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Abstract

This paper presents a novel energy attribution and ac-
counting architecture for multi-core systems that can
provide accurate, per-process energy information of indi-
vidual hardware components. We introduce a hardware-
assisted direct energy measurement system that inte-
grates seamlessly with the host platform and provides
detailed energy information of multiple hardware ele-
ments at millisecond-scale time resolution. We also in-
troduce a performance counter based behavioral model
that provides indirect information on the proportional en-
ergy consumption of concurrently executing processes in
the system. We fuse the direct and indirect measurement
information into a low-overhead kernel-based energy ap-
portion and accounting software system that provides
unprecedented visibility of per-process CPU and RAM
energy consumption information on multi-core systems.
Through experimentation we show that our energy ap-
portioning system achieves an accuracy of at least 96%
while impacting CPU performance by less than 0.6%.

1 Introduction

The ever-increasing energy requirements of modern
computing devices, from mobile and embedded systems
to large data centers, present significant research and
technical challenges. In data centers in particular, ris-
ing energy costs have resulted in hardware replacement
cycles of two years or less, as it is more cost effective to
acquire newer, more energy efficient systems than main-
taining older ones [23]. According to recent studies [16],
electricity use associated with servers has doubled be-
tween 2000 and 2005 and is expected to rise by up to
76% by 2010. It is therefore paramount that computing
platforms across all application domains consider energy
efficiency as a primary design objective.

In addition to advances in hardware and low-power
CMOS technology, a critical step in achieving higher

energy efficiency is the development of a deep under-
standing of the runtime energy consumption of individual
system entities, including hardware and software compo-
nents. By obtaining detailed, runtime information about
energy consumption of system entities and by determin-
ing the energy consumption contribution of individual
entities further operating system and application energy
optimizations can be achieved. Detailed runtime energy
profiling of applications can be used to identify subop-
timal behaviors and thereby improve the energy usage.
Moreover, runtime application energy information can
be used for auditing and accounting purposes. For in-
stance, a service provider could potentially charge clients
by energy usage, in addition to computational resource
usage and network bandwidth usage. Therefore, the goal
is to develop an energy measurement and accounting sys-
tem that can accurately determine the contribution of in-
dividual processes to the energy consumption of individ-
ual hardware components such as CPU or main memory.

This paper introduces an energy attribution and ac-
counting architecture for multi-core systems. Using a
combination of detailed, hardware-assisted energy mea-
surements and indirect energy measurement models, our
system provides the first (to the best of our knowledge)
runtime, low-overhead, integrated energy monitoring of
individual processes executing concurrently on a multi-
core platform. Our work focuses on the computational
subsystem, including CPUs and main memory that to-
gether can account for 30-50% of a server’s total energy
consumption [12, 23]. In addition to its paramount im-
portance in the overall server functionality, the computa-
tional subsystem indirectly influences the power required
for cooling, planar, and other components that make up
the remaining energy consumption of a server.

Several different mechanisms exist that attempt to de-
termine a system’s energy consumption. Options include
ACPI battery state [1] for mobile systems, external mea-
surements [8] or energy estimation [5, 20]. In contrast
to prior work, we introduce the RunTime Direct Energy



Measurement System (RTDEMS), a high-resolution en-
ergy measurement system that provides energy values for
individual hardware components such as CPU, SDRAM,
motherboard, video card, hard drive and so on. RT-
DEMS is integrated with the host platform, thereby al-
lowing the host platform’s operating system immediate
and direct access to energy data. We argue that direct en-
ergy measurements such as those provided by RTDEMS
are necessary, albeit insufficient to determine per-process
energy attribution. We consequently introduce an in-
direct energy measurement model that is based on per-
formance counters to determine the proportional contri-
bution of individual processes to the total energy con-
sumption of a hardware component. By asynchronously
combining data from RTDEMS and the indirect energy
measurement model into a kernel-space software sys-
tem, we demonstrate through experimentation that we
can attribute energy consumption to concurrently execut-
ing processes with at least 96% accuracy, while inducing
less than 0.6% of CPU overhead.

The primary contribution of this paper is the introduc-
tion and experimental verification of a novel per-process
energy attribution and accounting architecture for multi-
core platforms. Additional key contributions include:

e The introduction of the runtime direct energy
measurement system that provides accurate high-
resolution energy information on a per-hardware
component basis with negligible overhead (Sec-
tion 2).

e An experimental analysis of the energy appor-
tioning problem in multi-core systems, using
RTDEMS-obtained data (Section 3).

e A performance-counter based indirect energy mea-
surement model approach as a proposed solution to
the energy apportioning problem that includes ex-
perimental data for several applications (Section 4).

e A low-overhead kernel-based software system that
combines data from RTDEMS and the performance
counter behavioral model to provide per-process en-
ergy information for arbitrary processes (Section 5).

We have used our system to attribute energy consump-
tion to several applications on a multi-core platform and
present our results in Section 6. We present related work
in Section 7 and conclude the paper in Section 8.

2 The Runtime Direct Energy Measure-
ment System

In this Section, we provide an overview of direct energy
measuring techniques and also describe our detailed real-
time direct energy measurement system. Using empiri-
cal information and experimental results, we argue that a
detailed direct energy measurement system is necessary

in order to attribute proportional energy consumption to
hardware and software activities.

2.1 Direct energy measurement system
overview

The direct energy measurement system is a critical ele-
ment of our overall architecture, as it provides the nec-
essary information regarding energy consumption. As
our goal is to attribute energy consumption to individual
hardware and software entities at runtime, the direct en-
ergy measurement system needs to satisfy the following
requirements:

e Resolution. To resolve energy consumption of indi-
vidual entities, the measurement system must pro-
vide high resolution information in both the spa-
tial (for hardware) and temporal (for software) do-
mains.

e Cost. The measurement system needs to operate
with the lowest possible overhead—in terms of en-
ergy and resource consumption—as it is intended to
be used in production systems.

o [ntegration. The measurement system needs to be
integrated with the system-under-measurement so
as to provide the necessary information in the fastest
and most resource-efficient way possible.

Traditional energy measurement solutions in mobile,
desktop as well as server class systems rely on external
measurements, such as oscilloscope sampling or other
data acquisition systems [3, 2, 10, 11, 8]. For battery
powered systems internal devices such as commercial
“fuel gauge” or simpler voltage monitoring solutions are
common [6, 21, 18]. However, none of those devices in
either category satisfies all three aforementioned require-
ments. External devices typically satisfy the resolution
requirement but do not meet either the cost or integration
requirements, while internal devices meet the latter but
do not meet the resolution requirement.

In order to attain the resolution, cost and integra-
tion goals, we implemented the Runtime Direct En-
ergy Measurement System (RTDEMS). RTDEMS is the
adaption of the embedded low power energy-aware pro-
cessing (LEAP) project [19, 24] to desktop and server-
class systems. RTDEMS differs from previous desktop-
class energy measurement approaches such as Power-
Scope [11] in that it provides both real-time power con-
sumption information and a standard application execu-
tion environment on the same platform. As a result, RT-
DEMS eliminates the need for synchronization between
the device under test and an external power measure-
ment unit. Moreover, RTDEMS provides power infor-
mation of individual subsystems, such as CPU, GPU and
RAM, through direct measurement, thereby enabling ac-



curate assessments of software and hardware effects on
the power behavior of individual components.

2.2 RTDEMS Design

The RTDEMS implementation used in our experiments
is hosted on an Intel® Core™ 2 Quad CPU Q6600
2.4GHz with 2x4MB of shared L2 cache and 4GB of
1066MHz DDR2 SDRAM. Data acquisition and sam-
pling is performed by a NI PCI-6225 data acquisition
(DAQ) card capable of acquiring 250kSamples/s at 16-
bit resolution. In order to measure the energy consump-
tion of individual subsystems, we inserted 0.01€) sensing
resistors in all the DC outputs of the power supply—3.3,
5 and 12V rails. Components that are powered through
the motherboard such as SDRAM DIMMs are placed on
riser cards in order to gain access to the voltage pins.
Power measurements are obtained by first deriving the
current flowing over the sensing resistors through volt-
age measurements across the resistors and then multiply-
ing with the measured voltage on the DC power connec-
tor. The DAQ card autonomously samples the voltages
at the specified frequency and stores them in its buffer.
A Linux driver initiates an interrupt-based DMA trans-
fer of the buffer’s content to main (kernel) memory. A
Linux kernel module was implemented in order to con-
vert the measured voltage values to energy and export
them through the proc filesystem, thereby enabling in-
tegration with both kernel- and userspace applications.
Figure 1 presents a summary of the RTDEMS energy
measurement system.
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Figure 1: The RTDEMS measurement system hardware dia-
gram.

Resolution: RTDEMS requires sufficient measure-
ment resolution—sampling frequency—to capture the
energy used within each scheduler tick in order to resolve
per-process energy information. Modern multitasking
systems run several processes pseudo-concurrently, by
executing one runnable process after the other for a short

time slice. For our Linux system this time slice is 3.3ms;
thereby, the currently executing task is usually changed
at the end of such a time slice. Therefore, assuming that
the maximum frequency of energy information that we
are interested in is 300Hz, we require a sampling fre-
quency of at least 600Hz, based on the Nyquist criterion.

In addition to measuring the energy used within each
scheduler tick, measurement resolution must be suffi-
cient to accurately capture the power dissipation profile
of the CPU as well as SDRAM. Because the CPU supply
voltage is constantly 12V, the frequency spectrum of the
power dissipation profile is defined by the current signal.
We used an oscilloscope to measure the current of the
CPU and SDRAM channels at high frequency—5MSa/s.
The power spectral density of the CPU current signal is
shown in Figure 2. 99% of the CPU energy signal is
contained within the first 500Hz—therefore a sampling
frequency of at least 1KHz can recreate the signal and
thus adequately meet both resolution requirements.
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Figure 2: Power spectral density of the CPU current signal.

Overhead: The RTDEMS energy measurement sys-
tem utilizes the main CPU to process power information.
The process of data acquisition, conversion and storage
can adversely affect the CPU performance and thus vio-
late the cost requirement. The performance overhead is
directly related to the sampling rate, as more samples re-
sult in larger amounts of data that need to be transferred
to the CPU and processed. At the same time, a very
low sampling rate will violate the resolution require-
ment, since it will provide insufficient information on
the temporal domain. A set of experiments was thereby
conducted to ascertain the overhead-resolution trade-off.
The impact of sampling rate on CPU performance was
determined by having all CPUs execute a constant work-
load and subsequently measuring the completion time.
As Figure 3 shows, the minimum sampling frequency of



1KHz that is required to meet the resolution requirement
results in a CPU overhead of less than 0.7%. It must be
noted that the data acquisition overhead depends on the
CPU speed—a faster CPU will result in less overhead,
thereby allowing for higher sampling rates. Ultimately
however, the best approach to practically eliminate the
resource overhead would be to integrate the data acquisi-
tion system on the motherboard—thereby eliminating the
PCI bus transactions—and perform the data conversions
and energy accumulation in hardware—thereby eliminat-
ing any dependence on the main CPU. In the embed-
ded systems space, the LEAP2 energy-aware system [24]
adopted a similar approach.

As a result, we have chosen 1kHz as the operational
sampling frequency for RTDEMS since it meets both the
resolution and overhead requirements.
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Figure 3: CPU overhead of RTDEMS as a function of sampling
frequency, when sampling 11 channels concurrently.

3 Per-Process Energy Apportioning

The RTDEMS energy measurement system can accu-
rately measure the energy expenditure on individual
hardware components, such as the CPU, SDRAM, moth-
erboard, hard drives and video card. It is reasonable then
to consider whether an energy measurement system with
high spatial and temporal fidelity is sufficient to attribute
energy consumption to individual software entities such
as processes. As mentioned in Section 1 we will focus
on the energy attribution of the computational subsystem
components, i.e. the CPU and SDRAM.

In a single-core system, only one process is execut-
ing in the CPU at any point in time. With a sampling
resolution higher than the scheduler tick—so as to deter-
mine which process was executing at any point in time—
attributing energy for synchronous operations (i.e. CPU
and SDRAM energy) is trivial; all the energy is charged
to the currently running process, which could be the idle
thread or the kernel itself [24]. We therefore argue that in
a single-core architecture, the ability to measure energy

consumption of individual hardware components cou-
pled with a sampling rate that is higher than the process
time slice is indeed sufficient for energy attribution.

Figure 4 presents an example of energy attribution in a
single-core machine. For this example, we used a simple
memory access benchmark that stored data sequentially
to a 512MB array—a large enough size so as to defeat all
caches—and subsequently read back the stored data. The
test process started at ¢ = 2sec and ended at t = 8sec.
To simulate a single-core architecture, we executed the
test program only on one of the four CPU cores of our
test machine—CPU1. In addition to power information
on the CPU, SDRAM and motherboard, Figure 4 also
plots the CPU utilization of the four cores, as reported
by the operating system. Using CPU utilization informa-
tion, it is clear that the increase in power on all channels
can be attributed to CPU1. Howeyver, this test also indi-
cates that even though the CPU utilization is at a constant
100%, different components have fundamentally differ-
ent power levels that also fluctuate over time, depend-
ing on their usage. Moreover, we note that even though
the power state of the CPU doesn’t change, the power
consumption is not constant but varies by a significant
amount, depending on the executing program’s function-
ality. Consequently attributing CPU energy consumption
solely based on the CPU utilization can lead to erroneous
results [5].

In a multi-core system, per-process energy attribution
is not straightforward. As the system includes multiple
CPUs and CPU cores, several processes can be execut-
ing at the same time. Moreover, main memory access
is now shared between multiple CPUs. Resolving per-
process CPU energy consumption can be accomplished
through augmenting the RTDEMS measurement system
with per-CPU core measurement capabilities, assuming
that CPU manufacturers can provide interfaces to such
information. In the case of main memory (as well as
L2 cache) such a technical solution would be infeasible,
as it is a shared resource. For accurate per-process en-
ergy attribution of memory access, one solution would
be to create a measurement system that tracks all mem-
ory transactions that occur on the memory bus and then
correlate them with individual processes. Even though
such a system is technically feasible, albeit with exten-
sive motherboard modifications, it would generate vast
amounts of data and incur very high overhead, as indi-
vidual memory accesses in modern systems occur in the
order of nanoseconds.

We therefore conclude that direct energy measure-
ments, such as those provided by RTDEMS or similar
systems, although necessary, are by themselves insuffi-
cient to resolve the per-process energy attribution prob-
lem in multi-core systems and that additional, indirect
energy information is required. One obvious approach



to the attribution problem is to use a utilization metric,
such as CPU utilization as the indirect measurement and
then attribute energy in proportion to the utilization met-
ric, which is essentially process execution time.
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Figure 4: CPU, SDRAM and motherboard power over time for
a single 512MB memory read & write test.

The following example illustrates why such an ap-
proach is not always correct. We conducted three exper-
iments using our memory access benchmark with array
sizes of 32KB for the first, 512MB for the second and
4MB for the third experiment. In each experiment, four
identical memory access benchmarks were started in se-
quence (one per core), with a 2-second delay between
each instantiation. In the first experiment, shown in Fig-
ure 5 the processes access their CPU’s L1 cache only, as
an array size of 32KB fits into the L1 cache. Considering
that the four processes run independently of each other
and on different cores but are executing the same code,
attributing energy based on CPU utilization and dividing
the total energy provided by RTDEMS equally is a rea-
sonable apportion method.

In the second experiment, shown in Figure 6 all caches
are defeated, since the array size is 512MB. When the
first task is started it quickly fills the L2 cache and after
that point the CPU is primarily stalled waiting for mem-
ory (maximum write performance of Intel Core2 Quad is
less than 2bytes per CPU cycle). When the second task
is started, power consumption does not increase (com-
pared to Figure 5)—the two cores are now waiting for
the same shared resource. Power consumption increases
when the third task is started since that task, unlike the
first two, is executed on the previously idle second dual-
core chip. This example showcases that even though all
tasks perform exactly the same operations, they have dif-
ferent runtimes, indicating that they execute at a different
rate. It is therefore not clear if they use the same amount
of energy. The apportion problem has no obvious solu-
tion unlike the first experiment.

In the third experiment, shown in Figure 7, the array
size of the memory benchmark is 4MB—equal to the

size of the L2 cache. When the first task is started, its
memory space fits in L2 cache. Power consumption of
SDRAM increases, which indicates that the CPU proac-
tively write cache lines to main memory. As soon as the
second task is started, the combined memory footprint
of both tasks’ data does not fit into L2 cache anymore,
as L2 is shared between the two cores of a CPU. In-
creased access to main memory is indicated by a power
increase in the SDRAM channel. The third task’s data
fits into the L2 cache on the second chip. Therefore it
executes much faster than the two previous tasks that are
constrained by main memory access. The net result is
an increase in total CPU power until the fourth task is
started, which forces the third task to main memory. In
this experiment, the addition of a new task can lead to
either an increase or a decrease in the total CPU power
consumption. Even though all cores execute the same
code, each individual task’s behavior is different and de-
pendent on all other running tasks. As a result, in this
example, CPU-utilization-based apportion leads to erro-
neous results.
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Figure 5: CPU, SDRAM and motherboard power over time for
four 32KB memory read & write tests.
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Figure 6: CPU, SDRAM and motherboard power over time for
four 512MB memory read &write tests.

The aforementioned examples showcase that a simple
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Figure 7: CPU, SDRAM and motherboard power over time for
four 4MB memory red & write tests.

energy apportion solution that attributes proportional en-
ergy consumption based on CPU utilization an execution
time can lead to significant errors in multi-core systems.
Using such a method, the third task in Figure 7 would be
charged for main memory access, while in fact it does not
access main memory. Another potential solution would
be to profile each application individually. However, as
illustrated in the examples above, the energy consump-
tion of a task depends on the behavior of all other run-
ning tasks in the system. Therefore, a more complicated
indirect measurement methodology is needed.

4 Indirect Energy Measurement Model

In Section 3, we argued that direct energy measurements
are a necessary but insufficient condition for determin-
ing the energy used by individual processes and tasks in
multi-core platforms. For this purpose, we introduced
the concept of indirect energy measurements. The indi-
rect energy measurement system needs to meet the fol-
lowing requirements:

e The values measured should reflect a task’s energy
behavior.

e Appropriate models have to be defined, which allow
behavioral comparisons of different tasks. Conse-
quently, variables and models have to be found for
all tasks running on a system.

e The comparison of different tasks should result in a
“fair” energy apportion scheme.

We define a fair energy apportion as one that appor-
tions the total energy in proportion to the amount of en-
ergy that would have been saved if the task would not
have been executed. Given a set of tasks that uses total
energy Fioui, if task a is removed, the remaining tasks
use energy Fz. A fair apportion method would charge
the energy cost Eo,q o a task a as shown in Equation 1.

(Etotal - E&)
Zj (Elotal - Ej)

As a consequence, a’s energy cost depends on all other
tasks executed concurrently, that might or might not be
under a’s control. We argue that this is fair for the fol-
lowing reasons. First, tasks should be charged for the
energy consumption they cause, which depends on the
other tasks and can result in either energy benefits or
savings (see Section 3). Also, application developers
should be encouraged to write efficient code and not be
rewarded for inefficient and suboptimal multi-threaded
programming.

In this Section, we will present an indirect energy mea-
surement model which is well suited for the apportion of
SDRAM as well as CPU energy.

Ecost,a = * Etolal (1)

4.1 Performance counter behavioral model

Most modern processors, whether embedded, desktop
or server-class, contain a performance measurement unit
(PMU) which is capable of counting a variety of different
processor related events. Performance counters are typi-
cally used to profile applications and optimize their per-
formance. In the energy estimation domain, Bellosa et
al. used performance counters to predict CPU tempera-
ture for dynamic thermal management [5]. They propose
a linear, event-based model to estimate the energy con-
sumed by a single-core CPU. They show that the CPU’s
energy consumption F can be modeled as a sum of event
counts ¢; multiplied by event energy e;, as in Equation 2.

Eest = Z C; * € (2)

We argue that performance counters are suitable indi-
rect indicators for energy apportion. Performance coun-
ters are available on most modern processors and can
be accessed without incurring significant overhead. Ad-
ditionally, performance events can be counted for each
core separately and can therefore measure the behavior
of each core individually, thus providing the additional
visibility that our direct measurement system lacks. Fi-
nally, previous work has shown performance events to be
good indicators for energy usage [5, 20, 17, 13]. We note
that, unlike Bellosa et al., we do not use performance
counters to estimate total energy consumption as our RT-
DEMS measurement system provides us with direct and
accurate measurements. Rather, after acquiring the total
energy consumption through RTDEMS, we use perfor-
mance counters to solve the energy apportion problem.
We also extend prior work by using performance coun-
ters as indicators for SDRAM energy consumption, in
addition to CPU energy consumption.



Both CPU and SDRAM are complex systems that con-
tain numerous subsystems. Several of those subsystems
can be shared among running processes at any point in
time. For example, our Intel® Core™ 2 Quad CPU
consists of two separate dual-core CPUs with 4MB of
L2 cache each. Therefore, depending on which core
two processes are executing, they either have access to
a shared 4MB L2 cache, or to two individual 4MB L2
caches. We use models to estimate the tasks’ energy be-
havior relative to each other and do not try to model ab-
solute CPU energy consumption, which would require
to model all subsystems and inter-task dependencies. It
is sufficient to learn the event model for the single-core
case as this provides an apt approximation of Eiq — E5
for Equation 1.

Eest,a
Ecosna = =5 % Emeasured (3)
Zj Eest,j

Equation 3 shows how we apply performance event
based models for fair multi-core energy apportion. The
total measured energy Fieasured 1S apportioned among a
set of tasks. The energy cost Fcog o charged to a task a
can be calculated by dividing total energy Fieasured Pro-
portional to Feg o, which is the energy the task’s behav-
ior would have cost in single-core operation. As a conse-
quence, additional costs as well as energy savings result-
ing from running tasks on a multi-core system, are split
equally among the tasks.

We defined Eeasured @S the energy cost caused by the
running tasks. For that reason, we subtract the dc part
from all energy and power measurements. We think, this
is a “fair” policy.

4.2 Model learning

In order to learn and test our model, we use a variety of
different microbenchmarks and actual applications typi-
cally found on desktop or server systems. Microbench-
marks include burnMMX and burnP6, a memory and
CPU stress test from the cpuburn package, mem, our own
memory access test capable of accessing memory in var-
ious ways (Section 3), gsieve integer factorization and
linpackc. Applications include sort, mdSsum, multime-
dia encoders (mm), lame (mp3) and oggenc (ogg vorbis),
imagemagick (immck), compilation of the Linux kernel
using gcc, the web browsers firefox and epiphany and
the webservers apache and thttpd. As shown in Figures 8
and 9 these applications have very different characteris-
tics, both in terms of power and in terms of performance
events.
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Figure 8: Average CPU and SDRAM power usage of different
applications.
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Figure 9: Normalized performance event rates and event ratios
of different applications.

4.2.1 Performance event selection

Performance measuring units can track dozens of differ-
ent events, albeit only few at the same time. For instance,
the Intel® Core™ 2 CPU used on the RTDEMS is capa-
ble of counting well over 100 different events. However,
for each core, only five different events can be measured
simultaneously and three of those are predefined and can-
not be changed. As a result, we need to select two events
that, together with the three predefined events can consti-
tute a reasonable set of indirect measurement indicators
for energy consumption.

One approach to this selection problem is to write mi-
cro benchmarks that cause a limited set of PMU events,
thus facilitating the calculation of event energies e; for
all possible events. Then, events with the highest energy
contribution e; * ¢; (Equation 2) can be chosen. How-
ever this approach is not optimal as event energies are not
constant but depend on both the running application and
the model. In general, a PMU event can be caused by a
set of different hardware events (subevents) with differ-
ent energy costs. For example, subevents for the PMU



event Memory Read include random reads within the
same row, random reads that induce a row change, and
burst reads. The relative frequencies of those subevents
and subsequently the average cost of a PMU event de-
pend on the application. Similarly, many PMU events
are not independent of each other. For example, transla-
tion lookaside buffer (TLB) misses are for most applica-
tions highly correlated with memory reads. A model not
counting TLB misses will likely include their cost into
the cost of memory reads.

Our event selection methodology consists of the fol-
lowing steps. First, we manually prune the search space
of events that are not likely to have an impact on power
consumption. Second, we gather model learning and test
data. Because running a test multiple times always re-
sults in the same total event count, it is sufficient to run
each test as many times as required to get the total counts
for all events and total energy. Finally, we systematically
build models for SDRAM and CPU energy and compare
their performance.

For our system, we found through exhaustive search
of the reduced search space that the events for ‘lines read
into the last-level cache’, ‘modified lines evicted from
the last-level cache’ and ‘instructions retired’ are well
suited to model SDRAM as well as CPU energy.

4.2.2 Event energy learning

After having selected the appropriate PMU events, their
event energies e; must be learned. As mentioned in Sec-
tion 4.2.1, event energies vary slightly between applica-
tions. For example, when reading an 512MB buffer se-
quentially the energy cost of reading a cache line is 52nJ.
When reading the same buffer randomly, the cost rises to
69nJ.

Using time series of energy and event data as opposed
to total values for event energy learning provides more
data points and makes several variables independent even
if there is only limited training data available per applica-
tion. It is therefore possible to learn the event weights for
an application with few tests. Overlearning becomes an
issue when an application’s counts for certain events are
too low to have a measurable impact on power or when
two counters are highly correlated. For these events,
the application’s costs are set to those from the generic
model. We thus ensure that each application’s model is
valid even if the application changes its behavior in the
future. Table 1 shows the event energies estimated with
this method.

Figure 10 shows the R? value of the single-core en-
ergy estimation for both SDRAM and CPU using three
event counters only. The performance of the model is
very good for all test applications, even for very com-
plex programs like Firefox or a complete Linux kernel

Application SDRAM Model CPU Model
Memory Memory| Instr. Memory Memory
Reads Writes | Retired  Reads Writes
generic 56 63 2.1 121 273
apache 66 67 3.1 241 266
browsers 59 63 2.5 128 252
burnMMX 55 59 2.1 120 264
burnP6 55 64 2.0 124 277
gcc 57 64 3.2 98 296
immck 56 63 1.9 151 264
lame 57 62 2.6 95 265
linpack 55 63 1.9 134 233
mdSsum 56 63 2.3 116 269
memtest™® 52 61 1.6 113 265
memtest’ 69 85 2.0 185 325
gsieve 56 64 2.6 98 272
sort 68 55 2.4 159 215
thttpd 63 72 2.6 162 387

Table 1: Event energies in nJ for different applications.
* sequential read/write, T random read/write

compilation. An increase in the number of PMU coun-
ters and energy-relevant performance events would lead
to improved model performance.
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Figure 10: Single-core energy estimation performance.

5 The Energy Apportion & Accounting
System

The purpose of the energy accounting system is to accu-
rately account for the energy used by processes within a
computer system. The system also provides runtime per-
process energy usage information to the operating sys-
tem and to user space programs. The energy accounting
system builds on the RTDEMS real-time energy mea-
surement capability. Consequently, the accounting sys-
tem should meet the same requirements regarding reso-
lution, cost, and integration stated in Section 2 as well as
the following:
e Modularity. The accounting system and its subsys-
tems should be modular components of the operat-
ing system.



e Latency. Per-process accounting requires tight in-
tegration with critical code paths of the operat-
ing system. Low latency on these critical paths is
paramount for the operating system and therefore a
crucial requirement for our software architecture.

e Parallelism. The software architecture must be op-
timized for multi-core operation.

Figure 11 shows an architectural diagram of the en-
ergy accounting system. It is comprised of several Linux
kernel modules together with a small kernel patch that
adds energy information to Linux’s process manage-
ment. The system uses real-time energy samples ac-
quired by RTDEMS. Energy is ultimately charged to
resource containers, our energy cost accumulation data
structures [4, 25]. The core of the system is the en-
ergy apportion and accounting component, which asyn-
chronously processes the CPU’s activity lists in order to
apportion the energy measured using the performance
counter attribution method introduced in Section 4.

5.1 Resource containers

As our energy accounting data structures we use resource
containers, a well-known OS abstraction that is used for
accounting usage costs of several shared OS resources.
Resource containers separate the concept of a resource
consuming entity from processes, which allows more
fine-grained accounting. Resource containers accumu-
late energy values for all hardware components individ-
ually. Each process and thread is associated with a re-
source container by means of resource binding [4]. Pro-
cesses and threads constitute the accounting entities of
our system. When an an accounting entity is active, its
energy consumption is charged to the respective con-
tainer. We utilize dynamic resource binding to allow
binding of any resource container to a process or thread
at any time. This makes it possible to implement systems
other than per-process accounting, such as per-activity
accounting [4, 25].

5.2 Per-process accounting subsystem

On a single-core machine, each process would be
charged the energy Epeasuyred measured during the time
slice the process ran uninterruptedly.

On a multi-core machine however, tasks are executed
on all n cores independently. The energy apportion al-
gorithm apportions energy among up to n tasks that run
concurrently. For that reason, we have to divide the unin-
terrupted execution time of a process into segments (time
slices) that do not include any task switches on any CPU.
The energy used during those time slices is proportion-
ally attributed to concurrently running tasks, through the
energy apportion algorithm. Figure 12 shows two CPUs

running three tasks a, b, and c and the resulting energy
apportion time slices At;. For Aty, total energy is di-
vided among tasks a and b, in Aty among a and ¢, in
Atg all energy is charged to ¢, and so on.

task a tasik a Time
CPU1 : :
taskb | taskc ! taskb ! itask ¢
CPU 2 >
Apportjon At PAtz At Ata Ats Ats ¢ Aty
time slices >

Figure 12: Energy accounting time slicing for three tasks a, b
and c running on two CPUs.

The energy apportion time slice is in general smaller
than the scheduler time slice since tasks can block or be
interrupted by a high priority task before their scheduler
time slice expires. Additionally, while a task a is running
uninterruptedly, a task switch might happen on another
CPU, leading to segmentation.

For each time the scheduler selects a new task on any
of the cores, the apportion algorithm needs to be exe-
cuted, and energy charged accordingly. It is not practi-
cally feasible to do the energy apportioning immediately
when a task switch is scheduled. The computational load
of the algorithm would lead to a significantly increased
latency in the scheduler. More importantly, the account-
ing would have to be synchronized among the CPUs,
which would result in a blocking scheduler and therefore
a momentous latency overhead.

The following paragraphs describe the following main
components of our architecture depicted in Figure 11:
Per-CPU activity logs, model management, task manage-
ment and the energy apportion and accounting algorithm.

Per-CPU activity logs: To minimize the latency in the
scheduler and to solve the synchronization issue, we in-
troduced per-CPU activity logs. The logs keep track of
the scheduling of tasks, on a per CPU basis. Using per-
CPU log information, the expensive apportion computa-
tion can be deferred and need not be executed on every
context switch. In addition, since information is recorded
per CPU, log access need not be synchronized.

Our energy apportion algorithm needs the following
data as input: a) the energy FEpeasured @S measured by
the RTDEMS, b) the concurrently running tasks among
which FEeasured 1S divided, and c¢) the model values c;
and e; needed by the apportion algorithm introduced in
Section 4.

While Eieasured 1S provided by the RTDEMS’ energy
log, all other data must be stored within the activity logs.
Consequently, log entries contain a time stamp, a pointer
to the task’s current resource container, a pointer to the
task’s current model information and a memory region
for each of the task’s energy models. The models utilize
those memory regions to store values c; required in order
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Figure 11: Architectural diagram of the energy accounting software system.

to determine the task’s energy behavior during the time
period since the last entry.

Model management: Our system uses application-
and device-specific energy models to assess the pro-
cesses’ respective energy behavior. Each model is de-
fined by an interface consisting of the following five
functions:

e put_task () This function initializes the model’s
memory area for a task that has just been selected
by the scheduler. For instance, the PMU model
uses this function to store the current, initial per-
formance counter values in the memory area. The
model could also configure the PMU to count dif-
ferent events that are better suited to determine the
energy behavior of this application.

pop_task () This function finalizes an activity
log entry for a task that is removed from the CPU.
For example, the PMU model reads the new perfor-
mance counter values, subtracts the initial values,
and saves the difference in the memory area.
estimate () This function calculates F.y of a
given activity log entry. For example, the PMU
model calculates Fy using its application specific
event energies and the performance event counts
stored in the entries’ model memory area.

init (), exit () These functions are called
upon loading and exiting the energy accounting sys-
tem in order to initialize and terminate the model.
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Task management: In order to enable both per-
process accounting and application specific models, we
extended Linux’s process data structure task_struct
to include a pointer to a dynamically allocated data struc-
ture ea_data. This structure contains task specific in-
formation needed by the energy accounting system such
as a pointer to the task’s current resource container and
models—one for CPU and one for SDRAM energy.

Dynamic allocation of the energy accounting data
structure enables dynamic binding of the task’s model
and resource container. This feature allows the account-
ing system to change the model at any point without data
loss. Because activity log entries contain a pointer to the
task’s currently valid ea_data, entries are always pro-
cessed using the right model, even if the task’s model
binding has changed by the time the accounting thread
becomes active.

Dynamic allocation necessitates the inclusion of a ref-
erence counter, which indicates if ea_data is still be-
ing referenced by either a task or an activity log entry.
As soon as the reference counter becomes zero, the data
structure can be freed.

Besides augmenting the process data structure
task_struct, we created an interface to Linux’s pro-
cess management that allows us to manage per-process
energy data. When a process or thread is created,
changed or exits, its ea_data structure must be up-
dated. In order to not violate the modularity require-
ment by including this functionality into Linux’s process
management, we defined an interface, through which the
energy accounting system can register callbacks for the



following events:

e fork () and exit (): Create or delete ea_data.

e exec (): Reevaluate the task’s model and possibly
choose new application specific models.

e switch (): The scheduler is about to switch to an-
other task. Insert new entry into activity log.

In addition, the process management makes per-
process energy information accessible from user space
using the process file system by reading the file
/proc/<pid>/ea.

Energy apportion and accounting: Our design al-
lows to defer the apportion and accounting algorithm and
execute it in a dedicated kernel thread. This thread runs
periodically or on demand on any CPU, preferably an
idle one. The apportion and accounting algorithm works
as follows:

1. Get activity log entries for the next time slice At

from each CPU.
2. For each resource (CPU, SDRAM)

(a) Get Epeasured for At from the RTDEMS’ en-

ergy log.
Get E, of each entry by executing the
estimate () function of the model which
is referenced by the entries’ ea_data refer-
ence.
Charge each entry’s resource container ac-
cording to the apportion rule introduced in
Section 3.

(b)

(©)

Since all CPUs create activity log entries indepen-
dently, the entries in general do not correspond to the
same time slice. To apportion the energy of a time slice
At, the entries have to be of the same length. Therefore,
the length of the time slice is defined in step 1 by the
shortest entry. All longer entries are split into an entry of
size At plus the remainder of their own time slice. We as-
sume that the behavior of a task is approximately uniform
during a time slice, such that model values can be divided
up linearly among the parts. Because activity log entries
created by the scheduler have an arbitrary length, a timer
inserts new entries at a frequency for which the above
assumption is reasonable—20Hz in our implementation.

As a consequence of deferring energy accounting, the
resource containers are updated with a delay. The max-
imum delay is limited by the period at which the ac-
counting thread is run. Each resource container counts
the number of its activity log entries, that are not yet ac-
counted for. If the count is zero, a resource container’s
energy values are up-to-date.
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5.3 Tracing subsystem

In addition to the energy accounting system, we also im-
plemented a tracing subsystem that provides an interface
for monitoring and accurate energy measuring of tasks.
This subsystem acquires values such as measured energy
Fneasureds €nergy used by individual CPUs, model values
¢;, and model data e; and makes them available as time
series data. Values can be traced continuously or only
when a given process is active. The tracing subsystem is
used by our model learning tools and also enables appli-
cation developers to analyze the energy consumption of
a single application.

The tracing subsystem consists of two modules: the ar-
biter module and the sampler module. The arbiter mod-
ule acquires and aggregates data that is subsequently pro-
vided to multiple clients. Whenever the accounting algo-
rithm processes a set of activity log entries, it informs
the arbiter which aggregates and distributes the samples
to its clients’ sample queues. Because this causes an ad-
ditional overhead for the accounting algorithm, we de-
signed the tracing subsystem as optional kernel modules,
which should only be activated when their functionality
is necessary. The sampler module exports the tracing in-
terface and the samples to user space using the process
file system.

6 Evaluation

In this section, we present an experimental evaluation of
the accuracy of the apportion algorithm and demonstrate
the functionality of our system using typical desktop ap-
plications. In addition, we investigate the impact of our
system on CPU resources.

6.1 Per-process energy apportion accuracy

The main part of the energy apportion algorithm is the
set of performance event models introduced in Section 4.
In order to ascertain the accuracy of these models, we
would need to compare the results to those obtained by
an a priori accurate measurement system. However, as
mentioned in Section 3, without extensive motherboard
and CPU modifications, we cannot measure the energy
consumption of individual CPU cores or the percentage
of SDRAM energy usage caused by a particular process.
As aresult, the correct solution of the apportion problem
(i.e. ground truth) is in the general case not known.

In order to test the accuracy of the apportion algorithm
we therefore designed experiments for which we are able
to assert a particular apportion. We then compare the as-
serted values with the solution found by our online al-
gorithm. We chose a sequential memory access bench-
mark as our test program, as it allows us to test SDRAM



as well as CPU energy apportioning, by controlling the
number of memory accesses. We also chose a memory
buffer of 512MB in order to minimize the impact of the
CPU’s cache management, which is beyond our control.

By executing two instances of the memory bench-
mark, A and B concurrently on two different cores and
by controlling the number of accesses over the mem-
ory buffer, we assert the energy apportioning to be pro-
portional to the number of memory accesses performed
by the two processes. For example, if process A ac-
cesses the memory buffer once while process B accesses
it twice, we assert that the correct memory energy attri-
bution would be 33% for process A and 66% for pro-
cess B. We note that this assertion holds for our bench-
mark because the type and locality of memory accesses
is the same for both processes, as opposed to arbitrary
processes and tasks, where neither type nor locality can
be known in advance.

Figure 13 depicts the result of our experiments for both
CPU and SDRAM energy attribution. The z-axis depicts
the asserted value of process A as a percentage of the
total energy value of A + B, i.e. % while the y-
axis shows the equivalent measured result from our en-
ergy apportioning system. An ideal energy apportioning
system would have a y-axis value that would match the
corresponding x-axis value. As seen in Figure 13, our
energy apportioning system is very accurate, with a max-
imum deviation of up to 4% of the equivalent asserted
values. The accuracy achieved in this experiment makes
it reasonable to assume that our system provides the cor-
rect apportion for arbitrary applications.

100 : :
SDRAM -
CPU K
Ideal
80 |- % 4
y
o /
5 K
2 60 V% i
g
g ¥
3
S a0 f %é 4
8 y
s
p
20 L % J
/%
y
p
o / | | | |
0 20 40 60 80 100

Asserted apportion [%]

Figure 13: Asserted and measured CPU and SDRAM energy
apportion of two tasks a and b.

6.2 CPU Overhead

As mentioned in Section 2 and 5, our energy accounting
system needs to operate with the lowest possible over-
head. In Section 2 we investigated the RTDEMS over-
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head in terms of CPU resources. However RTDEMS-
induced overhead is only part of the energy accounting
system’s overhead. In addition, overhead is caused by
the insertion of entries into the activity logs and subse-
quent processing by the apportion and accounting thread.
As a consequence, the overhead is expected to depend
on the scheduler’s task switching activity. Whenever the
tracing subsystem described in Section 5.3 is active, the
accounting thread is required to supply the arbiter with
time series data, thus creating additional overhead.

In order to determine the overhead of our system on
CPU resources, we measured the CPU time spent within
the energy accounting system. This was determined us-
ing the processor’s time stamp counter which provides
nanosecond time resolution with minimal CPU impact.
To quantify the impact of scheduling activity, we imple-
mented a microbenchmark that periodically performs a
CPU-bound computation and then causes a task switch
by yielding the processor. The task switching frequency
can thus be controlled by modifying the duration of the
CPU-bound computation. Each task switch leads to an
additional entry in the per-CPU activity log as described
in Section 5.2. The CPU overhead depends on the rate
of modifications (insertions and deletions) on the per-
CPU activity log. Therefore, increased scheduling activ-
ity (task switching frequency) is expected to incur higher
overhead.

We conducted experiments using two tasks per CPU,
variable task activity periods, and by enabling and dis-
abling the tracing subsystem. Figure 14 shows the CPU
overhead of the energy apportion system. We note that
even at very high task switching frequencies of 300Hz
the impact on the CPU is less than 0.45% and is re-
duced to less than 0.2% at switching frequencies of 10Hz
or less. On the other hand, the activation of the trac-
ing subsystem results in a relatively substantial overhead
of 0.6% at high task switching frequencies. Acquisi-
tion of time series data is a relatively expensive operation
thereby justifying our design decision to implement the
tracing subsystem as an optional module.

6.3 Application apportioning

Table 2 shows the result of the apportion system for four
concurrently running applications. Our application set
includes the apache web server, a gcc compilation of
parts of the boost library, sorting a 128MB file of 100-
byte length random integers and an image blurring pro-
cess. The applications have different runtimes and—
as expected—different energy footprints which are re-
flected in the resulting energy apportion.

Our experimental results demonstrate that our energy
attribution and accounting system has achieved its de-
sign goals of providing integrated and accurate—96%
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Figure 14: CPU overhead of the energy apportioning and ac-
counting system as a function of task switching frequency.

Application CPU [J] SDRAM [J] Runtime [sec]
apache 66.8 2.8 14.9
gcc 105.0 4.3 19.2
sort, 128MB 169.8 5.5 20.0
image blur 97.2 0.6 10.3

Table 2: CPU and SDRAM energy apportion for four concur-
rently running applications.

of optimal—per-process energy accounting of individual
hardware components, incurring only up to 0.6% of CPU
overhead.

7 Related Work

Prior work on energy measurement for server sys-
tems typically focuses on global server power consump-
tion surveys, such as Binachini et al. [7] and Koomey
et al. [16]. External power measurements have been used
by Chase et al. [8] to optimize the energy consumption
of a hosting center by dynamically resizing the server set
of a cluster. As explained in Section 2 external measure-
ments are not suitable for per-process accounting as they
do not meet the integration and resolution requirements.

An alternative approach to determine a server’s energy
consumption is through estimation techniques. ECOSys-
tem [27] and Rivoire et al. [22] use a power state based
model and associate a fixed power consumption to each
state. Kansal et al. [15] propose a similar model for ap-
plication energy profiling. Using a per-component uti-
lization based approach, Mantis [10] learns and predicts
the power consumption of a server system for different
workloads. Our work does not rely on estimation tech-
niques, as our RTDEMS system provides us with direct
energy measurements at high temporal and spatial reso-
lution.

Bellosa et al. [5, 20] introduced linear performance
event based models for CPU energy estimation and uti-
lized them for dynamic thermal management. Our en-
ergy behavior models and methods of energy apportion-
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ing among tasks are based on this work. Our system ex-
tend this previous work by providing application specific
models for accurate apportioning and also extends the
PMU models to include main memory energy consump-
tion.

Isci et al. [13] used performance counters to esti-
mate the energy consumption of processor subsystems
from power external measurements. Similarly, Lewis
et al. [17] proposed a method to calculate per-component
energy from AC power measurements. Alternatives to
performance event based models are SimplePower [26],
an instruction level emulator and energy estimator, or
regulator switching cycles based energy models as pro-
posed by Dutta et al. [9]. However, those systems do
not provide per-task resolution and thus cannot be easily
adopted to solve the multi-core energy attribution prob-
lem.

Resource containers [4] are a well-known operating
system abstraction. They have been proposed and imple-
mented for FreeBSD [4] and for Linux [25]. In addition,
Jones et al. [14] designed a modular resource manage-
ment for the Rialto operating system. Our system builds
upon previous work by providing the first implementa-
tion of resource containers for multi-core systems and
by solving the energy apportion problem.

8 Conclusion

This paper introduces a new energy attribution software
architecture that augments the operating system of a
multi-core platform with runtime per-process energy us-
age information. Our system utilizes runtime direct en-
ergy measurements that provide accurate per-component
energy usage information at millisecond-scale resolu-
tion. We argue that per-process energy accounting on
a multi-core or multi-processor platform necessitates the
use of indirect energy measurements. As a solution to
this energy apportion problem we introduce performance
counter based energy behavior models. We experimen-
tally demonstrate that our models exhibit high energy es-
timation accuracy for single-core experiments with both
microbenchmarks and actual applications, thereby pro-
viding an apt measure for the apportion of both CPU as
well as SDRAM energy.

We fuse the direct and indirect portions of our system
in a combined energy apportion and accounting software
system, designed as a low-overhead modular component
of the Linux operating system. Our experiments demon-
strate that our energy apportioning system can success-
fully provide per-process energy consumption with over
96% accuracy, while impacting CPU performance by
less than 0.6%.

In the future we plan to extend our system to account
energy usage of other components such as hard drives



and network cards, which requires the design and imple-
mentation of suitable energy models. Furthermore, we
aim to replace the initial calibration phase necessary for
model learning with an online model learning system.
We designed our system with future expansion to alter-
native accounting systems like per-activity accounting in
mind. We also intend to build on our resource container
implementation and provide a more powerful interface
for container manipulation to userspace applications.
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