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Abstract

Bacteria, eukaryotic cells, multicellular organisms, animals and even humans forage

to find resources such as food. Foraging involves random search processes, and it has

been shown that trajectories of many types of foragers resemble random walks. It is

also known that solitary foragers can change their foraging strategy to maximize their

encounter rate or search efficiency. While there has been much work done on foraging

individually, less is known about foraging in groups. Members of a group can cooper-

ate to find resources like herds of Mongolian gazelles, or compete with each other like

tigers. The effect of cooperation and competition on foraging patterns is not yet fully

understood. In this dissertation, we aim to increase our understanding by focusing

on two specific cases - (i) efficient foraging strategies for territorial competitors and

(ii) cooperative foraging in cell clusters.

Many animals such as albatrosses are known to exhibit foraging patterns where

the distances they travel in a given direction are drawn from a heavy-tailed Lévy

distribution. Previous studies have shown that, under sparse resource conditions,

solitary foragers perform a maximally efficient search with Lévy exponent equal to 2.

However, in nature, there also exist situations where multiple foragers interact with

each other competitively. To understand the effects of competition, we develop a

stochastic agent-based simulation that models competitive foraging among territorial

individuals by incorporating a territory of a certain size around each forager which

is not accessible by other competitors. Our results show that with increasing size of

the territory and number of agents the optimal Lévy exponent is still approximately

2 but the efficiency of the search decreases except at low values of the Lévy exponent,

where increased territories unavailable for searching increases efficiency. Moreover, we

show that the variance among the efficiencies of the agents increases with increasing

Lévy exponent. Thus, by performing more localized searches, foragers might increase

ix



the mean efficiency of a population, but at the risk of increasing variance in effi-

ciency among individuals. On the other hand, performing more de-localized, smaller

Lévy exponent searches can decrease variance but the decrease in efficiency may be

countered by increased territorial competition.

While competition is common, many living organisms such as bees, school of fish

and caterpillars collaborate with each other to complete a task. Such collaboration

extends to the cellular scale. Multicellular aggregates such as cell clusters and tissues

exhibit collective migration with complex emergent behaviors that are critical for

function and very different from the behavior of the constituent single cells. We focus

on the chemotaxis of clusters of malignant lymphocytes, responsible for the metastases

of lymphomas. Previous work has shown that, in high chemical gradients, clusters

travel towards higher concentrations of chemoattractants while individual cells are

repelled and travel in the opposite direction. It was also shown that these clusters

show a number of novel collective phases including running, rotating and random

phases that were speculated to avoid chemo-repulsion and enhance their chemotactic

efficiency. Using agent-based simulations we showed that the chemotactic efficiency of

clusters increases with increasing chemical gradient and persists even at high gradients

while individual cells and small clusters experience chemo-repulsion at high gradients,

in agreement with experiments. Moreover, the internal dynamics of the clusters in the

running phase showed three well-defined structures including single vortices, double

vortices and disordered structures which we were able to identify in experiments as

well. These dynamical states let cells switch between the clusters’ rim and core

avoiding chemo-repulsion, and allowing the cluster to forage for chemoattractants

more consistently.

x



Contents

Acknowledgments v

Curriculum Vitae vii

Abstract ix

1 Introduction 1

1.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background concepts 5

2.1 Concepts for chapter §3 . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Gaussian distribution, Central limit theorem and Lévy distri-
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Chapter 1

Introduction

1.1 Motivation and Overview

In nature, foraging processes are ubiquitous. Living organisms forage to find resources

such as food to survive or to reproduce by mating (Fig 1.1). Therefore, the underlying

motivation for their movement is to increase their encounters with such resources.

Even though, their movement might be affected by many factors such as changes in

temperature, density of other organisms, climate and escaping from predators.

Encounters of foragers with resources involve random search processes, and it has

been shown that trajectories of foragers can be described by random walks [1]. It

was also shown that foragers can tune their random walk statistics to maximize their

encounter rate i.e. their search efficiency [2]. The search can be guided by external

cues such as cognitive and detection, or it might not be oriented in which it becomes

a stochastic process. When location of resources are not known a priori, organisms

perform a completely stochastic search [1]. While, when there is knowledge about the

location of resources through sensing, memory, or signals from other organisms (e.g.

pheromones, bee dances) the search is not considered fully stochastic anymore [5].

Solitary foraging processes, in both cases with and without external cues have

been studied well in the literature. On one hand, with no information available to the

searcher, in the case of sparse targets, many animals such as albatrosses, jackals [6],

and spider monkeys [7] exhibit foraging patterns where distances traveled are drawn

from a heavy tailed Lévy distribution [2, 8]. On the other hand, many organisms

locate resources using sensory signals. In the presence of external cues and prior

1
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knowledge, the foraging strategy can be modified to make use of the information.

Chemotaxis [9], infotaxis [10], and anemotaxis [5] are examples of search processes

with external cues. For instance, bacteria, such as E.Coli, use chemotaxis to move

towards the source of energy by climbing in the direction of positive gradient [9].

a b

c d

https://www.microscopemaster.com/e-coli-
under-microscope.html#gallery[pagegallery]/0/

https://www.istockphoto.com/photo/eukaryotic-
cells-gm1206920963-348275028

https://wwf.panda.org/wwf_news/?350330/
Mongolian-gazelle-migration-must-not-be-stopped https://www.earthlife.net/birds/albatross.html

Figure 1.1: (a) E. Coli, (b) Eukaryotic cells, (c) Mongolian gazelles, and (d) Alba-
trosses forage to find resources such as food or to reproduce by mating [1].

Foraging has been studied by using concepts and techniques in statistical physics.

Statistical physics focuses on macroscopic phenomena that result from microscopic

interactions between members of a system. Similarly, the trajectories of foragers

searching for food in macroscopic scale depends on the steps taken by the organisms

with their limited information on microscopic scale [11]. Moreover, foraging involves

disorder, randomness, and entropy since foragers are not necessarily aware of the

resources locations [12]. Finally, the concepts of universality and scaling in statistical

physics can be applied to foraging problems, to see whether diverse organisms in a

variety of environments move in similar ways [1].

Many situations involve foraging in groups with cooperative (herds, or clusters of

cells) or competitive (territorial animals, or bacteria) interactions. Autonomous or-

ganisms, which communicate locally, form groups that are able to behave collectively
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such as flocks, swarms, and crowds. These dynamics allow them to complete compli-

cated tasks like foraging, hunting, thermoregulation, and protection against predators

[3]. Field studies, theoretical, and computational models have investigated different

aspects of foraging in groups and collective behavior. For example, collective foraging

is favored in the cases of clumpy and scarce resources, but not when resources are

abundant [13]. Foraging time of a group of robots that avoid interfering with each

other depends on the group size, and an optimal size is observed where foraging time

is minimized [14].

Forming a group can be advantageous for multiple reasons including sharing in-

formation and finding resources in a more efficient way [15]. Benefits of searching

cooperatively appears in a wide range of settings from robots [16] to living organ-

isms. The group forming also allows individuals to overcome complicated tasks and

situations[17]. These behaviors extend to cellular scales, and cells form clusters and

migrate collectively to participate in tissue development, tumor metastasis, and re-

pair. They cooperate with each other to complete various tasks in the body.

In this thesis, I am going to address some aspects of collective foraging that have

not been studied before:

• What are the effects of territorial competition on foraging efficiency and strat-

egy?

• How clusters of malignant lymphocytes are able to perform chemo-attraction in

presence of chemo-repulsion for individual cells?

(i) Group foraging with territorial competitors:

In Chapter §3, I investigate how search strategy changes in the presence of terri-

torial competitors. I explore the different types of strategies that can optimize group

foraging in these cases. My focus relies on implementation of different landscapes such

that I observe dynamic properties for territorial competitors. I use an agent-based

model which utilizes Lévy distributions [18, 19] to address efficient foraging strategies

for terrestrial and aerial animals in presence of competition. I study the effects of

increasing the population of foragers and their size of territory on search efficiency,

and strategies that maximize the encounter rate with resources for destructive and

non-destructive foraging. Furthermore, I look at the variance of the efficiency of the

foragers, and how it changes based on the search strategy, and number of searchers.
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(ii) Foraging in cellular clusters:

In Chapter §4, by using agent-based simulations, I study the intracellular dy-

namics which lead to robust chemotaxis in clusters of malignant lymphocytes. The

model is similar to the one in [20]. However, I add chemo-repulsion to the model

which allows the model to not only capture the necessary behavior for robust chemo-

taxis such as rotating, running and random phases, but also allows the cluster to do

chemo-repulsion in very high chemical gradients. I show how the chemotactic effi-

ciency changes as a function of chemical gradient and verify my results by analysis

of experimental data. Moreover, I look at the internal dynamics of the clusters to

investigate the mechanism behind chemotaxis in clusters.



Chapter 2

Background concepts

2.1 Concepts for chapter §3

2.1.1 Gaussian distribution, Central limit theorem and Lévy

distribution

In chapter §3 we look at random walkers with step lengths coming from a Lévy dis-

tribution. The Gaussian distribution describes a variety of phenomena at the macro-

scopic level. The Gaussian or Normal distribution appears in nature ubiquitously due

to the wide applicability of the central limit theorem. Central limit theorem indicates

that the sum of a large number of independent and identically distributed random

variables that have a finite variance converges to a Gaussian distribution. Moreover,

the theorem guarantees that the variance of the Gaussian will grow asymptotically

linearly in number of random variables. However, it was shown that the Gaussian

distribution is a special case of the skew Lévy α stable distributions [1].

φ(t) = exp[itν − |ct|α(1− iβsign(t)Φ)], (2.1)

Φ(t) =

tan[απ/2], ifα 6= 1

−(2/π) ln(|t|), ifα = 1
(2.2)

P (S) =
1

2π

ˆ ∞
−∞

exp[−itS]φ(t)dt (2.3)

5
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β term is the asymmetry , ν represents a shift and c is a scale. The Lévy index

α ∈ (0, 2] and it is the key parameter in studying Lévy flights which will appear

frequently in chapter §3. When α ∈ (0, 2) the probability density has an asymptotic

power law tail with exponent µ = α + 1. When α = 2 the distribution will be

Gaussian, and when α = 1, it will result in Cauchy distribution [1].

The Brownian motion or the normal diffusion is described by a Gaussian distri-

bution, and the mean squared displacement is related to the time linearly:

< r2 >= 2dDt (2.4)

Where d is the dimension, D is the diffusion constant and t is time. If the diffusion

cannot be described by the normal diffusion, it will be called anomalous diffusion

[21]. In a more general form, Hurst exponent (H) can be used to describe the type

of diffusion [22, 23] based on the growth of MSD with time.

< x2 >= t2H (2.5)

When H = 1
2

the equation shows normal diffusion, H > 1
2

corresponds to su-

perdiffusion where the MSD grows super-linearly with time [24], and H < 1
2

relates

to subdiffusion where the MSD grows sub-linearly with time [24]. Lévy flights have

superdiffusive behavior, and continuous random walks with pausing times fit in sub-

diffusive category. The focus of chapter §3 is on superdiffusion and specifically Lévy

flights.

When the step size distribution has a power-law tail p(l) ∼ l−µ, Lévy flights

arise (Fig. 2.1 a). The probability density function for the walker’s position converges

to a Lévy stable distribution (Eq. (2.1)) with α = µ−1 with 0 < α ≤ 2, where α = 2 is

the normal diffusion (Fig. 2.1 b). The Lévy flights have a constant time independent

of the flight length. The time can be considered very small, and the velocity is

considered infinite [25].The Lévy walks, however, have constant and final velocity

[25]. Both Lévy flights and walks have applications in a variety of systems such

as foraging and ecology [1], protein folding dynamics [26], climate and atmospheric

physics [27, 28], finance [29, 30, 31], optics [32], lasers, [33], and turbulence [34].
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3.4 Lévy flights and Lévy walks 35
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Brownian+log correction
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Lévy flights

µ   1
Ballistic limit
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Figure 3.4 For a random walker who takes steps of size ! according to a proba-
bility density function P (!) ∼ !−µ, the resulting type of diffusion depends on the
value of µ. For µ > 3, the central limit theorem guarantees convergence to normal
diffusion. The ballistic limit corresponds to µ → 1. For µ ≤ 1, one cannot nor-
malize the distribution P . Intermediate values 1 < µ < 3 result in superdiffusive
Lévy flights.
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Figure 3.5 For a power law tailed distribution P (!) ∼ !−µ of jump or step sizes
!j , higher moments do not exist; i.e., they are infinite. Specifically, the moment
of order µ − 1 diverges logarithmically with the upper cutoff, and all higher
moments diverge as some power of the upper cutoff. Lower moments remain
finite. Diverging moments are a consequence of the scale invariance properties:
scale-free systems cannot have well-defined characteristic scales.

diffusion is concerned, are the tails of the propagator; i.e., the small flights play a
negligible role in many ways [106]. Notice that for α < 2, one cannot define the
mean squared displacement because it diverges. Instead, one can study moments
of order lower than α because they do not diverge (Figure 3.5). In this way, one
can define width, such as half widths at half maximum, and show that a pseudo
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family of distributions. Our strategy is to find the value of the
parameter—and hence the distribution—that optimizes the search
process. Levandowsky et al.3,4 have suggested why microorganisms
may perform Lévy flights. A Lévy distribution is advantageous when
target sites are sparsely and randomly distributed, irrespective of the
value of m chosen7, because the probability of returning to a
previously visited site is smaller than for a gaussian distribution.
Another explanation, proposed by Shlesinger6, argues that foragers
may perform Lévy flights because the number of new visited sites is
much larger for N Lévy walkers than for N brownian walkers8–11. A
Lévy flight strategy is also a good solution for the related problem of
where to locate N radar stations to optimize the search for M
targets12.

Here we develop an idealized model which captures some of the
essential dynamics of foraging in the limiting case in which
predator–prey relationships are ignored and learning is minimized.
We assume that target sites are distributed randomly, and that the
forager behaves as follows (see Fig. 1):
(1) If a target site lies within a ‘direct vision’ distance rv, then the
forager moves on a straight line to the nearest target site. A finite
value of rv, no matter how large, models the constraint that no
forager can detect (or ‘remember’) a target site located an arbitrarily
large distance away.
(2) If there is no target site within a distance rv, then the forager
chooses a direction at random and a distance lj from the probability
distribution (equation (1)). It then incrementally moves to the new
point, constantly looking for a target within a radius rv along its way.
If it does not detect a target, it stops after traversing the distance lj
and chooses a new direction and a new distance lj+1; otherwise, it
proceeds to the target as in rule (1).

In the case of non-destructive foraging, the forager can visit the
same target site many times. Non-destructive foraging can occur in
either of two cases: if the target sites become temporarily depleted or
fall below some fixed concentration threshold, and if the forager
becomes satiated and leaves the area. In the case of destructive
foraging, the target site found by the forager becomes undetectable
in subsequent flights.

First, we solve this model analytically. Let l be the mean free path
of the forager between successive target sites (for two dimensions,
l ! ð2rvrÞ! 1 where r is the target-site area density). The mean
flight distance is

〈l〉 !
"

l

rv

l 1 ! mdl þ l "
"

l
l ! mdl

"
"

rv

l ! mdl

¼
m ! 1
2 ! m

! "
l2 ! m ! r2 ! m

v

r1 ! m
v

! "
þ

l2 ! m

r1 ! m
v

ð2Þ

The second term of this ‘mean field’ calculation is approximate
because it assumes that the distances lk between successive sites k
are all equal to l. The probability distribution has a finite cutoff l
and corresponds to a truncated Lévy distribution. An infinite l
leads to divergences for m # 2 (see Fig. 2a). The cutoff causes
convergence to gaussian behaviour only after a very large number
of steps13. A more rigorous treatment that considers a Poisson
distribution of lk does not alter the results significantly (see
simulation results below).

We define the search efficiency function h(m) to be the ratio of the
number of target sites visited to the total distance traversed by the
forager, so that

h ¼
1

〈l〉N ð3Þ

where N is the mean number of flights taken by a Lévy forager while

2 rv

l ja b

Figure 1 Foraging strategy. a, If a target site (solid square) is located within a ‘direct-
vision’ distance rv, then the forager moves on a straight line to it. b, If there is no target site
within a distance rv, then the forager chooses a random direction and a random distance lj
from the Lévy probability distribution P ðl jÞ#l ! m

j , and then proceeds as described in the
text.
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Figure 2 a, b, The product of the mean free path l and the foraging efficiency h against
the Lévy parameter m in one dimension for different values of l, found from equations (2)
and (3) (r v ¼ 1) for the case of non-destructive foraging (a) and from simulations (b).
c, lh found from simulations in two dimensions, with l ¼ 5;000 (r v ¼ 1). In each case,
mopt ! 2 emerges as an optimal value of the Lévy flight exponent. Inset shows 〈l 〉 as a
function of m for r v ¼ 1 and l ¼ 10 (solid line), l ¼ 102 (dashed), l ¼ 103 (long-
dashed). The results indicate that flights become too long when m $ 2, causing inefficient
foraging (see equation (3)). d, Two-dimensional random walks for m ¼ 2:5, 2.0 and 1.5
with identical total lengths of 103 units.
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Figure 2.1: (a) Probability density function P (`) ∼ `−µ for a random walker with
step size `. The type of diffusion depends on µ. µ → 1 corresponds to the ballistic
limit and µ > 3 converges to normal diffusion. 1 < µ ≤ 3 corresponds to Lévy flights
and walks. Figure is from [1] (b) Sample trajectories of Lévy flights for different µ
values. All of the trajectories have identical total length of 103 units. Figure is from
[2].

2.1.2 Lévy flights, and optimal foraging strategy for single

searchers

It was shown that when the resources are sparse and regenerative, the optimal foraging

strategy for solitary foragers is Lévy flights[2, 8]. The efficiency of the search, defined

as total target found over total distance traveled, is maximized when the Lévy index,

µ is roughly equal to 2. In this section, I cover how it was shown analytically that

µ = 2 maximizes the efficiency (Fig. 2.2 c). In chapter §3 this will be validated

through simulations.

If the target density is ρ, and forager has a limited perceptive range or vision

radius rv to detect the targets (Fig. 2.2 a,b), the mean free path between targets can

be written as λ = (2rvρ)−1 which also appears in (Eq. (3.2)). This relation can be

obtained by considering the forager and targets as particles that collide in a rectangle

with length of l which is the flight length, and 2× rv as the width because the forager

detect the targets within radius of rv, similar to collision of gas particles in a cylinder.
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The velocity of the forager is v = l
t
, and the distance can be written as l = vt. Then,

the collision rate which is the number of particles over distance traveled will be 2rvρvt
vt

which simplifies to 2rvρ. The inverse of the collision rate will be the mean free path

or λ.

90 Lévy flight foraging

1.0 1.5 2.0 2.5 3.0
µ

1.0

1.1

1.2

1.3

λη

Optimum efficiency
close to µ = 2

2-D

Figure 10.2 The product of the mean free path λ and the foraging efficiency η
vs. the Lévy parameter µ for two-dimensional nondestructive searches obtained
from numerical simulations with λ = 5000 (rv = 1) [393]. The finding of peak
efficiencies for µ = 2 motivated many further studies.

µ = 2 result is robust when many kinds of perturbations or noise are added to the
random search problem (see further below).

Note that even if p(#) is a nontruncated power law, the distribution of actual
jump lengths will never be identical to p(#) for any finite target density because of
truncation. When a target is found, often the step #j will be aborted, leading to a
truncated step. For this reason, all the moments of the actual length distributions
will be finite, and all moments will be smaller than the moments of p(#).

Note that if λ is comparable to or not much larger than rv, then most flights
become truncated no matter what the value of µ, so Lévy flight foraging becomes
effectively indistinguishable from Brownian foraging and so loses all adaptive
value. Lévy flight foraging in high-target-density scenarios is as useful as eyesight
in total darkness.

Generalization to regenerative targets

We can further generalize this result to the intermediate regenerative foraging
regime. We can associate with both the nondestructive and destructive cases of
the random search problems a typical target-regeneration delay time τ . The cases
τ → 0 and τ → ∞ correspond to the nondestructive and destructive cases, respec-
tively [294, 320]. The equations for Nd and Nn then become special cases of a
more general equation for Nr for regenerative targets. Note that Nr must increase
monotonically with τ (for fixed µ and λ/rv). Thus, for a general τ ≥ 0, we can
define an arbitrary function %(τ ) where % → 2 as τ → 0 and % → 1 as τ → ∞
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Figure 9.1 A limiting but general model of random searches [393]. (a) If there
is a target site (solid square) located within a distance rv, then the forager moves in
a straight line to it. (b) If there is no target site within rv , then the forager chooses
a random direction and a distance !j from p(!j ) and then proceeds as explained
in the text.

landscapes and learning are also relevant [21, 47, 390], but lie beyond the scope of
this book.

9.2 A limiting but general model of optimal foraging

An important goal in the physics of foraging is to capture the essential dynamics of
encounter processes. We understand this in analogy to how the statistical physics
of the Ising model of spin- 1

2 particles captures the main features of ferromagnetism
and critical phenomena. In 1999, we proposed the following general model [393],
illustrated in Figure 9.1:

(1) If there is a target site located within a direct-vision distance rv, then the forager
moves in a straight line to the nearest target site.

(2) If there is no target site within a distance rv, then the forager chooses a direction
at random and a distance !j from a probability density function p(!j ). It then
incrementally moves to the new point, constantly looking for a target within a
radius rv along the way. If it does not detect a target, it stops after traversing the
distance !j and chooses a new direction and a new distance !j+1; otherwise, it
proceeds to the target, as in step 1.

Although the type of diffusion is determined by p(!), the two rules above
do not fully formulate the problem. Animal search models must also take into
consideration the different kinds of targets. Do targets disappear or regenerate, i.e.,
is the foraging destructive or nondestructive? A nondestructive forager can revisit
the same target site (many times). Nondestructive searches can occur in either of
two cases: (1) the forager becomes satiated and leaves the site or (2) the target
site is only temporarily depleted. In a destructive search, the target site found
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a random direction and a distance !j from p(!j ) and then proceeds as explained
in the text.
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moves in a straight line to the nearest target site.

(2) If there is no target site within a distance rv, then the forager chooses a direction
at random and a distance !j from a probability density function p(!j ). It then
incrementally moves to the new point, constantly looking for a target within a
radius rv along the way. If it does not detect a target, it stops after traversing the
distance !j and chooses a new direction and a new distance !j+1; otherwise, it
proceeds to the target, as in step 1.

Although the type of diffusion is determined by p(!), the two rules above
do not fully formulate the problem. Animal search models must also take into
consideration the different kinds of targets. Do targets disappear or regenerate, i.e.,
is the foraging destructive or nondestructive? A nondestructive forager can revisit
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Figure 2.2: Foraging strategy for a Lévy searcher (a) if a target is located within
distance rv of the forager, the foragers moves directly towards the target. (b) If
there is no target within rv the forager picks a random step length l from the Lévy
distribution and a random angle. It constantly looks for targets within rv while
traveling along l. If it finds a target, it goes to the target. If not, it repeats (a) and
(b). (c) The efficiency of the search as a function of µ for a solitary forager in two
dimensions. λ = 5000 and the efficiency η is multiplied by λ on the y axes. The
efficiency has a maximum when µ = 2. Figures are from [1].

Considering the steps coming from a p(l) ∼ l−µ distribution, we can find the

average flight length for a single searcher as:

< l >≈
´ λ
rv
l1−µ dl + λ

´∞
rv
l−µ dl´∞

rv
l−µ dl

= (
µ− 1

2− µ)(
λ2−µ − r2−µv

r1−µv

) +
λ2−µ

r1−µv

(2.6)

In the second term of (Eq. (2.6)), steps greater than the mean free path are approx-

imated to be in average equal to the mean free path [2]. Efficiency, η = Ntotal
Ltotal

=
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1
<l>N

(Eq. (3.3)), is defined as total target found over total distance traveled or in-

verse of average flight length, < l > (Eq. (2.6)), times the average number of flights

between two successive targets N . The average number of flights for non-regenerative

targets/destructive foraging is approximately:[2]:

Nd ≈ (
λ

rv
)µ−1 (2.7)

In the case of non-destructive foraging, or having regenerative targets (Eq. (??))

overestimates the number of steps, and Nn = N
1/2
d . Note that if µ = 3, where normal

diffusion or Brownian motion occurs, Nd ≈ (λ)2 since rv � λ. Considering the

number of steps between targets, Nd, to be similar to time, t, in the normal diffusion

MSD relation (Eq. (2.4)), then Nd = λ2

2D
where λ2 resembles the MSD. Now, if `0 is

the smallest distance between last visited target and searcher’s position in the step

after finding that target, in the case of non-destructive foraging, the average number

of flights would be Nn = (λ−`0)(`0)
2D

because the previous target can be revisited and

the forager would be highly likely `0 away from the target [2]. Therefore, the average

number of steps between two successive targets in the case of non-destructive foraging

can be written as:

Nn ≈ (
λ

rv
)
µ−1
2 (2.8)

By plugging in the equations (Eq. (2.7)) and (Eq. (2.6)) into the efficiency equa-

tion (Eq. (3.3)), and differentiating with respect to the Lévy exponent, µ, it turns

out there is no maximum for efficiency when in destructive foraging and efficiency

increases as µ approaches 1[2]. For non-destructive foraging, using (Eq. (2.8)) in the

efficiency equation, and taking the derivative with respect to µ results in a maximum

where µopt = 2 − δ where δ ≈ 1
[ln(λ/rv)]2

. Given the fact that λ � rv, δ will be very

small, optimal value for the Lévy exponent will be equal to 2 (Fig. 2.2 c) which means

a combination of localized searches and delocalized searches is the optimal foraging

strategy.

In addition to the mean-field approach above, the number of steps between suc-

cessive targets can be thought as average time spend between absorbing boundaries

where one boundary is at X = 0 and the other boundary is at X = λ, and it was cal-

culated by using fractional differential equations and finding the probability of being
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absorbed at the nth flight [35, 36]. The average number flights then will be written

as the following general form:

Nµ (x0) =
sin[π(µ− 1)/2]

π(µ− 1)/2

[
(λ− x0)x0

`20

](µ−1)/2
(2.9)

Where x0 is the initial position and `0 is the minimum step length which would be

equal to rv. For destructive foraging, the searcher will start in the middle, so x0 = λ
2
.

For non-destructive foraging, due to the fact that the target grows back, the forager

will start closest to the previous target, and x0 = λ
2
. For each case, destructive

and non-destructive, Nd and Nn can be calculated by plugging in the respective

initial position into (Eq. (2.9)) which results to equations similar to (Eq. (2.8)) and

(Eq. (2.7)).

2.2 Concepts for chapter §4

2.2.1 Collective behavior

Organisms across scales come togethers and form groups to complete different task

[3]. Schools of fish [37], flocks of birds [38], bacteria swarms [39], swarms of flies[40,

41], and cellular clusters [20] are examples of collective motion where these living

organisms act as a single unit that is very different than the individuals behavior (Fig.

2.3). In such systems, individuals are self-propelled, and they consume energy to

move. Moreover, they interact with each other locally, and form a group with length

scale much larger than each individual [3]. The interactions between the individuals

can be simple such as repulsion and attraction, or can be more complicated and

a combination of many simple interactions. In collective behavior, an individual’s

behavior can be dominated by the influence from the others. Eventually, such systems

show ordering patterns as the individuals constantly change their behavior to follow

the group [42].

Physicists treat such groups or flocks as a system of particles, and apply statistical

physics methods such as theories on scaling and computer simulations on the systems

with collective behavior. The most common approach is to treat the individuals as

similar particles, that move with a nearly constant absolute velocity. The particles

are capable of changing their direction of motion based on their neighbors direction



CHAPTER 2. BACKGROUND CONCEPTS 11

T. Vicsek, A. Zafeiris / Physics Reports 517 (2012) 71–140 73

Fig. 1. (Color) A gallery of images related to collective behavior. Among others, it illustrates the possible existence of very general behavioral patterns.
(a) Wingless Locusts marching in the field. (b) A rotating colony of army ants. (c) A three-dimensional array of golden rays. (d) Fish are known to produce
such vortices. (e) Before roosting, thousands of starlings producing a fascinating aerial display. They are also trying to avoid a predator bird close to the
central, finger-like structure. (f) A herd of zebra. (g) People spontaneously ordered into ‘‘traffic lanes’’ as they cross a pedestrian bridge in large numbers.
(h) Although sheep are known tomove very coherently, just as the corresponding theory predicts,when simply hanging around (nomotion),well developed
orientational patterns cannot emerge.

There is an amazing variety of systems made of such units bridging over many orders of magnitude in size. In addition,
the nature of the entities in such systems can be purely physical, chemical as well as biological. Will they still exhibit the
samemotion patterns? If yes, what are these patterns and are there any underlying universal principles predicting that this
has to be so (e.g., non-conservation of moments during interactions)?

In Fig. 1, we show a gallery of pictures representing a few of the many possible examples of the variety of collective
motion patterns occurring in a highly diverse selection of biological systems.

1.2. Collective behavior

In a system consisting of many similar units (such as many molecules, but also, flocks of birds) the interactions between
the units can be simple (attraction/repulsion) ormore complex (combinations of simple interactions) and can occur between

a b

c d

Figure 2.3: Examples of collective behavior among organisms (a) array of golden rays,
(b) school of fish (c) flock of starlings (d) a herd of zebra. Figures are from [3].

through an alignment interaction. They may also experience additional forces from

the neighbors as mentioned above, and they are also subject to a noise [3, 43].

Vicsek showed that allowing the agents to interact with each other by aligning

their direction of motion with the neighboring agents, results in a noise driven phase

transition from an ordered to a disordered state as noise increases [43]. The phase

transition can be defined by an order parameter. Considering each particle to move

with some velocity −→vi , having N particles, and v0 being the average absolute velocity

of each particle, the order parameter is defined as:

φ =
1

Nv0
|
N∑
i=1

−→vi | (2.10)

If the particles move in different directions and motion is disordered, the order param-

eter would be 0 and if particles move in the same direction the order parameter sums

up 1. This noise driven phase transition inspired physicists to explore collective be-

havior and find new phases such as rotational, disordered, jamming and fully ordered

phases[3]. Two main approaches to study collective behavior are agent-based mod-

eling, and hydrodynamic modeling. In agent-based models, interactions with other



CHAPTER 2. BACKGROUND CONCEPTS 12

agents are calculated individually and positions are updated according to the interac-

tions over time. The second approach is hydrodynamic modeling where local density

and polarization are defined through continuum equations which can be numerically

integrated to model the behavior of collective motion with time[44]. In Chapter §4, I

use an agent-based model to study the collective foraging of cells.

2.2.2 Collective cell migration

Collective cell migration plays an important role in a variety of physiological processes

such as wound healing and repair [45, 46], the morphogenesis in development of

embryos [47, 48], and tumor formation and cancer metastasis [45, 49, 50]. In collective

migration of cells, many cells come together and move in the same direction at a

roughly similar speed (Fig. 2.4). Similar to collective behavior in many other systems,

cells adjust their response to the environment to ensure they follow the group which

results in a more efficient migration compared to individual cells. Single cells typically

have higher velocity. However, they change direction more frequently and their motion

is not persistent [51].

Collective behavior of cells requires chemical and physical communication between

individual cells. It has been shown that direct cell to cell contact as well as the internal

molecular mechanisms that control cells polarization play important rolls in collective

motion of cells [51]. Single cells form protrusions such as filopodia and lamellipodia

and interact with extracellular matrix which allows them to move forward [52]. The

same mechanism happens in a group of cells that move together. However, cells in a

group are affected by cell to cell contact, and the distribution of protrusions will be

altered. The cells in the front of the clusters are considered leader cells, and the ones

in back are considered follower cells.The leader cells make more protrusions, and are

more exposed to external signals such as chemoattractants. Follower cells, are not

able to form such protrusions due to cell to cell contacts, and they rely on cellular

interactions and alignment with other cells[51].

Leader cells are located at the front of the cluster. However, follower cells can

relocate and become new leader cells. This relocation could be due to the response to

external cues such as soluble factors like chemotaxis and interactions with neighbor-

ing cells[46]. For example. signaling through growth factors or chemokines can result

in cell polarization and protrusions which determines the leader cells[53, 54, 55, 56].
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orchestrate sprouting angiogenesis of vertebrate blood ves-
sels in the postnatal mouse retina (Fig. 2 a′). In this context, 
however, stalk elongation is obtained via mitotic division of 
follower cells and active stalk cell rearrangements (Fig. 2 b′; 
Gerhardt et al., 2003). The tip cell state is speci"ed by high lev-
els of VEGF-A signaling, which in turn induces expression of 
Dll-4 (Delta-like 4) and Notch1-dependent lateral inhibition of 
tip cell state in the neighbors, compelling them to become stalk 
cells. Indeed, Dll4 haploinsuf"ciency or endothelial-speci"c 
deletion of Notch1 results in supernumerary tip cells (Hellström 
et al., 2007; Suchting et al., 2007). Another well-studied model 
of branching morphogenesis is mammary gland development. 
In contrast with tracheal and vessel branching, here elongation 
of the mammary duct network during puberty requires a variety 
of rearrangements of the epithelial tissue, in which stalk cell 
elongation is obtained via asymmetric division of luminal cells 
to produce a transiently strati"ed terminal end bud of the mam-
mary gland (Huebner et al., 2014). Collective migration of cells 
in the strati"ed epithelium then occurs concomitantly to cell 
proliferation in absence of outward directed protrusions (Ewald 
et al., 2008), with individual cells actively forming protrusions 
in the bulk of the epithelial bud (Ewald et al., 2012). Although 
mammary gland collective migration shares some features with 
tracheal branching, such as requirement of FGF (Branchless 
in Drosophila) signaling (Lu et al., 2008; Zhang et al., 2014), 
morphogenesis of the mammary gland greatly involves transi-
tions between epithelial states, which have been comprehen-
sively discussed in recent reviews (Andrew and Ewald, 2010; 
Huebner and Ewald, 2014).

Figure 1. Epithelial and mesenchymal collective migration. (a) Epithelial 
cells move as cohesive groups, maintaining cell–cell adhesions. Leader 
cells form protrusions oriented in the direction of migration, whereas fol-
lowers form smaller cryptic protrusions (not depicted). (b) Mesenchymal 
cells migrate directionally as a collective, but they form transient cell–cell 
connections, which may redirect protrusion formation contributing to the 
overall directionality.

Figure 2. Overview of models of collective migration in development. (a) 
Branching morphogenesis of Drosophila trachea. (a′) Sprouting morpho-
genesis of mouse retina, red arrows indicate the direction of migration. 
Orange shadow represents the source of the chemoattractants Bnl (b) or 
VEGF (b′). (b) Bnl/FGF signaling induces tip cell state in the drosophila 
trachea via Delta/Notch lateral inhibition. Stalk cells intercalate passively. 
(b′) VEGF signaling induces tip cell state in endothelial cells via Delta/
Notch lateral inhibition. Follower cells contribute to stalk elongation via 
proliferation. (c) The lateral line primordium migrates caudally along 
the horizontal myoseptum of the zebrafish embryo, which is a source 
of CXCL12/SDF-1 (orange); red arrows indicate direction of migration.  
(d) CXCL12/SDF-1 acts as a chemoattractant for the primordium. Back 
cells express the Cxcr7 (red) and Cxcr4 (not depicted) receptors, whereas 
front cells express Cxcr4 (blue) receptor. Front (leader) cells form large 
protrusions, cell–cell contacts are maintained throughout the primordium.  
(e) Border cell migration. Border cells delaminate from the anterior pole 
of the egg chamber to migrate posteriorly (red arrow) and then turn dor-
sally (red curved arrow) toward the end of their path. Orange shadow 
represents the gradient of chemoattractants PVR/EGF and Gurken. (f) The 
border cell cluster migrates in between the nurse cells. Cell–cell adhesions 
are present at the border cell–border cell (yellow) interface, at the border 
cell–polar cell (purple) interface, and at the border cell–nurse cell (white) 
interface. PVF-1 and EGF guide border cell migration by polarizing the 
protrusions of the cell with the highest RTK signaling levels. (g) Neural 
crest delaminates from the neural plate border and migrates dorsoventrally 
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orchestrate sprouting angiogenesis of vertebrate blood ves-
sels in the postnatal mouse retina (Fig. 2 a′). In this context, 
however, stalk elongation is obtained via mitotic division of 
follower cells and active stalk cell rearrangements (Fig. 2 b′; 
Gerhardt et al., 2003). The tip cell state is speci"ed by high lev-
els of VEGF-A signaling, which in turn induces expression of 
Dll-4 (Delta-like 4) and Notch1-dependent lateral inhibition of 
tip cell state in the neighbors, compelling them to become stalk 
cells. Indeed, Dll4 haploinsuf"ciency or endothelial-speci"c 
deletion of Notch1 results in supernumerary tip cells (Hellström 
et al., 2007; Suchting et al., 2007). Another well-studied model 
of branching morphogenesis is mammary gland development. 
In contrast with tracheal and vessel branching, here elongation 
of the mammary duct network during puberty requires a variety 
of rearrangements of the epithelial tissue, in which stalk cell 
elongation is obtained via asymmetric division of luminal cells 
to produce a transiently strati"ed terminal end bud of the mam-
mary gland (Huebner et al., 2014). Collective migration of cells 
in the strati"ed epithelium then occurs concomitantly to cell 
proliferation in absence of outward directed protrusions (Ewald 
et al., 2008), with individual cells actively forming protrusions 
in the bulk of the epithelial bud (Ewald et al., 2012). Although 
mammary gland collective migration shares some features with 
tracheal branching, such as requirement of FGF (Branchless 
in Drosophila) signaling (Lu et al., 2008; Zhang et al., 2014), 
morphogenesis of the mammary gland greatly involves transi-
tions between epithelial states, which have been comprehen-
sively discussed in recent reviews (Andrew and Ewald, 2010; 
Huebner and Ewald, 2014).

Figure 1. Epithelial and mesenchymal collective migration. (a) Epithelial 
cells move as cohesive groups, maintaining cell–cell adhesions. Leader 
cells form protrusions oriented in the direction of migration, whereas fol-
lowers form smaller cryptic protrusions (not depicted). (b) Mesenchymal 
cells migrate directionally as a collective, but they form transient cell–cell 
connections, which may redirect protrusion formation contributing to the 
overall directionality.

Figure 2. Overview of models of collective migration in development. (a) 
Branching morphogenesis of Drosophila trachea. (a′) Sprouting morpho-
genesis of mouse retina, red arrows indicate the direction of migration. 
Orange shadow represents the source of the chemoattractants Bnl (b) or 
VEGF (b′). (b) Bnl/FGF signaling induces tip cell state in the drosophila 
trachea via Delta/Notch lateral inhibition. Stalk cells intercalate passively. 
(b′) VEGF signaling induces tip cell state in endothelial cells via Delta/
Notch lateral inhibition. Follower cells contribute to stalk elongation via 
proliferation. (c) The lateral line primordium migrates caudally along 
the horizontal myoseptum of the zebrafish embryo, which is a source 
of CXCL12/SDF-1 (orange); red arrows indicate direction of migration.  
(d) CXCL12/SDF-1 acts as a chemoattractant for the primordium. Back 
cells express the Cxcr7 (red) and Cxcr4 (not depicted) receptors, whereas 
front cells express Cxcr4 (blue) receptor. Front (leader) cells form large 
protrusions, cell–cell contacts are maintained throughout the primordium.  
(e) Border cell migration. Border cells delaminate from the anterior pole 
of the egg chamber to migrate posteriorly (red arrow) and then turn dor-
sally (red curved arrow) toward the end of their path. Orange shadow 
represents the gradient of chemoattractants PVR/EGF and Gurken. (f) The 
border cell cluster migrates in between the nurse cells. Cell–cell adhesions 
are present at the border cell–border cell (yellow) interface, at the border 
cell–polar cell (purple) interface, and at the border cell–nurse cell (white) 
interface. PVF-1 and EGF guide border cell migration by polarizing the 
protrusions of the cell with the highest RTK signaling levels. (g) Neural 
crest delaminates from the neural plate border and migrates dorsoventrally 
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orchestrate sprouting angiogenesis of vertebrate blood ves-
sels in the postnatal mouse retina (Fig. 2 a′). In this context, 
however, stalk elongation is obtained via mitotic division of 
follower cells and active stalk cell rearrangements (Fig. 2 b′; 
Gerhardt et al., 2003). The tip cell state is speci"ed by high lev-
els of VEGF-A signaling, which in turn induces expression of 
Dll-4 (Delta-like 4) and Notch1-dependent lateral inhibition of 
tip cell state in the neighbors, compelling them to become stalk 
cells. Indeed, Dll4 haploinsuf"ciency or endothelial-speci"c 
deletion of Notch1 results in supernumerary tip cells (Hellström 
et al., 2007; Suchting et al., 2007). Another well-studied model 
of branching morphogenesis is mammary gland development. 
In contrast with tracheal and vessel branching, here elongation 
of the mammary duct network during puberty requires a variety 
of rearrangements of the epithelial tissue, in which stalk cell 
elongation is obtained via asymmetric division of luminal cells 
to produce a transiently strati"ed terminal end bud of the mam-
mary gland (Huebner et al., 2014). Collective migration of cells 
in the strati"ed epithelium then occurs concomitantly to cell 
proliferation in absence of outward directed protrusions (Ewald 
et al., 2008), with individual cells actively forming protrusions 
in the bulk of the epithelial bud (Ewald et al., 2012). Although 
mammary gland collective migration shares some features with 
tracheal branching, such as requirement of FGF (Branchless 
in Drosophila) signaling (Lu et al., 2008; Zhang et al., 2014), 
morphogenesis of the mammary gland greatly involves transi-
tions between epithelial states, which have been comprehen-
sively discussed in recent reviews (Andrew and Ewald, 2010; 
Huebner and Ewald, 2014).

Figure 1. Epithelial and mesenchymal collective migration. (a) Epithelial 
cells move as cohesive groups, maintaining cell–cell adhesions. Leader 
cells form protrusions oriented in the direction of migration, whereas fol-
lowers form smaller cryptic protrusions (not depicted). (b) Mesenchymal 
cells migrate directionally as a collective, but they form transient cell–cell 
connections, which may redirect protrusion formation contributing to the 
overall directionality.

Figure 2. Overview of models of collective migration in development. (a) 
Branching morphogenesis of Drosophila trachea. (a′) Sprouting morpho-
genesis of mouse retina, red arrows indicate the direction of migration. 
Orange shadow represents the source of the chemoattractants Bnl (b) or 
VEGF (b′). (b) Bnl/FGF signaling induces tip cell state in the drosophila 
trachea via Delta/Notch lateral inhibition. Stalk cells intercalate passively. 
(b′) VEGF signaling induces tip cell state in endothelial cells via Delta/
Notch lateral inhibition. Follower cells contribute to stalk elongation via 
proliferation. (c) The lateral line primordium migrates caudally along 
the horizontal myoseptum of the zebrafish embryo, which is a source 
of CXCL12/SDF-1 (orange); red arrows indicate direction of migration.  
(d) CXCL12/SDF-1 acts as a chemoattractant for the primordium. Back 
cells express the Cxcr7 (red) and Cxcr4 (not depicted) receptors, whereas 
front cells express Cxcr4 (blue) receptor. Front (leader) cells form large 
protrusions, cell–cell contacts are maintained throughout the primordium.  
(e) Border cell migration. Border cells delaminate from the anterior pole 
of the egg chamber to migrate posteriorly (red arrow) and then turn dor-
sally (red curved arrow) toward the end of their path. Orange shadow 
represents the gradient of chemoattractants PVR/EGF and Gurken. (f) The 
border cell cluster migrates in between the nurse cells. Cell–cell adhesions 
are present at the border cell–border cell (yellow) interface, at the border 
cell–polar cell (purple) interface, and at the border cell–nurse cell (white) 
interface. PVF-1 and EGF guide border cell migration by polarizing the 
protrusions of the cell with the highest RTK signaling levels. (g) Neural 
crest delaminates from the neural plate border and migrates dorsoventrally 
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Figure 2.4: Examples of collective cell migration. (a) Epithelial cells migrating as a
cohesive group, maintaining cell-cell adhesions. Leader cells form protrusions oriented
in the direction of migration. (b) Mesenchymal cells migrate in the same direction
collectively. However, they form loose and transient cell-cell connections. Images are
from[4].

Moreover, intracellular signaling can control gene expressions and define the charac-

teristics of leader cells which comes from chemotactic factors. In such cases, cells

that are more responsive to chemical signals become the leader cells[57, 58, 59]. As

the group of cells migrate, position of the leader cells can be challenged, and they

can be exchanged with follower cells and switch roles. Follower cells might become

new leaders to participate in chemotaxis and gradient sensing [60, 61]. Therefore,

both leader cells and follower cells play an important roll in collective migration and

robust chemotaxis[51].

2.2.3 Collective behavior of malignant lymphocytes

Malignant B & T lymphocytes exposed to CCL19 or CXCL12 migrate individually

and form clusters. These clusters migrate collectively and they have a higher chemo-

tactic sensitivity than individual cells which move more randomly. They were placed

in a variety of chemical gradient from 0 ng ml−1 mm−1 to 1000 ng ml−1 mm−1. In

shallow to moderate gradients both individual cells and clusters sense the gradient and
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travel toward higher concentrations. However, in high gradients (≥ 500 ng ml−1 mm−1),

individual cells are subject to chemo-repulsion, and their receptors get saturated and

they go to lower concentrations of chemokine, while clusters move in a very directional

manner (Fig. 2.5) [62].

Thus, as compared to individual cells, collective clusters of
lymphoid cells migrate along chemokine gradients with
elevated chemotactic prowess and display resistance to

chemorepulsion. Tracking of the initial events of JVM3 cell
cluster assembly in steep CCL19 gradients (0–500 ng/ml)
showed that a minimal critical size of about 20 cells
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Figure 1. Lymphoid Cell Clusters Are Highly Chemotactic and Resist Chemorepulsion

(A) Snapshot pictures showing JVM3 cells migrating as single cells or as clusters along a 0–100 ng/ml CCL19 gradient. See also Movie S1A and Figures S1A
and S1C.
(B) Migratory tracks of clusters (R20 cells) and single cells exposed to the indicated CCL19 concentrations. Red and black tracks indicate, respectively,
motion toward and away from the chemokine source. At least 29 single cells and ten clusters were recorded over 2 hr. See also Movies S2A and S2B
and Figures S1B and S1C.
(C) Forward migration index (FMI) calculated as cell (or cluster) displacement along the y axis/cell (or cluster) track length. Data are the mean 6 SD of four
independent experiments. ***p < 0.001; Student’s t test.
(D) Snapshot pictures showing the fusion (red arrow) of small cell groups (cell count in white) leading to cluster assembly and onset of directional motility.
See also Movie S1.

243

Figure 2.5: Examples of trajectories of clusters of malignant lymphocytes (top panel),
and individual cells (bottom panel) in various gradient from 0 to 500 ng/ml. In high
gradients individual cells go towards lower concentrations of CCL19 while clusters are
still able to climb up the gradient. Images are from[62].

To understand the reason behind clusters robust chemotaxis. they tracked the

cell nuclei and extracted the velocity fields in frames 15s apart from each other. It

was shown that these clusters exhibit three novel collective phases. They observed

a running phase where cells are aligned together and move in the same direction.

There is also a rotating phase where cells rotate around the clusters center, and

finally a random phase where cells velocities are uncorrelated. It was also shown that

cells shuffle between the rim and core of the cluster. Furthermore, they observed

the leader cells receptor, CCR7, internalizes, and the leader cells lose their polarity

and protrusions. It is speculated that the rotating phase and the exchanges help the

clusters to chemotax. When the leader cells receptors get saturated, a new cell can

become the leader by the exchanges. Moreover, the cluster can rotate and a cell with

fresh receptors can move to the leading edge to take the leader roll. In chapter §4,
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by analyzing the trajectories of the clusters, I show the internal dynamics of the cells

that allow the clusters to migrate collectively.



Chapter 3

Optimal foraging strategies for

territorial competitors

3.1 Introduction

Optimal Foraging Theory (OFT) considers that animals aim to maximize a currency

such as net caloric gain per unit time, subject to constraints that could be physio-

logical or environmental. For fixed constraints, therefore, OFT would predict that

organisms would adopt the most efficient search strategy [2].

The search strategy can be guided by external cues such as visual, auditory or

olfactory stimuli or even previous memories, or it might not be directed in which case

it becomes a random search process. Thus, when the locations of resources are not

known a priori and there are no directional cues, a natural question that arises is

whether organisms can optimize a completely stochastic search [1].

In such a situation, in the case of sparse targets, many animals such as albatross

exhibit foraging patterns where distances traveled are drawn from a heavy tailed Lévy

distribution, P (lj) ∼ l−µj , where 1 < µ ≤ 3 [2, 8], with the direction of movement

chosen from a uniformly distributed angle. When µ < 1 the motion is considered

ballistic and with µ > 3, Brownian motion. Similar behavior was observed in other

organisms such as jackals [6], bacteria within a swarm [63], T-cells [64], and spider

monkeys [7].

It has been shown theoretically that, in the case of sparse and random regenerative

targets, the search efficiency is optimized around µ = 2, where the efficiency, (η), is

16
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defined as the ratio of total number of targets found, to the total distance traveled

[2]. This matches the behavior of several foraging animals [2], lending validity to the

model. Several extensions to this basic model have been studied, yielding insights into

realistic foraging strategies. When resources become non-regenerative, for example,

no optimal µ value is observed with efficiency decreasing as µ increases [1, 2, 18, 19].

Targets can also display various types of spatial distributions such as patchy, or

normally distributed, and can be motile like plants or stationary like animals. For

cases of low target density, when targets are non-regenerative and Lévy distributed

with exponent close to 3, an optimal Lévy exponent for the searcher is observed around

µ ≈ 2 [65]. Furthermore, when targets are distributed in patches or with a Lévy

distribution [66] with high density, less super-diffusive strategies, (2 < µ < 3), perform

nearly close to µ = 2 [66]. The topography of the environment can also have an

effect on search efficiency. For example, when the environment has a concave porous

topography [67], the search is optimized for destructive foraging (non-regenerative

resources) around µ = 2.4.

While solitary foragers have been extensively studied, in many natural settings,

multiple organisms cooperate or compete with each other for resources. Studies have

shown that Brownian searchers with with even rudimentary purely repulsive interac-

tions can minimize their mean first-passage time (MFPT) to targets with optimal,

intermediate values of the interaction strength [68]. Furthermore, search times are

minimized for both Brownian and Lévy searchers when the range of cooperation is

optimized, but Lévy strategies can be faster [69]. Studies on the effects of commu-

nication on the foraging patterns of Mongolian gazelles showed that communication

over intermediate length scales leads to a faster search and minimizes the MFPT to

targets [70]. Mixtures of strategies have also been shown to help cooperative forag-

ing. For example, the search efficiency of a group of foragers, who can either search

independently or by following others who find target patches, is maximized for a mix-

ture of the two strategies. If searchers only follow other successful individuals, target

patches might become depleted before they arrive at the site [71].

While many animals cooperate, many others such as coots [72], and tigers [73]

are territorial animals, and much less is known about the effects of competition and

specifically territorial competition on foraging. Here, I develop stochastic agent-

based simulations that model foraging with competitive interactions mediated by
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territorialism. I explore different types of strategies that can optimize group foraging

in these cases. In our simulations, each identical agent has a territory with a fixed

size, rt, around itself which is not accessible by the other searchers. I study the effect

on foraging efficiency of varying the territory size and the number of foragers. We

do this with two different protocols. In the first protocol, I study terrestrial animals,

who are not able to cross a competitor’s territory, such that they are forced to stop

at the intersection of the excluded region and their own path. In the second protocol,

I study aerial animals. In this case, foragers are allowed to cross others’ territories,

but they cannot land in it. I study the difference between the efficiency of a group

of competitors and a single searcher performing Lévy flights of varying index µ. I

look at varying the density of agents and size of their territory, rt, and how it affects

the search efficiency, and thus the search strategy of territorial competitors while

performing Lévy flights. I also compute the variance in efficiency among multiple

competing foragers as a function of the system parameters with a view to shedding

light on optimizing searches in situations where minimizing variability is an important

factor in addition to maximizing efficiency.

3.2 Model and simulation

Here I describe our agent-based model that I used to study foraging in a group of

territorial competitors. Each individual agent performs a random walk consisting of a

series of steps in random directions and has a perceptive range, rv, within which it can

detect resources. The step-lengths are drawn from a heavy-tailed Lévy distribution

that is bounded:

p(lj) =
µ− 1

l1−µ0 − l1−µmax

(
lj
)−µ

(3.1)

The Lévy exponent is within the range of µ ∈ (1, 3]. The smallest step-length

I allow the forager to take is l0 = rv because steps smaller than the vision radius,

rv, will not be beneficial. The maximum step-length, lmax, is equal to L, the size of

our system. This is due to the fact that steps larger than the size of a landscape, L,

are not realistic and unbounded displacements, or infinite step-lengths, are naturally

forbidden [66]. The mean free path between two successive targets is defined as:

λ = (2rvρ)−1, (3.2)
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where ρ is the target density (total number of targets over total area). The

efficiency of the search, (η), is the ratio of total target found (Ntotal) over total distance

traveled (Ltotal), or the inverse of average flight length < l > times the average number

of flights (N) between two successive targets:

η =
Ntotal

Ltotal
=

1

< l > N
(3.3)

The Lévy flight foraging procedure for a single agent with targets works as follows

[2]:

1. At each time step, if there are multiple targets within the foragers perceptive

range, rv, the agent goes to the nearest target.

2. If there are no targets nearby, the forager picks a random flight length, lj, from

the Lévy distribution (Eq. (3.1)), and a random uniformly distributed angle

between 0 to 2π, and starts the next flight.

3. The forager is constantly looking for targets within its vision radius, rv, while

it is taking the steps along its way.

4. If a target site is within rv, the forager goes to it. Otherwise, it completes that

flight path, lj, and repeats steps 1 and 2.

For a solitary forager, the average number of flights between two successive targets,

N , depends on whether the search is destructive or non-destructive (non-regenerative

or regenerative resources). For destructive searches, Nd ≈ ( λ
rv

)µ−1, and Nn ≈ ( λ
rv

)
µ−1
2

for non-destructive searches [2, 35]. For a solitary agent, the efficiency is maximized

as a function of Lévy index µ, with value µ = 2, [2].

To model multi-agent foraging I consider Nf foragers which are randomly placed

in a two dimensional box of size L with periodic boundary conditions. The periodicity

is applied to the movement of the foragers, as well as the regeneration of the targets.

Targets are distributed randomly, from [0, L] in x and y, and they are regenerative

such that at each time step, I have a fixed number of targets. Each forager has a

territory with radius rt around itself which is not accessible by the other foragers.

Individual foragers perform flights according to the Lévy flight foraging procedure

specified above with modifications due to interactions detailed below. At each step,
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Figure 3.1: Schematic illustration of foraging protocols. (a) Terrestrial animals are
not allowed to cross other foragers’ territories. (b) Aerial animals are allowed to cross
other foragers’ territories, but cannot land in it.

foragers perform their flights in a random order to avoid bias. I define two different

protocols for our foragers to model terrestrial and aerial animals. In our first protocol,

terrestrial, foragers are not able to cross another forager’s territory, and they are

forced to stop at the intersection of the excluded region and their path. In our second

protocol, aerial, foragers are allowed to cross other foragers’ excluded region but they

cannot land in it. The foraging pattern, for the first protocol (Fig. 3.1 a), terrestrial,

is then as follows:

1. At each step, a random order of foragers is chosen. When one forager finishes

the following steps, the next forager starts. By the end of the step, all agents

have performed one flight.

2. The chosen forager picks a random flight length, lj, from the Lévy distribu-

tion (Eq.(2.1)), and a uniformly distributed random angle.

3. The forager starts moving, and uses Lévy flight foraging procedure to find tar-

gets [2].

4. If the forager’s path intersects with other territories, the forager stops at the

intersection of its path and the excluded region.
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5. If a target is inside of the other foragers territory, the forager will skip that

target, to remain consistent with the given protocol.

6. Steps 1 to 5 are repeated until the maximum number of steps of the simulation

is reached.

The foraging pattern for the second protocol (Fig. 3.1 b), aerial, is similar to the

terrestrial protocol, except for step (4). In this case, if the end point of the forager’s

flight is inside of another forager’s excluded region, step (2) needs to be repeated. I

note that the first protocol is meant to represent terrestrial animals because they can

sense competitor territories and I assume that they stop the moment that they hit

the periphery of an excluded region. Similarly, the second protocol represents aerial

animals, since the agents are able to see the end point of their flight at the beginning,

and choose another random flight path to avoid landing inside a competitor’s territory.

3.3 Results

The interaction between the foragers affects the search efficiency, and potentially

changes the optimal foraging strategy by changing the encounter rate. Two factors

influence this rate, the number of foragers, Nf , and radius of their territory, rt. By

increasing the number of foragers, as well as the radius of the territory, the encounter

rate between foragers will increase. In what follows, I study cases with two, four

and eight agents with territory radius 10 < rt < 100. Unless otherwise stated,

the simulation box size, number of targets and vision radius are fixed as L = 500,

Ntargets = 25, rv = 1.

In the terrestrial case (Fig. 3.2 T1−3), we notice that increasing the radius of

territory, rt, and the number of agents, Nf , leads to lower efficiencies (Fig. 3.3)

overall. However, the optimal Lévy index µ is still approximately equal to 2 (Fig.

3.3). To investigate this further, we look at the inverse of average number of flights

( 1
N

) and the inverse of average flight length ( 1
<l>

) as a function of radius of territory,

rt, for different values of µ since the efficiency is defined as η = Ntotal
Ltotal

= 1
<l>N

. We

observe that steps become truncated, so that the inverse average step length increases

as a function of rt (Fig. 3.4 a). At the same time, fewer targets are accessible to

each forager because they are enclosed by other agents’ territories. Therefore, the

inverse of number of steps between two successive targets decreases as a function of
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Figure 3.2: In the top row, T1−3, are snapshots of simulations (after 10, 150 and
500 flights respectively) for the terrestrial case, with Nf = 8 and rt = 100, where the
green path represents the foraging pattern for 1 forager. The bottom row, A1−3, shows
snapshots of simulations (after 10, 150 and 500 flights respectively) for the aerial case,
with Nf = 8 and rt = 100. µ = 2 in both cases. For visualization purposes, the other
7 agents are stationary in this set of simulations.

rt for different values of µ (Fig. 3.4 a inset). The relative reduction in the number of

targets found is however larger than the reduction in the distance traveled (Fig. 3.4

b) leading to net decrease in efficiency with increasing rt for µ greater than about 1.4.

However, counter-intuitively, we note that the efficiency is higher for larger rt and

larger number of foragers when µ is smaller than 1.4 (Fig. 3.3). The reason for this

is that, for small µ and small rt values, very long jumps are more likely to occur. So,

the agents end up taking long jumps without finding as many targets. Therefore, the

natural truncation in the step-lengths for larger rt values is in fact beneficial for the

agents and it prevents them from traveling long distances without finding resources.

This is also reflected in the fact that the relative reduction in the number of targets

found is smaller than the reduction in the distance traveled for µ < 1.4 (Fig. 3.4

b). Thus, territorial competition can be beneficial in the limit of low µ, de-localized

search strategies.

When we compare the aerial (Fig. 3.2 A1−3) and the terrestrial (Fig. 3.2 T1−3)
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Figure 3.3: (a) Efficiency η versus µ for eight agents (Nf = 8), and different radii of
territory (rt = 10, 20, 40, 80, 100). (b) Efficiency η versus µ for rt = 100 and different
number of agents (Nf = 2, 4, 8). The spread is the standard error of the mean and
the solid lines are the average efficiencies.

cases, we notice that, as for the terrestrial case, the efficiency in the aerial case

decreases when the number of foragers, and radii of territory increases (Fig. 3.5). We

also observe a lower efficiency for the aerial case compared to the terrestrial case that

is more pronounced for lower values of µ. The average flight length in the terrestrial

case is lower than the aerial case, since in the aerial case, agents are still allowed to

take longer jumps. Since the steps still come from the same Lévy distribution, bigger

flight lengths can occur (Fig. 3.6 a). However, in the terrestrial case, < l > decreases

by increasing rt because foragers are forced to stop if their path intersects with other

territories. The total number of targets found in both cases decreases by increasing

rt, since targets in other foragers territories, are not accessible to all of the foragers.

However, the number of targets found does not significantly increase with decreasing

µ, compared to the terrestrial case which is shown in (Fig. 3.6 a inset). This can also

be seen in the ratio of total targets found in the aerial case to the terrestrial case as

well as the ratio of the average flight lengths in the two cases, plotted as a function

of µ in (Fig. 3.6 b). We see immediately that the average flight length, < l >, ratio

is significantly higher than the ratio of targets of found Ntotal for smaller values of
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Figure 3.4: (a) Inverse of average flight lengths, 1
<l>

, as a function of rt. Inset is

the inverse of the average number of flights between two successive targets, 1
N

. Both
plots are for different values of Lévy index µ = 1.2, 2.0, 2.8. (b) Ratio of total targets
found (blue) and total distance traveled (red) for rt = 100 and rt = 10.Nf = 8.

µ (Fig. 3.6 b). This results in a greater suppression of the efficiency in the aerial case

for small values of µ.

While we have so far considered the mean efficiency of the population, we now

consider a measure of the variance by computing the standard deviation of the ef-

ficiencies among agents. We also look at this standard deviation for many solitary

foragers with different starting points. We consistently observe a higher standard

deviation for higher µ values even after traveling long distances (Fig. 3.7 a), and

the deviations are of comparable magnitude for the terrestrial, aerial and solitary

searchers. Therefore, there is no significant difference between territorial searchers

and solitary searchers in terms of the variance of the efficiency among foragers. We

note that, though the standard deviation will eventually vanish after long enough

times, it is important to consider variance among individuals at intermediate times

that could be of biological relevance, such as seasons or reproductive intervals. This

standard deviation, in fact, increases monotonically as µ increases in all cases (Fig.

3.7 b). This indicates that foraging strategies with higher µ values, or shorter step

lengths may lead either to a highly efficient search or a search with an efficiency well
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Figure 3.5: (a) Efficiency for the aerial case (rt = 40, 100) and the terrestrial case
(rt = 40) for Nf = 8. (b) Efficiency for the aerial case (Nf = 4, 8) and the terrestrial
case (Nf = 4) for rt = 100.

below the average efficiency of the population. For a search with smaller Lévy index

and larger flight lengths, on the other hand, the variance is small, and all the agents

perform a search with efficiency close to the average. We can rationalize this by con-

sidering that at higher µ values, due to the smaller step sizes, less space is sampled

within a certain time, and so if an agent is in part of a space which has more (or less)

resources, it will have a more (or less) efficient search. For smaller µ values, longer

flights are dominant, and chances of visiting different spots of the landscape within

the relevant time will be higher. Therefore, the searcher is able to better sample the

entire space, resulting in a smaller variance.

Finally, we look at the efficiency in the destructive case, where targets will not be

able to grow back after they are found. In the terrestrial case, the behavior is similar

to a single searcher [1] with no optimal value for µ (Fig. 3.8 a), and the efficiency

decreasing as µ increases. We also see that increasing territories results in slightly

suppressed efficiencies. In the aerial case, however, we see a peak in the efficiency as

a function of µ especially for higher rt, indicating the existence of an optimal strategy

for destructive foraging in this case. This peak arises from the same effect in the non-

destructive aerial search where the efficiency is suppressed for smaller µ values and
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Figure 3.6: (a) Average flight length for the terrestrial (solid lines) and aerial (dashed
lines) case. Inset is total target found for the terrestrial(solid lines) and aerial(dashed
lines) case. (b) Ratio of total targets found (blue) and total distance traveled (red)
between the aerial and the terrestrial cases for rt = 40 and Nf = 8.

higher rt, since longer jumps are allowed, but agents cannot access the targets (Fig.

3.8 b). In this case, this suppression creates a slight peak in the efficiency around

µ = 1.6 for higher rt values (Fig. 3.8 b). We note that the optimum shifts to the left

and becomes less pronounced for smaller rt indicating an optimum that is tunable by

territory size.

3.4 Discussion

It has been established that many solitary foragers such as goats [74] and spider

monkeys[7], as well as bacteria[63], and cancerous cells perform Lévy flight type

search patterns while looking for sparse, randomly located resources. While the actual

statistics of the searches are debated and myriad factors including memory, topog-

raphy, spatial and temporal distribution of resources can affect the optimal strategy

[75, 76, 77], it is clear that searches do contain steps from long-tailed distributions

and optimization principles are at work. The analysis of simple, minimal models have

provided rigorous, quantitative frameworks to analyze such behavorial patterns and
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Figure 3.7: (a) The standard deviation of the efficiency over distance traveled for
the terrestrial, aerial and single forager cases. (b) Efficiency as a function of µ for
the aerial, terrestrial and single forager cases. The shaded region around the mean
efficiency is the standard deviation measured after N = 107 flights.

uncover potential reasons for observed strategies. In this spirit, we have introduced a

minimal model of group foraging with territorial competition to understand the effect

of territorialism on foraging strategy.

For a single searcher, the efficiency of search is maximized when a combination of

localized and non-localized steps are taken. In the case of sparse targets, the most

beneficial search strategies observed are Lévy flights with µ ≈ 2 [2]. We showed that,

in the presence of competition, strategies maximizing the efficiency are similar to

those for single searchers and the optimal Lévy exponent, µ, is still approximately 2.

However, in both terrestrial and aerial animals, the efficiency of the search generally

decreases when the number of agents and the size of territory increases, i.e. increasing

competition leads to lower overall efficiency for the group. However, for µ values

close to 1 in the terrestrial case, larger territories, limiting the motion of foragers,

are beneficial and increase the search efficiency because they cause a truncation in

foragers step lengths. This truncation prevents foragers from traveling long distances

without finding targets. Thus an increase in territorial competition can increase the

efficiency of the group.
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Figure 3.8: Non-regenerative search efficiency as a function of µ. The spread is the
standard error of the mean and the solid lines are the average efficiencies. (a) For the
terrestrial case, we observe no optimal Lévy index µ and the behavior is similar to a
single forager. (b) For the aerial case, we observe a tunable optimum in efficiency as
rt increases. Nf = 8 in (a) and (b).

In addition to looking at the mean efficiency of the group, we also focused on the

variance in efficiencies among individuals which is potentially of biological significance

in contexts where optimizing the lowest efficiencies in a group might be important.

We found that the variance among the efficiencies of individual foragers in a group

was similar to the variance in the efficiencies of many solitary foragers. For small

Lévy exponent, µ, values the variance is small, and for large µ values the variance

increases. This suggests individuals and groups have two limiting options: (i) Per-

forming searches with µ ≈ 2 which optimizes the mean efficiency of the population at

the cost a higher variance. (ii) Performing nearly ballistic searches which decreases

the variance at the cost of decreased mean efficiency. Depending on the relative pri-

orities of the foragers, they can choose strategies that interpolate between these two

options. If maximizing the efficiency of the population is the goal, they can perform

searches with larger µ values close to the optimal mean efficiency. If minimizing the

variance is the goal, searching with smaller µ values is more beneficial. For instance,

if a solitary forager or members of a population prefer to ensure a higher chance of
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crossing a minimal efficiency (to avoid starvation) rather than try to maximize their

mean efficiency, they could perform more long-ranged (smaller µ) searches. Interest-

ingly such long-ranged searches may be more advantageous for territorial competitors

than solitary foragers as their mean efficiency is also higher in this regime.

Finally, for destructive foraging, where targets do not regenerate after being con-

sumed, the optimal search strategy for solitary foragers within the minimal model

is purely ballistic. This can change when targets are distributed in patches or can

occasionally evade capture or the landscape is porous and concave [65, 67, 75]. Here,

we show that, for terrestrial foragers, similar to solitary foragers, the optimal strategy

is still ballistic and the efficiency decreases as the size of territory or population of

foragers increase. However, for aerial animals, where long jumps are allowed, and re-

sources are limited, an optimum appears. For long-ranged searches, around µ = 1.2,

large territories limit the access to the targets by other foragers, and since crossing

is allowed, agents end up taking very long jumps without finding any targets. This

results in a suppression in the efficiency for small µ values and creates an optimum

that depends on the territory size. This optimum shifts to the left from µ around

1.6 when radius of the territory is around 100, to µ around 1.4 when the radius is

60. The optimum eventually disappears for small territories since the targets become

more accessible and the optimal strategy becomes ballistic.

Our work has shown that territorial competition can lead to improved efficiency

of long-ranged searches and highlighted several factors that can shift the optimum

strategy of foragers including selective pressure on minimizing the variance of the

efficiency favoring lower µ or more long-ranged strategies, and aerial territorial com-

petition leading to shorter-ranged optimal strategies. We hope that our results will

help future work consider these additional factors quantitatively when analyzing for-

aging data from the field that show deviations from the simplest optimal strategies.
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3.5 Appendix

3.5.1 Lévy Distribution

This section covers the Lévy distributions used for the random walk simulation in

this chapter. The distribution used in the simulations has an upper bound which is

equal to the size of our simulation box since infinitely long jumps are not realistic in

nature. The lower bound is the vision radius of the agents because steps shorter than

that are not beneficial. In this section both restricted upper bound and unrestricted

are covered.

Lévy Distribution with restricted upper bound

• lmax = Finite

For Lévy distribution (p(l) ∼ l−µ) [2], the normalized probability density function

with respect to a lower, l0, and upper bound, lmax, is the following:

p(l) =
µ− 1

l1−µ0 − l1−µmax

(l)−µ (3.4)

where l0 is the smallest step taken by the foragers which is equal to their perceptive

range rv, lmax is the largest step equal to the size of the box or the landscape and µ is

the Lévy exponent such that µ ∈ (1, 3]. The probability of a flight length, l, is given

by the integration of equation (3.4), P (l > l0), from l to lmax.

Pr(l > l0) =
1

l1−µ0 − l1−µmax

(
l1−µ − l1−µmax

)
(3.5)

where Pr(l > l0) ∈ [0, 1]. Taking the inverse of equation (3.5) and solving for l, we

find the flight length as,

l(Pr) =

[
l1−µmax + Pr

(
l1−µ0 − l1−µmax

)] 1
1−µ

(3.6)

Lévy Distribution with unrestricted upper bound

• lmax →∞
In the case of an unrestricted upper bound, we have the normalized probability
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density function with a lower bound, l0, and in the large limit shown as,

p(l) ≈ µ− 1

l0

(
l

l0

)−µ
(3.7)

where l0 is the smallest step taken by the foragers which is equal to their perceptive

range rv and µ is the Lévy exponent. The probability of a flight length, l, in this case

is given by integrating equation (3.7), P (l > l0), from l to ∞.

Pr(l > l0) ≈
(
l

l0

)−µ+1

(3.8)

Taking the inverse of equation (3.8) and solving for l, we find the flight length as,

l(Pr) ≈ l0 × (Pr)
1

1−µ (3.9)

3.5.2 Search algorithm and periodic boundary condition im-

plementation

In this section, the method for the search algorithm with periodic boundary condition

will be covered. I implemented two methods, one where I mirror the main simulation

box around the box when a long jump is taken, and mirror the targets (Fig. 3.9),

and the other method is cutting the long steps, moving the agent incrementally,

modulating the steps within the main box, and dividing the main box into smaller

squares to look for targets (Fig. 3.11). Both methods are explained below.

Slow search method using mirrors of the main simulation box

The basics of the search algorithm is similar to [2] which is explained in section §3.2.

At each time a random angle θ with a uniform distribution is chosen. The step length,

l, is chosen from a Lévy distribution with the method explained in §3.5.1 where the

upper bound, lmax, is equal to the box side length L. Then, a box with dimension

of 2rv × l, and two semi-circles at the ends of the box with radius rv are drawn.

First, I check to see whether there are any targets within the radius of rv of the

agent’s location. If there is any, it goes directly to that target. If not, based on the

direction of the step, and its length, the main simulation box will be mirrored in that

direction (Fig. 3.9).
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l

lmax
rv

Figure 3.9: The simulation box is shown with solid black lines. The dashed boxes are
the mirrors of the main box. When searcher takes a jump, a 2rv × l box is drawn,
and all the targets and their mirrors are checked to see if they are in this box. Two
semi-circles at the beginning and the end of the final point of the steps is also checked
with radius rv. Then, the ones in the box and semi-circles are sorted based on their
distance, and the forager goes to the one that is the closest to it. Targets are shown
in red dots.

After that, we set the origin to be the lowest left corner of the box, and all of

the targets positions within the main simulation box, and the mirrors will be checked

to see if they are within the box and the semi-circle at the end. If there are targets

within the box, we make a list and add those targets positions to the list. We then

sort them based on their distance in an ascending order from the agents position, and

the agent will be moved along the original path with angle θ and length l. When it

gets within radial distance of rv of the closest target, it deviates from the original

path and goes to the target (Fig. 3.10).

Mirroring the targets at every time step, and checking the main and mirrored

targets positions to see which ones are within the box is in the order of Ø(N2) time

complexity. Moreover, when having the territories, targets need to be checked to see

if they are in other agents territories, or in other words, if they are within distance

rt of any other agents. If they are within that distance, they need to be skipped and
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l
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Figure 3.10: If there are targets detected within the box, the agent moves along the
original path, until its distance with the closest target is rv. Then, it deviates from
the path and goes to the target. The agent in the figure moves the distance l1 and
distance rv to get to the target.

the agent has to go to the next target. The time complexity of this algorithm results

in slow simulations. Therefore, there was a need to come up with a faster method

which is explained below (§3.5.2).

Fast search method using nearest squares to the agent

To make the search given the PBC faster, the box can be divided to smaller boxes

with side length of L̃ (Fig. 3.9) . Each box is labeled based on the coordinates of

its lowest left corner. Then, if I floor each target’s x and y position, I can figure out

which box the target is located in by matching the floored position and box’s labels

or the coordinates of the lowest left corner. Thus, for each smaller box, there is a list

which contains the targets that belong to that box. This only needs to be done once

at the beginning of the simulation.

After that, the agent picks a random angle θ drawn from a uniform distribution,

and a random step length, l, from the Lévy distribution with the method explained

in (§3.5.1) where the upper bound, lmax, is equal to the box side length L. Next,

the intersections of the agents path and the boundaries will be found, as well as the
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positions where agent comes back to the box. Therefore, the path will be broken into

smaller pieces shown in (Fig. 3.11). In each smaller piece, agent moves incrementally

along the original path l, with increments equal to the length of the sides of small

boxes, L̃. In each increment, the four closest boxes to agents current location will be

found by finding the closest corner to the agents location, and adding and subtracting

L̃ to that corner’s coordinates. Given the four closest boxes, we will have a list of

the targets within those boxes. Next, we draw a box similar to (Fig. 3.9) and (Fig.

3.10), but with length L̃ instead of step length l, and check to see if there are any

targets from the closest targets within this rectangle. If there is, the agent goes to

the target. If no target is found within the increment, it will move again along the

original path by L̃. If it passes the boundary, it will come out from the other side of

the box, and the same process will be repeated.

There is a trade off between choosing L̃ very small, so there will be less targets

in each box, and choosing L̃ to be larger. Very small L̃ results in less targets in each

box. However, there will be more boxes to check, and smaller increments in which

agents move along. Large L̃ results in more targets in each box, but there will be less

boxes to check for the agent in each time. I found the ideal L̃ by going from L̃ = 1

to L̃ = 250 and measuring the time it took for the simulations to finish. The optimal

time for the system shown in this chapter is L̃ = 100. This made the simulations to

be at least ×10 faster.
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Figure 3.11: The simulation box is divided into smaller boxes with side lengths of
L̃. At each time, the only targets that need to be checked are the ones closest to
the agents current position, or the box the agent currently is in. Each smaller box is
labeled based on its lowest left corner. Targets locations are also found by taking the
floor of their location. If the floor matches any of the boxes lowest left corner location,
the target belongs to that small box. The agent is moved in smaller increments, and if
any target is found within the increment, it goes to that target location. The starting
point is shown with a red pin, and final location is shown with a blue pin. Targets
are shown with red dots.



Chapter 4

Cooperative Foraging in Cells

4.1 Introduction

Collective behavior is an emergent phenomenon consisting of large groups of au-

tonomous individuals that interact and communicate locally, but form collective

groups capable of decision making collectively [3, 78]. This phenomenon occurs in

different scales from bacteria to fish and birds [3, 38, 41, 79]. This behavior extends

to cells and it has been shown that clusters of cells exhibit collective motion dur-

ing tissue development and repair, and tumor growth [80, 81]. These systems show

long-range, scale-free correlations and discontinuous phase transitions [44]. Collec-

tive motion of these groups was found to exhibit three distinctive phases: running,

rotating, and random [37, 82, 83]. In the running phase, agents are mostly aligned,

and the group’s center of mass moves with a large translational velocity. For the

random phase, agents velocities are uncorrelated, and the group motion is minimum.

In the rotating phase, group rotates around a common center. The reasons behind

the emergence of the rotating phases are less clear than running and random phase.

Mechanisms such as confinement and long-range interactions can result in rotating

phases [45, 84].

Cell aggregation and motility are observed in various types of cancer such as lym-

phomas and breast cancer [49]. Lymphomas migrate in clusters and spread to distant

parts of the body. Studies based on mice breast cancer, show cell clusters having

higher metastatic potential [85], and it has been shown that collective cell migration

is influenced by chemical signaling [86], physical cues [87] such as cell-cell adhesion

36
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[88], and contact inhibition [89]. Therefore, it is important to understand the biophys-

ical mechanisms that underlie the motility, sensing, and navigation of these clusters.

To study this system, a model is needed such that it is capable of making connections

between the complex emergent cluster behaviors, functionality and the underlying

single cell properties over a large range of experimentally adjustable parameters. The

motility of malignant lymphocyte clusters in chemokine gradients was studied re-

cently [20]. Three collective phases, running, rotating, and random are also observed

in clusters of malignant lymphocytes.

Malignant lymphocytes migrate individually and form clusters, and look for source

of chemoattractant. In moderate gradients both individual cells and clusters move

up the gradient towards higher concentrations of chemokine. However, in a steep

gradient, individual cells move backwards or move towards lower concentrations, while

clusters still move along the gradient. Leader cells at the front of the cluster are

more motile and responsive to chemokine. In steep gradients single cells receptors

get saturated and they start going towards lower concentrations of chemokine, and

chemo-repulsion happens. However, it is speculated that rotations and shuffling of

cells between core and rim in the random phase help the clusters in chemotaxis. The

cluster rotates and then a fresh cell becomes the new leader, or in the random phase,

they shuffle and new cells with fresh receptors come to the cluster edge, and the cluster

can keep sensing the chemical gradient and search for the source of chemoattractant

[62].

Using an agent-based model, it was shown that a possible mechanism behind

the rotating phase is density-dependent cell propulsion due to contact inhibition of

locomotion, whereby cell protrusions are inhibited by adhesion between cells [20].

The model only allows short-range, nearest neighbor interactions and unconfined

space. The contact inhibition causes cells at the core of the cluster to move slower

compare to the cells at the rim, since they have more neighbors. Therefore, cells at

the rim move faster than the core cells and display stronger alignment interactions. A

uniform cluster with identical cells remains in one phase throughout the simulation,

either random or running, depending on the stochastic angular noise (from normal

distribution) and propulsion of cells. No rotation occurs.

They showed that decoupling the rim and core suppress rotational phases, thus

the coupling of these two leads to rotation. When the rim cells are in an ordered state
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with respect to their velocity alignment and the core is disordered, coupling of them

causes a frustrated state where the ordered rim is being pinned by the disordered core.

In this state, the cluster is not able to migrate in a running phase. In order to relieve

the frustration, the ordered rim starts pulling the disordered core. Resulting in the

rotation of cluster around a center. The agent-based swarming model captured the

dynamics of each collective phases, and the time spent in these phases successfully.

It was also shown that the cluster spends most of its time in the running phase, and

less in the rotating phase when a chemical gradient is introduced, which has been

seen experimentally. Moreover, by increasing cluster size, the proportion of time

spent in the rotational phase increases. When the cluster size increases, time spent in

the rotational phase increases, and the proportion of running phase decreases which

results in a decrease in cell exchanges [20].

As the gradient increases these clusters spend most of their time in the running

phase which resembles a bacteria run and tumble motion. This makes the system a

good candidate for cooperative foraging. However, an increased running phase means

the random phase, and the rotating phase will be suppressed. The speculation was

that random and rotating phases help clusters chemotax more robustly. Decreased

rotations mean less load sharing which means leader cells receptors could get saturated

and chemo-repulsion may occur. But, it was shown that exchanges of cells between

rim and core mostly happen in the running phase, and a high rate of exchange of cells

between rim and core was observed [20]. Now, the question is, how does the cluster

allow cells to exchange in the running phase? In the presence of chemo-repulsion, does

the running phase help clusters chemotax and find the source of chemoattractants?

With these results and knowing the mechanisms that cause the collective phases, I

extend this model to study the foraging of cells for chemoattractants. Previous model

showed the phases and behavior that are needed to overcome chemo-repulsion, but it

did not include chemo-repulsion. By using agent-based simulations which account for

chemo-repulsion, I show that by increasing the chemical gradient, clusters follow the

gradient consistently, and the chemotactic efficiency increases, while individual cells

and smaller clusters experience chemo-repulsion which we verify through experiments.

I also find that there are three unique structures, single vortex, double vortex and

disordered structures within the cluster when the cluster is in the running phase

which allows the cluster to exchange cells between the rim and core and continue to
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chemotax and avoid chemo-repulsion. Furthermore, I show that exchanges can occur

at any location in the rim, and there is no preferred location or direction. Finally,

the time cells spend in the clusters rim between the times they spend in the core is

non-monotonic and it increases by increasing the gradient to moderate values, and it

decreases in high gradients due to chemo-repulsion.

4.2 Simulation Model

Cell clusters are modeled as groups of particles that move with over-damped (inertia

free) dynamics in two dimensional continuous space. Cells are initialized on a circular

disk with velocities pointing in randomized directions. At each time step, ∆t, in

the simulation, each cell’s position is updated according to its respective velocity,

vi(t) (Eq. (4.1)). Cells velocities, (vi), are determined by their internal self-propulsion

(with magnitude pi), as well as physical interactions between cells such as adhesions,

and collisions with neighboring cells, which are modeled with a Lennard-Jones force

(
−→
LJ). r is the average size of the two interacting cells and

−→
d ij is the separation vector

between them (Eq. (4.3)).

A spring-like surface tension, long-range interaction
−→
S , keeps the cells together

and suppresses disaggregations. The spring interaction exists between n.n.n. which

are next nearest neighbors, and σj takes a value of 0 when there is a cell between cell

i and next nearest neighbor j, and 1 otherwise (Eq. (4.4))(Fig. 4.1 a).

Cells propel themselves in a direction (n̂), with a self-propulsion strength p, that

is determined by the memory of their own previous polarization (v̂), and an align-

ment interaction with the mean orientation of neighboring cells, (V̂ ), with interaction

strength α, which captures the tendency of cells to adopt a polarity similar to their

neighbors (Eq. (4.5)).

Moreover, n̂ depends on a gradient force (Eq. (4.2)) where the sum j is over each

distinct pair of adjacent neighbors of cell i.
−→
fj is a vector pointing in the direc-

tion bisecting the angle subtended by the centers of the cells of the neighbor pair

at the center of cell i, with a magnitude equal to the arc length between the two

neighbors (Fig. 4.1 b). Here, g reflects the strength of the influence on propulsion di-

rection from the chemokine gradient per unit distance of exposed cell edge arc length,

c′ is the change in chemokine concentration per unit distance, and y is the distance
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(in micrometers) from a concentration point of 0 ng/ml. When the magnitude of

the gradient force (Eq. (4.2)) is higher than a threshold, the cell tends to go to the

opposite direction due to chemo-repulsion.

Finally to capture the inherent noise within these clusters, due to the random-

ness of forces caused by cystoskeletal fluctuations, substrate-adhesion irregularities

etc., I add a uniform and uncorrelated noise term, η(t), to the total force each cell

experiences (Eq. (4.6)). All of the interactions that the cells feel assumes cells com-

municate with each other by contact. So, cells interact with each other within a

distance slightly larger than an average single cell diameter (r). The cell diameters

are chosen from a Gaussian distribution, as normal distributions lead to cell clusters

that are crystalline, and sizes have positive values.

The effect of contact inhibition of locomotion is implemented by scaling the propul-

sion inversely with the number of neighbors. Core cells have lower propulsion, since

they form fewer protrusions (with average of 6 neighbors) compared to rim cells that

have more open space, and less number of neighbors with average of 3.67 neigh-

bors (Eq. (4.7)) [20, 90]. Parameters used in the simulations are given in (Table.

3.1).

−→xi (t+ ∆t) = −→xi (t) +−→vi (t)∆t (4.1)

−→g i = gc′y

p.a.n∑
j

−→
fj , if −→g i > γ : −→g i → −−→g i (4.2)

−→
LJ = −12

n.n∑
j

[
r12

d13ij
− r6

d7ij
]d̂ij (4.3)

−→
S =

n.n.n∑
j

σj
−→
d ij (4.4)

n̂ =
v̂(t−∆t) + αV̂ +−→g
|v̂(t−∆t) + αV̂ +−→g |

, V̂ =

∑
n.n
−→vi (t)

|∑n.n
−→vi (t)|

(4.5)

−→vi (t) = pn̂ + ε
−→
LJ + k

−→
S +−→η (4.6)
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pi = pcore+
3

7
(pcore−prim)(ni−6), ni : number of neighbors around the cell i (4.7)

(a) (b)

Figure 4.1: (a) Schematic for the model. Green direction indicators show the direction
of the neighbors of the gray cells, and the green indicator on the gray cell shows the

alignment interaction (
−→
V ). The red arrow is the total Lennard Jones interaction (

−→
LJ)

on the gray cell. Finally, the blue spring denotes the cell-cell adhesion interaction (
−→
S ).

Note that it only exists between the gray cell and its second nearest neighbors that do
not have cells interrupting the path between them. (b) Schematic illustration of the
chemical gradient force on the gray cell. The purple arrows show the force between
each pair of adjacent neighbors while the green arrow shows the over all outward
gradient force

4.3 Results

4.3.1 Efficiency of the search for chemoattractants in clusters

It was shown that in the case of high gradients, small clusters and single cells travel

to lower concentrations of Chemokine while the clusters can robustly move towards

higher concentrations [62]. To determine how do the clusters follow the gradient as the
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gradient increases, and how do their direction of motion changes over time in higher

gradients I look at the forward migration index and velocity-velocity correlation in

both experiment and simulations. Forward migration index is defined as time spent

traveling up the gradient over total time. This resembles the efficiency of the search

for chemoattractants.

The previous model captured different behaviors of clusters that are needed for

robust chemotaxis and load sharing, such as the clusters collective phases, running,

rotating and random, and the amount of time clusters spend in each of these phases.

However, it did not include chemo-repulsion [20, 90]. We added chemo-repulsion to

the previous model, and were able to capture the clusters behavior in high gradients.

We find that the forward migration indexI (Eq. (4.9)) increases as the gradient

increases, and clusters spend most of their time migrating to higher concentrations

of chemokine. However, in very high gradient forward migration index decreases

slightly, and clusters go back to lower concentrations from time to time which is a

result of chemo-repulsion (Fig. 4.2 a). The experimental data verifies our findings

with forward migration index increasing as the gradient increases, and there is a small

drop in very high gradients (Fig. 4.2 b).

Parameter Description Value(s)

N Number of cells 19 to 91

∆t Time step 0.01

α Strength of alignment inter-
action

6

|−→η | Noise magnitude 4

ε Strength of Lennard-Jones
interaction

18

k Strength of spring force 0.1

pcore
Propulsion value for core
cells

4

prim
Propulsion value for rim
cells

8

Table 4.1: Simulation parameters.
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Figure 4.2: (a) Forward migration index of the clusters as a function of the chemical
gradient in the simulations. The time clusters spend traveling to higher concentrations
of chemokine increases as gradient increases. However, in very high gradients, it drops
slightly due to chemo-repulsion affecting the clusters. (b) Forward migration index
of the clusters as a function of the chemical gradient in the experiments. The same
behavior is observed where the forward migration index increases with increasing the
gradient and slightly drops in high gradients.

We observe that as we increase the gradient, the velocity-velocity correlation drops

slower, and clusters are able to follow a consistent direction for a longer time which

is in fact the direction in which the concentration increases. However, when the

gradient is very high, the direction becomes uncorrelated faster compared to moderate

gradients which is due to chemo-repulsion affecting the clusters (Fig. 4.3 a) which is

in agreement with experiments (Fig. 4.3 b).

4.3.2 Internal dynamics of the clusters

The exchanges of cells between rim and core mostly happen in the running phase [20].

To understand the physics of load sharing inside of the clusters and the intracellular

dynamics which allow the clusters to chemotax, I look at the velocity field of the

clusters in the center of mass frame when the cluster is in the running phase. I

observe three structures in the center of mass frame: a single vortex structure, a
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Figure 4.3: (a) Velocity-velocity correlation of the clusters center of mass in simu-
lations for various gradients. The velocity-velocity correlation increases overall and
drops slower as the gradient increases except when the gradient is high (purple curve)
which is due to chemo-repulsion affecting the clusters. (b) Velocity-velocity corre-
lation of the clusters center of mass in the experiments for various gradients. The
velocity-velocity correlation has a similar behavior to the experiments and it shows
the faster drop in high gradients.

double vortex structure and a disordered structure.

We see that the cluster is in the running phase in the lab frame, and cells are

highly aligned together, and are going to the same direction. However, when we

subtract the center of mass velocity, we observe is a single vortex, and cells rotate

around the cluster’s center of mass. The direction of the flow can be clockwise or

counterclockwise, and it occurs in different gradient values and cluster sizes (Fig. 4.4).

Looking at the experiments velocity fields, we see similar structures with vortices

going clockwise and counterclockwise in the center of mass frame (Fig. 4.5).

Moreover, we see a double vortex structure. The clusters are in the running phase

in the lab frame, and cells velocity vectors are highly aligned. Considering the front

of the cluster as the direction of center of mass velocity, the internal dynamics of the

clusters show a double vortex structure where cells in the front of the cluster move

towards inside and cells in the back of the cluster move outside of the cluster (Fig.
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Figure 4.4: (a) Velocity field of the cells in the lab frame in the simulations. Cells are
in the running phase. (b) Velocity field of the cells in the center of mass frame. Cells
form a single vortex structure and rotate around the cluster’s center. The direction of
the rotation can be clockwise or counter clockwise. This structure allows the clusters
bring fresh cells to the cluster’s rim to continue to chemotax.

4.6). However, in the experiment, the cells are able to cells come out from the front

of the cluster, and go inside from the back, and come out and go back from the sides

(Fig. 4.7).

Finally, when the cluster is in the running phase, there is a disordered structure

in the center of mass frame, and there is no distinct flow (Fig. 4.8). All three of these

structures allow the cells to exchange between the rim and core. A single vortex,

double vortex or a disordered structure, can bring cells with fresh receptors to to the

clusters rim to avoid chemo-repulsion.

Exchanges are speculated to bring fresh cells to the cluster’s leading edge. Know-

ing the flows inside the clusters and how they help with exchanges, we look at the

exchanges at the boundary/rim of the clusters to see if there is a specific location

where the exchanges happen, and to see if the cells mostly go from the rim to core

or from the core to the rim based on their location in the cluster. A cell that goes

from rim to core would be considered a −1 exchange, and a cell going from core to

rim would be a +1 exchange (Fig. 4.9 a).
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Figure 4.5: (a) Velocity field of the cells in the lab frame in the experiments. Cells are
in the running phase. The units for the axis are in µm. (b) Velocity field of the cells
in the center of mass frame. Cells form a single vortex structure and rotate around
the cluster’s center. The direction of the rotation is marked with red arrows, and it
can be clockwise or counterclockwise. This structure allows the clusters bring fresh
cells to the cluster’s rim to continue to chemotax.

Considering the leading edge as the direction of the center of mass velocity, and

dividing the cluster to four quadrants, back, front, left and right (Fig. 4.9 a), we

count the number of defects in each quadrant and count the number of cells that go

from rim to core, and the number of cells that go from core to rim. We find that

independent of the gradient value, exchanges happen everywhere on the rim and there

is no preference for their location and their sign. 50% of the time they go from rim

to core and 50% they go from core to rim in agreement with the experiments (Fig.

4.9 b,c).

Finally, we look at the amount of time spent by each cell in the rim, between two

core events. We observe when the gradient is zero, cells tend to stay in the rim for a

shorter time and they exchange more frequently due to randomness. However, when

the gradient increases to low and moderate, the amount of time spend in the rim until

they go to the core increases since the cluster is more organized moving in a specific

direction. Finally, when the gradient is high, the time reduces due to chemo-repulsion
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Figure 4.6: (a) Velocity field of the cells in the lab frame in the simulations. Cells are
in the running phase. (b) Velocity field of the cells in the center of mass frame. Cells
form a double vortex structure. The vortices only rotate in the opposite direction
and cells move inwards in the front and outwards in the back. This double vortex
structure can lead to exchanges between the rim and core of the cluster.

and cells going backwards to the rim (Fig. 4.10 a,b). Furthermore, the time spent

in the core by individual cells decreases monotonically as gradient increases. This

suggests that in lower gradients, the exchanges are mostly between the cells closer to

the rim, while in higher gradients, the cells from the core and middle of the clusters

will also exchange more frequently, and get a chance to be in the rim which can help

the clusters to continue to forage for source of chemoattractants (Fig. 4.11 a,b).

4.4 Discussion

Collective behavior is observed across scales from cells to fish and wildebeest [3], and

it allows groups to make decisions and complete tasks [3, 78]. Collective chemotaxis,

foraging of cells in the direction of increasing chemical gradient, plays an important

role in various biological processes such as tissue development and cancer metastasis

[80, 91]. It has been shown that endothelial cells, lymphoid, and neural crest cells

move collectively and search for chemoattractants [62, 92, 93].
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Figure 4.7: (a) Velocity field of the cells in the lab frame in the experiments. Cells are
in the running phase. The units for the axis are in µm.(b) Velocity field of the cells in
the center of mass frame. Cells form a double vortex structure. The vortices rotate in
the opposite direction, or in the same direction. Cells can move inwards in the front
and outwards in the back. They can also move inwards in the back, outwards in the
front, as well as moving in and out from the sides. This double vortex structure can
lead to exchanges between the rim and core of the cluster.

Malignant lymphocytes looking for source of chemokine is an ideal example of

cooperative foraging. Individual cells come together and form clusters. It is shown

that B & T lymphocytes are not capable of following high gradients, and tend to

travel to lower concentrations of chemokine while clusters are able to move towards

higher concentrations of chemokine. Clusters exhibit three distinct collective phases,

running, rotating and random which are speculated to enhance the chemotaxis by

bringing fresh cells to the clusters leading edge through rotation and shuffling be-

tween the periphery and the core in the random phase. An agent-based model was

used to show the physics behind these phases. This model showed the phases and

characteristics that are necessary to overcome chemo-repulsion [20, 90]. By adding

chemo-repulsion to this model, we are able to simulate all the characteristics of the

clusters (i.e. phases of motion) as well as clusters behavior in presence of high gradi-

ent. We look at forward migration index and clusters center of mass velocity-velocity
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Figure 4.8: (a) Velocity field of the cells in the lab frame. Cells are in the running
phase in both simulation and experiment. (b) Velocity field of the cells in the center
of mass frame. Cells are in a disordered state, and no specific flow is observed. This
disordered structure can shuffle the cells between the rim and core of the clusters.

correlation to see how the clusters motion changes by increasing the gradient. It turns

out, aggregates of lymphocytes tend to spend longer times following the gradient as

the gradient increases, and in the case of very high gradient, they will be affected

by chemo-repulsion and their forward migration index slightly decreases. Moreover,

the velocity-velocity correlation drops slower when the gradient is increased, and in

higher gradients it slightly drops faster due to chemo-repulsion. This shows that clus-

ters are able to move persistently towards higher concentrations of chemokine while

single cells experience chemo-repulsion and travel backwards.

Furthermore, internal dynamics of the clusters in the running phase show three

structures: single vortex, double vortex and disordered structures. Single vortex

structures can be clockwise or counterclockwise in both experiments and simulations.

In the experiments, double vortex structures can rotate in the same direction, or in two

different directions, and cells can come out of the cluster from the front, back and the

sides. However, in the simulations we only observe vortices rotating in the opposite

direction, and cells going inside in the front and coming out from the back. This could

be due to factors such as noise, or a different mechanism for chemo-repulsion in the
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Figure 4.9: (a) Sketch of exchanges in the cluster. The blue disks are the rim cells,
and the red disks are core cells, and the black disk is the center of mass. A cell
going from the core to the rim is considered a +1 exchange. A cell going from the
rim to the core is considered a −1 exchange. (b) Exchanges location with respect to
the center of mass velocity in the simulations for high and low gradients. In both
cases the exchanges can be found everywhere on the rim and there is no preferred
location. The sign of the exchanges are +1 half of the times and −1 half of the
times, and it does not depend on exchanges location. (c) Location of the exchanges
in the experiments. The same behavior as simulation is observed. The exchanges are
equally distributed in different parts of the rim and there is no preference for their
sign.

experiments. Currently the model checks the gradient experienced by each cell, and

if it is higher than a threshold, it flips the direction of the gradient vector. Perhaps

an integrating mechanism is needed which keeps track of the gradient experienced by

cells over time, and once they are saturated, it switches to chemo-repulsion. Finally,

disordered structures are observed in both simulations and experiment, and they show

no distinct flow within the clusters. These three structures cause cells to exchange

at the rim, and allow clusters to continue to chemotax in the running phase. Pattern

recognition and image analysis techniques could be applied to the clusters velocity

fields to detect these structures, and measure the proportion of time clusters spend

in each of the structures. Such structures can be quantified based on the clusters size
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Figure 4.10: (a) Cumulative distribution function of the times cells spend in the
rim between the times they were in the core in the simulations. Individual cells
spend shorter times in the rim when there is no gradient due to randomness. When
a low to moderate gradient is added they spend longer times in the rim since the
cluster becomes more ordered. Then, in higher gradients they spend shorter times
in the rim before going back to the core due to chemo-repulsion. This means more
exchanges occur between the rim and the core which can help the clusters to continue
to chemotax. (b) Cumulative distribution function of the time cells spend in the rim
between the times they spend in the core in the experiments. A similar trend as the
experiments is observed.

to see whether a specific structure is favored for a specific cluster size.

Moreover, there is no preference for the exchanges location. They occur every-

where at the rim of the cluster, and there is no specific direction for the exchanges

based on their position. The probability of the cells going from rim to core, or core

to rim is 50% all around the clusters rim. This suggests that the main internal

mechanism behind the exchanges could be the disordered structures or double vortex

structures because they have different directions of flow in the experiments. Addi-

tionally, the time individual cells spend in the clusters rim, has a non-monotonic

behavior. Cells spend short times in the rim when there is no gradient perhaps due

to randomness. They spend longer times in low to moderate gradient because they

clusters become more organized and move to the same direction. And, they spend
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Figure 4.11: (a) Cumulative distribution function of the time cells spend in the core
between the times they were in the rim in the simulations. The times get shorter
as gradient increases suggesting that in lower gradients the exchanges are likely hap-
pening between the cells that are closer to the rim. However, in higher gradients,
cells from the middle of the cluster will also be brought to the rim. (b) Cumulative
distribution function of the time cells spend in the core between the times they spend
in the rim in the experiments. A similar trend as the simulations is observed.

shorter times when the gradient is high which could be due to chemo-repulsion and

cells going inside of the cluster. The time that cells spend inside the core, has a

monotonic behavior, and it decreases by increasing the gradient. These results sug-

gest that when there is no gradient, rim cells mostly switch with the cells closer to

the periphery, and in higher gradients cells that are farther from the rim also will be

exchanged and brought to the rim to avoid chemo-repulsion.
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4.5 Appendix

4.5.1 Measuring the forward migration index

The forward migration index (FMI) as mentioned in section §4.3.1 is a measurement

of time spent traveling towards the higher concentration of chemoattractant over total

travel time. In the simulations and experiments, the gradient is in +y direction, and

the concentration increases as y increases. To measure the forward migration index,

I sum over the projection of unit vector of velocity of the cluster center of mass,

v̂COM along the +y axes (Eq. (4.8)), and divide it by the number of time steps in the

simulations, or number of frames in the experiments (Eq. (4.9)):

νt = v̂COM · ĵ (4.8)

FMI =

∑Ttotal
t=1 νt
Ttotal

(4.9)

Since ν is equal to the cosine of the angle between v̂COM , and ĵ, it always fluctu-

ates between [−1, 1]. If the cluster is going mostly towards higher concentrations of

chemoattractant, FMI (Eq. (4.9)) will be close to 1, and if it is going towards lower

concentrations, the FMI will be close to −1 or negative.

4.5.2 Distinguishing between rim and core cells and tracking

them

In this part, I will cover how to distinguish between rim and core cells, and track the

cells in simulations and experiments.

Distinguishing between rim and core cells

The method for finding the cells position in the cluster is similar to [20]. First, we

need to find the nearest neighbors of the each cell. The nearest neighbors are cells

within ∼ 1.3r of a cell, where r is the cell diameter. This can be done by going over all

of the N cells in the cluster, and calculating the center to center distance of each cell,

i, with all of the other N − 1 cells. If the distance between cell i and cell j is smaller

than 1.3r, cell j will be added to the neighbor list for cell i. This operation has a

computation time complexity of Ø(N2). However, since the clusters are fairly small,
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the computation time does not take very long. After finding the nearest neighbors

for each cell, a circle with the radius equal to the diameter of the cell, and center

located on cell’s center, will be drawn. This circle goes through the neighboring cells.

Next, by sorting the neighbors based on their angle with the cell, and calculating the

arc length of uninterrupted segments of this circle, between adjacent neighbors, the

total length of the cell’s exposed edge will be calculated. Rim cells, because of having

less neighbors, have a larger exposed edge compared to the core cells. If this exposed

edge is greater than on cell diameter, the cell would be considered a rim cell.

Tracking the individual cells over time to measure the time spent in rim

or core

For keeping track of cells positions (rim or core), I label the rim cells as 1 and core

cells as 0. In the simulations, I keep track of the labels by storing them in an array

for each cell over time. In the experiments, there is an array for each frame, which

has each cell’s index in the previous frame’s arrays for position. Let us name this

array Aindex. For example, at frame t, the ith index in Aindex has the value of 36.

This means the ith cell at frame t, was the cell 36 at frame t − 1. The cells can be

tracked over time through the experiments by using Aindex. However, this is more

challenging since some cells disappear over time, and the arrays for their indices can

have different lengths. Once I know the cells positions over time in the experiment,

I make an array for each of them similar to the simulations, and keep their label (1

or 0) over the frames in that array.

For calculating the time that each cell spends in the rim, one can scan the labels

array, and count the time steps that cell was marked as 1, between the times that was

marked as 0. For calculating the time spent in the core, the number of time steps, or

frames cell was marked as 0, between the times that was marked as 1 can be counted.

For instance, for cell i, I go over the array of labels. For the first n time steps, it was

in the rim and was labeled as 1. At n+ 1, it goes to the core, and now it is labeled as

0. I make a counter which starts to count the time spend in the core once the label

goes from rim to core, at n+ 1. Let us say it goes back to the rim m time steps later

and the label goes from 0 to 1, the value for counter, will be m, and will be stored

in an array. Once the time spent in the core between two rim events is saved in the

array, the counter is set to zero again, and this process continues until the end of the
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array. These will produce a distribution of times spend in the rim or the core. We

look at the cumulative distribution function of the amount of time spend in the rim

or the core in section §4.3.2, (Fig. 4.10) and (Fig. 4.11) to see how does the time

spend in the rim or core changes based on the gradient value because the probability

density function depends on the binning of the data.

4.5.3 Finding the exchanges and their location

To find the exchanges, one can go through the array containing the cells labels ex-

plained in section §4.5.2. If the label changes from 0 to 1, or 1 to 0, an exchange

happens. The location of this exchange, θexchange, is set by the angular location of

it with respect to the center of mass when the cell is on the rim. Therefore, if the

cell went from rim to core, the exchange’s location is the cell’s initial angular posi-

tion (Fig. 4.13 a), and if the cell went from core to rim, the exchange’s location is the

cell’s final angular position (Fig. 4.13 b). Front of the cluster is the direction of the

center of mass velocity, and the cluster is divided to four quadrants, front, back, left,

and right. Next, by calculating the dot product and cross product of the exchanges

angular position, (cos(θexchange), sin(θexchange)), and the unit vector of the velocity of

center of mass, we can find the quadrant that the exchange is in.
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Figure 4.12: (a) Angular position of the exchange, θexchange, if cell i goes from rim to
core, is the cells angle with center of mass, when it was on the rim which is θi,t. (b)
Angular position of the exchange, θexchange, if cell i goes from core to rim, is the cells
angle with center of mass when it was in the rim which in this case is θi,t+1. Blue
disks show rim cells and red disks show core cells in both (a) and (b).



Chapter 5

Final Discussion

The objective of this dissertation was to understand how competition and cooperation

affect search strategies and foraging efficiency compared to searches that are done

individually. To study foraging in the presence of competition I investigated the

efficient foraging strategies for territorial animals through a 2D model and Python

simulation. For cooperative foraging, I analyzed the behavior of cellular clusters such

as white blood cells looking for source of chemicals.

5.1 Conclusion and future work for Chapter §3

I developed an agent-based model to study territorial competition in terrestrial and

aerial animals. The searchers look for targets using Lévy flight searching patterns [2],

and territories are defined as circular boundaries around each agent. Our results show

that the strategies that maximize the search efficiency in terrestrial animals are similar

to solitary foragers which is a combination of exploration and exploitation, however,

the mean efficiency of the group decreases as the territory size or the population of

foragers increases. Furthermore, aerial animals are allowed to travel longer distances

and cross territories. However, resources are not available to them which results in a

suppressed mean efficiency especially in smaller Lévy exponents where the probability

of long jumps is higher. In addition, the deviations in the efficiency, is higher in more

localized searches, which means that foraging with such strategies have a higher risk

of performing below the average efficiency of the group, or a chance of performing

above the average. While searching with less localized searches, would lead to the

57
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same average efficiency with a smaller risk of performing below the average, since the

probabilities of taking a longer jump and visiting new target sites are higher. Finally,

we show that in the case of non-regenerative targets, the efficiency suppression in the

aerial case lead to a tunable optimum in the search efficiency for larger territories,

while there is no optimum observed for single searchers and terrestrial animals and

efficiency decreases by increasing the Lévy exponent.

Our current results can be used to understand the natural behavior of territorial

animals in nature, and can be expanded to 3D to study aquatic animals such as

sharks. Our model can also be used to study social interactions where individuals are

completing a task, but they are trying to avoid interference with each other. Rescuer

drones and robots usually avoid collision to minimize the over all search time[94].

Our results can also be used for such systems that are designed to explore an area,

and foragers are prohibited to search the spots that others are searching.

This work can be extended to have various type of distribution for targets such as

patchy or normally distributed [66, 95], or motile and stationary targets. It is known

that for a single searcher, when considering a super dense environment, less super-

diffusive strategies, (2 < µ < 3), perform nearly close to µ = 2 [66], and in the case

of sparse targets, even when targets are distributed in fragments or with a Lévy dust

distribution, the most beneficial search strategy observed is Lévy flights with µ ≈ 2

[66]. We can implement such target distributions for territorial competitors. and

compare our simulations to the results for individual foragers. Furthermore, we can

implement adaptive foraging strategies, and allow the searchers to tune their Lévy

exponent, or size of their territory when the search efficiency is low, or when a target

patch is depleted [96].

Currently, all the foragers are identical in the model. We can also consider a more

realistic system where the individuals in the group are different from each other. This

can include different foraging strategies, Lévy exponents, or different territory sizes.

Then, we can see how the overall efficiency changes, and if there is a strategy for

individuals that can help them perform above the average of the group. Finally, we

can have a combination of cooperative and competitive searchers, and allow them to

switch between these interactions depending on the availability of resources and their

efficiencies.
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5.2 Conclusion and future work for Chapter §4

In the context of cooperative foraging, I expanded the previous work in Gopinathan’s

group [20] by adding chemo-repulsion to the model as well as extensively analyzing

the experimental data. The previous model showed the phases and characteristics

that are necessary to overcome chemo-repulsion. However, it did not account for

chemo-repulsion.

We show that the in the presence of chemical gradients, clusters chemotactic ef-

ficiency increases by increasing the gradient. However, the clusters are affected by

chemo-repulsion in high gradients and the efficiency slightly drops. The velocity-

velocity correlation drops slower when the gradient is increased, and in higher gra-

dients it reduces slightly due to chemo-repulsion. Moreover, we see that the internal

dynamics of the clusters in the running phase reveal three different structures includ-

ing single vortex, double vortex and disordered structures which allow the cells to

shuffle between the rim and the core of the clusters. The exchanges occur all around

the clusters periphery without any specific direction which suggests that the disor-

dered and the double vortex are the dominant structures causing the exchanges. This

shuffling brings cells with fresh receptors to the clusters rim and results in clusters

robust search for chemoattractants. Finally, the time individual cells spend in the

clusters rim, has a non-monotonic behavior as a function of the chemical gradient.

Cells spend short times in the rim when there is no gradient due to randomness,

longer times in low to moderate gradient and shorter times when the gradient is high

due to chemo-repulsion.

The internal structures can be quantified based on the cluster sizes, and individual

cell properties such as noise and contact inhibition of locomotion. For instance, there

might be a region in parameter space which favors the double vortex structure while

another region favors the single vortex structure. Methods such as measuring the

vorticity and angular momentum of the system can be implemented to identify the

structures. Once can calculate the circulation around the rim in the center of mass

frame, vorticity, overall angular momentum, and angular momentum in front half,

right half, left half and back half of the cluster. Given these quantities, the structure

can be identified. For example, a single vortex has high over all angular momentum

and circulation, while a double vortex will have a high angular momentum in separate

two halves of the cluster. Having a method to identify the phases, proportion of
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times that clusters spend in each of these structures can be measured, similar to the

time they spend in each of the collective phases [20]. Furthermore, machine learning

techniques could be applied to reduce the noise and enhance the velocity fields in the

experimental data. In the simulation. the cells appear to be more noisy. A scan over

wide variety of values for noise can be done to find a region where cells behave more

similarly to the experiments.

Metastatic cancer cells such melanoma have shown Lévy walk patterns that are

different than their non-invasive counter parts which perform simple diffusion. This

allows the cancerous cells to migrate to distant parts of the body more efficiently[97].

A similar investigation can be done on malignant and benign lymphocytes. To spot

the differences in movement patterns and trajectories, the velocity, turning angle, per-

sistence length, and persistence time can be studied, and our model can be extended

to reflect the respective behavior depending on the cell type.

An important driver of metastatic potential in the cancer cells is the propensity

to form aggregates, and the stability of these aggregates in the presence of gradient.

Our current model focuses on the internal dynamics and chemotactic efficiency of

single clusters by suppressing any disaggregation instability with a very weak surface

tension. The model can be extended such that cells will not have this constraint

anymore to find the single cell properties that favor or suppress aggregation. A

combined assessment of the cluster lifetimes, size distributions, shapes, and their

chemotactic efficiency will lead to identifying regions of parameter space that would

be excellent candidates for suppressing metastatic potential.



Appendix A

Appendix: Computer Programs

Used

A.1 Introduction

In this work, the first projects simulation, numerical calculations and analysis were

executed in Python; whereas in the second project the simulations were executed

using C++ and all resulting data was analyzed using Python. The experimental

data was analyzed using MATLAB. Here, I show the programs used to conduct the

second project. The full code of simulation and analysis can be found on github, click

(Farnaz Golnaraghi Dissertation Code).

A.2 Cooperative Foraging in Cells Programs

A.2.1 align.cpp

This program calculates the alignment interactions with nearest neighbors.

#include <iostream >

#include <math.h>

void align(int i, int j, float angold[], float *Ax , float *Ay)

{

if (i!=j){

*Ax+=cosf(angold[j]);
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*Ay+=sinf(angold[j]);

}

return;

}

A.2.2 avgvels.cpp

This program the average velocity of nearest neighbors.

#include <iostream >

void avgvs(int N, float x[], float y[], float xold[], float

yold[], float *COMv , float *vavg){

float COMvx=0,COMvy =0;

*vavg =0;

for (int i=0; i<N; i++){

if (xold[i]-x[i]>L/2)

xold[i]-=L;

if (x[i]-xold[i]>L/2)

xold[i]+=L;

if (yold[i]-y[i]>L/2)

yold[i]-=L;

if (y[i]-yold[i]>L/2)

yold[i]+=L;

COMvx +=( xold[i]-x[i]);

COMvy +=( yold[i]-y[i]);

(*vavg)+= sqrtf((x[i]-xold[i])*(x[i]-xold[i])+(y[i]-yold[i])

*(y[i]-yold[i]));

}

(*vavg)=(* vavg)/( float)N;

(*COMv)= sqrtf(COMvx*COMvx+COMvy*COMvy)/( float)N;

return;

}
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A.2.3 bigarc.cpp

This program biggest arc length/exposed edge for cells.

#include <iostream >

#include <stdlib.h>

#include <math.h>

#include <fstream >

#define _USE_MATH_DEFINES

using namespace std;

void gradient(int i, int neigh1[], int neigh2[], int neighnum1

, int neighnum2 , float x[], float y[], float *max_diff){

int *neigh;

int neighnum=neighnum1+neighnum2;

neigh =(int*) malloc (( neighnum)*sizeof(int));

for (int j=0; j<neighnum1; j++)

neigh[j]= neigh1[j];

for (int j=neighnum1; j<neighnum; j++)

neigh[j]= neigh2[j-neighnum1 ];

float d,dx,dy,d2,dx2 ,dy2;

float *angles;

int *jincr;

angles =(float *) malloc (( neighnum)*sizeof(float));

jincr =(int*) malloc (( neighnum)*sizeof(int));

for (int j=0;j<neighnum;j++)

angles[j]=10;

for (int j=0;j<neighnum;j++){

if (neigh[j]!=i){

d=dist(i,neigh[j],x,y,&dx ,&dy);

float temp=atan2f(dy,dx);

for (int k=0;k<neighnum;k++){

if (temp <angles[k]){

for (int l=neighnum -1;l>k;l--){

angles[l]= angles[l-1];

jincr[l]=jincr[l-1];

}

jincr[k]=neigh[j];
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angles[k]=temp;

break;

}

}

}

}

angles[neighnum -1]= angles [0]+2* M_PI;

jincr[neighnum -1]= jincr [0];

for (int j=0;j<neighnum -1;j++){

if (jincr[j]!=i){

if (angles[j+1] - angles[j] > max_diff):

*max_diff = angles[j+1] - angles[j]

}

}

free(angles);

free(jincr);

free(neigh);

return;

}

A.2.4 clustering.cpp

This program using a recursive method, finds all the cells that are in the same cluster.

#include <iostream >

void addNewNeighbor(int i, int label[], int currentLabel , int*

neigh[], int neighnum []){

int j;

if (label[i]== -1){

label[i]= currentLabel;

for (j=0; j<neighnum[i]; j++){

if (neigh[i][j]!=i)

addNewNeighbor(neigh[i][j], label , currentLabel , neigh ,

neighnum);

}
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}

return;

}

void clustering(int label[], int* neigh[], int neighnum[], int

* clusters){

int j, currentLabel =0;

for (j=0; j<Num; j++)

label[j]=-1;

for (j=0; j<Num; j++){

if (label[j]== -1){

addNewNeighbor(j, label , currentLabel , neigh , neighnum);

currentLabel ++;

}

}

*clusters=currentLabel;

return;

}

A.2.5 COM.cpp

This program finds clusters center of mass.

#include <iostream >

#include <math.h>

void com(int iini , int ifinal , float x[], float y[], float *

COMx , float *COMy){

int i;

float avgxix=0, avgxiy=0, avgzetax=0, avgzetay =0;

for (i=iini;i<ifinal +1;i++){

avgxix +=cos(x[i]/L*2* M_PI);

avgxiy +=cos(y[i]/L*2* M_PI);

avgzetax +=sin(x[i]/L*2* M_PI);

avgzetay +=sin(y[i]/L*2* M_PI);
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}

avgxix=avgxix /(float)(ifinal -iini +1);

avgxiy=avgxiy /(float)(ifinal -iini +1);

avgzetax=avgzetax /(float)(ifinal -iini +1);

avgzetay=avgzetay /(float)(ifinal -iini +1);

*COMx=L*( atan2f(-avgzetax ,-avgxix)+M_PI)/(2* M_PI);

*COMy=L*( atan2f(-avgzetay ,-avgxiy)+M_PI)/(2* M_PI);

return;

}

A.2.6 confine.cpp

This program finds the ring confinement position.

#include <iostream >

#include <math.h>

void conf(int i, float x[], float y[], float COMx , float COMy ,

float *Confx , float *Confy){

float COMxtemp=COMx , COMytemp=COMy;

if ((x[i]-COMx)>L/2)

COMxtemp +=L;

if ((x[i]-COMx)<-L/2)

COMxtemp -=L;

if ((y[i]-COMy)>L/2)

COMytemp +=L;

if ((y[i]-COMy)<-L/2)

COMytemp -=L;

float rad=sqrtf ((x[i]-COMxtemp)*(x[i]-COMxtemp)+(y[i]-

COMytemp)*(y[i]-COMytemp));

if (rad ==0)

rad =0.00001;

*Confx =(rad -confring*r*3/ M_PI)*(x[i]-COMxtemp)/rad;

*Confy =(rad -confring*r*3/ M_PI)*(y[i]-COMytemp)/rad;

return;
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}

A.2.7 distance2.cpp

This program calculates the distance between two points.

#include <iostream >

#include <math.h>

float dist(int i, int j, float x[], float y[], float *dx,

float *dy){

*dx=distx(x[i],x[j]);

*dy=distx(y[i],y[j]);

return sqrtf ((*dx)*(*dx)+(*dy)*(*dy));

}

A.2.8 distx.cpp

This program modulates x positions.

#include <iostream >

#include <cmath >

float distx(float x1 , float x2){

// return (float)L/(2* M_PI)*asinf(cosf (2* M_PI/( float)L*x1)*

sinf (2* M_PI/( float)L*x2)-sinf (2* M_PI/( float)L*x1)*cosf (2*

M_PI/(float)L*x2))/fabsf(asinf(cosf (2* M_PI/( float)L*x1)*

sinf (2* M_PI/( float)L*x2)-sinf (2* M_PI/( float)L*x1)*cosf (2*

M_PI/(float)L*x2)))*acosf(cosf (2* M_PI/( float)L*x1)*cosf (2*

M_PI/(float)L*x2)+sinf (2* M_PI/( float)L*x1)*sinf (2* M_PI/(

float)L*x2));

// return abs(asinf(cosf (2* M_PI/( float)L*x1)*sinf (2* M_PI/(

float)L*x2)-sinf (2* M_PI/(float)L*x1)*cosf (2* M_PI/(float)L*

x2)));//* acosf(cosf (2* M_PI/( float)L*x1)*cosf (2* M_PI/( float)

L*x2)+sinf (2* M_PI/(float)L*x1)*sinf (2* M_PI/(float)L*x2));

float dx=x2 -x1;
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if (dx >L/2)

dx -=L;

if (dx <-L/2)

dx+=L;

return dx;

}

A.2.9 fluidity.cpp

This program finds the exchange rate between the rim and core.

#include <iostream >

void fluidity(int N, int *neigh[], int neighnum[], int *

uniqueneigh [], int unneighnum [], int *oldneigh[], int

oldneighnum [], int *changes){

int *new_neigh , *temp;

*changes =0;

for (int i=0;i<N;i++){

int check3 =1;

temp=uniqueneigh[i];

for (int j=0;j<neighnum[i];j++){

int check =1;

for (int k=0;k<unneighnum[i];k++){

if (neigh[i][j]== uniqueneigh[i][k]||i==j)

check =0;

}

if (check ==1){

unneighnum[i]++;

new_neigh =(int*) realloc(temp ,unneighnum[i]* sizeof(int));

if (new_neigh ==NULL){

free(temp);

break;

}
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else {

temp=new_neigh;

temp[unneighnum[i]-1]=j;

}

}

//////////////////////////////////////////

int check2 =1;

for (int k=0;k<oldneighnum[i];k++){

if (oldneigh[i][k]== neigh[i][j]&& neighnum[i]== oldneighnum[

i]){

check2 =0;

}

}

if (check2 ==1)

check3 =0;

}

if (check3 ==0)

*changes ++;

//////////////////////////////////////////

uniqueneigh[i]=temp;

}

return;

}

A.2.10 gradient.cpp

This program finds the exposed edge and calculates the gradient vector (sum of arc

lengths).

#include <iostream >

#include <stdlib.h>

#include <math.h>

#include <fstream >
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#define _USE_MATH_DEFINES

using namespace std;

void gradient(int i, int neigh1[], int neigh2[], int neighnum1

, int neighnum2 , float x[], float y[], float *gradx , float

*grady){

int *neigh;

int neighnum=neighnum1+neighnum2;

neigh =(int*) malloc (( neighnum)*sizeof(int));

for (int j=0; j<neighnum1; j++)

neigh[j]= neigh1[j];

for (int j=neighnum1; j<neighnum; j++)

neigh[j]= neigh2[j-neighnum1 ];

float d,dx,dy,d2,dx2 ,dy2;

float *angles;

int *jincr;

angles =(float *) malloc (( neighnum)*sizeof(float));

jincr =(int*) malloc (( neighnum)*sizeof(int));

for (int j=0;j<neighnum;j++)

angles[j]=10;

for (int j=0;j<neighnum;j++){

if (neigh[j]!=i){

d=dist(i,neigh[j],x,y,&dx ,&dy);

float temp=atan2f(dy,dx);

for (int k=0;k<neighnum;k++){

if (temp <angles[k]){

for (int l=neighnum -1;l>k;l--){

angles[l]= angles[l-1];

jincr[l]=jincr[l-1];

}

jincr[k]=neigh[j];

angles[k]=temp;

break;

}

}

}

}
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angles[neighnum -1]= angles [0]+2* M_PI;

jincr[neighnum -1]= jincr [0];

for (int j=0;j<neighnum -1;j++){

if (jincr[j]!=i){

*gradx +=cosf(( angles[j]+ angles[j+1])/(float)2)*( angles[j

+1]- angles[j]);

*grady +=sinf(( angles[j]+ angles[j+1])/(float)2)*( angles[j

+1]- angles[j]);

}

}

free(angles);

free(jincr);

free(neigh);

return;

}

A.2.11 initialize.cpp

This program initializes cells on a disk at the beginning of the simulations.

#include <iostream >

#include <math.h>

#include <stdlib.h>

#define _USE_MATH_DEFINES

void inipos(int N, int i, float x[], float y[]){

x[i]=sqrtf ((float)N)*(float)rand()/(float)RAND_MAX -sqrtf ((

float)N)+50;

y[i]=sqrtf ((float)N)*(float)rand()/(float)RAND_MAX -sqrtf ((

float)N)+50;

float r=sqrtf ((x[i]-50)*(x[i]-50)+(y[i]-50)*(y[i]-50));

if (r>sqrtf(( float)N)/10)

inipos(N,i,x,y);

return;

}
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void initialize(int N, float x[], float y[], float vx[], float

vy[]){

int i;

for (i=0; i<N; i++){

inipos(N,i,x,y);

vx[i]=0;

vy[i]=0;

}

return;

}

A.2.12 initializecircle.cpp

This program initializes cells on a disk at the beginning of the simulations.

#include <iostream >

#include <math.h>

#include <stdlib.h>

#define _USE_MATH_DEFINES

using namespace std;

void initialize(int N, float x[], float y[], float vx[], float

vy[], float xold[], float yold[], float ri[], int

rimorcore [], int rimorcoreOld []){

int i=N, j=1, left=N, k, d, rings =0;

for (i=0; i<N; i++){

if (left >j*6){

x[i]=L/2+6*j*r/(2* M_PI)*cosf (2* M_PI /(6.*j)*(i-1 -6*(j-1)))

;//j*(r*N)/(2* M_PI)*cosf(( float)i/( float)N*2* M_PI);

y[i]=L/2+6*j*r/(2* M_PI)*sinf (2* M_PI /(6.*j)*(i-1 -6*(j-1)))

;//j*(r*N)/(2* M_PI)*sinf(( float)i/( float)N*2* M_PI);

}

else{
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x[i]=L/2+6*j*r/(2* M_PI)*cosf (2* M_PI /(( float)left -1)*(i

-1-6*(j-1)));//j*(r*N)/(2* M_PI)*cosf(( float)i/( float)N

*2* M_PI);

y[i]=L/2+6*j*r/(2* M_PI)*sinf (2* M_PI /(( float)left -1)*(i

-1-6*(j-1)));//j*(r*N)/(2* M_PI)*sinf(( float)i/( float)N

*2* M_PI);

}

int n=0;

for (k=0;k<j;k++)

n+=k*6;

if ((i-n)%(j*6) ==0&&i>0){

j++;

left=N-i;

}

x[0]=L/2;

y[0]=L/2;

xold[i]=x[i];

yold[i]=y[i];

float initheta =2* M_PI*(float)rand()/(float)RAND_MAX;

float iniv=vini*(float)rand()/(float)RAND_MAX;

vx[i]=iniv*cosf(initheta);

vy[i]=iniv*sinf(initheta);

float u=(float)rand()/(float)RAND_MAX;

float v=(float)rand()/(float)RAND_MAX;

ri[i]=r+rs*sqrtf(-2*log(u))*cosf (2* M_PI*v);

rimorcore[i]=0;

rimorcoreOld[i] = 0;

// if (ri[i]>R1)

// ri[i]=0.99* R1;

}

return;

}
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A.2.13 interactions.cpp

This program calculates all the interactions between cells (Lennard jones, springs,

alignment)

#include <iostream >

#include <math.h>

#include <stdlib.h>

#include "align.cpp"

#include "LJ.cpp"

#include "spring.cpp"

#include "confine.cpp"

#include "intermags.cpp"

void interactions(int N, float grad , float noff , float pcore ,

float x[], float y[], float COMx , float COMy , float vx[],

float vy[], int* neigh1[], int* neigh2[], int neighnum1 [],

int neighnum2[], int coupled , float ri[]){

int i, j;

float *angold , noise0;

angold =(float *) malloc(N*sizeof(float));

for (i=0; i<N; i++){

angold[i]= atan2f(vy[i],vx[i]); // Store all the angles of all

the dudes for alignment interaction.

}

for (i=0; i<N; i++){

float Ax=0, Ay=0, A, LJx=0, LJy=0, Springx=0, Springy=0,

Confx=0, Confy=0, gradx=0, grady=0, G, dx, dy, d, dx2 ,

dy2 , d2;

for (j=0; j<neighnum1[i]; j++){

if ((( ringn(i,x,y,COMx ,COMy)== confring && ringn(i,x,y,COMx ,

COMy)== ringn(neigh1[i][j],x,y,COMx ,COMy))||( ringn(i,x,y,

COMx ,COMy)<confring && ringn(neigh1[i][j],x,y,COMx ,COMy)<

confring))|| coupled ==1){
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d=dist(i,neigh1[i][j],x,y,&dx ,&dy); // Calculate distance

between i and j cells.

align(i,neigh1[i][j],angold ,&Ax ,&Ay); // Alignment

interaction.

LJ(i,neigh1[i][j],dx,dy,d,ri ,&LJx ,&LJy); //Lennard -Jones

interaction.

}

}

for (j=0; j<neighnum2[i]; j++){

if ((( ringn(i,x,y,COMx ,COMy)== confring && ringn(i,x,y,COMx ,

COMy)== ringn(neigh2[i][j],x,y,COMx ,COMy))||( ringn(i,x,y,

COMx ,COMy)<confring && ringn(neigh2[i][j],x,y,COMx ,COMy)<

confring))|| coupled ==1){

d=dist(i,neigh2[i][j],x,y,&dx ,&dy);

spr(i,neigh2[i][j],x,y,neighnum1[i],neigh1[i],&Springx ,&

Springy); //Long range spring interaction.

}

}

conf(i,x,y,COMx ,COMy ,&Confx ,& Confy); // Confinement vector.

gradient(i,neigh1[i],neigh2[i],neighnum1[i],neighnum2[i],x,y

,&gradx ,& grady);

// Normalize alignment.

A=sqrtf(Ax*Ax+Ay*Ay);

if (A>0){

Ax=Ax/A;

Ay=Ay/A;

}

// G=sqrtf(gradx*gradx+grady*grady);

// if (G>0){

// gradx=gradx/G;

// grady=grady/G;

// }
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noise0 =2* M_PI*rand()/( float)RAND_MAX; // Direction of noise.

float atemp ,noisetemp ,proptemp ,kconftemp ,gtemp;

if (rcvsnn ==0)

istrsrc(grad , noff , pcore , neighnum1[i],ringn(i,x,y,COMx ,

COMy),COMy ,y[i],&atemp ,&noisetemp ,&proptemp ,&kconftemp ,&

gtemp); //Set all the interaction strengths for this

particle.

else

istrsnn(grad , noff , pcore , neighnum1[i],ringn(i,x,y,COMx ,

COMy),COMy ,y[i],&atemp ,&noisetemp ,&proptemp ,&kconftemp ,&

gtemp);

float v=sqrtf(vx[i]*vx[i]+vy[i]*vy[i]); //vvvvv

if (v==0)

v=1;

float nx=vx[i]/v+atemp*Ax+gtemp*gradx , ny=vy[i]/v+atemp*Ay+

gtemp*grady; // Propulsion vector.

float nnorm=sqrtf(nx*nx+ny*ny); //^^^^^

if (nnorm ==0)

nnorm =1;

vx[i]= proptemp*nx/nnorm+noisetemp*cosf(noise0)+e*LJx -kspring

*Springx -kconftemp*Confx;

vy[i]= proptemp*ny/nnorm+noisetemp*sinf(noise0)+e*LJy -kspring

*Springy -kconftemp*Confy;

v=sqrtf(vx[i]*vx[i]+vy[i]*vy[i]);

}

free(angold);

return;

}

A.2.14 intermags.cpp

This program finds the final gradient interaction.
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#include <iostream >

void istrsrc(float grad , float noff , float pcore , int neighnum

, int ring , float COMy , float y, float *atemp , float *

noisetemp , float *proptemp , float *kconftemp , float *gtemp)

{

*atemp=aoff -aslope *(6-( neighnum -1));

*noisetemp=noff -nslope *(6-( neighnum -1));

float conc=y-COMy;

if (conc >L/2)

conc -=L;

if (conc <-L/2)

conc+=L;

if (ring >= confring){

*proptemp=prim+conc*grad;

*kconftemp=kconfine;

*gtemp=gdep;

// if (coup ==1)

// *kconftemp =0;

}

else {

*proptemp=pcore+conc*grad;

*gtemp=gdep;

*kconftemp =0;

}

return;

}

void istrsnn(float grad , float noff , float pcore , int neighnum

, int ring , float COMy , float y, float *atemp , float *

noisetemp , float *proptemp , float *kconftemp , float *gtemp)

{
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float conc=y-COMy+gdep;

if (conc >L/2)

conc -=L;

if (conc <-L/2)

conc+=L;

*atemp=aoff -aslope *(6-( neighnum -1));

*noisetemp=noff -nslope *(6-( neighnum -1));

*proptemp=pcore +3.0/7.0*( pcore -prim)*(neighnum -7.0);

*gtemp =(conc)*grad;

*kconftemp =0;

if (ring== confring)

*kconftemp=kconfine;

return;

}

A.2.15 LJ.cpp

This program has the Lennard-Jones interactions.

#include <iostream >

#include <math.h>

using namespace std;

void LJ(int i, int j, float dx , float dy , float d, float ri[],

float *LJx , float *LJy){

float avgr=(ri[i]+ri[j])/2.0;

if (powf(d ,13.0) <0.000001&&i!=j)

d=0.34551;

if (i!=j){

*LJx += -12*( powf((avgr) ,12.0)/powf((d) ,13.0)-powf((avgr) ,6.0)

/powf((d) ,7.0))*dx/(d);

*LJy += -12*( powf((avgr) ,12.0)/powf((d) ,13.0)-powf((avgr) ,6.0)

/powf((d) ,7.0))*dy/(d);
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}

return;

}

A.2.16 main.cpp

This program is the main script that runs the others.

#include <iostream >

#include <stdlib.h>

#include <math.h>

#include <fstream >

#include <vector >

#include <numeric >

#include <random >

#include <chrono >

#include <ctime >

//# define N 37 // Number of Cells.

#define confring 3

#define aoff 6 // Maximum value of alpha (alignment

interaction strength) occurs for particles with no

neighbors.

#define rcvsnn 1 //0 for rim/core dependence , 1 for nn

dependence

#define prim 8 //Rim p. (or slope).

#define kconfine 0

#define rs 3

#define r 30 //Cell diameter (position of Lennard -Jones well

)

#define gdep 100

#define vini 1

#define R1 38 // Distance cut off for first nearest neighbors

.

#define R2 100 // Distance cut off to second nearest

neighbors.
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#define kspring 0.1 // Magnitude of the cohesive spring force.

#define aslope 0 // Minimum value of alpha , occurs for

particles with maximum number of neighbors.

#define e 18 //Lennard -Jones interaction strength. (Well

depth)

#define nslope 0 // Minimum value of the noise. (See alpha

description)

#define timestep 0.01 // Simulation timestep

#define samples 1 // Number of samples

#define L 1900 // Periodic boundary box edge lenghth.

#define _USE_MATH_DEFINES

#include "distx.cpp"

#include "distance.cpp"

#include "COM.cpp"

#include "ringnum.cpp"

#include "initializecircle.cpp"

#include "gradient.cpp"

#include "interactions.cpp"

#include "move.cpp"

#include "opramt.cpp"

#include "ropramt.cpp"

#include "velcor.cpp"

#include "ringrot.cpp"

//# include "clustering.cpp"

#include "avgvels.cpp"

//# include "ringorder.cpp"

#include "neighborlist.cpp"

#include "rimcoreexchange.cpp"

using namespace std;

int main(int argc , char *argv []){

srand (time(NULL));

int i, j, s, tt;
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float t, t1=clock ();

int N = atoi(argv [1]);

float pcore = atof(argv [2]);

float noff = atof(argv [3]);

float grad = atof(argv [4]);

int T = atoi(argv [5]);

// Particle properties , things that are specific for each cell

:

float x[N], y[N], vx[N], vy[N], ri[N];

// Arrays needed for analysis.

int clusters , label[N], rimorcore[N], rimorcoreOld[N];

float order , rorder , COMv , COMx , COMy , vavg , xold[N], yold[N

], cenor , cenror , cenCOMv , cenavgv , rimor , rimror , rimCOMv

, rimavgv , rot[100] , exchanges =0, count =0;

//Some System -wide properties.

int **neigh1 , **neigh2 , **neighold , neighnum1[N], neighnum2[N

], neighnumold[N];

neigh1 =(int **) malloc(N*sizeof(int*));

neigh2 =(int **) malloc(N*sizeof(int*));

neighold =(int **) malloc(N*sizeof(int*));

ofstream f0x;

f0x.open(" runtime.txt");

ofstream f0y;

f0y.open("ri.txt");

for (s=0; s<samples; s++){ //Loop through the number of

samples.

// Files.

FILE * f00; // Parameters file.
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f00 = fopen (" params.txt", "w");

fprintf(f00 , " N = %d \n L = %d \n r = %f \n e = %f \n

ao = %f \n as = %f \n no = %f \n ns = %f \n samples = %

d \n seed = %ld", N, L, (float)r, (float)e, (float)aoff ,

(float)aslope , (float)noff , (float)nslope , samples , time

(NULL));

ofstream f01; //For videos with VMD , only writes when

samples =1.

f01.open("pos.xyz");

FILE * f01a;

//FILE * f01b;

FILE * f04;

ofstream f02; //The order parameter of the system as a

function of time.

f02.open("data/ordervst.dat");

ofstream f03; // Rotational order/angular momentum of the

system with t.

f03.open("data/rordervst.dat");

ofstream f05; //The velocity of the center of mass of the

cluster of cells vs time.

f05.open("data/velocityvst.dat");

ofstream f06;

f06.open("data/rotations.dat");

ofstream f09;

f09.open("data/navg.dat");

ofstream f10;
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f10.open("data/avgv.dat");

ofstream f11;

f11.open("data/rimcoreexchange.dat");

FILE *FName[T];

// Make N text files , each file would be for one agents

trajectory through out the simulation (e.g. Agent0001.txt

will be for Agent 1)

for (int i = 0; i < T; i++){

if (i%4 == 0 && i>4){

char File_num [32];

snprintf(File_num , sizeof(char)*32, "./ agents_position/T

%05d.txt", i);

FName[i] = fopen(File_num , "w");

}

}

// Initialize particles (perfect packed hexagon , with random

directions , and velocities).

initialize(N,x, y, vx, vy, xold , yold , ri, rimorcore ,

rimorcoreOld);

for (i=0; i<N; i++)

neighnumold[i]=0;

for (tt=0; tt <( float)T/( float)timestep; tt++){ //Loop

through number of time steps.

t=tt*timestep; // Actual time in minutes.

com(0,N-1,x,y,&COMx ,&COMy);

if (samples ==1&&tt %50==0){ //Make vmd video file.

f01 << N << "\n\n";

for (i=0; i<N; i++)

f01 << "H " << x[i] << " " << y[i] << " 0.0\n";

char buffer1 [32];

//char buffer2 [32];
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snprintf(buffer1 , sizeof(char)*32, "./ video/fr%06d", tt);

// snprintf(buffer2 , sizeof(char)*32, "agent_files/Tpoint

%06d.dat", tt);

f01a=fopen(buffer1 , "w");

//f01b=fopen(buffer2 , "w");

for (i=0; i<N; i++){

fprintf(f01a , "%d %f %f %f\n", rimorcore[i], x[i], y[i],

ri[i]);

// fprintf(f01b , "%d %d %f %f %f %f\n", rimorcore[i],

rimorcoreOld[i], x[i], y[i], xold[i], yold[i]);

}

fclose(f01a);

// fclose(f01b);

}

int coup =1; // Rim and core are coupled.

// Create neighborlists.

if (tt %1==0){

for (i=0;i<N;i++){

free(neigh1[i]);

free(neigh2[i]);

nlist(N, i,x,y,ri,neigh1 ,neighnum1 ,neigh2 ,neighnum2);

}

}

if (tt==2){

float dummy=rimcoreexchange(N, rimorcore ,rimorcoreOld ,

neigh1 ,neigh2 ,neighnum1 ,neighnum2 ,x,y);

}

// Update directions.

interactions(N, grad , noff , pcore , x, y, COMx , COMy , vx , vy

, neigh1 , neigh2 , neighnum1 , neighnum2 , coup , ri); //

This function edits caculates forces on each particle

and updates vx , and vy , accordingly.
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// Update positions. Updates the x and y coordinates of

each cell based on the vx , and vy , calculated before.

move(N, x, y, vx, vy);

exchanges=rimcoreexchange(N, rimorcore ,rimorcoreOld , neigh1

,neigh2 ,neighnum1 ,neighnum2 ,x,y);

if (tt%400 == 0 && tt >401){

int IND = t;

for (int jj = 0; jj < N; jj++){

fprintf(FName[IND], "%f %f %d %f %f %d\n", xold[jj], yold

[jj], rimorcoreOld[jj], x[jj], y[jj], rimorcore[jj]);

}

// Closes all the agent files

fclose(FName[IND]);

}

//Find the velocity of the center of mass of the cell

cluster.

if (tt %400==0&&tt >401){ // Everyone second timestep write

the order , angular momentum and velocities as well as

time into the appropriate files. Do analysis and enter

numbers into files.

// if (tt>T/(float)timestep -527){

// velcor(Num ,L,x,y,xold ,yold ,vx ,vy);

// }

ringrot(N,x,y,xold ,yold ,COMx ,COMy ,rot);

avgvs(N, x,y,xold ,yold ,&COMv ,&vavg);

order = opram(N, vx , vy , xold , yold , x, y);

rorder = ropram(N, x, y, vx , vy , xold , yold , rimorcore ,

rimorcoreOld); //Note that xold and yold get

overwritten to new x and y in this function(ropram).

// exchanges=rimcoreexchange(N, rimorcore ,rimorcoreOld ,

neigh1 ,neigh2 ,neighnum1 ,neighnum2 ,x,y);
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f02 << t+s*T << " " << order << endl;

f03 << t+s*T << " " << rorder << endl;

f05 << t+s*T << " " << COMv << endl;

f06 << t+s*T;

for (int i=1; i<confring +1; i++)

f06 << " " << rot[i];

f06 << endl;

f10 << t+s*T << " " << vavg << endl;

f11 << t+s*T << " " << exchanges << endl;

}

}

}

float t2=clock ();

f0x << (t2 -t1)/CLOCKS_PER_SEC << endl;

return 0;

}

A.2.17 move.cpp

This program move the cells based on velocities.

#include <iostream >

#include <math.h>

void move(int N, float x[], float y[], float vx[], float vy[])

{

int i;

for (i=0; i<N; i++){

x[i]+=vx[i]* timestep;

y[i]+=vy[i]* timestep;

x[i]=fmod(x[i]+L,L);

y[i]=fmod(y[i]+L,L);

}

return;

}
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A.2.18 neighborlist.cpp

This program finds cells nearest neighbors.

#include <iostream >

void nlist(int N, int i, float x[], float y[], float ri[], int

* neigh1[], int neighnum1 [], int* neigh2[], int neighnum2

[]){

int *temp1=(int*) malloc (1* sizeof(int)), *new_neigh1;

int *temp2=(int*) malloc (1* sizeof(int)), *new_neigh2;

neighnum1[i]=0;

neighnum2[i]=0;

float d, dx, dy;

for (int j=0; j<N; j++){

d=dist(i,j,x,y,&dx, &dy);

if (d<(ri[i]+ri[j]) /2.0+R1 -r){

neighnum1[i]++;

new_neigh1 =(int*) realloc(temp1 ,neighnum1[i]* sizeof(int));

if (new_neigh1 ==NULL){

free(temp1);

break;

}

else{

temp1=new_neigh1;

temp1[neighnum1[i]-1]=j;

}

}

if (d>(ri[i]+ri[j]) /2.0+R1 -r && d<(ri[i]+ri[j]) /2.0+R2 -r){

neighnum2[i]++;

new_neigh2 =(int*) realloc(temp2 ,neighnum2[i]* sizeof(int));

if (new_neigh2 ==NULL){

free(temp2);

break;

}

else{
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temp2=new_neigh2;

temp2[neighnum2[i]-1]=j;

}

}

}

neigh1[i]=temp1;

neigh2[i]=temp2;

return;

}

A.2.19 opramt.cpp

This program finds the order parameter.

#include <iostream >

#include <math.h>

float opram(int N, float vx[], float vy[], float xold[], float

yold[], float x[], float y[]){

float txvel=0, tyvel=0, v;

int i;

for (i=0; i<N; i++){

v=sqrtf ((x[i]-xold[i])*(x[i]-xold[i])+(y[i]-yold[i])*(y[i]-

yold[i]));

if (v>0){

txvel +=(x[i]-xold[i])/v;

tyvel +=(y[i]-yold[i])/v;

}

}

float order=sqrtf(txvel*txvel+tyvel*tyvel)/(( float)N);

return (order);

}

A.2.20 rimcoreexchange.cpp

This program finds the exchanges. if it went from rim to core or core to rim.

#include <iostream >
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#include <stdlib.h>

#include <math.h>

float rimcoreexchange(int N, int rimorcore [], int rimorcoreOld

[], int **neigh1 , int **neigh2 , int *neighnum1 , int *

neighnum2 , float x[], float y[]){

float gradx=0,grady =0;

int exchanges =0;

for (int i=0; i<N; i++){

gradx =0;

grady =0;

gradient(i, neigh1[i], neigh2[i], neighnum1[i], neighnum2[i

], x, y, &gradx , &grady);

if (sqrtf(gradx*gradx+grady*grady)<M_PI /18.0 && rimorcore[i

]==1){

rimorcore[i]=0;

exchanges ++;

}

if (sqrtf(gradx*gradx+grady*grady)>M_PI /18.0 && rimorcore[i

]==0){

rimorcore[i]=1;

exchanges ++;

}

}

return (float)exchanges;

}

A.2.21 ringnum.cpp

This program finds normalized distance of cells from center of mass.

#include <iostream >

#include <math.h>
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int ringn(int i, float x[], float y[], float COMx , float COMy)

{

float COMxtemp=COMx , COMytemp=COMy;

if ((x[i]-COMx)>L/2)

COMxtemp +=L;

if ((x[i]-COMx)<-L/2)

COMxtemp -=L;

if ((y[i]-COMy)>L/2)

COMytemp +=L;

if ((y[i]-COMy)<-L/2)

COMytemp -=L;

float rad=sqrtf ((x[i]-COMxtemp)*(x[i]-COMxtemp)+(y[i]-

COMytemp)*(y[i]-COMytemp));

// if (rad ==0)

// rad =0.00001;

// int ring=1, checking=i;

// if (i==0)

// ring =0;

// for (int rin =0;rin <ring;rin ++){

// if (checking -(rin +1)*6>0){

// ring ++;

// checking -=( rin +1) *6;

// }

// }

return round(rad/r);

}

A.2.22 ringorder.cpp

This program calculates desired order for desired rings.

#include <iostream >
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// Inputs for this function to calculate desired order for

desired rings: Total number of particles , lowest desired

ring number , total number or rings desired , 0 for

polarization or 1 for angular momentum ,

void ringorder(int firstring , int ringnum , int rvsopram , float

x[], float y[], float vx[], float vy[], float xold[],

float yold[], float *order , float *rorder , float *COMv ,

float *vavg) {

float *newx , *newy , *newvx , *newvy , *newxold , *newyold;

int size=0, firsti =0;

for (int i=firstring; i<firstring+ringnum; i++){

if (i==0)

size ++;

size+=i*6;

}

for (int i=0; i<firstring;i++){

if (i==0)

firsti ++;

firsti +=i*6;

}

newx=( float*) malloc(size*sizeof(float));

newy=( float*) malloc(size*sizeof(float));

newvx =(float *) malloc(size*sizeof(float));

newvy =(float *) malloc(size*sizeof(float));

newxold =( float*) malloc(size*sizeof(float));

newyold =( float*) malloc(size*sizeof(float));

for (int i=0; i<size; i++){

newx[i]=x[i+firsti ];

newy[i]=y[i+firsti ];

newvx[i]=vx[i+firsti ];

newvy[i]=vy[i+firsti ];

newxold[i]=xold[i+firsti ];

newyold[i]=yold[i+firsti ];

}
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avgvs(size ,newx ,newy ,newxold ,newyold ,COMv ,vavg);

*order=opram(newvx ,newvy ,size ,newxold ,newyold ,newx ,newy);

*rorder=ropram(newx ,newy ,newvx ,newvy ,size ,L,newxold ,newyold);

return;

}

A.2.23 ringrot.cpp

This program finds angular momentum for the ring/

#include <iostream >

void ringrot(int N, float x[], float y[], float xold[], float

yold[], float COMx , float COMy , float rot []){

float COMxold , COMyold , rxold , ryold , rxnew , rynew;

int size [100];

com(0,N-1,xold ,yold ,&COMxold ,& COMyold);

for (int i=0;i<confring +1;i++){

rot[i]=0;

size[i]=0;

}

for (int i=0;i<N;i++){

rxold=distx(xold[i],COMxold);

ryold=distx(yold[i],COMyold);

rxnew=distx(x[i],COMx);

rynew=distx(y[i],COMy);

rot[ringn(i,x,y,COMx ,COMy)]+= 2.* M_PI/( float)L * distx( (

float)L/(2.* M_PI) * atan2f(ryold ,rxold) , (float)L/(2.*

M_PI)*atan2f(rynew ,rxnew) );

size[ringn(i,x,y,COMx ,COMy)]++;

}
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for (int i=0;i<confring +1;i++){

rot[i]=rot[i]/( float)size[i];

}

return;

}

A.2.24 ropramt.cpp

This program finds angular momentum for entire cluster.

#include <iostream >

#include <math.h>

float ropram(int N, float x[], float y[], float vx[], float vy

[], float xold[], float yold[], int rimorcore[], int

rimorcoreOld []){

float COMx=0, COMy=0, rorder=0, k=0, xx, yy;

int i;

//Find Center of mass.

for (i=0; i<N; i++){

k++;

xx=x[i];

yy=y[i];

if (COMx -xx >L/2)

xx+=L;

if (COMx -xx <-L/2)

xx -=L;

if (COMy -yy >L/2)

yy+=L;

if (COMy -yy <-L/2)

yy -=L;

// if (sqrtf ((xx-COMx)*(xx -COMx)+(yy -COMy)*(yy -COMy))<sqrtf((

float)N)){

COMx = COMx + (xx - COMx)/( float)k;
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COMy = COMy + (yy - COMy)/( float)k;

// }

// else

// k=k-1;

}

if (COMx <0)

COMx+=L;

if (COMy <0)

COMy+=L;

// Calculate rotational order parameter.

for (i=0; i<N; i++){

float rx=x[i]-COMx;

if (rx >L/2)

rx -=L;

else if (rx <-L/2)

rx+=L;

float ry=y[i]-COMy;

if (ry >L/2)

ry -=L;

else if (ry <-L/2)

ry+=L;

float rt=sqrtf(rx*rx+ry*ry);

float v=sqrtf ((x[i]-xold[i])*(x[i]-xold[i])+(y[i]-yold[i])*(

y[i]-yold[i]));

rorder +=((x[i]-xold[i])*ry -(y[i]-yold[i])*rx)/(rt*v);

}

for (i=0;i<N;i++){

xold[i]=x[i];

yold[i]=y[i];
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rimorcoreOld[i] = rimorcore[i];

}

rorder=rorder /(float)N;

if (rorder <0)

rorder=-rorder;

return (rorder);

}

A.2.25 spring.cpp

This program calculates spring interaction strength between next nearest neighbors.

#include <iostream >

#include <math.h>

void spr(int i, int j, float x[], float y[], int neighnum , int

neigh[], float *Springx , float *Springy){

int kspringtemp =1;

float dx2 ,dy2 ,dx,dy;

float d2=dist(i,j,x,y,&dx2 ,&dy2);

for (int ij=0;ij <neighnum;ij++){

float d=dist(i,neigh[ij],x,y,&dx ,&dy);

float sdotd =(dx2)*(dx)+(dy2)*(dy);

if (sqrtf((d*d2)*(d*d2)-powf((dx*dx2+dy*dy2) ,2))/d2 <r&&sdotd

>0)

kspringtemp =0;

}

*Springx -= kspringtemp *(dx2);

*Springy -= kspringtemp *(dy2);

return;

}

A.2.26 velcor.cpp

This program finds velocity velocity correlation.

#include <iostream >
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#include <stdlib.h>

#include <math.h>

#include <fstream >

// FARNAZ NOTE: THIS FINDS CORRELATION FUNCTION

using namespace std;

void velcor(int N, float x[], float y[], float xold[], float

yold[], float vx[], float vy[]){

ofstream f00;

f00.open("data/velcor.dat");

int i, j;

float d, dx, dy;

for (i=0; i<N-1; i++){

float vi=sqrtf ((x[i]-xold[i])*(x[i]-xold[i])+(y[i]-yold[i])

*(y[i]-yold[i]));

for (j=i+1; j<N; j++){

float vj=sqrtf((x[j]-xold[j])*(x[j]-xold[j])+(y[j]-yold[j])

*(y[j]-yold[j]));

dx=x[j]-x[i];

if (dx >L/2)

dx -=L;

if (dx <-L/2)

dx+=L;

dy=y[j]-y[i];

if (dy >L/2)

dy -=L;

if (dy <-L/2)

dy+=L;

d=sqrtf(dx*dx+dy*dy);

f00 << d << " " << ((x[i]-xold[i])*(x[j]-xold[j])+(y[i]-

yold[i])*(y[j]-yold[j]))/(vi*vj) << endl;
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}

}

return;

}

A.2.27 velocity.cpp

This program calculates velocity based on number of nearest neighbors.

#include <iostream >

void velocity(int N, float L, float v_max , float v_min , float

v_noise , float COMnoise , float x[], float y[], float v[],

int label[], int cls , int* neigh[], float* COMx , float*

COMy , int neighnum){

/***********************************************************

CALCULATE V BASED ON DISTANCE FROM CLUSTER COM

***********************************************************/

/*

int i, c, *k;

float *r, *rmax , xi, yi;

r=(float *) malloc(N*sizeof(float));

rmax=( float *) malloc(cls*sizeof(float));

k=(int *) malloc(cls*sizeof(int));

for (c=0; c<cls; c++){

COMx[c]=0;

COMy[c]=0;

rmax[c]=0;

k[c]=0;

}

for (i=0; i<N; i++){

k[label[i]]++;

r[i]=0;

xi=x[i];
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yi=y[i];

if (COMx[label[i]]-xi >L/2)

xi+=L;

else if (COMx[label[i]]-xi <-L/2)

xi -=L;

if (COMy[label[i]]-yi >L/2)

yi+=L;

else if (COMy[label[i]]-yi <-L/2)

yi -=L;

COMx[label[i]] = COMx[label[i]]+(xi -COMx[label[i]])/( float)k

[label[i]];

COMy[label[i]] = COMy[label[i]]+(yi -COMy[label[i]])/( float)k

[label[i]];

}

for (c=0; c<cls; c++){

if (COMx[c]<0)

COMx[c]+=L;

if (COMy[c]<0)

COMy[c]+=L;

}

for (i=0; i<N; i++){

float dx=x[i]-COMx[label[i]];

if (dx >L/2)

dx -=L;

if (dx <-L/2)

dx+=L;

float dy=y[i]-COMy[label[i]];

if (dy >L/2)

dy -=L;

if (dy <-L/2)

dy+=L;
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r[i]=sqrt(dx*dx+dy*dy);

if (r[i]>rmax[label[i]])

rmax[label[i]]=r[i];

}

for (i=0; i<N; i++){

if (rmax[label[i]]!=0){

v[i]=1*(( v_max -v_min)*r[i]/rmax[label[i]]+ v_min+v_noise *(

float)rand()/(float)RAND_MAX -v[i])+v[i];

}

else {

v[i]=1*( v_max -v[i]) + v[i];

}

}

free(r);

free(rmax);

free(k);

*/

/*****************************************************

CALCULATE V FROM # OF NEAREST NEIGHBORS

*****************************************************/

int i, j;

for (i=0; i<N; i++){

j=0;

do {

j++;

} while (neigh[i][j]!=-1);

v[i]=/*0.005*( float)rand()/(float)RAND_MAX **/( neighnum+1-j)*

v_max/neighnum;

}

return;

}
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Physica A: Statistical Mechanics and its Applications, 282(1-2):1–12, 2000.

[19] GM Viswanathan, Frederic Bartumeus, Sergey V Buldyrev, Jordi Catalan,

UL Fulco, Shlomo Havlin, MGE Da Luz, Marcelo Leite Lyra, EP Raposo, and



BIBLIOGRAPHY 102
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absorbing boundaries. Physica A: Statistical Mechanics and its Applications,

302(1-4):148–161, 2001.

[37] Kolbjørn Tunstrøm, Yael Katz, Christos C Ioannou, Cristián Huepe, Matthew J

Lutz, and Iain D Couzin. Collective states, multistability and transitional be-

haviour in schooling fish. PLoS Computational Biology, 9(2):e1002915, 2013.

[38] William Bialek, Andrea Cavagna, Irene Giardina, Thierry Mora, Oliver Pohl,

Edmondo Silvestri, Massimiliano Viale, and Aleksandra M Walczak. Social in-

teractions dominate speed control in poising natural flocks near criticality. Pro-

ceedings of the National Academy of Sciences, 111(20):7212–7217, 2014.



BIBLIOGRAPHY 104

[39] James A Shapiro. Thinking about bacterial populations as multicellular organ-

isms. Annual Review of Microbiology, 52(1):81–104, 1998.

[40] Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, and An-

dreas R Bausch. Polar patterns of driven filaments. Nature, 467(7311):73–77,

2010.

[41] Douglas H Kelley and Nicholas T Ouellette. Emergent dynamics of laboratory

insect swarms. Scientific Reports, 3(1):1–7, 2013.

[42] Tamas Vicsek. A question of scale. Nature, 411(6836):421–421, 2001.
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foraging. PLoS Computational Biology, 13(10):e1005774, 2017.

[67] Giorgio Volpe and Giovanni Volpe. The topography of the environment alters the

optimal search strategy for active particles. Proceedings of the National Academy

of Sciences, page 201711371, 2017.

[68] Noriyuki P Tani, Alan Blatt, David A Quint, and Ajay Gopinathan. Optimal

cooperative searching using purely repulsive interactions. Journal of Theoretical

Biology, 361:159–164, 2014.
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