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Abstract

This post hoc analysis of the randomized, placebo-controlled N-MOmentum

study (NCT02200770) of inebilizumab in neuromyelitis optica spectrum disor-

der (NMOSD) evaluated relationships between circulating B-cell subsets and

aquaporin-4 immunoglobulin G (AQP4-lgG) titers and attacks. Among partici-

pants receiving placebo, CD20+ and CD27+ B-cell counts were modestly

increased from the pre-attack visit to attack; plasmablast/plasma cell gene signa-

ture was increased from baseline to the pre-attack visit (p = 0.016) and from

baseline to attack (p = 0.009). With inebilizumab treatment, B-cell subset

counts decreased and did not increase with attacks. No difference in change of

AQP4-IgG titers from baseline to time of attack was observed.

Introduction

B cells figure prominently in the pathophysiology of

neuromyelitis optica spectrum disorder (NMOSD).1 All

circulating B cells, plasmablasts (PBs), and some plasma

cells (PCs) express surface CD19.1 CD19+ B cells pro-

duce pathogenic aquaporin-4 immunoglobulin G

(AQP4-IgG) that can induce complement-dependent

cytotoxicity2,3; however, prior studies found no correla-

tion between either AQP4-IgG titers or complement

activity and NMOSD attacks/severity with the exception

of one retrospective study that showed a possible corre-

lation of clinical disease activity and AQP4 antibody

serum levels.4–6 In vitro, circulating CD19+ B cells pro-

duced by germinal center activity secrete AQP4-IgG7,8

which is linked to NMOSD disease activity. Hence, ine-

bilizumab, a humanized, affinity-optimized, anti-CD19

monoclonal antibody approved to treat NMOSD in

AQP4-IgG–seropositive adults, is well-placed to mediate

paralleled serological benefits.1,9 The randomized,

placebo-controlled, phase 2/3 N-MOmentum study

showed risk of NMOSD attack was significantly lower

with inebilizumab versus placebo (hazard ratio, 0.272;

p < 0.0001),10 with efficacy maintained for over 4 years

(annualized attack rate, 0.052 attacks/person-years).11

The current study correlates B-cell subsets (including

PBs/PCs and CD27+ memory B cells) and AQP4-IgG

titers with disease activity in the N-MOmentum trial

including an evaluation of therapeutic impact on bio-

markers of disease activity.
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Methods

Study details are included in Supplementary Methods or

were previously reported.10,12 Briefly, in the

N-MOmentum study (NCT02200770), patients with

NMOSD were randomized 3:1 to inebilizumab or

placebo.10,12 The study protocol was reviewed by an insti-

tutional review board, and all participants provided

informed consent.10 B-cell subsets were analyzed at base-

line, at time of attack, and the study visit preceding attack

by flow cytometry using fresh whole blood. PB/PC gene

signature was assessed by qRT-PCR analysis of blood

RNA samples.13,14 AQP4-IgG titers were measured in

serum using a live cell-based flow cytometry assay as pre-

viously described4 and KRONUS immunoassay.

Results

Participants

Among the 231 participants enrolled in N-MOmentum,

21/174 (12%) who received inebilizumab and 22/56 (39%)

who received placebo experienced NMOSD attacks during

the randomized controlled period (RCP).10 During the

open-label period, 31/216 participants (14.4%) experi-

enced attacks. The median (IQR) time between attack and

the preceding visit was 22 (13–29) days in the placebo

cohort and 28 (18–50) days in the inebilizumab cohort.

CD20+ B cells, CD27+ memory B cells, and PB/
PC signature

In participants who experienced an attack while receiving

placebo, overall CD20+ B-cell counts modestly increased

from the visit preceding attack (median [IQR] fold

change from baseline, 0.9 [0.6–1.1]) to the time of attack

(1.4 [0.9–1.8]; p = 0.002 based on pairwise comparisons

of absolute counts; Fig. 1A; Table S1), whereas CD27+

memory B-cell counts were not significantly increased

from the visit preceding attack (median [IQR] fold

change from baseline, 0.9 [0.6–1.0]) to the time of attack

(1.0 [0.8–1.8]; p = 0.13 based on pairwise comparisons of

absolute counts; Fig. 1B; Table S1). CD20+ B cells

increased ≥2-fold from baseline in 20% (4/20) of attack

samples and 16% (37/234) of non-attack samples, and

CD27+ memory B cells increased >2-fold from baseline in

16% (3/19) of attack samples and 19% (36/191) of

non-attack samples. In contrast, na€ıve B cells

(CD20+CD27-IgD+) in placebo participants increased sig-

nificantly from baseline to the time of attack (P = 0.01)

and from the visit preceding attack to the time of attack

(p = 0.001; Fig. S1). PB/PC signature was already

increased from baseline at the visit preceding attack

(p = 0.016), and a significant increase in PB/PC signature

was seen at the time of attack compared with baseline

(p = 0.009). However, PB/PC signature during an attack

was not significantly different from the preceding visit
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Figure 1. CD20+ B-cell counts, CD27+ memory B-cell counts, and PB/PC signature among participants receiving placebo during the

N-MOmentum study. BL, baseline; PB, plasmablast; PC, plasma cell. Results expressed as fold change from BL for (A) CD20+ B cells, (B) CD27+

memory B cells, and (C) PB/PC signature. Data presented at BL, before attack (pre), and during attack, or for participants not experiencing an

attack (no). Lines between points indicate individual patient profiles. Dashed red line indicates a 2-fold change from baseline. The n values

correspond to individual samples; each patient may have >1 sample and/or may be included in multiple groups. aSamples from participants with

no attacks are included for reference. bPaired fold change from baseline cell counts or PB/PC signature measurements at each timepoint (BL, pre,

attack) were analyzed using a Wilcoxon signed rank test. *p < 0.05. **p < 0.01.
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(Fig. 1C; Table S1). PB/PC signature increased >2-fold
from baseline in 57% (12/21) of attack samples vs 16%

(35/215) of non-attack samples (p = 0.02).

Compared with placebo, inebilizumab provided rapid

PB/PC depletion that was sustained through the RCP

based on both flow cytometry and gene expression signa-

ture (Fig. S2) as previously reported.13 Among partici-

pants treated with inebilizumab, CD20+ B-cell counts,

CD27+ memory B-cell counts, na€ıve B cells, and PB/PC

signature decreased significantly from baseline at the time

of attack and pre-attack visits, with no significant differ-

ences between the two visits; no samples from partici-

pants who experienced attacks showed increases from

baseline or pre-attack samples (Fig. S3; Table S1).

AQP4-IgG titers

Among AQP4-IgG–seropositive participants, baseline

AQP4-IgG titer tertiles were 1:20–1:640 (T1), 1:1280–
1:10,240 (T2), and 1:20,480–1:327,680 (T3; Fig. 2A). At the

end of the RCP, 59/159 (37%) of inebilizumab-treated par-

ticipants vs 9/50 (18%) of placebo-treated participants had

a ≥2-fold decrease in AQP4-IgG titers (p = 0.014, Fisher’s

exact test), and 11% vs 0% had a ≥8-fold decrease

(p = 0.008, Fisher’s exact test; Fig. 2B). Among participants

with baseline AQP4-IgG titers >1:20,480, AQP4-IgG titers

decreased ≥2-fold from baseline in 51% (18/35) of those

treated with inebilizumab vs 8% (1/12) of those who

received placebo (p < 0.05; Fig. 2C). The ELISA-based

KRONUS assay correlated well with the flow cytometry

assay (Pearson r = 0.78, Fig. S4); no significant decreases

in the KRONUS AQP4 measurements were observed with

continued rounds of inebilizumab treatment in the

open-label period.

AQP4-IgG titers increased from baseline during attack

in 11/21 (52%) participants receiving placebo (p = 0.024;

Fig. 2D); however, AQP4-IgG titers increased during

attack in 6/17 (35%) participants receiving inebilizumab

and this difference was not significantly different from

baseline (p = 0.76). Even though an increase in
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Figure 2. AQP4-IgG titers during the N-MOmentum study. AQP4-IgG, aquaporin-4 immunoglobulin G; IQR, interquartile range; RCP, randomized

controlled period; SEM, standard error of the mean; T, tertile. (A) Histogram of baseline AQP4-IgG titers by tertile among participants with

baseline titers >1:20. (B) The percentage of participants experiencing a ≥2-fold, ≥4-fold, and ≥8-fold decrease in AQP4-IgG titers at the end of the
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inebilizumab at baseline and time of attack. p values for within-group differences vs baseline were calculated using Wilcoxon signed rank test,

while p values for differences between the placebo vs inebilizumab groups were calculated using Mann–Whitney U test. (E) Annualized attack

rate over time by AQP4-IgG tertiles at Day 1 of the RCP. Data presented as mean (SEM) estimated by Poisson regression. *p < 0.05. **p < 0.01.
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AQP4-IgG titers was observed in the placebo but not the

inebilizumab group at time of attack, changes in

AQP4-IgG titers from baseline to the time of attack were

not significantly different between the placebo and inebili-

zumab treatment groups (p = 0.15).

Within the placebo group, 85% of participants had

a ≥2-fold increase from baseline to the time of attack in

PB/PC gene signature and/or AQP4-IgG titers; 25% of

participants had a ≥2-fold increase from baseline in both

(Fig. S5). Among samples (n = 215) drawn from partici-

pants who received placebo and did not experience an

attack during the RCP, 32% of samples had a 2-fold

increase from baseline in PB/PC signature and/or

AQP4-IgG titers, and 67.9% had neither.

Increased annualized attack rate was observed in

placebo- and inebilizumab-treated participants within the

highest tertile of AQP4-IgG titers at Day 1 of the RCP

(≥1:20,480; p = 0.0004), and progressive decreases in

annualized attack rate were observed with continued

rounds of inebilizumab treatment across all subgroups

during the open-label period (Fig. 2E).

All participants who were AQP4-IgG seronegative at

baseline received inebilizumab and none developed

AQP4-IgG titers during the study. Eight participants

(3.8%; 2 placebo/inebilizumab and 6 inebilizumab/inebili-

zumab) who were AQP4-IgG seropositive at baseline

(n = 213) had undetectable levels of AQP4-IgG during the

study (Fig. 3).

Discussion

To our knowledge, the flow cytometric data presented

herein is the largest analysis of B-cell subsets in NMOSD

to date. Surprisingly, a correlation between memory B

cells and disease activity was not found. Rather, PBs and

PCs appear to correlate with NMOSD disease activity.

Furthermore, no difference in change of AQP4-IgG titers

from baseline to time of attack was observed in patients

receiving either placebo or inebilizumab which supports

evidence regarding limited utility of AQP4-IgG titers for

monitoring NMOSD disease activity.4,15

Inebilizumab treatment substantially reduced CD20+ B

cells, CD27+ memory B cells, na€ıve B cells, and PBs/

PCs.10,13 Among placebo-treated participants, CD20+ B

cells, PB/PC signature, and AQP4-IgG titers increased

from baseline during attacks. The PB/PC signature was

also increased at the pre-attack visit. While there was a

trend toward increased CD27+ memory B-cell counts

from the visit preceding attack to the time of attack, there

was no meaningful association between total CD20+ B

cells or CD27+ memory B-cell counts and attacks. While

a previous study reported an association between elevated

memory B cells and NMOSD relapse,16 in this study

memory B cells were defined as CD19+CD27+, which

could include PBs/PCs. In our study, memory B cells

were defined as CD45+ (CD3�, CD14�, CD56�),
CD20bright, CD19+/�, and CD27+ possibly accounting for

the divergent findings between these studies.

Among participants who received placebo, the PB/PC sig-

nature was elevated at the time of attack relative to baseline.

These results support previous findings suggesting that

CD19+ PBs/PCs may contribute to NMOSD relapse.2,16 Cir-

culating B cells are likely generated by germinal center activ-

ity, supporting a link between B-cell activation and clinical

disease activity.7 Indeed, direct lymph node aspiration identi-

fied AQP4-IgG and AQP4-targeted B cells sensitive to B-cell

depletion therapy.8 CD19 is expressed on PBs and some PCs

that do not express CD20.1,13 Anti-CD20 treatments (e.g.,

rituximab) do not deplete all CD19+ PBs17 or consistently

affect serum AQP4-IgG levels in patients with NMOSD,8

whereas, in this study, inebilizumab decreased AQP4-IgG

levels in a subset of participants, particularly those with high

Figure 3. Longitudinal analysis of AQP4-IgG titers. AQP4-IgG, aquaporin 4 immunoglobin G; LOD, level of detection. Titers were measured over

time among participants who were AQP4-IgG seropositive at baseline and had undetectable levels of AQP4-IgG while receiving inebilizumab

during the N-MOmentum study. One participant (in orange) experienced an attack at D85 post treatment. This participant converted to

seronegative via the titer assay by Day 57.
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AQP4-IgG titers at baseline. A clear correlation between

higher AQP4 IgG titers and increased attack rates was

observed in this study. Nonetheless, attack rate decreased

over time regardless of AQP4 titer (Fig. 2E). Studies in

muscle-specific tyrosine kinase myasthenia gravis and

IgG4-related disease demonstrated some pathogenic PBs sur-

vive rituximab therapy and may be associated with

relapse.18–20 In addition to targeting CD19+ PBs in the

periphery, inebilizumab may be more effective in targeting

PBs in bone marrow. Moreover, inebilizumab effectively

depletes CD20+ B cells and PB/PC signature independent of

FCGR3A genotype.21 Our findings further support targeting

CD19+ B cells as a mechanism for potentially reducing the

likelihood of attack or attack severity.

While the cause of NMOSD attacks is unknown, a corre-

lation between PBs/PCs as well as AQP4-IgG titers was

observed with placebo but not with active treatment. This

mirrors findings for other biomarkers in the

N-MOmentum trial (GFAP, neurofilament, etc.).22,23 These

results suggest that treatment status may impact the sensi-

tivity of potential biomarkers of disease activity. Indeed, the

blood compartment is only a surrogate for lymphoid tissue.

Current evidence supports a multifactorial etiology of

NMOSD attacks, requiring blood–brain barrier perme-

ability, AQP4-IgG, both complement-dependent and

complement-independent means of antibody-mediated

toxicity, pro-inflammatory cytokines, etc. Moreover, we

do not have insight into the B-cell levels or AQP4-IgG

titers in the tissue, and recent evidence suggests that not

all AQP4-IgG are equally pathogenic.7,24 In this study, B

cell/B-cell subset and PC gene signature were weakly cor-

related with AQP4 titers. Presumably, if large increases in

PC signature were observed, increases in AQP4-IgG

would occur simultaneously or proceeding the increase in

the PC signature. However, an evaluation of the eight

participants who displayed the largest increases in the PC

signature during the study showed that the increases in

PC signature were largely not followed by increases in

AQP4 IgG, (Fig. S7). While inebilizumab targets CD19+

PBs and some PCs, there are long-lived CD19� PCs that

reside in tissue (e.g., bone marrow). It is possible that a

significant proportion of AQP4-IgG is produced by these

CD19� PCs. Interestingly, a small number of placebo

patients (n = 9) showed a decrease in AQP4-IgG titers

(several with a low baseline AQP4-IgG) which may be

attributed to natural fluctuation within tissue resident PC

niches. Further studies will be needed to better under-

stand associations between B-cell subsets and AQP4-IgG

titers within lymphoid tissues. Other important limita-

tions include the post hoc approach that is hypothesis

generating, the low total number of attacks, the short

duration of placebo exposure, and the absence of an inde-

pendent confirmatory dataset.

In conclusion, B-cell subsets (particularly those with a

PB/PC gene signature) and AQP4-IgG levels were

increased in a significant proportion of untreated partici-

pants at the time of attack. Inebilizumab treatment

reduced B-cell subset numbers, including PB/PC and

AQP4-IgG titers, impacting relapse risk, which supports

targeting CD19+ B cells as a mechanism for reducing the

likelihood of attacks.
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