions. Extra tree uses more randomization when splitting nodes than is
seen in a random forest algorithm [47].

Decision Tree
A decision tree is a type of supervised ML algorithm that is used for classification and regression.
It makes predictions based on the feature values of input instances by constructing a tree-like
model of decisions and their possible consequences [45].

SVM (Support Vector
Machines) *

Support vector machines is a supervised ML algorithm that is used for classification and
regression. It works by finding the best boundary (or “hyperplane”) that separates the different
classes [45].

ANN (Artificial Neural
Networks)

• CNN (Convolutional
Neural Network)

• BPNN (Backpropagation
Neural Network)

• DNN (Dropout Neural
Network)

• PASNet
(Pathway-Associated
Sparse Deep Neural
Network)

ANN is a class of supervised ML algorithms that are modeled after human neuronal structure
and can be applied to a variety of tasks, including the classification of images and the processing
of natural language. They are made up of interconnected artificial neurons that can be trained to
adjust the weights of connections between nodes. They can use a variety of architectures,
including feedforward, convolutional, and recurrent neural networks [45].

• CNN is a type of neural network that is commonly utilized in the recognition of images and
videos. It uses convolutional layers to learn spatial hierarchies of features automatically and
adaptively from input data [48].

• Backpropagation is an ML algorithm for multilayer feedforward artificial neural networks
(FFNN). Backpropagation is used to train these networks to produce a desired output for a
given input [49].

• Dropout is a regularization technique for neural networks, which aims to reduce overfitting
by randomly setting a portion of the neurons to zero during training. This helps to avoid
overfitting by preventing the network from becoming too specialized for the training set
[50].

• PASNet is a deep learning algorithm that combines feature selection and neural networks to
predict disease-gene associations. It is used to identify the genes that are important for a
specific disease, by incorporating information about biological pathways into the prediction
process [39].

XGBoost (eXtreme Gradient
Boosting)

XGBoost is a gradient-boosting supervised ML algorithm designed to be efficient and scalable. It
is used for supervised ML problems, and it can be used for both classification and regression [51].

K-Means
K-Means is an unsupervised ML clustering algorithm that groups similar n-dimensional
observations into k clusters, where k is predefined. The algorithm repetitively assigns points to
the closest centroid and updates the centroid based on the mean of assigned points [52].
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Table 2. Cont.

Machine Learning Algorithm Definition

LASSO (Least Absolute
Selection and Shrinkage
Operator) *

• LASSO-Penalized Cox
Regression

• Logistic LASSO
• Random LASSO

LASSO is a supervised regularization method for linear regression models. LASSO’s priority is to
decrease the absolute values of the independent variable coefficients toward zero. It helps to
prevent overfitting by reducing the model’s complexity [53].

• LASSO-penalized Cox regression is a method that combines LASSO regularization with the
Cox proportional hazards model. It aims to identify a subset of features that are most
important for survival analysis while minimizing overfitting [54].

• Logistic LASSO is a regularization method for logistic regression. It is a combination of
LASSO and Logistic regression and it aims to identify the subset of features that are most
important for predicting binary outcomes while also minimizing overfitting [55].

• Random LASSO is a variant of LASSO that uses randomization to improve the feature
selection process. It randomly assigns weights to the features before applying LASSO,
which can help to reduce the variance of the feature selection results [56].

PCA (Principal
Component Analysis) *

PCA is an unsupervised dimensionality reduction technique. The intention is to convert a group
of correlated factors into a group of uncorrelated factors. It does this by switching the data to a
new coordinate system. The axis then represents the direction of maximum variance
in the data [57].

RSF-SRC (Random Survival
Forest–Survival Regression

and Classification)

RSF-SRC is a potentially unsupervised ML method for predicting the time-to-event (TTE)
outcome in survival analysis (other variations may be supervised). It is an extension of the
random forest algorithm, can handle censoring and truncation of time-to-event data, and can be
used for both regression and classification [58].

PLS-DA (Partial Least-Squares
Discriminant Analysis)

PLS-DA is a supervised ML algorithm that is used for classification. It works by finding a group
of latent variables, which are linear combinations of the original variables, and that explain the
differences between various different classes [59].

Naïve Bayes
Naïve Bayes is a supervised ML algorithm that is used for classification. It makes predictions
based on the probability of certain features appearing in each class. It is called “naïve” because it
assumes that all features are independent, which may not always be true [45].

Nine algorithms (33%) reported accuracy values and 18 (67%) reported area under
the curve of the receiver operating characteristic (AUC of ROC) values, while only 6 (22%)
reported neither. Due to the unverifiable nature of unsupervised ML, only accuracy or
AUC of ROC values not reported for supervised ML methods were considered “missing.”
Only one paper met this criterion [33]. The mean reported accuracy was 95.63% [85.70%,
100.00%], while the mean AUC of ROC was 0.779 [0.590, 1.000].

3.5. Metabolic Markers

One hundred six metabolic markers were identified as the top predictive biomarkers
from the analyzed studies. Of these, 23 (22%) were used for diagnosis and 83 (78%) were
used for prognostication. Only one metabolic marker, EMP3, was reported in multiple
studies; all other biomarkers were reported only once in their respective studies.

4. Discussion

Despite the innovations within the field of GBM research, prognoses remain poor. The
studies within this review aim to improve diagnostic and prognostic accuracy by utilizing
novel ML algorithms. Although this field exhibits an extensive level of research, there is a
paucity of literature pertaining to the ML algorithms used to identify markers underlying
GBM metabolism [42].

4.1. Supervised Machine Learning

Supervised ML is broadly used in a predictive scenario where a “ground truth” value
can be determined (e.g., a diagnosis of GBM) and the user wishes to identify similar data
sets with an unknown “ground truth.” The supervised ML algorithms used by these studies
were SVM, random forest, ANN, deep neural networks (e.g., PASnet), DT, NB, partial least-
squares discriminant analysis (PLS-DA), logistic regression models, and LASSO-penalized
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Cox regression analysis [32,34–43]. A logistic regression model appears to outperform
other ML algorithms in classification systems, in this case, the classification of the IDH
mutation. The algorithms it outperformed were other supervised ML models such as SVM
and random forest models. Specifically, the logistic regression model obtained greater
results, which were determined by its performance in determining the AUC of ROC, Bal
accuracy, F1 score, precision, recall, and Matthew’s correlation coefficient (MCC) [43].

Supervised ML algorithms are powerful tools in the identification of GBM biomarkers.
One study found that by extracting a small amount of peripheral blood (5 µL), a surface-
enhanced Raman scattering (SERS) signal-trained supervised ML algorithm was able to
distinguish GBM cancer from noncancer without isolating cells. The PLS-DA algorithm
exhibited both high sensitivity and specificity. A confirmation test with an ANN validated
the previous outcome, and the ANN was crucial in determining the prognosis of the
disease [32]. Congruently, Gollapalli et al. used a PLS-DA algorithm to distinguish between
GBM patients and healthy controls using predetermined biomarker subsets to discern a
high level of classification. Results from this study were confirmed with DT, SVM, and NB
algorithms [41].

4.2. Unsupervised Machine Learning

Unsupervised ML techniques are generally used when a user wishes to understand
and perhaps categorize their data, without knowing their primary data “ground truth.” The
unsupervised ML algorithms used by these studies were K-means and an integrated Kernel
PCA. Unsupervised ML methods such as K-means have been used to create continuous
clustering models. These models use metabolism-related genes to create stratified clusters
with calculated similarity distances between GBM samples [37]. Furthermore, deep neural
networks (e.g., PASnet) have been integrated into prediction models, along with kernel prin-
cipal component analysis (KPCA), as methods to forecast prognostic survival analyses from
high-throughput data [39]. The literature on deep learning networks in GBM metabolism
is sparse, likely due to the complicated methodology involved in the construction of these
algorithms. Sometimes, a combination of both unsupervised and supervised ML is useful.
Riviere-Cazaux et al. contrasted the heterogeneity between GBM patients based on IDH
status and patient identity. The team utilized PCA for an unbiased evaluation of patient
groupings, followed by PLS-DA to identify the predictive variables between the groups.
This is a quality example of how several variants of different algorithms can work together
harmoniously to achieve results [44].

4.3. Metabolic Markers

A major prognostic metabolic marker researched throughout these studies is isocitrate
dehydrogenase-1 (IDH1), which when correlated with various mutations of that marker, as
well as when utilized for the characterization of patients, was found to be overexpressed
in both high- and low-grade GBM patients [33,37,40]. The type of IDH1 (wild-type vs.
mutation) was found to impact the degree of prognosis between different unsupervised
clusters of patients, implicating it as a possible prognostic marker, although it should
be mentioned that there was a statistically significant difference in age between these
clusters [35]. Moreover, IDH status was a risk factor identified as one of the prognostic
classifiers with a statistically significant high hazard ratio [40]. Additionally, several studies
emphasized the importance of matching metabolic pathway markers with associated
genetic alterations in a stepwise fashion to predict the prognosis of GBM patients with
greater accuracy [37,39]. The emphasis of ML identification on IDH1 overexpression in the
progression of GBM gives credence to an antimetabolic approach, as decreasing the activity
of this pathway could impair the growth and development of GBM tumors [42]. However,
IDH1 and its role in GBM metabolism has been heavily researched in the literature and
is not a new discovery based on these ML papers currently being discussed. Rather,
many of these papers used IDH1-positive samples as a starting point for further analysis
with ML algorithms.
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Various alternate metabolic markers of importance are the levels of dysregulated amino
acids. These amino acids have been identified as a product of activated or deactivated
metabolic pathways in GBM to increase nutrient availability for tumors [34]. Many of those
amino acids were discovered in previous experiments and then analyzed by ML in these
studies to differentiate patients’ glioma grading, thereby ascertaining a method for a more
precise diagnosis [34,42]. In fact, Firdous et al. found that their diagnostic study utilizing
an extra tree classifier, logistic regression integration, and random forest algorithms had
greater predictive accuracy than any other previous studies of ML algorithms on the
identification of metabolic markers in tissue or liquid-based biopsies [34].

A study conducted by Zeng et al. found that UDP glucose phosphorylase-2 (UGP2)
was an upregulated enzyme that exhibited a significant effect on the prognosis of GBM.
They identified this marker using a random survival forest algorithm, which is a type
of supervised ML method. The overexpression of UGP2 was correlated with a worse
prognosis and a higher grade of pathology. As a result, UGP2 may be a useful prognostic
marker for GBM patients [38].

In addition, Kałuzińska et al., utilized multiple SVM algorithms to classify the top
genes present in multiple types of cancers, including GBM. The team concluded that
WWOX-dependent biomarkers PLEK2 and GCSH are possible GBM biomarkers and should
serve as a triad along with RRM2. Further investigation is needed pertaining to PLEK2
and GCSH to analyze their prognostic accuracy and ability to differentiate between GBM
versus alternative gliomas [36].

Lastly, several independent studies have identified EMP3 as a prognostic gene for high-
grade gliomas [35,40]. It has been shown to function as a reliable indicator for prognosis at
the mRNA level [40]. In fact, EMP3 was the only gene identified in more than one study.
As such, further research involving this genetic marker has the potential to improve the
prognostic process for patients diagnosed with glioblastoma.

5. Future Directions

Machine learning has the ability to greatly improve the prognostic and diagnostic
capabilities of GBM. However, an integration of ML algorithms for biomarker detection
combined with radiomics-based tumor imaging will be necessary to ascertain the greatest
level of accuracy and precision [21]. By analyzing the characteristics of the tumor such as
shape, size, and texture, radiomics can provide valuable information on the tumor’s current
state and progression. Combining the two ML algorithms to analyze the quantitative data
from both imaging and biomarkers could improve disease outcomes, once perfected, at a
rate higher than any one method alone.

Overall, our findings highlight the importance of further research in this evolving
field in order to fully grasp the potential of ML in the diagnosis and prognosis of GBM.
Advancements in this area may significantly enhance patient care and treatment outcomes
for individuals affected by this devastating disease in the future.

6. Conclusions

Machine learning is a cutting-edge technology that analyzes data and makes predic-
tions or decisions using algorithms and statistical models. It is a formidable research tool
and has the potential to completely change how complex diseases such as glioblastoma
are studied and understood. The goal of machine learning is to recognize and categorize
unknown data samples using training data. The studies we reviewed have found novel
insights into the mechanisms of GBM and identified potential biomarkers for diagnosis
and prognostication by utilizing this technology in the study of GBM metabolism.

Arguably one of ML’s most significant advantages is its ability to adapt and improve
over time as it processes more data, making it ideal for dealing with complex and dynamic
tasks. This is particularly useful for assignments that traditional rule-based systems are
unable to manage. Additionally, machine learning can automate tasks that would normally
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require human intervention, increasing efficiency, and decreasing error rates. This can lead
to cost savings, increased productivity, and more accurate decision making.

Conversely, machine learning has drawbacks that must be considered despite its
benefits. One significant shortcoming is the requirement for large quantities of high-quality
training data, which can be expensive and challenging to come by. Furthermore, it can
be challenging to understand how ML models make decisions and how to optimize them
because the results can be ambiguous and difficult to interpret. It is also important to
remember that the effectiveness of ML models depends considerably on the caliber of the
data, as well as the specific task it is assigned. Therefore, it is essential to take these factors
into account when implementing ML into medical research.

GBM is a complicated disease with a limited understanding of the underlying biologi-
cal mechanisms, making diagnosis and treatment challenging. The use of ML algorithms
has demonstrated incredible promise in the enhancement of diagnostic and prognostic
capabilities for GBM patients; however, a consensus on even a handful of biomarkers
discovered with ML algorithms has not yet been made. Many researchers are still exploring
this new field and there is still much to be learned. Despite the challenges and limitations,
the potential of ML in the study of GBM metabolism is clear.
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