
UC Riverside
UC Riverside Previously Published Works

Title
On Mathematical Equalities and Inequalities in the Life Table: 
Something Old and Something New

Permalink
https://escholarship.org/uc/item/81r284j0

Author
Swanson, David A

Publication Date
2021-06-26
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/81r284j0
https://escholarship.org
http://www.cdlib.org/


ORIGINAL ARTICLE Open Access

On Mathematical Equalities and Inequalities
in the Life Table: Something Old and Something New

David A. Swanson1
& Lucky M. Tedrow2

Received: 15 December 2017 /Accepted: 30 May 2018/
# The Author(s) 2021

Abstract
This paper discusses known mathematical equalities and inequalities found within life
tables and proceeds to identify two new inequalities. The first (theorem 1) is that at any
given age x, the sum of mean years lived and mean years remaining exceeds life
expectancy at birth when age is greater than zero and less than the maximum lifespan.
The second inequality (theorem 2) applies to the entire population and shows that the
sum of mean years lived and mean years remaining exceeds life expectancy at birth.
Illustrations of the two inequalities are provided as well as a discussion.

Résumé
Cet article examine les égalités et les inégalités mathématiques connues dans les tables
de mortalité et procède à l’identification de deux nouvelles inégalités. La premiére
(théorème 1) est que,à tout âge x donné, la somme d’années moyennes vécues et
d’années moyennes restantes dépasse l’espérance de vie à la naissance lorsque l’âge est
supérieur à zéro et inférieur à la durée de vie maximale. La deuxième inégalité
(théorème 2) s’applique à l’ensemble de la population et montre que la somme d’années
moyennes vécues et d’années moyennes restantes dépasse l’espérance de vie à la
naissance. Des illustrations des deux inégalités sont fournies ainsi qu’une discussion.

Keywords Carey’s Equality Theorem . Life years lost . Life expectancy at birth . Mean
years lived . mean years remaining . variance in age at death

Mots-clé théoréme d’égalité de Carey . années de vie perdues . espérance de vie à la
naissance . nombre d’années vécues . nombre d’années restantes . variance de l’âge au
décès
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1 Introduction

Life tables represent an important component of demography. Not only do they serve
as methodological and conceptual tools (Burch, 2018; Swanson & Tedrow, 2012 and
Yusuf et al., 2014), but they support a wide range of both applied work (Kintner &
Swanson, 1994; Richards & Donaldson, 2010; Siegel, 2002; Smith et al., 2013;
Thomas & Bao, 2016) and academic work (Shkolnikov et al., 2003; Swanson &
Sanford, 2012; Trovato & Lalu, 2001; Yashin et al., 2016). As such, it should not be
surprising that life tables have been widely studied and that many of their defining
characteristics, such as their internal mathematical equalities, have been described
(Kintner, 2004). In addition to the obvious equalities such as the crude birth rate being
equal to the crude death rate, research has revealed that (1) mean years lived is equal to
mean years remaining, which is known as Carey’s Equality Theorem (Vaupel, 2009)
and (2) the distribution of age composition is equal to the distribution of remaining
lifetimes (Carey et al., 2008; Rao & Carey, 2014; Vaupel, 2009). To these equalities,
the following can be added: (1) mean age is equal to mean years lived (Rao & Carey,
2014) and (2) mean age is equal to mean years remaining (Kim & Aron, 1989).

Inequalities among life table functions have not attracted as much interest as
equalities, but they have been examined. Pearson (1924), for example, showed that
the life expectancy at any given age x was greater than the mean age of all persons
living who had lived at least to age x. Canudas-Romo (2010) explored differences
found among the mean age at death (life expectancy at birth), median age at death,
and modal age at death as a means of characterizing longevity in a population.
These same measures also are found in a study of longevity in England and Wales
by the Office of National Statistics (2017) that finds in life tables where deaths
become concentrated in older ages, the modal age at death is higher than the
median, and the median age at death is higher than that of the mean age at death
(life expectancy at birth).

To these observations on life table inequalities, we add two more by demonstrating:
(1) that at any given age x, the sum of mean years lived and mean years remaining
exceeds life expectancy at birth in a given stationary population, where 0 < x <ω
(maximum lifespan); and (2) that for a stationary population as a whole, the sum of
mean years lived and mean years remaining exceeds life expectancy at birth. We
discuss this set of inequalities and provide an empirical illustration of them. Before
we turn to the examination of these inequalities, however, it is useful to briefly cover
relevant life table equalities examined by other researchers.

2 Something Old: Known Relevant Equalities

Kim and Aron (1989) provide a proof that mean age in a stationary population, μa, is
equal to mean expected years remaining, μr:

μa ¼ μr ð1Þ

Vaupel (2009) demonstrated that that the mean number of years lived in a stationary
population, μl, is equal to the mean expected years remaining, μr:
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μr ¼ μl ð2Þ

Another equality of interest was identified by Pressat (1972: 479–480), who examined
the relationship between mean age of a stationary population and life expectancy at
birth and found (in the notation we use):

μa ¼ 0:5 e0 þ σ2=e0
� �� � ð3Þ

where:
μa, is defined as before (mean age of the stationary population);
e0 (life expectancy at birth) = μ (mean lifetime) = ud (mean age at death);
σ 2 = variance in age at death.
Pressat’s identification of Eq. (3) was independently re-discovered by Morales

(1989) and identified as a re-discovery by Preston (1991). Ryder (1975: 8–11) also
used Eq. (3) and noted that σ 2/e0 can be interpreted as the coefficient of variation in
regard to age at death in a stationary population.1

3 Something Not Quite New: Two Known Relevant Equalities
Combined

Because of the proof provided byKim andAron (1989) stated as an Eq. (1),μa =μr, and the
proof provided byVaupel (2009) stated as Eq. (2),μa =μl, we can easily see an equality not
hitherto explicitly stated, namely, that the mean age of a stationary population is equal to its
mean years remaining and, therefore, equal to its mean years lived:

μa ¼ μl ¼ μr ð4Þ

We use the equalities found in Eqs. (3) and (4) in proving the second of the two
inequality theorems presented in this paper, namely, that the sum of mean years lived
and mean years remaining exceeds mean lifetime.2 Before turning to it, however, we
first prove theorem 1: The sum of mean years lived to age x and mean years remaining
at age x is greater than mean lifetime.

4 Something New: Two Inequalities

Each of the two new inequality theorems we identify can be examined from either the
traditional life table perspective, where age is treated as discrete or from the perspective
where age is treated as continuous. Noting that the proofs of these two theorems from a
discrete perspective are in the appendix, we take the continuous perspective here.3

Theorem 1
When 0 < x <ω, then μlx + μrx > μ.

Where: x = age
ω =maximum age
μlx =mean years lived to age x
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μrx =mean years remaining at age x
μ =mean lifetime

Proof:
Following the general argument laid out by Kim and Aron (1989), we assume that

lifetime is characterized by a non-negative random variable X, with S(x) as the
corresponding survival function, and where S(0) = 1 (which is equivalent to setting
the radix, k = l0, = 1, see, e.g., Swanson & Tedrow, 2012), so that:

μlx ¼ ∫x0S yð Þdy
μrx ¼ ∫ωx S yð Þdy=S xð Þ:
μ ¼ ∫ω0 S xð Þdx

The sum, μlx + μrx, can be written as μlx + μrx = ∫x0 S yð Þdy + ∫ωx S yð Þdy/S(x).When x =

0, then ∫x0 S yð Þdy + ∫ωx S yð Þdy/S(x) reduces to ∫ω0 S yð Þdy and is equivalent to ∫ω0 S xð Þdx,
which is equal to μ. And because S(x) < 1, when 0 < X <ω, then μlx + μrx > μ, which
completes the proof of theorem 1.

Theorem 2
The second of the two new inequalities we identify is related to the first inequality, but

distinct in that it refers to the stationary population in general rather than to specific ages:

μl þ μr > μ

Where μl, μr,, and μ are defined as before.

Proof
Recall from Eq. (3) that μa = 0.5(μ + (σ 2/μ)). With S(x) as the survival function and

S(0) = 1, then the age density function of a stationary population, c(x), is given by S(x)/μ
(see, e.g., Frauenthal, 1986) with a mean age, μa. Recalling from Eq. (4) that μa =μl =μr,
then 2μa = 2 μl = 2μr.Because 2μa = μl + μr = μ + (σ 2/μ), then it follows that μl + μr > μ,
where σ 2 > 0; and where σ 2 = 0, then μl +μrr = μ. This completes the proof.

4.1 Illustration of Theorem 1

Using a 1990 complete US life table (both sexes combined, by single years of age to age
110) from the Human Mortality Database (2009) as an illustration of a stationary
population, we examine μlx +μrx. Because the terminal age is 110 in this life table, we
set maximum life slightly above it, atω = 111, for purposes of illustration. Our examina-
tion is summarized by Fig. 1, which provides a plot of the relationship between age (x
axis) and μlx + μrx. (y axis). Life expectancy at birth for this population is 75.4 years.
When age (x) = 0, μlx +μrx. = e0.; and when age (x) = 111, μlx +μrx. = e0. Fig. 1 shows
that μlx + μrx rises from 75.40 years when age = zero reach a maximum of approximately
79.8 years at age 77 and remains approximately at this maximum until age 82. It then
declines back to 75.40 at the maximum possible age, which we set at 111 years. The
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plateau area between ages 77 and 82 is centered on 79.5 years, which is the sum of mean
years lived, μl, and mean years remaining μr, for this life table (see Table 1 in the
following section). As μlx + μrx increases, the curve is steepest from age 45 to age 79,
and the decline from the end of the plateau is steep all the way to age 111. 4

4.2 Illustration of Theorem 2

In order to empirically illustrate the inequality provided by theorem 2 and the relationship
linking it to variance in age at death, we selected a (non-random) sample of complete US life
tables for years ending in zero and five from the Human Mortality Database (2009), which
has an online collection of these life tables annually from 1933 to 2013. Table 1 provides 16
empirical examples of this inequality, namely, that μl +μr > e0.

As it can be seen in Table 1, the difference between μl + μr, on the one hand, and,
e0, on the other, declines as e0 increases from 1935 to 2010. The mean difference over
all 16 observations is 5.37 years, with a standard deviation of 1.90. Also seen in Table 1
is the inverse relationship between life expectancy at birth and variance in the age at
death. As life expectancy at birth increases from 60.89 in 1935 to 78.85 in 2010,
variance in the age at death decreases from 611.94 to 270.46, respectively. This inverse
relationship is consistent with the observation by Németh (2017) that as life expectancy
increases, lifespan inequality decreases. Because of theorem 2 we know that the
difference will remain positive from the re-expressed version of Eq. (3) found in the
proof for theorem 2, namely, that μl + μr = e0 + (σ 2/e0).

In verbal terms, the explanation for the empirical illustration of the relationship specified
in the non-linear equation given byμl +μr = e0 + (σ 2/e0) is that the sum of mean years lived
(μl) andmean years remaining (μr) is equal to themean age at death (μd) plus the ratio of the
variance in age at death to mean age at death (σ 2/μd). Recalling that mean age at death is
equal to life expectancy at birth (e0), we can see that if the variance in age at death remained
relatively constant (or, relatively speaking, did not increase as much as life expectancy) from
1935 to 2010 while life expectancy increased, then the difference, μl + μr - e0, would
decrease during the same period. To some extent, the trend implied by the data in Table 1
likely reflects this because other than the initial effect of the baby boom (1946–64), the US
population aged between 1935 and 2010 and holding all else constant, variance in age at
death does not increase as a population ages because deaths become more concentrated in
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Fig. 1 Mean yrs lived + mean years remaining by age: 1990 US life table (stationary population)
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the older population, which, in turn, is reflected in life tables constructed from such a
population (Engelman et al., 2010).

5 Discussion

Wrycza (2014) demonstrated that variance in age at death, σ 2, is equal to the average
squared remaining life expectancy at death. Given this and the fact that Eq. (3) can be
re-expressed as σ 2 = [e0(μl + μr)] – e02 (see endnote 2), we can see that average
squared number of life-years lost due to death, ed2, is equal to subtracting life
expectancy at birth squared, e02, from the product, e0(μl + μrx). That is, ed2 = [e0(μl +
μr)] – e02. Wrycza’s (2014) finding is equivalent to stating that when average squared
number of life-years lost is divided by life expectancy at birth, it is equal to the
difference between the sum of mean years lived and mean years remaining, on the
one hand, and on the other, life expectancy at birth: ed2/e0 = (μl + μr) - e0. This leads to
viewing the sum of mean years lived and mean years remaining as being equal to life
expectancy at birth plus the ratio of the average squared number of life years lost due to
death to life expectancy at birth: (μl + μr) = e0 + ed2/e0 . Both of these equalities imply
that if everybody lived to maximum life expectancy (e0 =ω), then ed2 = σ 2 = 0 and
(μl + μr) = e0 .

Table 1 Difference between the sum of mean years lived and mean years remaining and life expectancy at
birth: selected US life tables for both sexes combined, 1935 TO 2010 (N = 16)

Year e0
(1)

Variance
in age at death
σ2

(2)

Mean years
lived
μλ

(3)

Mean years
remaining
μr

(4)

Total mean
years lived and
remaining
μλ +μr

(5)

Difference:
(5)–(1)
(6)

1935 60.89 611.94 35.47 35.47 70.94 10.05

1940 63.23 536.82 35.86 35.86 71.72 8.49

1945 65.58 493.16 36.55 36.55 73.10 7.52

1950 68.07 419.99 37.12 37.12 74.24 6.17

1955 69.56 395.1 37.62 37.62 75.24 5.68

1960 69.83 383.37 37.66 37.66 75.32 5.49

1965 70.24 377.89 37.81 37.81 75.62 5.38

1970 70.74 372.09 38.00 38.00 76.00 5.26

1975 72.54 348.19 38.67 38.67 77.34 4.80

1980 73.74 327.41 39.09 39.09 78.18 4.44

1985 74.67 306.89 39.39 39.39 78.78 4.11

1990 75.40 309.14 39.75 39.75 79.50 4.10

1995 75.89 296.73 39.90 39.90 79.80 3.91

2000 76.86 272.08 40.20 40.20 80.40 3.54

2005 77.63 277.14 40.60 40.60 81.20 3.57

2010 78.85 270.46 41.14 41.14 82.28 3.43

Source: Human Mortality Data Base, as discussed in the text. Calculations are by the authors.
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Using Carey’s Equality Theorem (Carey et al., 2008; Müller et al., 2004; Rao &
Carey, 2014) and a 2005 life table for the USA, Vaupel (2009) estimates that more than
48% are 41 years or older, which implies that nearly half of the life table population will
be alive in 2050, assuming that the 2005 life table holds to 2009. Using the same US life
table and corresponding stationary population, we find that on average the population
lived 40.60 years and will live another 40.60 years on average. If we assume that the
2005 life table applied to 2009 as did Vaupel, then on average the members will live to
almost 2050, which is in agreement with Vaupel’s estimate. Even without such an
assumption, it is the case that, on average, the 2005 population lived 40.6 years and will,
on average, live another 40.6 years, or 81.3 years in total, which is 3.67 years more than
their life expectancy at birth of 77.63 years. While the actual differences may vary, the
proof shown earlier for theorem 2 shows that mean years lived + mean years remaining
is greater than life expectancy at birth (μl + μr > e0). If we apply this line of reasoning to
the actual 2010 US life table, we find that, on average, the 2010 population lived
41.14 years and will, on average, live another 41.14 years, or 82.28 years in total, which
is 3.43 years longer than this population’s life expectancy at birth of 78.85 (see Table 1).

Vaupel (2009) notes that in regard to work by Müller et al. (2004) and Müller et al.
(2007) on wildlife population dynamics, Carey’s Equality Theorem could be used to
estimate population age structure. In regard to this application, we add that if a
representative age structure is obtained for a stationary population (or one that can be
made stationary with adjustments suggested by Müller et al. (2004) and Müller et al.
(2007), through Vaupel’s suggestion or from another method, such as a sample, then its
mean age, mean years lived, and mean years remaining can be determined as can its life
expectancy at birth, its crude birth rate, and its crude death rate. If a representative age
structure is obtained from a random sample, then interval estimates of these parameters
can be constructed for the stationary population in question.

In the form of μlx and μrx, Carey’s Equality Theorem also manifests itself in the data
displayed as Fig. 2, although somewhat imperfectly because the data we use to illustrate
it are discrete rather than continuous.4 As can be seen in Fig. 2, the plotted values of μlx
are a mirror image of the plotted values of μrx, slightly distorted at the tails by the fact
the data are discrete. The point in Fig. 2 at which the two curves cross over one another
is 39.75 years, which is the mean age of this stationary population (the point on the x
axis at which the crossover occurs) and also both its mean number of years lived (the
point on the y axis at which the crossover occurs) and mean number of years remaining
(the point on the y axis at which the crossover occurs). That is, 39.75 = μa = μl = μr.

6 Concluding Comments

The inequality expressed as theorem 2 is counter-intuitive in that one does not expect
the sum of mean years lived and mean years remaining to exceed life expectancy at
birth (or equivalently, mean age at death) in the stationary populations underlying life
tables constructed for human and other species. The underlying explanation of this
inequality is linked to variance in age at death. For example, if variance in age at death
is held constant and life expectancy (mean age at death) increases, then the inequality
described by theorem 2 decreases; if variance in age at death increases and life
expectancy is held constant, then the inequality described by theorem 2 increases. This
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explanation can be extended to theorem 1 by looking at the variance in age at death up
to and including a given age. For example, if we are interested in the inequality found at
age x, we will find that if variance in age at death up to and including age x is held
constant and life expectancy (mean age at death) increases, then the inequality de-
scribed by theorem 1 decreases; if variance in age of death up to and including age x
increases and life expectancy is held constant then the inequality described by theorem
1 increases.

The only biological exception to theorems 1 and 2would be a specieswith no variation in
age at death. However, finding such a species is so unlikely that it would appear to be
impossible. For species that are characterized by variation in age at death, one implication of
these two related theorems is that the mean longevity of all of the “living” members of a
given stationary population exceeds the mean number of years expected at birth. From a
different perspective, Pressat (1972: 480) recognizes this inequality by stating that “themean
age of a stationary population is greater than half of the expectation of life.”He follows this
with an important observation, namely, that this inequality is due to variation in individual
lengths of life. This variation is why the sum of mean years lived and mean years remaining
exceeds life expectancy at birth (except at age zero and at the age representing maximum
longevity where the sum is equal to life expectancy at birth, per the proof of theorem 1). This
inequality suggests that when a life table is used for planning the future, it is worthwhile to
keep in mind that life expectancy at birth understates average longevity for the “living”
members of the life table population relative to the non-linear relationship found in the ratio
of variance in age at death to life expectancy at birth.5 As such, when this ratio is elevated,
then it may be preferable to use the sum of mean years lived and mean years remaining
instead of life expectancy at birth in some applications. For a similar reason, this also
suggests that at a given age, it may be preferable to use the sum of mean years lived to that
age and mean years remaining at that age instead of simply using life expectancy at the age
in question.6
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7 Endnotes
1. As noted by Ryder (1975: 8–9), the ratio, σ 2/e0, is equivalent to the coefficient of

variation, as is σ 2/μd. As such, when making comparisons across stationary
populations in regard to variation in e0 or μd, it is more appropriate to use a
coefficient of variation instead of σ 2. Following the observations of Pressat (1972:
480), it is worthwhile to note here that, when any subject is examined from the
perspective of “longevity,” the inequalities we have identified here will also be
found where there is variation in individual longevity. Among many others, these
subjects include, for example, duration of first marriage (Schoen, 1975), length of
working life (Yusuf, Martins, and Swanson, 2014: 222–224), length of the second
birth interval (Swanson, 1985, 1986), length of product reliability (Ebeling, 2010),
length of time to product substitution (Martins et al., 2012: 169–189), duration of
disability (Office of the Chief Actuary, 2002), and the longevity of species other
than humans (Carey & Judge, 2000).

2. It is worthwhile to note that re-arranging Eq. (3) provides a method for calculating
the variance in e0 (and its equivalent, the variance in mean age at death):

σ2 ¼ e0 μl þ μrð Þ½ �–e02

This approach to calculating σ 2 is straightforward (for other ways to calculate σ 2 see,
e.g., Hakkert, 1987; Hill, 1993; and Wrycza, 2014) because one can simply multiply
mean age (μa) by 2 and substitute this in the right hand side of the equation in place of
μl + μr. This approach also provides a meaningful estimate of σ 2 that among other
desirable characteristics includes mortality at all ages (seeWrycza, 2014 for a discussion
of this issue), which has a range of applications (see, e.g., Schindler et al., 2012).

3. An anonymous reviewer pointed out that proofs of these inequalities could be
constructed more efficiently from the perspective of continuous age and, in
addition, two implications of this proof. In regard to the continuous age perspec-
tive, we followed this advice in the main body of the text, but also show the
discrete approach in the appendix, which may be more familiar to many demog-
raphers. In regard to the two implications: the first is that if the distribution of age at
death is exponential, then the mean and the variance are the same, which implies
that the mean age at death and the mean age of the stationary population are equal;
and the second is that the case where σ 2 = 0 has no practical interpretation, which
means that the death distribution is degenerate.

4. Arni Rao suggested to us that theorem 1 has several implications, one of which is
that, when 0 < x <ω, the sum of mean years lived at age x (μlx) and mean years
remaining at age x (μr,x) is greater than mean years remaining at age x-1 (μrx-1).

5. Villavicencio and Riffe (2016) provide a complete and formal proof of Carey’s
equality in a discrete-time framework.

6. In addition to Pressat (1972), Morales (1989), Ryder (1975), and Preston (1991),
among others, Canudas-Romo & Zarulli, 2016), and Canudas-Romo and
Engelman (2016) have examined mean years lived and mean years remaining.
However, none of these authors describes the inequalities demonstrated here in the
forms of theorems 1 and 2.
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Appendix. Proofs of theorems 1 and 2 from a discrete age perspective

Theorem 1

When 0 < x <ω, then μlx + μrx > μ.

Proof

Let the size of a stationary population be To = ke0
where:
k = radix of the life table (e.g., k = 100,000) = l0,
e0 = life expectancy at birth = mean years lived, μ =mean age at death, ud.

Then:
μlx = (T0 -Tx)/l0 =mean years lived to age x
and
μrx = Tx/lx = mean years remaining at age x.
Because μlx = (T0 - Tx)/l0 = (μl0 - Tx)/l0 = μ - Tx/l0
then μlx + μrx = μ - Tx/l0 + Tx/lx

and except when x = 0, so that Tx/l0 = T0/l0 = μ
and when Tx/lx = T0/l0 so that μ - T0/l0 + T0/l0 = 0 + μ = μ
and except when x =ω, so that Tx/l0 = Tω/l0
and when Tx/lx = Tω/lω, so that μ - Tω /l0 + Tω/lω = μ - 0/l0 + 0/0 = μ - 0 + 0 = μ

then Tx/l0 < Tx/lx because l0 > lx when x > 0.
Thus, μlx + μrx > μ because μ - Tx/l0 + Tx/lx > μ . This completes the proof.

Theorem 2

μl þ μr > μ

Proof
Equation (2), the equality identified by Pressat (1972) described in the text, is useful

here because it provides a straightforward basis for proving the inequality given in
theorem 2. First, recall that, as shown in the text, the mean age of the stationary
population is equal to mean years lived and to mean years remaining: μa = μl = μr and,
therefore = 2μa = 2 μl = 2μr. Thus, if we multiply μa by 2, then eq. (2) can be restated
as

e0 þ σ2=e0
� � ¼ 2μa ¼ 2 0:5 e0 þ σ2=e0

� �� �� �

Because 2μa = (μl + μr) = e0 +(σ 2/e0), the sum of mean years lived and mean years
remaining is equal to the sum of life expectancy at birth and the ratio of variance in age
at death to life expectancy at birth. Further, where σ 2 > 0, then it follows that μl +
μr > e0 and where σ 2 = 0, then μl + μr = μ= e0 . This completes the proof.
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