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Abstract

Electronic excitations, phonons, and electron-phonon coupling in acenes
by
Florian Brown-Altvater
Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Jeffrey B. Neaton, Co-chair
Professor Phillip L. Geissler, Co-chair

In this dissertation, we present first principles electronic structure calculations of acene
solids, achieving better understanding of their electronic and vibrational properties relevant
to their optoelectronic function. The family of acene molecular crystals serves as a testbed
for broader classes of organic crystalline semiconductors, which have come under increasing
focus for their many favorable optoelectronic properties. Among them are relative ease of
processing, strong and tunable absorption, and charge carrier mobilities sufficiently high for
applications. Despite numerous computational and experimental efforts, the details of the
underlying mechanisms of these optoelectronic processes are still actively disputed, espe-
cially concerning the role of electron-phonon coupling and its impact on the acene electric
structure at finite temperatures. To further improve the efficiency of these systems, and to
develop new materials that can overcome existing challenges, better understanding of the
underlying principles and structure-function relationships that determine acene properties is
thus needed.

Here, we calculate the charged and neutral electronic excitations of the acene crystal series
within many-body perturbation theory (MBPT), based on van der Waals (vdW)—corrected
density functional theory (DFT). We compare the performance of various functionals and
vdW corrections in predicting the experimental lattice parameters and investigate the sen-
sitivity of excited states to these structural parameters. Generally, low-lying charged and
neutral excitations are well described by the MBPT methods used here, provided that opti-
mized geometries close to experiment are used. The inclusion of vdW interactions to account
for the weak intermolecular interactions in molecular crystals is thus found to be a prereq-
uisite for the predictive and accurate calculation of excited state energies in these systems.

To investigate the effect of vibrational coupling at zero and finite temperatures in or-
ganic crystals, we calculate the phonon band structure and electron-phonon contributions to
the electron self-energy for the case of the naphthalene crystal. We first provide a compre-
hensive analysis of the computed phonon band structure, comparing to neutron diffraction
data. Again, vdW corrections are necessary to obtain phonon frequencies from DFT calcu-



lations that are in good agreement with experiment. Based on these results, we compute the
electron-phonon self-energy in naphthalene using vdW-corrected DFT and MBPT to lowest
order. This self-energy provides the contribution of phonons to the renormalization of band
structure energies and to the scattering lifetimes of electronic states. The resulting renormal-
ized band gap at room temperature, and the temperature-dependent mobilities of electron
and hole charge carriers are in good agreement with experimental values. Finally, we explore
an eigenvalue—self-consistent computational scheme for the electron-phonon self-energy that
leads to the prediction of strong satellite bands in the quasiparticle band structure.

The methods presented in this dissertation are general and our conclusions are applicable
to other molecular crystals, thus providing a template for future predictive calculations of
optoelectronic properties of acenes and related systems, in which both structures and excited
states are calculated entirely from first principles.



To my friend, partner, and love Cait.
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Chapter 1

Introduction

This dissertation concerns the application of advanced electronic structure methods to un-
derstand observables and properties of organic crystals relevant to optoelectronic processes.
Relatively cheap to process and mechanically flexible, organic semiconductors have come
under increasing focus for their many favorable optoelectronic properties. Molecular ma-
terials are known for strong optical absorption and are key-components of dye-sensitized
solar cells [1], for example, and novel excited-state phenomena, such as singlet fission [2-8].
With the development of new synthetic pathways and improved material design, molecules
can be fine-tuned for specific applications by chemical substitution [9, 10] or morphologi-
cal control [11, 12]. Maybe the biggest advantages over their inorganic colleagues are their
abundance, relative low production cost [13-16], and simple processing techniques [13, 16—
18]. All of these attributes make them great candidates for organic LEDs [17, 19-21], thin-
film transistors [16, 22-26], photo-voltaic cells [9, 10, 27-29], RFID tags [13], and other
applications.

In recent years, many organic systems have been reported to exhibit relatively high
charge carrier mobilities," up to 40 cm?V~1s™! for holes and 11 cm?V~1s™! for electrons [5,
18, 33-43]. However, more than half of the reported mobilities above 1cm?V~!s™! might be
unreliable [44], since these values often are extracted based on ideal transistor models; and
organic materials often possess non-linear current-voltage characteristics, which, when paired
with these ideal models, can result in overestimated mobilities. Furthermore, device lifetime
and chemical stability continue to be a challenge for many molecular semiconductors [45-
48]. To further improve the efficiency of these systems, and to develop new materials that
can overcome existing challenges, better understanding of the underlying principles and
mechanisms that determine their properties is needed.

Organic semiconductors, just like inorganic ones, come in three forms: amorphous, liquid

In comparison, hole and electron mobilities of silicon (~500cm?V~1s71, ~1400cm?V~1s~1) or gallium
arsenide (~400cm?V s~ ~8000cm?V~!s7!) crystals are magnitudes higher [30]. However, amorphous
silicon used in thin film transistors and solar cells shows mobilities around 5cm?V~1s~1 [31], and the the-
oretical maximum for amorphous thin film transistors independent of material is estimated as 70/10 [32].
The reported mobility values for organic semiconductors are thus well within the range of application.
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crystal, and crystalline. In this work we will focus our attention on the latter. Molecular
crystals with extended m-systems are especially attractive for optoelectronic applications.
The delocalized m-orbitals yield advantageous band gaps for light absorption, and provide
charge transport pathways through intermolecular 7-7 interactions. In these crystals, the
cohesive energy that holds the molecules together is usually dominated by van der Waals
(vdW) interactions, including electrostatic interactions and London dispersion. One par-
ticular class of organic crystals, the acene family, lends itself to a systematic study. Only
containing carbon and hydrogen, this family comprises the series of linearly fused benzene
rings (Fig. 1.1). They are experimentally well characterized and known to possess carrier
mobilities that are comparatively high for organic materials [40-43]. They also exhibit a
propensity for unique excited-state transport phenomena, notably singlet fission (SF) [7, 8,
49-52]. SF has the potential to overcome the Shockley-Queisser limit and significantly boost
the efficiency of solar cells [53]. The larger acenes in particular have received recent attention
because SF was reported to be exothermic, or nearly so, for tetracene, pentacene, and hex-
acene [2—4, 36, 54, 55]. Thus, the family of acene crystals provide an important testbed for
characterizing and understanding optoelectronic phenomena with a variety of experimental
and theoretical methods.

In this work we calculate the electronic and vibrational properties of acenes at zero and
finite temperature, using state-of-the-art density functional theory (DFT) and many-body
perturbation theory (MBPT), and examine the accuracy of leading-edge approximations in
predicting key observables of these systems. We also use those methods to better understand
how these observables relate to the atomic and electronic structure. More specifically, we
evaluate the performance of different approaches that include vdW interactions; investigate
the structural dependence of the low-lying peaks in optical absorption spectra; scrutinize the
phonon frequencies and displacements; and lay out in detail how phonons determine finite
temperature effects and scattering.

1.1 Ground state properties

DFT has become the formalism of choice for electronic structure calculations of condensed
matter systems, due to the balance between accuracy and computational cost for many
common approximations. DFT reformulates the solution to the prohibitive many-body
Schrodinger equation by solving for the electronic density via fictitious non-interacting elec-
trons. The density gives access to the ground state wave function, and therefore to all ground
state observables, that is, observables related to derivatives of the total energy. Thus, for
example, we can extract the cohesive energy of crystals, or the vibrational frequencies by
systematically displacing atoms and calculating the change in interatomic forces. While DF'T
is an exact theory of the total energy of a many-particle interacting system, as of yet no
exact functional is known. Thus, in practice, DFT’s success relies on the help of approximate
functionals.

Over the years DF'T functionals have seen continuous improvement. Notably, functionals
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that explicitly include vdW interactions have seen vast improvements in the last decade
and have been shown to yield good results for various materials, especially when weak or
noncovalent interactions are at play [56, 57]. While the inclusion of vdW interactions in
organic crystals is imperative to obtain accurate and predictive results, there is not yet one
single approximation that works equally well for all materials. Therefore, in Chapter 3 we
systematically compare the accuracy of the structural parameters and cohesive energies of
the full acene series obtained with several vdW approaches. We thus lay the ground work
for the subsequent chapters, where we use the vdW methods that yield the best agreement
with experimental lattice parameters.

1.2 Electronic excited states

Charge carrier transport and optical absorption involves electronic excited states, which can
be obtained with MBPT, using DFT wave functions as a starting point. In MBPT, we
calculate the electron self-energy, that is to say, the interaction energy of a charge added
to the system with the changes its presence caused in its environment and the other elec-
tronic and vibrational degrees of freedom in the system. To compute the electron-electron
contributions to the self-energy we use the GW approach [58, 59], where G stands for the
one-body Green’s function and W for the screened Coulomb potential of the system. During
optical absorption, an electron is excited into the conduction band, which leaves behind a
positive charge, or hole, in the valence band. Therefore, in addition to the electron-electron
self-energies of the electron and hole, the opposite charges interact with each other to form
an electron-hole pair, also called exciton. This interaction is calculated with the two-particle
Greens functions and Bethe-Salpeter equation (BSE) approach [60-62], making use of the
GW approximation.

Both of these methods are being extensively used for periodic and isolated systems (see for
example Refs. [63—-69], and references therein), and are state-of-the-art for excited state cal-
culations in the condensed phase [70]. Among organic crystals, acenes in particular have been
the subject of several computational studies of the excited states, using wave-function-based
methods on small molecular clusters [8, 71-76] and DFT/MBPT on periodic systems [77—
88], as we do in this work. In Chapter 3 we evaluate the accuracy of these approximations
relative to experiment across the acene family, specifically focusing on the effect of structural
parameters on these observables. By comparing results obtained with experimental lattice
parameters against fully relaxed unit cells, we illustrate the predictive power of ab initio
calculations using vdW corrected functionals in combination with MBPT.

1.3 Electron-phonon coupling

The temperature dependence of the electronic structure, and thus, for example, the opti-
cal absorption or electric mobility, is first and foremost determined by the nuclei. Lattice
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Figure 1.1: The acene family. a) General formula. b) Herringbone structure, taken up by
most acenes in the solid state, with space group P2;/a for naphthalene and anthracene and
P1 for larger acenes. c) Benzene crystallizes in an orthorhombic unit cell with four molecules
per unit cell, with space group Pbca.

vibrations scatter electronic states, which renormalizes their energies and introduces finite
lifetimes. As the phonon occupation changes with temperature, so does the electron-phonon
coupling and hence the electronic properties. Additionally, with higher temperatures the
volume of the unit cell typically expands, changing intermolecular interactions and phonon
frequencies, and hence also the electronic properties. We investigate both these effects from
first principles using density functional perturbation theory (DFPT) and MBPT.

In Chapter 4 we calculate the vibrational spectrum of naphthalene across the Brillouin
zone, i.e., the phonon band structure. By systematically displacing the atoms we obtain
the resulting interatomic force constants that allow us to compute the phonon frequencies
and displacement vectors. We then compare the frequencies with experimental values, and
further discuss the merits of using a vdW-corrected functional by comparing its results to
two conventional DFT functionals.

While this is a standard method for generating phonon dispersions, it is non-trivial to
apply to organic crystals, due to their unit cell size and large range of interaction strengths,
from weak London dispersion to strong covalent forces. Prior to the publication of our
work in 2016, there were only few studies that have calculated the phonon frequencies of
organic crystals using first principles methods [89-92], and only two have reported the phonon
dispersion [91, 92]. An in-depth analysis of the performance of different DFT functionals
and the dependence of phonon frequencies on structural parameters is thus warranted, and
necessary as a basis for the subsequent calculation of the electron-phonon coupling.

In Chapter 5 we investigate the temperature dependence of the band gap and the elec-
trical mobility of naphthalene. From DFPT we obtain the derivative of the self-consistent
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potential with respect to the individual phonon modes. By integrating the overlap of this
potential derivative with the DF'T wave functions we obtain the electron-phonon coupling
strength. From these electron-phonon couplings we can construct and evaluate the electron-
phonon contribution to the electron self-energy. This approach simultaneously yields the
renormalization and lifetimes of the electronic states from first principles. In contrast, most
prior studies on the electron-phonon coupling in organic crystals employed semi-empirical
frameworks or model Hamiltonians, and concentrate exclusively on the lifetimes [38, 93-105].
There are several ab initio studies that successfully tackle different aspects of the electron-
phonon coupling [106-109]. However, they concentrate only on either the renormalization or
the lifetimes [108, 109], or include only two electronic bands in the scattering process [106,
107] (which is appropriate for the lifetimes, but not for the renormalization). We extend
these studies by providing a comprehensive analysis of the frequency-dependent electron-
phonon coupling and self-energy in naphthalene. To the best of our knowledge we report
the first ab initio temperature-dependent band gap of a molecular crystal, and calculate the
hole and electron mobilities within Boltzmann transport theory. We analyze the effect of
lattice expansion on electron-phonon coupling, and discuss the validity of using perturba-
tion theory. This extensive analysis allows us to gain deep insights into the relationships
between the structure of molecular crystals and electron-phonon coupling and its emerging
temperature-dependent observables.

In summary this dissertation provides a comprehensive computational study of the ex-
cited states, vibrational properties, and temperature-dependent behavior of acene crystals
in general, and naphthalene in particular.



Chapter 2

Theory and methods

2.1 DFT in solid state systems

2.1.1 Overview

We use density functional theory (DFT) as the starting point of all our calculations. DFT
has become a main staple in computational physics and chemistry, and the basis on which
many excited-state approaches build upon. While a brief overview of DFT is given here, I
will refer the reader to the many good books and reviews in the literature, which are often
also more specific to a certain field. (For an excellent introduction to DFT, see for example
Ref. [110].)

Solving the adiabatic (or Born-Oppenheimer) many-body Schrodinger equation

S (_%vg i %Xt(ri)) + Y U(ri,ry)

i i<j

HU =

U(ry,ry,...,ry) = EV(ry,ro, ... ,ryN),

(2.1)
which depends on the coordinates r; of all electrons, is currently impossible to solve exactly
for multi-electron systems, since it scales exponentially with N due to the electron-electron
interaction in U. The external potential V. is system specific and due to the interaction of
the electrons with the nuclei. The interaction between nuclei is omitted here for simplicity,
but in general should be included.

DFT is grounded in a theorem by Hohenberg and Kohn, which proves that the (nonde-
generate) ground state wave function Wy maps to one and only one ground state electronic
density p(r) [111], that is

‘1/0(1'1,1'2,...,1']\[> <:>p0(r). (22)
Therefore, if we can calculate the ground state density, we have access to all ground-state ob-
servables as well. Furthermore, Hohenberg and Kohn showed that the density that minimizes
the total-energy functional

Elp(r)] = To(x)] + Ulp(r)] + / drp(r) Vs (1), (2.3)
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is the ground state density pg. This problem would be much more tractable than the
Schrodinger equation, as the density only depends on a three-dimensional variable r, com-
pared to the 3N variables of the wave function. However, the exact forms for the kinetic
density functional 7" and the interacting potential U are as of yet unknown.

Shortly following Hohenberg and Kohn’s seminal work, Kohn and Sham introduced a set
of self-consistent equations that enabled practical applications of DFT [112]. They rewrite
the interacting many-body problem in terms of a set of fictitious non-interacting wave func-
tions ¢; that reproduce the exact ground state density po(r) = >, [¢;(r)[* when summed up
to the Fermi energy. The Kohn-Sham equations read

oV Thslp(o)] | = 2.4
where Vig is defined as
Vislotr)] = [ dep(e) Vi) + [ ax' 2L 4 w3t (2.5)

The interaction with the nuclei (first term) and the Hartree energy (second term) are straight-
forward to calculate. The exchange-correlation potential V.. is where the proverbial skeletons
in the closet are hidden. It is generally unknown, and the target of continued research and
optimization.

The two popular approximations to V.. in the physics of solids are the local density ap-
proximation (LDA) and the generalized gradient approximation (GGA). LDA approximates
the exchange-correlation potential as

VEPA (o)) = [ drple)=te™ (o)) (26)
where €19 is the exchange-correlation energy of a homogeneous electron gas. Due to can-
cellation of errors in the exchange and correlation part of LDA, which are under- and over-
estimated, respectively, this seemingly crude approximation performs surprisingly well in
practice for certain systems.

In addition to the local value of the density at r, the exchange-correlation energy in
GGAs is also a functional of the gradient of p(r) [113]

VOO p(r)] = / dr 39 (p(x), Vp(r). 2.7)

Here we use the GGA developed by Perdew, Burke, and Ernzerhof (PBE) [114].

2.1.2 Dispersion corrected functionals

Because of the (semi)local nature of the LDA and GGA functionals they inherently neglect
nonlocal interactions like van der Waals (vdW) forces. In many molecular crystals, the
cohesive energy is exclusively due to vdW forces.
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Great strides have been made over the past decade in the treatment of dispersive in-
teractions within DFT (for example, see [57, 115] for overviews). Of the many approaches
suggested, one commonly used method is the augmentation of existing (typically semilocal or
hybrid) exchange-correlation functionals by pairwise corrections to the internuclear energy
expression, which are damped at short range but provide the desired long-range asymptotic
behavior [116-123]. The most widely used examples of this idea are Grimme’s D2 [119]
and D3 [121, 124] corrections and the Tkatchenko-Scheffler (T'S) [120] correction scheme.
A different commonly used approach, known as vdW-DF, includes dispersion interactions
via an explicit nonlocal correlation functional [125-127]. Several vdW-DF versions are in
use, starting with the original vdW-DF1 [128] functional. These include, e.g., an improved
version, vdW-DF2 [129], making use of a more accurate semilocal exchange functional and
an updated vdW kernel; the simplified yet accurate form of Vydrov and van Voorhis, VV10
[130]; and the more recently developed vd W-DF-cx functional [131], an update with improved
performance for lattice constants and bulk moduli of layered materials and dense solids. In
the following, we abbreviate vdW-DF'1 as DF1, etc., for functionals in the vdW-DF class.

2.1.3 Pseudopotentials

To solve the Kohn-Sham equations, we require a basis set. In quantum chemistry these
are typically atom centered. For extended systems with translational symmetry, such as
considered here, plane waves are a more natural choice, because for periodic systems, one-
particle eigenstates take the form

W(r) = e*Tu(r), (2.8)

named Bloch waves for Felix Bloch, who was one of the first to introduce these wave func-
tions as solutions to periodic potentials [132, 133]. Here, u(r) is a function with the same
periodicity as our lattice, and k the reciprocal wave vector, a good quantum number in a
periodic system. In extended systems, we typically express u as a sum over plane waves
e'ST where G is a reciprocal lattice vector. The Kohn-Sham wave functions, expanded in
such a basis set, are thus written

i(r) = Z Cierg) @O (2.9)
G

with the basis set coeflicients c. Since wave functions are smooth, and high oscillations
are relegated to regions near the nucleus, we can truncate the infinite sum, and handle
the oscillatory behavior near the nucleus approximately, as discussed below. The cutoff is
specified by the kinetic energy cutoff E., defined as

h2
Foy > — k|%. 2.1
cut — 2m|G+ | ( 0)

Because plane waves form a complete basis set, we can systematically converge our calcula-
tions by increasing the cutoff energy, and thus the number of plane waves.
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To further reduce the number of plane waves needed for an accurate description, we make
use of pseudopotentials. The wave functions will oscillate strongest for strongly bound core
electrons, close to the atomic core. This is a result of the larger electron density, the Pauli
principle, and the orthogonality constraint. At the same time, the electronic properties we
are interested in are mostly determined by valence electrons. Without losing much accuracy,
we can thus replace the potential from core electrons up to a certain radius by a smooth,
effective potential. This cutoff radius is somewhat arbitrary, and one can generate hard
(small radius), soft, or even ultrasoft (large radius) pseudopotentials. With a larger cutoff
radius, the wave functions will be smoother, we need fewer plane waves, and therefore can
run faster and larger calculations. However, the resulting wave functions are further and
further from the “true” wave function, and may lead to unphysical properties, particularly
if the atoms are arranged in a way that the core regions overlap. In general, any new
pseudopotential needs to be thoroughly tested against known standards.

2.2 Lattice vibrations

2.2.1 Theory

For Chapter 4 we calculate the vibrational spectrum of naphthalene within the adiabatic,
harmonic approximation. In condensed-matter physics, collective vibrations, where all atoms
vibrate at the same frequency, are called phonons. Each phonon is associated with a dis-
placement vector £ specifying the amplitude and direction of displacement of each atom in
the crystal.

To calculate the frequency and accompanying displacement vector, we follow the standard
derivation [134, 135] and expand the adiabatic potential around the equilibrium positions of
the atoms as a Taylor series

1% 1 0%V ,
_ 0 «@ o,
VEVIE D gt g D ey T (210
j,Ol ] j7a J '
J'a!

with uf = r;?‘—r?’o the small displacement of atom j along the Cartesian direction o = z, vy, .
Truncating at quadratic order yields the harmonic approximation.

Since we are not concerned about the absolute value of the potential, we can set V° = 0
as our reference energy. The first derivative of the potential, or the forces acting on the
atoms, vanishes as well for systems in equilibrium. The first non-zero term is the second
derivative of the potential, i.e., the force constant J‘?‘j‘?/, or change of force, of atom j in
direction «, when atom j’ is displaced in direction o/. Our adiabatic, harmonic potential

thus reads )
V=2 Kitujug (2.12)
7,
j/,a/
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K ]030‘ is a 3nyer X 3ngey matrix (nyy = total number of atoms), and therefore impossible to
manage for any extended system. To solve this equation efficiently, we can take advantage of
the fact that K ]’?‘jc,“/ obeys the same symmetries as our system, and is thus also translationally
invariant for periodic systems. We first split the atom index j into the combined index (k, £),
where k specifies the lattice site, and ¢ the unit cell the atom resides in. The force constants
between two sites k and k' now only depend on the distance between the respective unit
cells, so K35 2’ hecomes K2 (Ry — Ry).

For the purpose of calculating the frequency spectrum, the atomic motion can be ade-
quately described by the classical equation of motion of the form F' = ma, Newton’s second

law. With Eq. (2.12) we can write

82ug’ ‘0 _
o auﬁ ,

- > K (Re—Re)ufp, (2.13)

Kol 0

My,

where m,, is the mass of atom k. The general ansatz for solving second-order differential
equations is ugvz(t) = Ae~™!  More specifically, we are looking for vibrational plane wave
solutions, analogous to Bloch wave functions, of the form

ul (t) = —h iRt (2.14)

N

where C'¢ describes the amplitude and direction of the atomic displacement, and is also
called the polarization vector. Substituting Eq. (2.14) in Eq. (2.13) we obtain the following
coupled set of 3n,. linear equations (n,. = number of atoms in unit cell)

W02 =3 D (@)C (2.15)

K ,a!

where we introduced the dynamical matrix D(q)

aa’ - Kg/?/, (R£/> iqgR,
Dpy(q) = %:—mnm,@, el (2.16)
which is the discrete, mass-weighted Fourier transform of the force constant matrix. Since we
can choose our origin arbitrarily, we dropped the index ¢, and denote the distance between
unit cells simply with Ry. Any solutions to the coupled equations in Eq. (2.15) have to
satisfy

det (D(q) — w’I) = 0. (2.17)

By diagonalizing the dynamical matrix, we therefore obtain the squared frequencies as eigen-
values w(q), and orthogonal polarization vectors as complex eigenvectors C(q), also called
normal modes. Note that systems with instabilities can yield negative eigenvalues that yield
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Figure 2.1: Example of a translational mode in naphthalene. This is the first acoustic mode
at wave vector q = 27/a(0.33,0,0), where almost rigid molecules vibrate along the ¢ axis
(red arrow). The displacement of equivalent atoms in different unit cells differs by the phase
of e 4R creating a propagating wave (gray lines). The direction of this wave is given by q
(in this case along x). Hydrogen atoms are omitted for simplicity.

imaginary frequencies, often, by convention, presented as negative frequencies. Further-
more, the (non-orthogonal) real space displacement vectors for any given wave vector q can
be obtained as .

§eo(t) = Re C”Tgeiq““”(‘”t . (2.18)
One such displacement pattern of a translational phonon mode is shown in Fig. 2.1.

What did we gain by rewriting Eq. (2.13) in terms of the dynamical matrix? Instead of
solving the equation of motion once for n, atoms (or n,. times the number of unit cells
N), we now can compute the dynamical matrix with only n,. atoms times the number of g-
points, which is equivalent to N. While the former scales as O(N?) due to matrix inversions,
the latter scales only linearly as O(N). We will take a brief look at other advantages and
disadvantages of either method in the following section.

2.2.2 Methods

Based on the previous section we can obtain the phonon frequencies and vectors either by
calculating the real space force constant matrix directly, or via its Fourier transform, the
dynamical matrix. Within DFT, the former is typically done using the finite difference (FD)
approach, the latter using density functional perturbation theory (DFPT).
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In the FD approach, we displace each atom in each Cartesian direction to obtain the
resulting change of forces on each atom

AFZ,

7 .
Au(:/’él

K/?/S’/(Rf/ — Rg/) ~

(2.19)

The individual forces can be obtained based on the Hellmann-Feynman theorem [136, 137].
Great care has to be taken that the displacements are small enough to be in the linear
regime, and that the forces are well converged. In DFT this means that the convergence
criterium for the SCF cycles has to be orders of magnitude tighter than typically necessary
for total energy calculations (see Appendix B.1 for convergence criteria). Once we have the
force constant matrix, we can interpolate to any arbitrary g-point using Eq. (2.16), to obtain
the phonon dispersion in reciprocal space.

The main advantage of the FD method is that anharmonic contributions are directly
accessible. Displacing each atom by larger amounts allows the determination of higher-
order coefficients of Eq. (2.11). Furthermore, any method or functional that can produce
Hellmann-Feynman forces can be used to generate FDs. In contrast DFPT might not be
readily implemented with every electronic structure code, or for every functional. This is
the main reason we use FD in Chapter 4, because van der Waals—corrected functionals were
not compatible with DFPT in Quantum ESPRESSO at that time.

The obvious disadvantage is that we have to use a supercell that is large enough to capture
all interatomic interactions. Convergence with respect to supercell size can be checked by
comparing the resulting frequencies w(q) for increasing numbers of unit cells. Recently
the use of non-diagonal supercells has been rediscovered for a more efficient calculation of
phonons using FD [138]. (For a review including non-diagonal supercells, see [139].)

In DFPT we calculate the linear response of the electron density to individual atomic
displacements. (For a detailed discussion of DEPT see [140].) Since this can be achieved in
reciprocal space, we can calculate the dynamical matrix at any arbitrary g-point. In order
to obtain a continuous phonon dispersion, we typically calculate the dynamical matrices
on a regular g-grid, Fourier transform to obtain the real space interatomic force constants
(Eq. (2.16)), and transform back, allowing us to interpolate to any arbitrary g-point. Equiv-
alent to the supercell size, the number of g-point in our grid determines the accuracy of
interpolation. Convergence here can be easily checked by comparing the frequencies explic-
itly calculated with DFPT at a g-point not on the regular grid with the interpolated values
obtained for the same point.

With either method, the atomic coordinates need to be relaxed with very tight con-
straints, and with the same parameters that we then use for the subsequent phonon calcu-
lation. Numerical differences arising from different wave function cut offs, k-point grids, or
even FFT (Fast Fourier Transform) grids can have a significant impact. Imaginary frequen-
cies are common results, and are dreaded by anyone who ever ran phonon calculations. Small
imaginary frequencies (<10icm™!) of the acoustic modes at I' (q = 0) are normal and usually
the result of using discrete numerical methods, and can be avoided by imposing the acoustic
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sum rule, i.e., the translational invariance. Larger imaginary frequencies, especially at q # 0,
are more difficult to handle, since they can have various origins. The most obvious one is
unconverged parameters (like the SCF convergence parameter mentioned above). However,
it can also point to a structural instability. This happens either when the ground state
atomic coordinates are not relaxed sufficiently; or when the system is artificially constrained
in a higher symmetry than it would naturally have at 0 K (see [141] for a prominent example
of “physical” instabilities). This can be tested by freezing in the unstable phonon mode,
i.e., moving the atoms along the displacement vector from Eq. (2.18) in either direction. If
the energy goes down, it confirms the presence of a lower-energy structure. Performing this
test for non-zero g-points requires a supercell commensurate with the wave vector. This can
result in very large calculations when dealing with small q vectors, or even be impossible
if q is irrational. In order to confirm such instabilities, the only path may be to rule out
unconverged parameters with absolute certainty.

Last but not least, ultimate validation for a phonon calculation comes from comparison
with experiment, if data are available. Inelastic neutron scattering measures the reciprocal
phonon dispersion [142] and therefore provides the most straightforward comparison. Un-
fortunately, it is not as straightforward to produce these spectra, so experimental phonon
dispersions are not always available.

Much more common are infrared (IR) and Raman experiments. Using wavelengths from
infra-red to UV, however, these techniques only capture phonons near the center of the
Brillouin zone at I'. The typical phonon wave vectors are much too short (on the order of
lattice vectors) to be resolved by the long wavelength of the probe light (103-10°A). Or
inversely, since conservation of momentum is required, and the momentum of the photons is
much smaller than that of the phonons, only phonons near q = 0 interact with the photons.
While this means we only need to calculate the phonons for a single unit cell, or equivalently
for a single point q = 0, a comparison between calculated and experimental frequencies has
more degrees of freedom, as we lack the information of phonon dispersion.

This can be mitigated by taking advantage of the different selection rules for IR and
Raman active modes, and the absorption intensities. Phonon modes that change the dipole
of the system are IR active, while Raman-active modes change the polarizability. In cen-
trosymmetric systems, such as the acenes studied here, phonon modes are either IR or
Raman active, with IR modes breaking the inversion symmetry and Raman modes preserv-
ing it. The phonon displacements are readily available from computation, so calculated
frequencies can be clearly designated as IR or Raman active.

Still, accurate mode assignment is far from trivial, and often somewhat arbitrary. Some
modes show very low intensity in experimental spectra, or disappear in the noise, and oth-
ers have so-called overtones, that can be mistaken for fundamental frequencies. The large
number of phonon modes in organic crystals, and limited resolution in experimental spectra
further muddy the waters. In our case we opted to assign any calculated frequency to the
closest frequency of the same type (IR or Raman), making sure to assign any mode only
once.
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2.3 Many-body perturbation theory

2.3.1 Electron-electron and electron-phonon self-energy

For the accurate description of excited-state properties, such as the band gap, or charge car-
rier transport, we have to go beyond the mean-field Hamiltonian of DFT. To add corrections
due, for example, to electron-electron correlation, or electron-phonon coupling, we extend
Eq. (2.4) within the formalism of many-body perturbation theory (MBPT), which amounts
to adding a term called the self-energy X
2

—;—mvz - Vies[p()] + 2| s = et (2.20)
Equation (2.20) is an effective equation for a single electron or hole in a many-particle inter-
acting system. The self-energy represents the nonlocal and energy-dependent interactions of
an electron with the other electronic and vibrational degrees of freedom in the many-body
system of interest, and the changes its presence causes in the associated environment. This
correction is usually evaluated perturbatively. We can use this framework to study the ef-
fects of various processes. In this work we calculate the electron-electron and electron-phonon
contributions to the electron self-energy using MBPT.

2.3.2 GW

Our first-principles MBPT calculations for charged excitations are based on the GW ap-
proximation. Practically speaking, GW calculations usually proceed perturbatively based
on a DFT starting point, which for solids is usually computed using the Kohn-Sham equa-
tion within the LDA or GGA. The Kohn-Sham eigenvalues and eigenfunctions are used to
evaluate approximately the self-energy operator > as

iGW, where G is the one-electron Green’s function of the system and W = ¢ 'v is the dy-
namically screened Coulomb interaction; v is the Coulomb potential and € is the wave-vector-
and frequency-dependent dielectric function [58, 59].

1GW is the first term in a many-body expansion of ¥ in W. The DFT eigenvalues are then
updated via first-order perturbation theory. This approach is known as the GyW, approxi-
mation. This method is often very successful, but nevertheless it is somewhat dependent on
the DF'T starting point.

GW can be evaluated, in principle, self-consistently by different approaches [64, 143-148],
mitigating the starting-point dependence by iterating over eigenvalues and wave functions.
This effectively incorporates higher-order terms in 3. Given the computational demands
associated with acene crystals, in the following we limit our study to the diagonal part of X.

2.3.3 BSE

Given the GW-computed quasiparticle energies, as well as the static inverse dielectric func-
tion computed within the random phase approximation, we compute neutral excitation en-
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ergies by solving the Bethe-Salpeter equation (BSE) [60-62]. We use an approximate form
of the BSE, developed within a first-principles framework by Rohlfing and Louie [62], which
involves solving a new eigenvalue problem obtained from an electron-hole interaction ma-
trix. We generate solutions within the Tamm-Dancoff approximation (TDA) and limit our
calculations to low-lying singlet and triplet excitations.

2.4 Electron-phonon coupling

2.4.1 AHC theory

We obtain the contribution of the electron-phonon coupling (EPC) to the electron self-energy
using the Allen-Heine-Cardona (AHC) theory [149, 150]. The AHC theory employs second-
order perturbation theory, within the adiabatic harmonic approximation, to calculate the
change of the Kohn-Sham eigenenergies, denoted here as >:°P, further also called the electron-
phonon self-energy. The displacement of phonon modes, even at 0K due to zero-point
motion, leads to coupling (or scattering) of electronic states. This coupling is responsible for
the self-energy 3°P, which is a complex quantity, with a real and imaginary part. As such, it
not only renormalizes the energies (real part), but also introduces finite lifetimes (imaginary
part), and hence broadening of the states.
Within DFT we solve for the single-particle Kohn-Sham states

<nk nk> =l . (2.21)

Vks is defined in Eq. (2.5), and depends parametrically on the nuclear coordinates R. We
can expand the potential around the equilibrium position Ry of the atoms in a Taylor series
with respect to small displacements along the phonon mode vectors U,

% UV + laQVKS
oR 2 0R?
similar to how we calculated phonons. The main difference is that we calculate the changes
in energy of each individual state nk, instead of the change in total energy. Second, in-
stead of looking at the perturbation of individually displaced atoms, we directly rotate the
displacements into the orthogonal, uncoupled normal mode basis.

The first order correction

2

VQ + VKs(I‘, Ro)

Me

VKs(I',R) = VKs(I',R()) + UZQ, + ... (222)

oR
vanishes since the expectation value of the mode displacement (U,) is zero. The second
order correction

nk> (u,) (2.23)
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nk> (U2) (2.24)
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consists of two terms involving the first and second derivatives of the Kohn-Sham potential.
They are called the Fan' and Debye-Waller (DW) term, respectively. Again, we neglect any
higher-order terms.

The rigorous derivation of this energy correction in periodic systems via the Dyson equa-
tion can be found in Refs. [150-152], along with some historical context. The frequency
dependent Fan term is thus given as

'an § : 1 2 : 2
ng (w7T) = 2% ‘<wnk | Vy(cll) | Zbmk+q>
vq i

« [ Nuq(T) + fmk-i-q(T)
W= Epierq T Wq +insgn(w)

Ng(T) 1= frical)_)

d (2.25)

W= Epkiq — Wrq T N sgn(w)
The phonon modes are defined by indices v, wave vector q, energies w,q, and occupation
factor N,q. Phonons couple electrons in state nk with state mk + q and occupation fac-

tor foki+q through the first derivative of the potential Vy(oll) associated with the respective

phonon’s atomic displacement. The integrals (1, | Vl,(é) | Yimktq), OF electron-phonon matrix
elements further referred to as g+, , determine the coupling strength between the electronic
states and the phonons. The denominators give rise to poles at w = £ + w,q, which are
smoothed with a small smearing parameter n that is positive and real, to account for the
finite g-grid sampling.
The frequency independent DW term becomes

1
) =3 o

vq

(nk | V&) | nk)[2n,q(T) +1]. (2.26)

vq

The DW term still depends on the second derivative of the potential V,,(g?,,q, which is arduous
to calculate. Using the rigid-ion approximation, however, Eq. (2.26) can be written in terms
of the first derivative of the potential [151, 153]. Thus, we can obtain all values from DFT
and DFPT calculations.

Putting Eqgs. (2.25) and (2.26) together, we can rewrite the second-order correction of
Eq. (2.24) as

Toi(w, T) = Tl (w, T) + Z (7). (2.27)

We changed the notation of the EPC energy from €2 to X to highlight that it is now a
complex energy, and to distinguish from otherwise purely real electronic eigenvalues and
energies denoted with e.

The renormalization of the electronic eigenvalues is given by the real part of X°°. The
imaginary part determines the broadening, or inverse lifetimes of the electronic states. The

!Sometimes also referred to Migdal or Fan-Migdal term.
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temperature dependence of the self-energy arises through the temperature dependent occu-
pation factors of the phonons NV and electrons f. We can see that even at 0 K, the self-energy
has a finite value. This leads to the so called zero-point renormalization (ZPR); and states
other than the global conduction band minimum (CBM) and global valence band maximum
(VBM) will be broadened at zero temperature.

There remain two challenges to calculate the self-energy efficiently. First, g-space has
to be sampled more densely compared to a phonon calculation, which rapidly becomes the
main obstacle for large systems. In this work, we interpolate the phonon coupling potential
in real space, following the approaches of [154, 155]. It is standard practice to interpolate
the phonon frequencies of a regular g-grid onto arbitrary g-points by means of a Fourier
transform of the dynamical matrices to real space, and back to reciprocal space. Applying
the same principle here, we first calculate the potential derivative with DFPT on a coarse g-
point grid and interpolate to a finer grid via Fourier transform. We first define the long-range
component of the phonon potential

At HatG (=) (q + G) i - Z*

Vilen =g 2 T e @ w (228)

where €* is the static long-ranged dielectric matrix without the lattice contribution to the
screening, and Z7 ,,; is the Born effective charge tensor. These quantities are computed
from DFPT by including the response of the system to a macroscopic electric field. The
long-ranged component of the phonon potential represents the dipole potential created by
displacing the Born effective charges of each atom, and becomes the dominant contribution
to the potential in the limit q — 0. Next, we perform a Fourier transform of the short-range
component of the phonon coupling potential, starting from the coarse g-point grid,

Wei(r—Ry) = Z 'R (Vﬁ(jl)(q, r)— V,j;(q, r)> (2.29)

where W,;(r — R;) represents the short-range component of the perturbative potential as-
sociated with the displacement of atom & in the unit cell [ along the Cartesian direction j.
The interpolated phonon potential for an arbitrary point q is then

Vé;)(qa r) ~ Z W, — R;)e @R 4 V;; (q,r). (2.30)
l

This interpolation scheme reproduces the electron-phonon coupling matrix elements with
accuracy better than 1%, as shown in Fig. C.4 in the Appendix.

The second challenge lies in the sum over electronic states m in Eq. (2.25), which con-
verges slowly with the number of bands included. We evaluate this sum explicitly using all
valence bands, and conduction bands up to 5eV above the CBM. Above this cut-off the
sum over infinite bands is replaced by a Sternheimer equation, and their contribution to the
self-energy is treated statically [156, 157]. Furthermore, this contribution is evaluated on the
coarse ¢-grid, since the denominator of the self-energy in Eq. (2.25) is never small for these
bands, and is thus a smooth function of q.
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Chapter 3

Electronic structure of acenes

The work presented in this chapter has been published as part of Ref. [158]. I contributed to
the structural relazations of the unit cells, comparing results for conventional and van der
Waals corrected functionals.

Predicting the structure and excited-state properties of molecular crystals presents a chal-
lenge for electronic structure theory, as standard approximations to density functional theory
(DFT) do not capture long-range van der Waals (vdW) dispersion interactions and do not
yield excited-state properties. In this chapter, we use a combination of DFT including vdW
forces, using both nonlocal correlation functionals and pairwise correction methods, together
with many-body perturbation theory (MBPT) to study the geometry and excited states, re-
spectively, of the entire series of oligoacene crystals, from benzene to hexacene. We find that
vdW methods can predict lattice constants within 1% of the experimental measurements,
on par with the previously reported accuracy of pairwise approximations for the same sys-
tems. We further find that excitation energies are sensitive to geometry, but if optimized
geometries are used MBPT can yield excited-state properties within a few tenths of an eV
from experiment.

3.1 Introduction

Theoretical studies of excited-state properties of acene crystals have often been performed
with small molecular clusters, using wave-function-based methods [8, 71-76], or with ex-
tended systems, using density functional theory (DFT) and many-body perturbation theory
(MBPT) [77-88]. These calculations have often yielded excellent agreement with experiment
and new insights into excited-state properties of acene crystals.

As shown in Fig. 1.1, acene crystals consist of aromatic monomers packed in ordered
arrangements. Their constituent monomers possess strong intramolecular covalent bonds,
but weak intermolecular dispersive interactions govern the crystal structure. Because the
approximate exchange-correlation functionals most commonly used in DFT calculations do
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not account for dispersive interactions, the above-mentioned theoretical calculations have
nearly always made use of experimental data for intermolecular distances and orientation.
This limits predictive power because experimental lattice parameters can be scarce or con-
flicting. In particular, different polymorphs of the same material may exist, sometimes even
coexisting in the same sample [82, 88, 159-165].

Fortunately, the last decade has seen rapid development of DFT-based methods that can
capture dispersive interactions and several studies have demonstrated that addressing these
interactions allows for predicting accurate geometries and cohesive energies of molecular
solids in general and acenes in particular (see, e.g., Refs. [82, 90, 166-177]). Specifically,
Ambrosch-Draxl et al. [82] have suggested that a combination of dispersion-inclusive DFT
methods, which they found to predict lattice parameters in agreement with experiments for
acene crystals, followed by MBPT calculations can be used to explore quantitative differences
in optical properties of pentacene polymorphs. Their work suggests that a broader study of
the entire acene family with MBPT methods, especially their recent refinements, would be
highly desirable.

In this chapter, we combine dispersion-inclusive DF'T and MBPT to study the geometry
and excited states of the entire series of acene crystals, from benzene to hexacene. In each
case, we compare the computed geometry, electronic structure, and optical excitations with
experiment. To account for long-range van der Waals (vdW) dispersive interactions, we use
primarily nonlocal vdW density functionals (vdW-DFs), but also employ Grimme’s D2 pair-
wise corrections [119] and compare our results where possible with previously reported data
computed with the Tkatchenko-Scheffler (TS) [120] pairwise correction approach [89, 169].
We find that the new consistent-exchange (cx) vdW density functional (vdW-DF-cx) [131,
178] can predict acene lattice parameters within 1 percent of low-temperature measurements,
as can the T'S method. For optimized acene crystal structures, our MBPT calculations within
the GW approximation using the Bethe-Salpeter equation approach lead to electronic band
structures, and low-lying singlet and triplet excitations in good quantitative agreement with
experiments. Interestingly, we find that low-lying excited states are sensitive to crystal geom-
etry, particularly so for singlets, which are significantly more delocalized than triplets. This
chapter constitutes a survey and validation study of both crystal structure and excited-state
electronic structure for this important class of molecular crystals. Furthermore, it highlights
the structural sensitivity of the electronic energies and the need to include vdW forces for
accurate predictive modeling of excited states.

3.2 Results and discussion

3.2.1 Lattice geometry and cohesive energy

We begin our discussion by considering the effect of the chosen DFT approximation on the

crystal geometry and cohesive energy. Experimental unit-cell volumes for the acene crystals
are compared in Fig. 3.1(a) with volumes calculated using the LDA, PBE, PBE-D2, PBE-TS
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(from Refs. [89, 169]), DF1, DF2, and DF-cx approaches. A similar comparison for cohesive
energies is given in Fig. 3.1(b), where we calculated the cohesive energy via the standard

relation 1
Ecoh = Egas - NEsolid (31)

where E,,s is the total energy of an isolated monomer, Egq is the total energy of the
solid phase unit cell, and N is the number of molecules per unit cell in the solid. A com-
plete set of structural data, along with error estimates, is given in Appendix A.2. For
tetracene, its polymorph 1 (P;) also called the high-temperature polymorph [179, 180], re-
ferred to as TETCEN in the Cambridge Structural Database (CSD) [181], is considered.
This crystal is known to undergo a pressure-assisted transition to a different high-pressure
or low-temperature polymorph (P3) [161, 182-186], the study of which is beyond the scope
of this work. This low-temperature polymorph has been successfully described within the
TS method in Ref. [89]. For pentacene, three well-known polymorphs are considered, using
experimental structures available in the CSD [181]. These are as follows:

Figure 3.1 shows, as expected, that standard (semi)local functionals do not result in
good agreement with experimental results. PBE significantly overestimates lattice constants
and underestimates cohesive energies. This can be attributed directly to the lack of treat-
ment of dispersive interactions in PBE [172]. LDA lattice constants are underestimated by
~3 %, but this binding is spurious, rather than reflecting a successful treatment of disper-
sive interactions [172]. The spurious binding is attributable to the insufficient treatment of
exchange [193, 194].

Turning to explicit vdW functionals, Fig. 3.1(a) clearly shows that DF1 overestimates
lattice constants essentially as much as LDA underestimates them. This is because DF1 is
based on the exchange of revPBE [195], a variant of PBE with exchange that is too repulsive
for the systems studied here. At the same time, Fig. 3.1(b) shows that it still overestimates
binding energies. We note that cohesive energies of acene crystals have been calculated with
DF1 prior to this work [82, 166, 169], with differing conclusions. While DF1 results for E.qp
are in agreement with experiment to better than 5% in Refs. [82, 166], Ref. [169] reports
DF1 results that deviate from experiment by as much as ~17%. These differences can be
partially explained by the different choices these studies made for the experimental reference
data. Some differences remain even if we use the experimental values of Ref. [90], in which
the contributions due to vibrations are carefully taken into account, throughout. Despite
having carefully ruled out lack of convergence in our calculations, the average percentage
error (see Table A.1 in Appendix A.2) in Fy is then somewhat larger in this study, being
16 %, 10%, and 9% in the data of our work, Ref. [169], and Ref. [82], respectively. For
the lattice parameters, however, we find good agreement (within 2 %) with those reported
previously.

Figure 3.1(a) clearly shows that DF2 improves geometries with respect to DF1, in agree-
ment with the findings in Ref. [169], with further improvement gained from DF-cx. Specif-
ically, lattice constants are within 2% and 1%, respectively, of experiment. Fortuitously,
DF2 values for the lattice parameters are similar to the thermally expanded lattice param-
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Figure 3.1: (a) Volume per molecule for the acene crystals, calculated using different ap-
proximations within DFT: LDA (black empty circles), PBE (pink stars), DF1 (blue crosses),
DF2 (green empty circles), DF-cx (red filled triangles), PBE-D2 (orange empty triangles),
and PBE-TS (brown squares). These are compared to low-temperature experimental data,
for T'> 16 K from Refs. [187-189] and extrapolated to 0 K as indicated in Appendix A.2 (in
black filled circles). For two pentacene polymorphs and hexacene, only experimental data
at 7' > 90K is available [179, 190, 191] (in dark gray stars). (b) Cohesive energies Eopn
for the acene series, obtained with the same set of approximations as in (a). Experimental
Eecon (black filled circles) are obtained from enthalpies of sublimation ([192], see text). Inset:
calculated E., for three pentacene polymorphs. 1 PBE-TS cohesive energies are taken from
Ref. [90] and PBE-T'S volumes from Refs. [89, 169].

eters obtained at room temperature. This is attributable to a cancellation of errors, as we
model the structure at 0 K. Recent work [176] reported that a DF2 variant, called rev-vdW-
DF2 [196], predicts lattice constants for benzene, naphthalene, and anthracene that are in
remarkable agreement with low-temperature experiments (within 0.5%). For tetracene and
P, pentacene, good agreement with room-temperature experiments is found [176], but the
reported volumes overestimate structures extrapolated to 0 K by ~2 % for pentacene P, and
8 % for tetracene.

For cohesive energies, Fig. 3.1(b) shows that neither DF2 nor DF-cx improve meaning-
fully upon DF'1 cohesive energies. Specifically, the values obtained for DF2 are in excellent
agreement (within 0.05eV) with those reported in Ref. [169], as is the conclusion regarding
lack of improvement over DF1. Interestingly, rev-vdW-DF2 reduces the error in cohesive
energies with respect to experiments by half [176].

Turning to pairwise correction methods, Fig. 3.1(a) shows that lattice vectors calculated
with D2 and TS corrections, added to underlying PBE calculations, are within 3% and
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1% of experimental data, respectively, whereas cohesive energies are within 30 % to 40 % of
experiment. Thus, they perform as well as DF methods in terms for geometries prediction
but somewhat worse for cohesive energies.

To summarize, both the latest pairwise approaches and the latest DF methods can provide
lattice parameters in outstanding agreement with experimental data (within ~1 %) across the
acene series, illustrating the predictive power of vdW methods and allowing for an excellent
geometrical starting point for MBPT calculations. However, errors in cohesive energy are
still on the order of 10 % to 30 %. In future work, it would be interesting to examine whether
techniques which add nonlocality beyond pairwise interactions, particularly the many-body
dispersion method [90, 174}, can reduce the error in the cohesive energy.

3.2.2 Effects of structure on charged and neutral excitations

Having discussed the need for adequate treatment of vdW interactions for predicting geom-
etry we now turn to the question of the sensitivity of the calculated excitations to structural
parameters.

We start by considering charged excitations obtained within the GW approximations
and assessing their dependence on the geometry obtained from LDA, GGA, the three van
der Waals functionals (DF1, DF2, and DF-cx) used in section 3.2.1, and experiment. The
k-point averaged GoWjy-calculated fundamental gap A,, along with the valence band width
(vbw) and the conduction band width (cbw), for each of the geometries, is given in Table 3.1.
(Here, the bandwidth is defined as the width in eV of the lowest 7* or highest 7 manifold of
bands.) Hexacene is excluded here and below as Gy, does not yield physically reasonable
results. While we are not aware of an experimental fundamental gap value, the GoW, value
we compute is smaller than the singlet excitation energy calculated with BSE, and therefore
certainly underestimates the fundamental gap. We attribute this mainly to a starting point
issue, which can be overcome by using self-consistent GW (see Ref. [158]).

As shown in section 3.2.1, and in more detail in Appendix A.2, lattice parameters increase
with functional in the following sequence: LDA/DF-cx/DF2/DF1/PBE. Interestingly, Ta-
ble 3.1 shows that A, follows the same trend, while vbw and cbw follow the opposite trend.
These trends can be rationalized as follows: the larger the lattice parameters, the smaller
the intermolecular hybridization and the smaller the bandwidth. Naturally, the smaller the
hybridization, the larger the band gap. However, quantitatively the change in bandwidths
explains only part of the gap increase with increasing lattice parameters. A second effect
is that the solid-state gap is renormalized from the much larger molecular gap because the
neighboring molecules serve as a dielectric medium whose response creates a polarization
field that reduces the gap [198]. As discussed in detail in Refs. [81, 83, 86, 87|, this phe-
nomenon, which is well captured by GW calculations, itself depends on the unit-cell volume.
This is because a larger intermolecular separation reduces the polarization field and therefore
the renormalization, thereby increasing the gap.

Finally, we note that although the GW gaps calculated from the experimental geometries
are within 0.1eV (0.2eV for benzene) of those obtained with DF2 lattice parameters, it
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Table 3.1: Effect of structure on the k-point averaged fundamental gap A,, along with the
valence bandwidth (vbw) and the conduction bandwidth (cbw), all calculated in the GoWj
approximation. All values were obtained from lattice parameters fully relaxed within the
LDA, PBE, DF1, DF2, and DF-cx functionals, as well as from experimental parameters [180,

187, 189, 190, 197]. All energies are in eV.

GoW,
. . Exp.
using lattice-parameters from

LDA PBE DF1 DF2 DF-cx Exp.
Benzene
Ag 6.6 7.9 7.3 7.1 7.1 7.3 7.6-8.0
vbw 0.7 0.2 0.4 0.5 0.5 0.4
cbw 0.7 0.4 0.5 0.5 0.5 0.5
Naphthalene
Aq 4.9 6.0 5.6 5.5 5.3 5.5 5.0-5.5
vbw 0.7 0.2 0.4 0.5 0.5 0.5
cbw 0.7 0.2 0.3 0.3 0.4 0.3
Anthracene
Ag 3.6 4.5 4.3 4.1 4.0 4.0 3.9-4.2
vbw 0.6 0.2 0.3 0.4 0.4 0.3
cbw 1.0 0.3 0.5 0.6 0.7 0.6
Tetracene
Ag 2.4 3.6 3.1 2.9 2.7 2.9 2.9-3.4
vbw 0.7 0.1 0.3 0.4 0.6 0.4
cbw 0.9 0.3 0.5 0.7 0.8 0.7
Pentacene Pj
Ag 1.5 2.9 2.3 2.1 1.8 2.2 2.2-2.4
vbw 1.2 0.3 0.6 0.7 0.9 0.7

cbw 1.1 0.3 0.6 0.7 0.9 0.7
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Figure 3.2: Effect of structure on the lowest singlet (57) and triplet (77) excitation energies,
calculated in the GoWy-BSE approximation, given as deviation from experimental data taken
from Refs. [199-205] and references therein. All computed values were obtained from lattice
parameters fully relaxed within the LDA (black empty circles), PBE (pink stars), DF1 (blue
crosses), DF2 (green empty squares), and DF-cx (red triangles) functionals, and are given
as differences from experimental values. All energies are in eV.

should be taken into account that this is due to the accidental agreement of zero-temperature
DF2 volumes with room-temperature experimental values (see section 3.2.1).

We now turn to the discussion of structure on neutral excitations. GoWy-BSE-calculated
low-lying excitations, based on the same geometries used in Table 3.1 above, are given in
Fig. 3.2 and in Table 3.2. Importantly, no significant temperature dependence of low-lying
excitation energies is observed experimentally [206, 207], which facilitates the comparison to
experimental excitation energies measured at higher temperatures.

Clearly, the dependence of T} excitation energies on geometry is quite minimal (40.1eV
at most across the entire acene series). The same is true for the S; excitations in the
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Table 3.2: Effect of structure on the lowest singlet (S;) and triplet (T;) excitation energies,
calculated in the GoWy-BSE approximation. All computed values were obtained from lattice
parameters fully relaxed within the LDA, PBE, DF1, DF2, and DF-cx functionals, as well
as from experimental values. All energies are in eV. For comparison, experimental values,
taken from Refs. [199-205] and references therein, are also given. Also given are the mean
absolute error (MAE) defined as Y"1V | X; — X™P|/N,,, with X; being the excitation energy,
the maximum absolute error (MAXE), and the mean absolute percentage error (MA%E)
defined as S | X; — X[7P|/X[P /N, x 100.

GoWy-BSE

. . Exp.
using lattice-parameters from
LDA PBE DF1 DF2 DF-cx Exp.
Benzene
St 5.1 5.0 5.0 5.0 5.0 5.0 4.7
Ti 4.2 4.0 4.1 4.0 4.1 4.1 3.7
Naphthalene
St 4.1 4.2 4.2 4.2 4.1 4.2 3.9
Ty 2.9 2.9 2.9 2.9 2.9 2.9 2.6
Anthracene
St 3.1 3.6 3.5 3.4 3.3 3.4 3.1
Ty 2.0 2.0 2.1 2.0 2.0 2.0 1.9
Tetracene
Sy 2.0 2.9 2.5 2.4 2.2 2.4 2.4
Ty 1.3 1.4 1.4 1.4 1.3 1.4 1.3
Pentacene Pj
St 1.3 2.1 1.9 1.7 1.5 1.7 1.9
T 0.8 0.9 0.9 0.9 0.8 0.9 0.9
St MAE 0.3 0.4 0.2 0.2 0.3 0.2
MA%E 12 12 7 7 10 7
MAXE 0.6 0.5 0.4 0.3 0.4 0.4
Ty MAE 0.2 0.2 0.2 0.2 0.2 0.2
MA%E 8 9 10 7 6 8

MAXE 0.5 0.4 0.4 0.3 0.4 0.4
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smaller acenes (benzene and naphthalene), but the dependence on geometry increases with
acene size. For pentacene, it is already quite significant, with the S; excitation values
changing by 0.9eV by switching from the LDA to the PBE geometry. As before, agreement
with experiment is much improved by using DF-based geometry, with best results obtained
using DF2 and DF-cx (with differences between the two being too small to be physically
meaningful), based on which S} energies are found to be within 4-5 % of experimental values.
The remaining discrepancy may be due to terms not included in these calculations, such as
zero-point and finite-temperature effects associated with lattice vibrations, as well as the
remaining limitations of the GW-BSE approach in general and its approximations used here
in particular.

The sensitivity of excitation energies to geometry, or lack thereof, is directly related to
the degree of spatial localization of these states. For large acenes, notably pentacene, singlet
states have been shown to extend over several molecules [77, 84, 85, 200, 208]. The degree
of delocalization is larger for smaller unit-cell volumes, an effect related to the increased
intermolecular hybridization [209]. Delocalization decreases the excitation energy, which is
therefore larger the smaller the unit cell is. For short acenes, this is a much smaller effect
and indeed no significant structure dependence is observed. Triplets, however, are always
predominantly localized on a single monomer [208, 209], explaining their weak dependence
on the geometry.

Finally, we note that the calculated neutral excitation energies are not strongly affected
by temperature, at least as reflected by the crystal structure used in our calculations. For
benzene, naphthalene, and anthracene, the calculated singlet and triplet energies do not
depend significantly on geometry. For the larger acenes, singlet energies change by at most
0.15eV, while triplet energies change by even less, when varying the volume by ~3 % (similar
to thermal expansion at room temperature). This agrees with the experimentally observed
absence of significant temperature dependence of low-lying excitation energies [206, 207].

3.3 Conclusion

In summary, we have studied the structure and the effects of structure on the excited-
state properties of the series of acene-based crystals, from benzene to hexacene, from first-
principles using vdW-corrected DFT and MBPT. Both vdW-DF and pairwise correction
methods were found to predict lattice parameters in excellent agreement with experimental
data. We find that DF1 overestimates volumes but DF2 improves over DF1, consistent with
the general trends for these functionals. DF-cx further improves lattice parameters, with
a residual discrepancy of >1%. Furthermore, the relatively simple TS pairwise approach
performs as well as the best DF methods.

For acenes in the solid state, charged excitations are generally well described by the
GoWy method, but partial self-consistency, in the form of the eigenvalue—self-consistent GIW
method, is needed for hexacene, likely owing to the PBE starting point employed in this
study. The results are found to be sensitive to the geometry used owing to a combination
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of intermolecular hybridization and polarization-induced level renormalization. Neutral low-
lying singlet and triplet excitation energies are generally well described using the GoWy-BSE
method. They are generally less sensitive to structure, except for the important case of
singlet excitations in larger acenes. There, large structural sensitivity is found owing to
significant delocalization of the singlet state.

The results in this chapter reveal the importance of an accurate account of dispersive
interactions as a prerequisite to predictive calculations of excited-state properties in the
acene crystals. Furthermore, we laid out routes for predictive calculations, in which both
structures and excited states are calculated entirely from first principles, for broader classes
of molecular solids. Lastly, the remaining discrepancies with experiment and sensitivity to
structural parameters suggest that zero-point and finite-temperature effects from electron-
phonon coupling could have significant contributions to the excited states. We explore
phonons in the following Chapter 4, and their coupling to electronic states in Chapter 5 on
the example of naphthalene.
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Chapter 4

Lattice vibrations of naphthalene

The work presented in this chapter has been published as Ref. [210)].

Phonon scattering can be an important facilitator and dissipation mechanism in charge sepa-
ration and carrier transport processes. In this chapter, we carry out density functional theory
(DFT) calculations of the structure and the full phonon dispersion of crystalline naphtha-
lene, a well-characterized acene crystal for which detailed neutron-diffraction measurements,
as well as infrared and Raman spectroscopy, are available. We evaluate the performance,
relative to experiments, of DFT within the local density approximation (LDA); the gener-
alized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van
der Waals (vdW)-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the
vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1 %. In-
termolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced
within 7.8 % and 1 %, respectively. As expected, LDA (PBE) underestimates (overestimates)
the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrat-
ing their shortcomings for predictive calculations of weakly bound materials. If the unit cell
is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon
frequencies. This study provides a detailed understanding of the phonon spectrum of naph-
thalene, and highlights the importance of including vdW dispersion interactions in predictive
calculations of phonon frequencies of molecular crystals and related organic materials.

4.1 Introduction

Organic materials based on small molecules have shown great promise for optoelectronic
applications due to high electron mobilities [5, 34-37] and favorable energetics that can
lead to efficient singlet fission [2, 3, 6-8, 211], among others. However, despite significant
promise, understanding and control of the underlying mechanisms is still lacking [28, 37].
As those processes are often subject to scattering from phonons, leading to phonon-assisted
transport and dissipation [37, 212], for example, a detailed, quantitative understanding of the
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Figure 4.1: Naphthalene is the smallest acene that crystallizes in a herringbone structure.
There are two molecules in the monoclinic unit cell with space group P2;/a, each situated
at inversion centers.

vibrational spectra—and in particular, the phonon spectra of extended molecular crystals—
is integral to future efforts to better harness these materials for optoelectronic applications.
Prior ab initio studies of organic crystals, based on DFT and many-body perturbation theory,
have focused predominately on electronic and optical properties [77-88]. Such excited-state
properties are sensitive to local geometry and molecular packing, as seen in Chapter 3, and
a principal challenge to theory is that long-range dispersive vdW-type interactions play a
significantly larger role for the cohesive energies (and therefore the geometries) of sparse
molecular crystals compared to their inorganic counterparts [82, 166, 172].

Among molecular crystals, the acene family is well-suited for detailed study of vibrational
and optoelectronic phenomena. Their relatively simple molecular and crystal structures—
and variable size range, from benzene to hexacene—has facilitated significant experimental
as well as computational investigation of the phonon spectra. Naphthalene is the smallest
monomer member with the herringbone crystal structure, typical of acenes (Fig. 4.1). Fur-
ther, there is a plethora of experimental vibrational spectra available for both gas and solid
crystalline phase, allowing a detailed comparison between calculated and experimental val-
ues. The first extensive Raman and infrared (IR) studies of solid naphthalene were reported
by Nedungadi [213] and Pimentel and McClellan [214]. Since then, numerous experiments
have been performed to understand and assign the vibrational spectra [215-224], in particu-
lar Natkaniec et al. [219], who used coherent inelastic neutron scattering to map out phonon
dispersion curves of deuterated naphthalene along several directions in the Brillouin zone.

Prior computational work on the phonon spectrum of solid naphthalene used semi-
empirical force-field methods, with parameters fit from experiments, for generation of both
zone center frequencies [225-229] and wave vector-dependent dispersion [218, 230-233],
greatly aiding in the interpretation of the naphthalene phonon spectra. More recently,
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the vibrational modes of gas-phase naphthalene—in particular, infrared and Raman ac-
tive modes—as well as the zone-center modes of crystalline naphthalene have also been
reproduced successfully with ab initio methods [223, 229, 234-238], although the mode
assignments depend somewhat on the level of theory and functional [223, 238]. Finally,
Schatschneider et al. [89] and Reilly and Tkatchenko [90] used vdW-corrected DFT to ob-
tain the zero-point energy and vibrational contribution (integrated over the Brillouin zone)
to the lattice energy of several acenes, respectively, using the Tkatchenko-Scheffler pairwise
approach; however, these studies did not provide any details of the phonon spectrum.

Two ab initio phonon band structures of acene crystals have been reported prior to the
publication of this work [91, 92]. The full phonon dispersion of tetracene has recently been
calculated using the local density approximation (LDA), capitalizing on the tendency of LDA
to overbind to partially compensate for the lack of vdW-corrections [92]. Band structures of
solid naphthalene calculated at different pressures have been presented by Fedorov et al. [91]
using the DFT-D3 approach [121] but without any detailed comparison with experiment.
Considering the fundamental importance of phonons in organic crystals, there remains a
need to assess and understand the efficacy of existing approaches for calculating phonon
dispersions over the entire Brillouin zone in vdW-bound solids, particularly in the context
of a well-characterized system such as naphthalene.

In this chapter, we compute the phonon dispersion of solid naphthalene within DF'T using
LDA, the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE), and
the recently developed nonlocal density functional vdW-DF-cx [131]. We provide the first
detailed comparison between computed and measured phonon spectrum of a molecular crys-
tal across the Brillouin zone, assessing our results against neutron scattering experiments on
perdeuterated naphthalene, as well as IR and Raman spectra of solid perprotonated naphtha-
lene. In addition to yielding excellent lattice parameters as shown in Chapter 3, the results
in this chapter show that vdW-DF-cx is able to reproduce the full experimental phonon
dispersion with high accuracy. Lacking any long-range correlation, PBE overestimates the
unit cell volume by 29 %, and, as a result, significantly underestimates phonon frequencies
relative to experiment. Notably, upon constraining the lattice parameters to experimental
values, PBE yields good agreement, suggesting that it may reproduce phonon spectra for
other organic crystals with known experimental geometry. LDA, in contrast, overbinds the
naphthalene crystal as expected, resulting in a primitive cell volume that is 10 % smaller
than experiment and significantly overestimated phonon frequencies.

4.2 Results and discussion

4.2.1 Lattice parameters

We calculate and compare the phonon dispersion using the three functionals, LDA, PBE, and
PBE-vdW-DF-cx. For relaxed lattice parameters of all three functionals we use the values
obtained in Chapter 3, which are given again in Table 4.1 for reference. We distinguish
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Table 4.1: Experimental and calculated lattice parameters for naphthalene [158]. Lattice
constants a, b, ¢ are in A, unit cell volume € in AB, and angle £ in degrees.

Exp. [181] DF-cx LDA  PBE

a 8.08 8.06 7.74 9.13
b 5.93 2.91 5.76 6.31
c 8.63 8.75 8.37 8.99

g 1247 124.4 125.5 122.1
Q 3404 344.4 304.0 438.9

phonon frequencies obtained at experimental and relaxed lattice parameters by denoting
results using experimental lattice parameters with “@Q€).,”, lattice parameters relaxed with
LDA with “@QLDA”; etc.

4.2.2 Intermolecular modes

We divide the discussion of our results into two parts. In this section, we first discuss the
intermolecular modes at lower frequency, comparing the performance of different density
functionals to experiment. Then in section 4.2.3, we concentrate our analysis on the in-
tramolecular modes at higher frequencies calculated with DF-cx and compare our results
to IR and Raman measurements. In accord with prior work [91, 219, 229], we find that
the phonon band structure shows a gap of roughly 40 cm™! between the intermolecular and
intramolecular modes. While we do confirm the observation of Coropceanu et al. [229] that
all translational modes show slight internal bending motion, the mixing between inter- and
intramolecular modes is very small and can be neglected for the purpose of classification.

In Fig. 4.2 we show the phonon band structures of d8-naphthalene, in an energy win-
dow below 150 cm ™! focused on the intermolecular modes, calculated with the vdW-non-
local functional DF-cx, and with LDA and PBE. Given that PBE leads to a large over-
estimate of the lattice parameters, we only provide the phonon dispersion for PBE calcu-
lated by constraining the lattice parameters to those of experiment. (Here, the designa-
tion “d8-naphthalene” refers to the fact that all eight of nuclei associated with the eight
hydrogen atoms on each naphthalene molecule consist of both a proton and a neutron;
“d0-naphthalene” refers to all hydrogen nuclei consisting of a single proton.) The results
are compared to experimental data obtained by neutron scattering of d8-naphthalene at
6 K [219].

At first glance, all three functionals reproduce the experimental curves quite well. The
mean absolute percent deviation from experimental data points is 7.8 % for DF-cx, 5.8 % for
PBE (at the experimental geometry), and 12.3 % for LDA. These results are consistent with
prior reports that PBE at experimental lattice parameters and LDA with relaxed parameters
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Figure 4.2: Calculated phonon dispersion (solid lines), shown and analyzed in a frequency
range dominated by intermolecular modes, and compared with neutron scattering experi-
ments of d8-naphthalene at 6 K [219] (grey circles; dashed lines to guide the eye). While
DF-cx@QQpp.x (a) and LDAQQpa (c) use optimized lattice parameters, PBEQ(., results
are (b) shown as computed with experimental parameters. The level agreement is quantified
by plotting the difference between the calculated and the experimental values as a function
of the latter (d). For the intermolecular modes DF-cx@{pp_., shows a mean absolute percent
deviation of 7.8 %, PBEQQ., 5.8 %, and LDAQQ;ps 12.3 %.
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Table 4.2: Intermolecular mode frequencies of d8-naphthalene at I'. Experimental values
are taken from neutron scattering experiments and compared to frequencies calculated with
DF-cx, PBE, and LDA using experimental as well as relaxed lattice parameters (all values
in cm™!). Modes are ordered to best correspond to the symmetries reported experimentally.
Mean absolute error (MAE) in cm™' and mean absolute percent error (MA%E) are also
given.

mode ?grl;rer;etry Exp. [219] DF-cx LDA PBE
Qpp.cx ey QQppy Ao, QQppg @y
4 B, (libr.) 54.37  50.20 54.27 58.69  23.90 18.88  46.26
5 A, (trans.) 57.71  52.54 55.08 66.29  49.39 2590  55.75
6 A, (libr.) 64.38  59.03 68.08 73.02  43.74  21.09 = 54.68
7 B, (trans.) 78.05  70.70 71.43 88.32 6520 49.03  73.14
8 By (libr.) 79.39  74.19 80.64 88.58 5490 43.04  77.25
9 A, (libr.) 84.06  77.23 83.51 95.46  57.31 4530  80.37
10 A, (trans.) 106.74  97.42 99.33 118.65 7532  47.78 107.39
11 A, (libr.) 112,41  112.23  112.02 11942  76.09  38.67 105.48
12 By (libr.) 130.09 128.83  130.55  141.33  94.93  48.72 124.98
MAE 4.83 2.37 9.52  27.18  51.28 4.41
MA%E 5.96 2.77 10.84  30.13  55.38 5.37

can yield good agreement for naphthalene (at the zone center) and tetracene (throughout
the zone), respectively [92, 229].

A major drawback of the PBE functional for naphthalene is that it requires prior knowl-
edge of the experimental lattice parameters. If the naphthalene unit cell is optimized with
PBE, the calculated volume is overestimated by 29 % (Table 4.1). Similar overestimates have
been noted by Byrd et al. [239] for more polar molecular crystals. The calculated frequen-
cies at this grossly overestimated volume decrease dramatically, as can be seen in Table 4.2.
Thus, using PBE to calculate phonon frequencies of organic crystals can only be efficacious
for systems with known lattice parameters.

Despite being a purely local functional, LDA is known to lead to lattice parameters in
agreement with experiment for certain vdW materials due to a cancellation of errors [193,
194]. For naphthalene, the cancellation is apparently incomplete and the LDA optimized
unit cell volume is 10 % smaller than experiment (Table 4.1), a significant underestimate
that leads in turn to an overestimate of the phonon frequencies. Thus, in general, the
LDA is insufficient for quantitative prediction of phonon band structures of vdW bound
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organic crystals. Interestingly, and unlike PBE, using experimental lattice parameters with
LDA results in frequencies far below the experimental values (Table 4.2). Evidently, the
PBE gradient corrections restore repulsive short-range intermolecular interactions missing
in LDA| leading to agreement with experiment at the experimental lattice parameters.

DF-cx, on the other hand, predicts the naphthalene unit cell volume within 1% [158]
while reproducing the experimental intermolecular frequencies within 7.8 %. Although the
total deviation is slightly larger than for PBE, the scatterplot in Fig. 4.2 shows that the
DF-cx frequencies below 100 cm™! are shifted by a more or less constant factor, while PBE
errors are more randomly distributed over the range of intermolecular modes, indicating that
DF-cx reproduces the qualitative structure of the phonon dispersion much better.

This superior performance of DF-cx for phonons is further evident when comparing the
calculated bandwidths of the two lowest optical bands. While PBE and LDA display a
pronounced minimum and maximum for the first and second optical bands centered on I’
along Z — I' — X, DF-cx reproduces the saddle point-like dispersion reported in exper-
iment. Additionally, along the high-symmetry line X — A, the slope of the lowest band
calculated with DF-cx matches the experimental spectrum, whereas both PBE and LDA,
incorrectly, predict a minimum. Clearly these soft intermolecular modes, where the influence
of nonlocal vdW dispersive forces would be expected to be most significant, have the largest
dependence on the chosen functional, and LDA and PBE exhibit the largest discrepancies.
Overall, DF-cx, which accounts for vdW-dispersion forces, is more predictive and performs
significantly better than either PBE or LDA for these low-lying naphthalene intermolecular
modes across the Brillouin zone.

We now comment further on the systematic underestimation of the frequencies of the first
ten bands for DF-cx. If this were simply due to an overall underestimate of intermolecular
forces, we would expect all frequencies to be uniformly red-shifted. However, the two highest
bands (modes 11 and 12) along I' — X and along I' — Y show excellent agreement (see
Fig. 4.2). What distinguishes these two modes from the others? These are librational modes
with the libration axes roughly along the length of the molecules and parallel to the c-axis.
(See Fig. 4.3 for a visualization of the displacement vectors at I'.) The nature of the libration
in modes 11 and 12 is such that the atom-atom distances between molecular layers remain
relatively constant compared to the other modes. The two modes are thus dominated by
interactions within the ab-plane. Now, if we inspect the lattice parameters in Table 4.1
more closely, we see that the 1% volume difference is mainly caused by an elongated c-axis,
while @ and b are much closer to experimental values. The longer c-axis results in weaker
interactions along that direction and overall lower frequencies for displacements with largest
amplitudes between layers, explaining the different behavior of modes 11 and 12 (which have
minimal amplitude along ¢) compared to the rest.

Further support for this explanation can be found at the high-symmetry points Z and A,
where DF-cx underestimates the frequencies of the two highest intermolecular mode bands
relative to experiment. The coupling of those two modes at Z leads to a shift of the rotational
axes to the edge of the molecule. The displacement pattern associated with these modes
could be described as a flapping motion, similar to a flag on a pole in the wind, and leads to
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Figure 4.3: The nine intermolecular optical modes of crystalline naphthalene. Modes 5, 7,
and 10 are translational modes roughly parallel to ¢, b, and a respectively. The other modes
are librational modes with rotational axes roughly along a (4, 6), b (8, 9), and ¢ (11, 12).

atomic displacements much further into the interlayer gap (and heightened sensitivity to c).
In contrast, at X, the rotational axes remain centered on the molecules, and these calculated
frequencies exhibit the same excellent agreement with experiment as observed at I'. Finally,
at the high-symmetry point A, we observe near-degeneracy between the four modes 9-12.
The mixing between the two librational modes 11 and 12 with the translational mode 10
along a, and a librational mode with rotation axes along b, again leads to mode displacement
patterns with higher amplitudes between molecular layers and an underestimate relative to
experiment. In sum, we can associate the underestimation of frequencies of many of the
intermolecular modes by DF-cx directly to the overestimate of the c-axis parameter relative
to experiment.

We can quantify this analysis further by comparing the frequencies calculated with exper-
imental lattice parameters (DF-cx@(y;,) to the corresponding frequencies of DF-cx@QQpp_cy.
Indeed, most zone center frequencies are shifted upwards to give much better agreement with
experiment, as can also be seen by the much-improved mean average and percent deviation
(Table 4.2). The mode frequencies are notably sensitive to a small a change in lattice pa-
rameters, essentially 1% along one axis. For example, in case of mode 6 we get an increase
of 15%, and overall decrease the mean percent deviation by more than a factor of two.

We note that the frequencies of mode 7 and 10, translational modes along the b and a
axes, respectively, are largely unaffected by the change in lattice parameters, and continue



Chapter 4. Lattice vibrations of naphthalene 36

to deviate from experiment in both cases by 7-10%. This remaining disagreement with
experiment may at least partially be associated with limitations of DF-cx. In addition,
there are still uncertainties regarding experimental and calculated lattice parameters. The
crystals used in the neutron diffraction experiments (d8-naphthalene) might exhibit small
differences from the d0O-naphthalene structure measured by Capelli et al. [187], which we
use in this work. In fact, d8-naphthalene is known to exhibit small quantitative differences
in lattice parameters relative to its perprotonated counterpart, resulting in a difference in
volume of about 0.5 % at room temperature [240, 241]. As this volume difference might be a
finite-temperature effect, its implications are not directly transferable to our low temperature
study, though. On the other hand, our calculated relaxed lattice parameters do not take into
account finite-temperature effects or zero-point anharmonic expansion, which could increase
the calculated cell volume even at 0K [242-244]. Considering the impact on the phonon
dispersion caused by the ~1% change in volume, as shown above, such small differences in
cell volume could account for the remaining discrepancies between DF-cx and experiment.

In conclusion, accurate determination of lattice parameters is central for the ab initio
calculation of intermolecular phonon frequencies in vdW-bound crystals. As we have shown,
DF-cx outperforms the conventional functionals LDA and PBE, and is able to reproduce
qualitatively and quantitatively the dispersion of intermolecular modes across the Brillouin
zone of solid naphthalene.

4.2.3 Intramolecular modes

We now turn our discussion to the intramolecular modes above 150 cm™t. The three func-
tionals used here give very similar internal coordinates, within 0.015A, or 1% for bond
lengths and 0.3°, or 0.2% for angles (see Table B.1 in the Appendix for all relaxed coordi-
nates). As a result, all functionals predict very similar frequencies for intramolecular modes,
agreeing to within 2.5 % (Table B.2 and Fig. B.1 in the Appendix); in contrast, intermolec-
ular frequencies (discussed above) differed from DF-cx by 6.3 % to 25 % for LDA, and 2.9%
to 10 % for PBE. Thus, in what follows, we limit ourselves to the analysis of DF-cx results.
In order to compare with experiments on dO-naphthalene, we present both deuterated and
non-deuterated naphthalene results. Figure 4.4 shows both full isotopic band structures side
by side for comparison. To illustrate the isotope shifts of individual modes, we connect
the frequencies corresponding to the two eigenvectors with the largest projection with black
lines. For all frequencies and corresponding shifts see Table B.3 in the Appendix.
Interestingly, hydrogenation leads to isotope shifts wy/wp with a rather large spread,
from 0.998 to 1.394, and results in considerable reordering of the normal modes. Notably,
for the two C-C stretch modes at around 1390 cm ™!, we predict a rather unexpected decrease
in frequency by about 3cm™! for d0- compared to d8-naphthalene. This can be explained
by additional strain on the bond angles, as the more inert deuterium atoms do not displace
as much with the carbon atoms. The modified displacement pattern leads to an effective
increase in the force constant which more than negates the effect of the higher mass. Addi-
tionally, the almost constant shift of 1.35 for all high-frequency C-H stretch modes at around
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Figure 4.4: Comparison between phonon dispersion curves calculated with DF-cx of d8- and
dO-naphthalene. The black lines in the center illustrate the shift of zone center frequen-
cies (dots) by connecting the two modes with the highest projection between eigenvectors.
The black circles along I' in the perprotonated spectrum on the right are experimental IR
and Raman frequencies of solid naphthalene [216]. The intermolecular frequencies below
150 cm ™! were measured at 4K, the intramolecular frequencies at room temperature. For
the distinction between IR and Raman active modes, see Table B.2.
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2275cm ™! and 3075 cm ™!, respectively, corresponds almost exactly to the expected shift of
vmp/myg = 1.36.

Finally, we compare calculated DF-cx zone-center frequencies of dO-naphthalene with
experimental IR and Raman frequencies measured and reported by Suzuki et al. [216]. (All
frequencies are listed in Table B.2 in the Appendix. For visual comparison, we indicate the
experimental values with black circles along the I'-point in the spectrum in Fig. 4.4). Over-
all, the agreement between theory and experiment is excellent, resulting in a mean absolute
deviation of 1 %. Discrepancies between experimental and calculated values can have several
origins. The IR and Raman measurements were performed at room temperature, which lead
to increased anharmonic contributions, generally lowering the measured frequencies relative
to those computed within a harmonic approximation. Another complication is the assign-
ment of experimental frequencies. Overtones and combination bands in a dense spectrum
may be challenging to distinguish from fundamental frequencies. This can obfuscate mode
assignments, as can be nicely seen in the large table assembled by Lielmezs et al. [221]. To
help with the future comparison with these data, we list all calculated frequencies and their
respective symmetries in the Appendix in Table B.2.

4.3 Summary and outlook

In this chapter, we calculated the full phonon dispersion of d8- and d0-naphthalene with
density functional theory. We evaluated results obtained with three different density func-
tionals, namely LDA, PBE, and vdW-DF-cx. Comparing the resulting dispersion of the
intermolecular modes to the experimental data obtained with neutron scattering, we high-
lighted the necessity of using a vdW-corrected approach to accurately predict the phonon
spectrum. More specifically, we find that PBE fails to predict bulk lattice parameters for
naphthalene that result in reasonable frequencies relative to experiment. However, using
experimental lattice parameters, PBE can lead to relatively accurate phonon dispersion (al-
though qualitative discrepancies remain for intermolecular modes). LDA underestimates the
unit cell by 10 % and consistently overestimates the frequencies; unlike PBE, LDA performs
significantly worse at experimental lattice parameters. DF-cx, on the other hand, captures
both the ground-state geometry of the crystal as well as the phonon dispersion, both quan-
titatively and qualitatively. The small discrepancies with respect to experiment are likely
due to modest differences between the predicted lattice parameters and experiments, as well
as any differences between the experimental structures of d0- and d8-naphthalene.

Further, we presented calculations of the full phonon dispersion of both d8- and d0-
naphthalene, and compared the I'-point frequencies of d0-naphthalene to experimental values
obtained by IR and Raman spectroscopy. Being less sensitive to long-range intermolecular in-
teractions and lattice parameters, excellent agreement with intramolecular mode frequencies
was obtained by all three functionals.

This study demonstrates that including vdW interactions in the functional is crucial
in order to obtain predictive structural and vibrational properties for weakly-bound organic
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crystals and related materials like naphthalene. DF-cx, while already performing well, is only
one of many existing and potential vdW approaches, and crystalline naphthalene is one of the
simplest organic crystals. Our study provides further insight into the vibrational properties of
these materials across the Brillouin zone, and is a starting point for benchmarking other vdW
methods with naphthalene and known molecular crystals. Lastly, the good agreement with
experiment also validates the use of the harmonic approximation for the phonon calculation,
and sets the stage for the calculation of the electron-phonon coupling in the next chapter.
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Chapter 5

Band-gap renormalization, carrier
mobilities, and the nature of
electron-phonon coupling in
naphthalene

Organic molecular crystals feature strong electron-phonon interactions which are expected
to be crucial in determining their electronic properties at zero and finite temperature. In
this chapter we summarize our first principles calculations based on density functional the-
ory (DFT) of the electron-phonon interaction in naphthalene crystals, and the contribu-
tions of phonons to the renormalization and temperature dependence of the fundamental
band gap, and the resulting scattering lifetimes of electronic states near the band edges.
The phonon renormalization of the GW-corrected band structure predicts a fundamental
band gap of 5eV for naphthalene at room temperature, in good agreement with experi-
ments. From our calculated phonon scattering lifetimes of the electronic states, we obtain
the temperature-dependent electrical mobilities of electrons and holes which are in good
agreement with experimental measurements at room temperatures. Finally, we present an
energy self-consistent computational scheme for the electron-phonon self-energy, which leads
to the formation of strong satellite bands in the electronic band structure. We show that a
one-shot calculation of the self-energy can reproduce the self-consistent scheme, if the on-
the-mass-shell approximation is used, i.e., if the self-energy is evaluated at the bare DF'T
energies.

5.1 Introduction

Much attention has been drawn to the effect of electron-phonon coupling (EPC) on the elec-
tronic and transport properties of molecular materials [101, 103, 245]. Along with contribu-
tions from the lattice expansion and disorder, the EPC is responsible for the temperature-
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dependent renormalization of the electronic energies. It also generates scattering and decay
channels that result in finite lifetimes for electronic states and limits charge carrier mobili-
ties. The finite lifetimes result in a broadening of the electronic bands that can be seen in
photoemission spectroscopy.

The vast majority of prior theoretical studies of temperature effects in organic crystals
focus on the electronic lifetimes and use various approaches to calculate the mobilities [38,
93-95, 97-106, 109]. Fully ab initio studies that explicitly calculate the renormalization of
solids are usually limited to few-atom systems [149, 150, 246-249], or small molecules [108];
these methods have not been applied to larger-molecule structures like naphthalene. One
study that calculated both the broadening and renormalization of pentacene crystals, used
a tight-binding model parametrized by many-body perturbation theory (MBPT) calcula-
tions [250]. The study reported unusual quasi-discontinuities in the band structure caused
by EPC that have been corroborated by experimental results, showing “kinks” in the elec-
tronic dispersion [250, 251]. In another study, Vukmirovi¢ et al. [107] evaluated the EPC
matrix elements for two pairs of bands in naphthalene using first-principles methods. They
found weak EPC, validating the use of second order perturbation theory (a claim that we
challenge), and strengthening the argument for band-like charge carrier transport. Lee et al.
[109] use an approach within the same theoretical framework as applied here to calculate the
temperature-dependent hole mobility.

In this chapter, we compute from first principles the temperature dependence of the elec-
tronic structure and transport properties of naphthalene crystals. We use the dynamical
Allen-Heine-Cardona theory to compute both the real and imaginary parts of the electron-
phonon coupling self-energy. With this quantity, we can predict the temperature renormal-
ization of the band gap, and obtain the hole and electron mobilities within the self-energy
relaxation-time approximation. We discuss the details of the calculated frequency-dependent
self-energy, and identify features that should apply to other molecular solids, such as the ap-
proximate independence of the self-energy on the electron wave vector k. We find that
in naphthalene, the band dispersion, phonon frequencies, and the renormalization energies
are of the same order of magnitude, which challenges the validity of perturbation theory in
this system. We address this issue by exploring a self-consistent computational scheme for
the self-energy, and show that a single calculation of the self-energy can reproduce the self-
consistent results of the band gap renormalization and electrical mobilities, provided that
the on-the-mass-shell approximation is used, i.e., if the self-energy is evaluated at the bare
eigenvalues.

5.2 Results and discussion

5.2.1 Lattice parameters

As discussed in previous chapters, relaxing lattice parameters and atomic coordinates with
van der Waals corrected functionals or pair-wise dispersion corrections results in excellent
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Figure 5.1: Electronic band structure of naphthalene calculated with DFT. The locations
of the conduction band minimum (CBM) and valence band maximum (VBM) are indicated
with black dots.

agreement with low-temperature experiments. Here we use the Grimme D3 pair-wise vdW
correction method [121, 124] with PBE, which results in a relaxed unit cell volume 2 within
0.4% of the experimental value measured at 5 K'We use this relaxed unit cell for most of
the following calculations, and refer to it as Qppr.

To simulate thermal lattice expansion, we use fixed experimental lattice parameters ob-
tained at 295K, and relax the internal atomic coordinates using PBE-D3. The volume
of this room temperature structure is about 6 % larger than that of the low-temperature
structure. The main expansion occurs in the ab plane, and through a decreased tilt of the
monoclinic cell (see Table C.1 in the Appendix for all unit cell parameters). Any calculations
that use this experimental lattice are labeled with (2ogs5k.

5.2.2 Electronic and phonon band structures

The electronic band structure of naphthalene is characteristic for a small molecule crystal: it
possesses a large band gap combined with flat, well separated bands (Fig. 5.1). DFT yields an
indirect gap of 3.01 eV between the valence band maximum (VBM) at A and the conduction
band minimum (CBM) at I'. The weak intermolecular interactions between the molecules
leads to small bandwidths, up to about 0.4eV. Furthermore, because naphthalene has two
molecules per unit cell, the electronic bands double up in so-called Davydov pairs [252,
253]. In the vicinity of the band gap, these Davydov pairs are separated from each other by
about 0.4eV. This separation drastically reduces mixing of states from different Davydov
pairs. The wave functions of solid naphthalene are therefore mostly invariant throughout the
Brillouin zone, and closely resemble linear combinations of gas-phase-like molecular orbitals.

!The experimental crystal structures are available at the Cambridge Structural Database [181]. The
identifiers for the structures measured at 5 K and 295 K are NAPHTA31 and NAPHTAS36, respectively, and
published in association with [187].
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Dispersion and interband interaction increase for bands below —2 eV as the spacing between
electronic levels decreases, and for bands above 4.5eV as the wave functions become more
diffuse.

For the phonon frequencies, we obtain excellent agreement with experiments across the
Brillouin zone using PBE-D3 (see Appendix C.3), similar to our previous results with the
vdW-DF-cx functional in Chapter 4. Since we analyzed the vibrational properties of naph-
thalene in depth in this earlier work, we will give only a brief overview of the main features
here. In naphthalene, intermolecular modes (<20meV) can be clearly distinguished from
intramolecular modes (20-400meV). Intermolecular modes are translational and librational
modes of rigid molecules, while for intramolecular modes, the phonon displacement vectors
resemble linear combinations of gas phase vibrations.

We emphasize that, despite the clear separation between inter- and intramolecular modes,
we treat all phonon modes on the same footing. While hopping transport models often use
the rigid molecule approximation [229, 254, 255], it has been shown that the mixed inter- and
intramolecular low-frequency modes can have large EPC contributions, especially for larger
molecules like rubrene [256].

Upon thermal lattice expansion the spacing between molecules becomes larger. The
lowered interaction leads to softening of the intermolecular modes, decreasing the lowest
frequencies by up to 40%. In contrast, intramolecular frequencies, which depend on the
covalent interatomic forces, are computed to change very little, as shown in the Appendix
in Fig. C.3.

5.2.3 Temperature-dependent renormalization of the electronic
energies

We obtain the temperature-dependent corrections to the band structures of naphthalene
from the real part of the electron-phonon self-energy

gnk<T) = Egk + Re [ZZII)(<8?Lk7 T)} s (51)

where agk is the bare DFT eigenvalue with band index n and wave vector k, and €,y is the
renormalized energy. The self-energy X7 is calculated according to the procedure laid out
in section 2.4, and the computational details are given in Appendix C.1.

The temperature dependence of the VBM, CBM, and indirect band gap is shown in
Fig. 5.2. The zero-point renormalization (ZPR) of the DFT band gap is calculated to be
—0.23eV, and is equally caused by the decrease of the CBM (—0.12eV) and increase of the
VBM energies (0.11eV). This large correction reduces the DFT-PBE gap from 3.01eV to
2.78eV.

Increasing the temperature to 300 K, the band gap at unit cell volume Qppr is predicted
to be reduced by an additional —0.12eV. The rate of change of the gap at this temper-
ature is 0.05eV /100K, and increases only slightly to the linear limit of 0.064eV /100K at
temperatures beyond 500 K.
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Figure 5.2: a) Renormalization and temperature dependence of the band edge states at I and
A, with Qppr. The dotted lines indicate the ZPR, connecting the bare eigenvalues calculated
with PBD-D3 (circles) with the renormalized energies at 0 K. The renormalized energies for
Qogsk (squares) at 300K are plotted for comparison. b) ZPR (dotted) and temperature
dependence (solid) of the indirect band gap of naphthalene for Qppr. The red square shows
the renormalization at 300 K using Qsgsx.

The DFT gap for the experimental room temperature structure at the enlarged volume
Qogsk is widened, as expected, to 3.12eV, an increase of 0.11eV compared to Qppr. The
renormalization calculated at 300 K brings it down to 2.71eV. Hence, we conclude that the
two contributions to the renormalization we compute—the lattice expansion and the electron-
phonon interaction—are not independent, additive terms. The EPC shows considerable
volume dependence, with the renormalization increasing by 17 % from —0.35eV at Qppr to
—0.41eV at 995x. This can be explained by a narrowing of the electronic bands upon lattice
expansion and hence an increase in the electronic DOS. The increased DOS creates more
scattering channels on the scale of the phonon energies, and thus an overall larger self-energy.
Altogether, the volume expansion of {)o95x leads to two contributions to the renormalization
of opposite sign, resulting in a band gap at 300 K that is only 70 meV smaller than the value
at 0 K.

A complete description of the fundamental band gap is achieved by first correcting the
DFT band gap with many-body perturbation theory to properly describe the electron-
electron interaction, then adding the EPC corrections to account for the electron-phonon
interaction. In Chapter 3 we show that the GIW method, which accounts for the electron-
electron interaction, increases the indirect DFT band gap of naphthalene by about 2.3eV,
thus bringing the DFT+GW band gap of the expanded room temperature structure to
5.4eV. Adding the electron-phonon coupling renormalization computed at 300 K, we obtain
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a fundamental gap of 5.0 eV, in excellent agreement with the experimental room temperature
value of 5eV [257].

5.2.4 Electrical mobilities

We compute the electrical mobilities of the electrons (1¢) and the holes (u) in the self-energy
relaxation time approximation [258] with the expression

dk 0f,
o2 e P 52

agnk

Ma pe 0

where « is the Cartesian direction of the applied electric field and the current, p.y is the
carrier density of the electrons or the holes, {2 and gy are the volumes of the unit cell and
the Brillouin zone, v,k is the velocity of the electronic state nk along direction «, and
the sum over bands is restricted to conduction bands for u® and valence bands for p®. The
lifetimes 7, are obtained from the imaginary part of the electron-phonon self-energy

(1) = = T [Z3h (5 7] 5.3

To evaluate Eq. (5.2) we use the Wannier90 package [259] to interpolate our computed
electronic eigenvalues and velocities to a 60 x 60 x 60 k-grid. Calculating the EPC on this fine
mesh is prohibitively expensive. We find, however, that the frequency-dependent self-energy
for the bands around the gap is nearly independent of k (see Appendix C.6 for a detailed
analysis). We therefore obtain the lifetimes 7, on the dense k-grid by interpolating the
self-energy X%, of a single point k’ using the approximation

-1 2 € 0
T (1) =~ 7 Im[Z% (e, 1)) (5.4)
To minimize the error of this approximation, we choose k’ to be at A for the hole, and I" for
the electron mobility, the locations of the VBM and CBM, respectively.

The calculated temperature-dependent hole and electron mobilities are shown in Fig. 5.3.
Overall, the agreement with experiment is excellent at room temperature, and moderate to
good at low temperature. This indicates that electronic band transport limited by phonon
scattering accounts for much of the electrical mobility. It is also apparent that the lattice
expansion plays an important role in obtaining accurate values, as the agreement greatly
improves in most cases when using the room temperature unit cell with {2595x. To more ac-
curately predict the power law (or the slope) of the experimental mobilities, the calculations
need to be repeated using experimental lattice parameters obtained at different tempera-
tures. This has been shown to lead to good agreement of the power law exponents [109].
Another reason for the disagreement with experiment is the contribution of polaronic effects
and the physics of a hopping transport mechanism, which is missing from our first-principles
approach. In particular, at temperatures above 100 K, the experimental electron mobilities
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Figure 5.3: Calculated temperature-dependent hole (top) and electron (bottom) mobilities
in comparison with experiment (blue dots) [260]. The calculated mobilities at 300 K using
experimental room temperature (Qq95x) lattice parameters (red squares) agree very well
with the experimental values. For reference we also show the temperature dependence of the
mobilities for the relaxed structure (Qppr, orange dashed).

in the b and ¢* direction show a decreased temperature dependence, commonly attributed
to the transition to hopping transport [96, 261-263].

To gain insight into the mobilities, we decompose them into energy-resolved contributions
by approximating Eq. (5.2) in the following way

(5.5)

=< [

Pe,h

(e)7(e),

e7h ~
My =~

where D(¢e) is the density of states (DOS), f’(¢) is the derivative of the Fermi-Dirac distri-
bution with respect to energy, and we define the average squared velocity function

d(e — enk) (5.6)

'Unk a
QBZ

and the average lifetime function

Z/ QBZTnk5 5nk>‘
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The bounds of the integral in Eq. (5.5) go from —oo to the Fermi energy ep for holes, and
from e to +oo for electrons, and we add a small Gaussian smearing of 5meV to evaluate
the Dirac delta functions in Egs. (5.6) and (5.7).

Equation (5.5) approximates the energy-resolved contributions to the mobilities as the
product of four functions of energy. We plot these functions for (sgsx in Fig. 5.4. At 300 K,
the contributions to the mobilities extend up to about 0.1 eV above or below the band edges.
Within this region, the DOS, velocity, and lifetime are generally not monotonic functions
of energy, but show distinct features. This highlights the need for a more detailed theory
for predictive calculations as we use here; in contrast, for example, to approximations of the
mobility that only use the effective mass of the band extrema, or constant effective lifetimes.
This is especially true for p;, where the main contribution to the mobility is situated near
the peak of the DOS, almost 0.1eV within the conduction band. Using this analysis, we
can also explain why the electron mobilities are generally lower than the hole mobilities.
Comparing the individual functions, we see that the velocities of electrons along the a and c¢*
directions are actually larger than for holes. However, the stronger electron-phonon coupling
of the conduction band reduces the electron lifetimes by a factor of almost two compared to
the hole lifetimes, more than negating the higher velocities. In general, this analysis shows
the critical role the individual contributions play in quantitatively determining the mobility.

While the expression in Eq. (5.5) is of great practicality for computing the mobilities
and visualizing the energy-resolved lifetimes and velocities, it also turns out to be an ex-
cellent approximation. The maximum relative error compared to Eq. (5.2) is below 10 %,
and the mean absolute relative error below 5%. Mobilities calculated with this approxi-
mation deviate less than 3.3% (see Appendix C.7). In addition to being independent of
k, the frequency-dependent self-energy of the highest (lowest) two valence (conduction) is
almost identical. This is because the wave functions, and hence the electron-phonon ma-
trix elements, of Davydov pairs are so similar (see Appendix C.6). Within this k- and
n-independent approximation, the electron and hole lifetimes are only a function of energy,
and the expressions in Eq. (5.2) and Eq. (5.5) become equivalent.

5.2.5 Self-consistent electron-phonon self-energy

Figure 5.5 shows the frequency-dependent self-energies of the valence and conduction band
alongside the electronic DOS. We see a clear correlation. This is mainly due to the fact
that the electron-phonon coupling matrix elements are relatively independent of k and n
within a Davydov pair. The imaginary part of Eq. (2.25) then becomes proportional to the
joint electronic and vibrational density of states, weighted by the coupling strength of each
phonon. In agreement with previous studies [107, 109], we find that intramolecular modes
around 0.19 eV have the strongest coupling (see Fig. C.6 in the Appendix). Correspondingly,
the peaks of the imaginary part of the SE are shifted by about 0.19 eV compared to the peaks
of the DOS.

We also note from Fig. 5.5 that the real part of the self-energy varies rapidly between 0
and 0.15eV over the frequency range corresponding to the bandwidth, which is on the order
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Figure 5.4: The energy-resolved decomposition of the mobility according to Eq. (5.5) of holes
(top) and electrons (bottom) at 300 K and the experimental room temperature structure with
Qogsk. The velocity (orange solid) and the lifetime (blue dash-dot) are affiliated with the
left and right y-axes respectively. The density of states D(e) (green dashed), the derivative
of the Fermi-Dirac distribution (red dotted), and the mobility integrand (gray filled) are in
arbitrary units, but share the same scale across all plots.

Ik (eV)

CBM

w (eV)

Figure 5.5: The real (solid) and imaginary part (dashed) of the electron-phonon self-energy
of naphthalene, evaluated for the VBM at A (left) and CBM at I' (right). The features of
the self-energy correlate with the electronic DOS (filled).
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of 0.4eV. The renormalization of the bands will therefore significantly alter the shape and
width of the DOS, upon which the self-energy depends. The magnitude of the self-energy
corrections suggests that we should compute the self-energy self-consistently, by updating
the electronic energies in Eq. (2.25) with the renormalized values.

Accordingly, we examine using an eigenvalue—self-consistent (evSC) cycle for the self-
energy, whose iterative steps can be summarized as

Erx = o + Re [Enk(g?zkv €9nk+q>]

€2 = o + Re [an(g}wb gink-ﬁ—q)]

e = Eme T Re Skl b)) (5.8)

where Enk(aﬁl, 5:7;{1 +q) indicates the use of renormalized eigenvalues in the self-energy. We

use the k-independence approximation to efficiently calculate the renormalized states mk-+q
as

Emktq Egn,k-‘rq + Re [Enk(d;klm)} - (5.9)
This procedure converges the renormalized energies rapidly to within 2meV for the bands
around the gap (see Fig. C.9 in the Appendix).

Our method effectively includes all high-order non-crossing electron-phonon coupling
diagrams in the self-energy. It does not, however, allow for multi-phonon satellite bands
to form in the spectral function, as, for example, the cumulant expansion would [264]. A
similar level of theory as evSC was previously achieved using a time propagation of the
Green’s function [265].

While the self-consistent calculation of the electron-phonon coupling self-energy offers a
clear description of the quasiparticle temperature renormalization and lifetimes, one generally
aims to compute these quantities from a one-shot calculation of the self-energy. Two different
procedures are often used. In the on-the-mass-shell approximation [266], which we have used
so far, the renormalized energies are computed according to Eq. (5.1) A different approach
is to evaluate the self-energy at the quasiparticle energy, which corresponds to the peak of
the spectral function, that is,

enk(T) = 0 + Re[Zh (e, T)]. (5.10)

In Table 5.1, we compare the two one-shot procedures against the self-consistent scheme. For
the VBM and the CBM, the on-the-mass-shell approximation appears to better reproduce
the self-consistent scheme, both for the real and imaginary part of the self-energy. The
quasiparticle solution vastly overestimates the lifetimes of the band extrema (see Fig. C.11
in the Appendix).
Next, we examine the effect of the evSC approach through the spectral function, given
by the imaginary part of the Green’s function:
ep
A (o) = 1 ’Im [an(wz] ‘ . (5.11)
T |w = ehi — Re[Z(w)] | ™ + Im [Z75 (w)]
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Table 5.1: Comparison of the one-shot self-energy computed in the on-the-mass-shell ap-
proximation (3(g°)), the one-shot self-energy evaluated at the quasiparticle solution (3(¢)),
and the eigenvalue—self-consistent self-energy (evSC).

Y% X(e)  evSC

Aeypy (0K) 011 0.09  0.12
Aecpy (0K) =012 —0.09 —0.12
rvew (300K) 870 3847  7.91
7epm (300K) 473 2116 6.42

It describes the probability of finding an electron in state nk at energy w. The quasiparticle
(QP) peaks of the spectral function appear at w = €° — Re[Z°P(w)], which corresponds to
the solution of Eq. (5.10). The spectral function allows us to compare both the renormal-
ization (position of the QP peak) and the broadening (width and height of the QP peak)
simultaneously.

Figure 5.6 shows both the one-shot and evSC spectral function, where we use the k-
independence approximation to interpolate A,x(w) across the Brillouin zone. We chose the
self-energy at I as starting point for the interpolation, and checked that the choice of starting
point does not alter the results significantly.

The QP bands of the evSC spectral function show a discontinuity at energies around
0.2eV below the VBM and above the CBM, due to the spectral weight being transferred
from the main quasiparticle peak to the satellite band. In contrast, the bands of the one-
shot calculation are continuous, and the distinction between the main quasiparticle peak
and the satellite remains clear in most cases. This band discontinuity (or splitting) happens
when the real part of the self-energy has a slope 2 1. Then, the Dyson equation (5.10) may
admit more than one solution in certain regions of the Brillouin zone. Such high slope in the
self-energy is seen near the poles, located one phonon frequency away from the peaks of the
DOS, as seen in Fig. 5.5 (the strongest coupling modes are ~0.19¢eV). A similar splitting has
also been observed theoretically and experimentally in pentacene and rubrene crystals [250,
251, 267] as well as non-organic systems [268].

Finally, we evaluate the mobilities from the evSC self-energy at 300 K using (2o95x lattice
parameters, taking into account the renormalized electronic eigenvalues and velocities. The
results are listed in Table 5.2 in comparison with the values for the one-shot calculation and
experiment. The evSC approach lowers the hole mobilities, bringing pu, and u;, to even better
agreement with experiment. In contrast, evSC electron mobilities increase slightly compared
to the one-shot calculation. By looking at the decomposition of the mobility via Eq. (5.5),
we can attribute the decrease of the hole mobility to lower lifetimes, and the increase of the
electron mobilities to higher lifetimes and velocities (see Fig. C.12 in the Appendix for the
decomposition).
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Figure 5.6: (a) The DFT-PBE-D3 band structure of naphthalene of the two highest va-
lence, and two lowest conduction bands. (b) and (c¢) The spectral function of the full band
structure calculated using the (b) one-shot and (c) self-consistent method. To highlight
the renormalized band structure, the highest peak for each state nk, i.e., the solution to
Eq. (5.10) with the smallest imaginary part, is marked with a dot. While the one-shot
spectral function displays a continues quasiparticle band-structure, the self-consistent result
shows discontinuities.
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Table 5.2: Mobilities calculated at 300 K with experimental lattice parameters (€a95x ), using
the one-shot and self-consistent (evSC) method, in comparison with experimental values. All
values in cm?/Vs.

hole electron
fa M Her fa Mo e
one-shot 1.20 2.73 0.24 0.67 031 0.21
evSC 0.90 219 0.18 1.18  0.59  0.31
Exp. 0.79 134 0.31 0.58 0.63 0.39

5.3 Conclusion

In summary, we used comprehensive ab initio calculations based on DFT to study the effect
of electron-phonon interactions on the electronic structure of naphthalene crystals, as well as
its electrical mobility. Both the temperature-dependent renormalization of the gap, and the
hole and electron mobilities are in good agreement with experimental values, if the lattice
expansion is taken into account. Because of the low dependence of the self-energy on k
and n, we can visualize the contributions to the mobility at each band energy in terms of
the density of states, average scattering time, and average velocity squared. This greatly
facilitates the energy-resolved analysis of the mobility, and provides an efficient way to model
charge carrier transport in organic systems.

Furthermore, we indirectly and approximately investigated the effect of higher-order
electron-phonon coupling terms by calculating the self-energy self-consistently. The band
gap renormalization and mobilities show only moderate differences between the one-shot
and self-consistent calculations, as long as the on-the-mass-shell approximation is used. Both
these properties depend mainly on the electronic states close to the band gap, which are only
weakly affected by the evSC treatment. However, the electronic states further away from
the band edges are strongly affected by the self-consistent treatment of the self-energy. The
spectral function reveals a band splitting and band widening comparable to what has been
observed experimentally in other molecular crystals.

Most of the qualitative results discussed in this work result directly from the weak in-
teractions between molecules, a common feature of molecular crystals. This includes the
k-independence of the self-energy, and the band widths being on the same order of magni-
tude as the phonon frequencies. The methods and conclusions presented here likely apply
to several other molecular crystals, and provide an efficient approach for the ab initio calcu-
lation of the electron-phonon self-energy and electrical mobility.
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Chapter 6
Outlook

In this dissertation we use ab initio methods based on density functional theory to provide
detailed insight into the complexity of the electronic and vibrational properties of organic
crystals. We highlight the care that has to be taken to obtain accurate and predictive results,
using van der Waals corrections for structural accuracy, different flavors of many-body per-
turbation theory for excited state energetics, and going beyond second-order perturbation
theory for the electron-phonon self-energy. This work presents a comprehensive analysis of
the renormalization and charge carrier mobility in acenes, within the adiabatic harmonic
approximation.

There are several directions and new questions that emerge from our studies. How large
are anharmonic contributions? Already 36 years ago, Jindal and Kalus [226] estimated
anharmonic shifts of intermolecular phonons of up to 10 %, which is on the order of the
deviation we see in our calculations. However, we generally underestimate the frequencies
of the intermolecular modes, and anharmonic contributions would further lower the phonon
frequencies. In contrast, the significant overestimation of high-energy C-H vibrations might
be due to missing anharmonic contributions. As evident by our eigenvalue—self-consistent
results, higher-order terms in the electron-phonon self-energy can have a strong impact in
organic crystals. It has been shown that even if the phonons follow the harmonic description,
the eigenvalues can deviate significantly [108], for example, leading to a 60 % reduction of
the ZPR in lithium fluoride [157], which has a very flat valence band comparable to organic
crystals. Different approaches have been developed and successfully applied to inorganic
systems [139, 157, 269-271] to capture these higher-order effects.

While we study both the fundamental and optical gap in Chapter 3, we calculate the
electron-phonon coupling using Kohn-Sham wave functions. Beyond anharmonicity, electron-
electron effects need to be included to accurately describe experimental conditions. For one,
use of the GW self-energy increases the band velocities of naphthalene by about 10 %, and
hence leads to higher mobilities [109]. Even larger could be the influence on the electron-
phonon coupling itself. Electron correlation via GW corrections substantially increases the
EPC in graphene, graphite, and diamond [249, 272]. Based on our results in Chapter 5
this could further increase the electronic band width, but would also decrease the lifetimes.
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While we thus expect a stronger renormalization and temperature dependence of the band
gap, it remains to be seen, if these effects are on the same order of magnitude, and essentially
cancel their contribution to the mobility.

Experimentally one of the most accessible observables is the optical absorption. Surpris-
ingly, the optical gap in tetracene and pentacene increases with temperature [207, 273], the
opposite of what we predict for the fundamental gap of naphthalene. This suggests that the
volume expansion increases the exciton energies more than it increases the exciton-phonon
coupling. Additionally, there is strong evidence that singlet fission in organic crystals can
be affected or even driven by phonon scattering [274-277]. Frameworks to calculate exciton-
phonon coupling from first principles have recently been developed [278-280], and we expect
to see first results for organic crystals soon [281], shedding light on these important questions.

In this work we discussed in detail the mobility of naphthalene within the band transport
framework, and how our results translate to other organic crystals. However, it seems clear
that charge transport in molecular systems is situated somewhere between band and hopping
transport, with the details being system-dependent and the exact mechanism still under ac-
tive debate [103]. One challenge is to go beyond the Born-Oppenheimer approximation and
include nonadiabatic dynamics. The biggest challenge, however, is to find an unbiased and
predictive theory that seamlessly applies to the huge variety in molecular structures and crys-
tal arrangements. This is instrumental for developing new efficient organic semiconductors,
and improve existing devices. Most of the methods currently applied are computationally
rather expensive, so broad benchmark across a variety of molecular systems would demand
a vast amount of resources.

Lastly, very few calculations we are aware of are truly ab initio, as practically all use
structural information from experiment. Indeed, predicting the crystal structure of organic
crystals—or rather any complex material—is an ongoing challenge. However, this branch
of research is rapidly gaining traction as the algorithms and energy predictions continue to
improve, and more and more investigations are reported for these systems [282]. As we have
seen in Chapters 3 and 4 the structure has a large effect on the electronic and vibrational
property. Thus, being able to accurately predict new structures that can guide experimental
efforts would be of utmost importance. Maybe one day we will be able to design molecular
semiconductors from scratch that reach the efficiency of natural light harvesting proteins,
the initial inspiration for this work. I hope this dissertation brought us one step closer.
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Appendix A

Appendix for Electronic structure of
acenes

A.1 Computational parameters

Our DFT calculations in Chapter 3 are performed with the Quantum ESPRESSO (QE)
package [284], unless otherwise indicated. [I'-centered Monkhorst-Pack k-point grids are
used for all calculations [285]. For geometry optimizations, where Hellmann-Feynman forces
and stress tensor components are minimized, we use a number of k-points along each crys-
tallographic direction corresponding to a spacing of ~3.3 Bohr~! between neighboring points
in reciprocal space. All Hellmann-Feynman forces are converged to 1 x 107° Ry/Bohr and
total energies are converged to 1 x 1075 Ry. We use a plane wave basis with a kinetic energy
cutoff of 55 Ry. Taken together, these choices lead to total energies converged to 1 meV per
atom.

For calculations with vdW-DF functionals, we use the ultrasoft pseudopotentials (USPPs)
given in Ref. [131]; for vdW approaches based on interatomic pairwise potentials, we use
Fritz-Haber-Institut (FHI) normconserving (NC) pseudopotentials (PPs) [286] because these
corrections are not compatible with USPPs in the present version of QE. Following a prior
successful approach with vdW density functionals [287], we use Perdew-Burke-Ernzerhof
(PBE) [114] PPs for DF2 and DF and PBEsol [288] PPs for DF-cx [127]. (In principle,
native vd W-PPs have begun to be explored with vdW-DFs, and we relegate the evaluation
of such pseudopotentials for acenes to future work [289].) The latter choice is based on
the fact that the exchange functional of DF-cx is much closer in form to PBEsol than to
PBE. A test study reveals that the results are not significantly affected by this choice: for
naphthalene, the lattice parameters (and volume) obtained using DF-cx with PBE PPs differ
by no more than 1.2% (0.2 %) from standard DF-cx calculations.

To test the reliability of our PP choice, we benchmarked our calculations of solid naph-
thalene (see section 3.2.1 for details) against other codes and pseudopotentials. The lattice
parameters obtained with our USPPs, the FHI NC PPs available from the QE website [290],
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and Garrity-Bennett-Rabe-Vanderbilt (GBRV) [291] USPPs agree within 0.3 %. Addition-
ally, we relaxed the structure of benzene with the VASP code, using projector-augmented
waves [292] with vdW-DF2, obtaining lattice parameters in agreement with those obtained
from QE to within 0.4 %. Note that a higher, 110 Ry cutoff was used for the FHI NC PPs
calculations. The GBRV USPPs were constructed to be exceptionally hard and required a
plane-wave cutoff of 350 Ry to achieve a convergence threshold of 1meV /atom.

Our MBPT calculations are performed with the BerkeleyGW package [293]. Capitalizing
on its efficient and highly parallel diagonalization techniques, Kohn-Sham starting-point
wave functions and eigenenergies for input into MBPT are generated with the ABINIT
software suite [294].

In some of the calculations, we deliberately use experimental lattice constants to study
the accuracy of the GW-BSE approach independent of geometry. For consistency, we use
room-temperature experimental data for all acenes [179, 187, 190, 197, 295] except for hex-
acene, where crystallographic data are only available at 7' = 123K [191]. For pentacene,
we consider the thin-film polymorph (denoted below as P3) because it is the one most com-
monly measured in experiment (see section 3.2.1). In other calculations, where we explore the
impact of the geometry, we use the optimized geometry obtained from the DFT calculation.

We note that BerkeleyGW requires NC PPs as input, but we use USPPs for lattice
optimizations. Prior to the MBPT calculations, we relaxed the internal coordinates using
NC PPs within PBE, with the lattice parameters held fixed at their optimized value. This
was found to result in negligible differences for both geometry and excited-state properties.
We followed the same internal relaxation procedure when using experimental lattice vectors,
following Ref. [83].

Our GW calculations involve a number of convergence parameters, which are set to
assure that quasiparticle gaps, highest-occupied molecular orbital (HOMO) energies, and
band-edge energies for crystals and gas-phase molecules are converged to ~0.1eV. Our
dielectric function is extended to finite frequency using the generalized plasmon-pole (GPP)
model of Hybertsen and Louie [58], modified to handle non-centrosymmetric systems by
Zhang et al. [296]. We use an energy cutoff of 10 Ry to truncate the sums in G space
used for the calculation of the polarizability. We sum over a number of unoccupied bands
equivalent to an energy range of 30eV. Response functions and ¥ are evaluated on k-point
meshes selected to lead to a spacing of ~1.6 Bohr™! in reciprocal space.

For our BSE calculations, the BSE coupling matrix is constructed with 8 valence x 8
conduction bands, sufficient to converge the transition energies involving the lowest states,
as shown explicitly in Fig. A.3. Two k-point meshes are used: a coarse k-point mesh for
the BSE kernel and a fine k-point mesh to calculate the low-lying excited states. Coarse
k-meshes are chosen to be the same as those used in the GW step, while fine meshes are the
same as in the geometry optimization. These k-meshes are explicitly provided in Table A.3.
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A.2 Structural properties: Benchmarking of vdW
functionals

In this Appendix, we provide detailed information on the structural data obtained with
different methods for the acene family of crystals. As in the main text, we consider standard
DFT methods (LDA and PBE) and different vdW methods: D2, TS, DF1, DF2, and DF-cx.

Throughout, we make use of CSD [181] data to benchmark our results. For the smallest
acenes, low-temperature data (7' < 14 K) are available in the CSD under the entries BEN-
ZEN14, NAPHTA31, and ANTCEN16, from Refs. [187-189]. Reference [297] also reports
low-temperature data for benzene, consistent with the data of Ref. [188]. For tetracene-P,
and pentacene-Ps, we extrapolate experimental data from Refs. [298, 299] to 0 K, as shown
in Fig. A.1. Note that we assign the tetracene structures of Ref. [299] to its P; polymorph.
For other pentacene polymorphs and hexacene, in the absence of sufficient low-temperature
data that would allow for extrapolation to 0 K, we compare to the lowest-temperature ex-
perimental data available from Refs. [179, 190, 191], also found in the CSD as PENCEN,
PENCEN10, and ZZZDKEO0O1. We emphasize that only by extrapolating experimental data
to 0K do we observe consistent trends in the comparison of our relaxed geometries for the
various DF'T methods used here. In the main text, we have also compared our data to experi-
mental cohesive energies. These are taken from Ref. [90], in which temperature contributions
have been removed. A complete set of experimental and calculated lattice parameters and
cohesive energies is given in Tables A.1 and A.2, respectively. Lattice parameters are usu-
ally found in literature following old conventions. However, recent data use the so-called
Niggli [300] (or reduced) lattice parameters. For completeness, we present both conventions
in Table A.2. Finally, in Fig. A.2 we present a comparison of theory and experiment for
the angles that characterize the herringbone structure in the three pentacene polymorphs.
Here, all DF approximations predict angles in good agreement with experiment. At the
experimental resolution and temperature, we cannot conclude definitively which DF version
performs best for angle prediction, but see no reason for trends different from those reported
in the main text.

! The tetracene lattice parameters reported in the Ph.D. thesis of Haas [299] at 175K almost perfectly
match Py at 180K as reported in Ref. [161] (the volumes agree within 0.5 %). Further, by cooling the sample
from 175 to 106 K, Haas reports a slight reduction in volume, as shown in Fig. A.1 of our paper. Hence, we
can assign Haas’s structures to the Py polymorph. Note that the Ps polymorph has an appreciably smaller
¢ lattice vector (12.3 A) than the P phase (~12.5A).
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Figure A.1: Extrapolation of unit-cell geometry to 0K: Experimental lattice parameters
and angles of tetracene Py (blue) are extracted from Ref. [299], and those of pentacene Py
(orange) are extracted from Ref. [298], also labeled as PENCEN06-PENCENOS in the CSD.
These are fitted to linear functions of the temperature (dashed lines). The fits possess an
average root mean square of 7 x 1073 A and 0.05 A and 0.02° and 0.05° for tetracene Py and
pentacene Py , respectively.

Table A.1: Cohesive energies of the acenes. Calculated (Eep.) and experimental (EL3P) co-
hesive energies are tabulated. Experimental cohesive energies are taken from Ref. [90]. Mean

average error (MAE) and mean average percent error (MA%E) are shown for all functionals:
MAE = S0 | EEP, = Feon.i| /N and MA%E = SN | ESP: = Eoon.| / Eeon.i/ Now % 100,

i coh.,i coh.,i
where N,, is the total number of crystals. The asterisk indicates that TS data are taken
from Ref. [90]. All energies in eV.

PBE LDA D2 TS* DF1 DF2 DF-cx Exp.

Benzene 0.12 0.59 0.73 0.69 0.64 0.60 061 0.52
Naphthalene 0.15 0.76 1.16 1.04 0.93 0.86 0.92 0.82
Anthracene  0.19 097 1.61 139 124 1.16 123 1.13

Tetracene 0.25 1.21 210 1.56 142 1.56
Pentacene P; 0.30 146 2.61 1.88 1.76 1.87
Pentacene P, 0.30 148 2.63 1.88 1.76 1.92
Pentacene P3 0.31 142 2.61 1.88 1.79  1.87

Hexacene 0.36 1.82 2.18 221 2.09 230

MAE 0.66 0.09 0.35 0.22 0.11 0.05 0.10

MA%E 80 11 42 28 16 8 13
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Pentacene:
DF1 DF2 DF-cx Exp.

a) ab plane i b) be plane P, ¢ 50 47 47 53

\ i \ 12 12 12 12

6 53 o1 20 o1
o 15 14 16 14

25 95 23 o4
) 4 4 4

Figure A.2: Angles characterizing the pentacene herringbone structure: (a) Along the ab
plane, the herringbone angle 6 is the angle between the two distinct molecules. (b) Along
the bc plane, § is the angle between the ¢ axis and the long axis of the molecule. (Right
table) Angles calculated by different DF methods are compared to experimental data from
Refs. [179, 190, 298], labeled as PENCEN, PENCEN06, and PENCEN10 in the CSD, and
measured at 205 K, 120K, and 293 K for pentacene Py, Py, and Pj3, respectively. While 0 is
almost constant for all polymorphs (6 ~ 50° — 54°), ¢ is not. 50°-54° We use Niggli unit-cell
conventions and all angles are in degrees.
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Table A.2: Structural parameters for the acene crystal series. Lattice parameters (using old
conventions) a, b, and ¢ (in A), lattice angles «, 8, and v (in degrees), and unit-cell volumes

(in Ag) are calculated from force and stress relaxation within different DF'T approximations.
Niggli lattice parameters (denoted by a prime) are also shown wherever they differ from old-
convention ones. Experimental lattice parameters measured at low temperature 7' are also
shown. For pentacene, three different polymorphs are considered, labeled as P, Py , and
P3. The asterisk denotes the following: where possible, lattice parameters are extrapolated
to 0K (see text for details). Mean absolute errors (MAE) and mean absolute percentage
errors (MA%E) with respect to experimental lattice parameters are also shown: In the error
evaluation, we only considered experimental data with 7" < 16 K or data extrapolated to
0 K. For brevity, symmetry-imposed angles are omitted. TS data taken from Ref. [169] for
benzene and from Refs. [89, 187-189] for longer acenes. Experimental data are taken from
Refs. [179, 187-191, 299].

PBE LDA D2 TS* DF1 DF2 DF-cx EXp.

Benzene T=4K
a 7.46 6.37 6.43 6.95 7.01 6.87 6.73 6.70
b 8.11 7.06 7.12 7.58 7.49 7.39 7.40 7.36
c 9.93 8.96 9.05 9.51 9.89 9.41 9.49 9.37
Q 601.1 403.0 414.4 500.8 518.4 477.9 473.0 461.8
Naphthalene T=5K
a 8.99 7.74 7.79 8.12 8.48 8.22 8.06 8.08
b 6.31 5.76 5.79 5.90 6.06 5.97 5.91 5.93
c 9.13 8.37 8.44 8.65 8.79 8.57 8.75 8.63
8 122.1 125.5 125.3 124.2 123.3 122.9 124.4 124.7
Q 438.9 304.0 310.4 342.2 377.9 353.3 344.4 340.4
a 6.31 5.76 5.79 5.90 6.06 5.97 5.91 5.93
v 8.77 7.40 7.47 7.85 8.21 8.03 7.87 7.78
d 8.99 7.74 8.44 8.12 8.48 8.22 8.06 8.08
o 118.1 112.9 121.7 114.5 116.4 116.4 113.4 114.1
Q 438.9 304.0 310.4 342.2 377.9 353.3 344.4 340.4
Anthracene T=16K
a 9.63 8.10 8.13 8.40 8.75 8.56 8.38 8.37
b 6.35 5.80 5.85 5.91 6.12 6.02 5.96 6.00
c 10.14 10.82 10.89 11.12 11.11 11.07 11.23 11.12
153 109.7 126.5 126.5 125.2 123.4 124.2 125.6 125.4
Q 584.4 408.9 416.6 451.0 496.7 471.2 456.5 455.2
a 6.35 5.80 5.85 5.91 6.12 6.02 5.96 6.00
v 9.63 8.10 8.13 8.40 8.75 8.56 8.38 8.37
c 10.14 8.86 8.91 9.31 9.65 9.44 9.32 9.26
o 109.7 100.9 100.7 102.4 105.9 104.3 101.4 102.0

94 584.4 408.9 416.6 451.0 496.7 471.2 456.5 455.2
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Table A.2 (continued)
PBE LDA D2 TS* DF1 DF2 DF-cx EXp.
Tetracene T=0K* T=106K
a 6.35 5.89 5.93 6.05 6.15 6.05 6.05 6.03 6.04
b 9.26 7.43 7.43 7.71 8.21 7.92 7.69 7.71 7.79
c 13.60 12.45 12.55 13.03 13.34 13.16 12.93 12.88 12.95
« 72.6 78.4 78.7 7.7 75.1 75.6 78.0 77.6 77.3
153 71.5 72.8 72.5 71.9 71.2 72.0 72.6 72.1 72.1
v 86.2 85.1 85.1 85.7 86.4 86.0 85.5 85.5 85.7
Q 723.2 510.0 516.6 564.1 616.1 579.9 561.3 557.7 566.1
a 6.35 5.89 5.93 6.05 6.15 6.05 6.05 6.03 6.04
v 9.26 7.43 7.43 7.71 8.21 7.92 7.69 7.71 7.68
c 13.06 12.09 12.16 12.53 12.76 12.67 12.53 12.43 12.50
o 106.2 99.5 99.2 100.7 103.8 103.0 100.2 100.6 101.0
B 99.0 100.5 100.2 99.2 98.3 99.0 100.1 99.6 99.5
5 93.8 94.9 94.9 94.3 93.6 94.0 94.5 94.5 94.3
Q 723.2 510.0 516.6 564.1 616.1 579.9 561.3 557.7 566.1
Pentacene P, T=295K
a 9.14 7.37 7.36 7.66 8.17 7.90 7.59 7.90
b 6.33 5.97 6.00 6.04 6.16 6.08 6.07 6.06
c 16.13 15.54 15.64 15.85 15.99 15.83 15.98 16.01
a 101.6 103.8 103.5 100.7 101.1 102.0 101.9
153 110.6 113.9 114.0 111.2 111.8 112.5 112.6
v 86.2 84.7 84.7 85.8 86.1 85.7 85.8
Q 856.1 607.0 613.5 664.1 736.8 692.7 666.0 692.4
a 6.33 5.97 6.00 6.16 6.08 6.07 6.06
v 9.14 7.37 7.36 8.17 7.90 7.59 7.90
c 15.49 14.23 14.33 15.09 14.84 14.84 14.88
o 102.9 83.5 94.0 99.1 97.9 95.7 96.7
B 99.8 78.1 102.0 99.0 99.7 100.7 100.5
o 93.8 84.7 95.3 94.2 93.9 94.3 94.2
Q 856.1 607.0 613.5 664.1 736.8 692.7 666.0 692.4
Pentacene P T=0K* T=120K
a 6.52 6.18 6.25 6.13 6.45 6.33 6.29 6.30 6.29
b 8.91 7.27 7.24 7.68 8.07 7.81 7.52 7.67 7.69
c 15.16 13.80 13.85 14.53 14.69 14.49 14.35 14.29 14.41
« 71.4 78.1 78.5 77.3 74.7 76.2 77.8 77.2 76.9
153 87.6 89.4 89.3 87.4 88.5 88.1 88.7 88.5 88.2
ol 84.9 83.7 83.5 84.7 84.8 84.6 84.1 84.1 84.4
Q 830.7 603.0 609.8 663.9 734.0 693.5 660.3 669.4 674.7
Pentacene P3 T=293K
a 6.16 5.71 5.78 6.65 6.04 5.88 5.92 5.96
b 8.87 7.05 7.01 6.92 7.94 7.76 7.36 7.60
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Table A.2 (continued)

PBE LDA D2 TS* DF1 DF2 DF-cx EXp.

c 15.95 15.29 15.41 16.27 15.54 15.53 15.68 15.61

« 81.4 82.5 82.8 81.9 80.8 81.8 81.2

153 87.7 89.8 90.0 87.4 87.9 87.2 86.6

v 90.0 90.0 90.0 89.4 89.7 89.7 89.8

Q 861.1 610.9 619.2 746.3 737.2 699.0 675.9 697.0
Hexacene T=123K
a 6.60 6.47 6.48 6.43 6.34 6.61 6.31

b 9.10 6.85 6.85 8.04 7.84 7.05 7.70

c 17.30 15.64 15.71 16.79 16.49 16.14 16.48

o 75.1 95.2 95.1 101.1 99.9 95.8 98.8

8 85.4 92.0 92.1 90.6 91.3 91.5 91.2

¥ 84.9 97.1 97.2 95.4 95.5 96.8 95.8

Q 998.4 684.0 688.8 848.3 803.3 743.3 785.9

MAE [A]  0.76 0.29 0.25 0.09 0.28 0.11 0.06
MA%E 9 3 3 1 3 1 1
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Table A.3: k-point mesh size used in the BSE calculations for the acene crystals.

k-grid size

coarse fine

Benzene 4x3x5H 88X 6x9
Naphthalene 4 x5x4 7x10x7
Anthracene 4xHx3 Tx10x5H

Tetracene S5x4x2 10x8x5H

Pentacene-P1 5 x4x2 10x8x4
Pentacene-P2 4 x4x2 10x8x4
Pentacene P3 5 x4x2 10x8x4

Hexacene Hh X4 x2 9x9x4

A.3 Convergence parameters of GIV-BSE calculations

In Table A.3, we show the size of the coarse and fine k-point grids used in the BSE calcula-
tions for the acene crystals. These are generated as:

Ni = ao/|aild, (A1)

where the index ¢ indicates the crystallographic direction, a; is the lattice vector along 1,
ap = 11.3A and d equals 5 and 10 for the coarse and fine grids, respectively. The k-point
meshes shown here correspond to the structures relaxed within DF-cx, when relaxing with
other functionals the number of k-points may change according to Eq. (A.1)

In Fig. A.3 we show convergence tests on the number of conduction/valence bands in the
BSE Hamiltonian. We find that a BSE Hamiltonian of 8 x 8 valence and conduction bands
assures a convergence of better than 0.1eV for the low-lying excited state energies of the
acene crystals considered in this work.

A.4 Electronic band structures of acenes

In Figs. A4 and A.5, DFT and GoW, band structures for the acenes are shown. As explained
in Chapter 3 GoW), is the method of choice for small to medium size acenes. For the longest
acenes: hexacene and probably pentacene, eigenvalue-self-consistent GW (evGW) gives
more accurate band structures [158]. Hence, for these crystals, their corresponding evGWW
band structures are shown as well. All band structures are interpolated using Maximally-
Localized Wannier Functions (MLWFs) [301] with the WANT package [302, 303]. DOS are
also interpolated with MLWFs to a dense mesh of 40 x 40 x 40 k-points for benzene and
40 x40 x 20 k-points for the rest of acenes.
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Figure A.3: Convergence on the number of bands in the BSE calculations of the singlet (left
panel) and the triplet (right panel) energies of the acene crystals, from benzene N = 1 to
hexacene N = 6. A number of valence x conduction bands (1V,) is set to construct the
BSE Hamiltonian, and after a full-diagonalization the singlet/triplet eigenvalues E(N,) are
obtained. The excitation energy obtained with N, = 12 x 12 is set as the reference (F),
and the energy difference of the BSE eigenvalues with respect to the reference is plotted for
increasing N,. Our convergence threshold of 0.1eV is shown in a dashed horizonal black-line,
as a guide to the eyes. Here we use the geometries relaxed with DF-cx.
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Figure A.4: Calculated energy band structures for small to medium-sized acenes. (a-c)
Brillouin zones for the three different space groups are indicated: Benzene is orthorhombic
Pbca, Naphthalene and Anthracene are monoclinic P2;/a, and longer acenes are Triclinic
P1. (d-g) Calculated DFT (in blue) and G¢W, (in orange) band structures and DOS in
2e~ /cell units. Fermi levels are at 0eV.
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Figure A.5: Calculated energy band structures for pentacene and hexacene. Band structures
and DOS in units of 2e™ /cell. obtained with two GW flavors are shown: standard GoW, (in
orange) and evGW (in green). As discussed in Ref. [158], for hexacene, and probably for
pentacene, evGW gives QP band structures in agreement to experimental data, while GoW,
slightly underestimates fundamental gaps. The Brillouin zones are shown in Fig. A.4. Fermi
levels are at 0eV.
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Appendix B

Appendix for Lattice vibrations of
naphthalene

B.1 Computational parameters

For all phonon calculations in Chapter 4, we use density functional theory with a plane wave
basis and norm-conserving Troullier-Martins pseudopotentials [286], employing the software
suite QUANTUM ESPRESSO v5.1.1 [284]. We perform calculations with the LDA, PBE,
and vdW-DF-cx functionals. A kinetic energy cutoff of 110 Ry converges the total energy
for all three functionals to within 1 meV/atom. Calculations with vdW-DF-cx use the PBE
pseudopotentials.

As starting geometry we use the experimental crystal structure of naphthalene measured
at b K [187], available at the Cambridge Structural Database [181] (ID: NAPHTHA31).
Naphthalene belongs to the P2;/a space group, and contains two molecules per unit cell,
each of which are situated at inversion centers. The molecules form a layered herringbone
structure, with layers stacked in the c-direction. The naphthalene unit cell is depicted in
Fig. 4.1.

Prior to the phonon calculations, all internal coordinates are relaxed again, while keeping
the lattice parameters fixed and the symmetry constrained, using a smaller Monkhorst-
Pack grid of 2 x4 x 2 (corresponding to the mesh used in our phonon calculations; see
below). The Hellmann-Feynman forces are converged to 2 x 107° Ry/Bohr and the total
energy to 1078 Ry. To ensure accurate forces, the convergence threshold for all self-consistent
calculations is 10712 Ry.

Phonon band structures are calculated within a harmonic approximation via a finite-
differences (FD) approach with a 2x4x2 supercell, using I'-point sampling. For zone-center
phonon calculations, a single primitive cell with a centered Monkhorst-Pack k-grid of 2x4x2
is used, commensurate with the supercell size above. We displace each atom by 0.001 25 A to
generate the force constants in our FD approach. The frequency spectrum at each g-point
is obtained by diagonalizing the Fourier transform of the real-space force-constant matrix.
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The acoustic sum rule is enforced. For LDA and PBE, our FD approach is in quantitative
agreement with density-functional perturbation theory. Mode numbering throughout this
work includes the three acoustic modes, i.e., the first non-zero mode at I' is designated as
“mode 4”. We use 1.00794u for the mass of the hydrogen atoms in perprotonated (d0)
naphthalene or 2.01410u for those in perdeuterated (d8) naphthalene, depending on the
hydrogen isotope present in the experiment we compare to. In plotting our phonon band
structures, we follow Ref. [219] for our high-symmetry points and lines in g-space; however,
the labels are adopted from the more contemporary Ref. [304]. As the experimental spectrum
by Natkaniec et al. [219] was obtained at 6 K, we assume anharmonic effects are negligible,
and our comparison with the FD method within the harmonic approximation is valid.

Table B.1: Crystal coordinates of the unique sites in crystalline naphthalene after relaxation
of internal coordinates with DF-cx and LDA at relaxed, and PBE at experimental lattice
parameters. Lattice and relaxation parameters are given in the text.

DF-cx@Qpp e PBEQQppE LDAQQ pa
C 0.0813 0.0191 0.3236 0.0869 0.0213 0.3302 0.0820 0.0214 0.3359
C 0.1122 0.1643 0.2192 0.1153 0.1648 0.2225 0.1136 0.1691 0.2280
C 0.0482 0.1065 0.0370 0.0484 0.1062 0.0369 0.0489 0.1091 0.0387
C 0.0770 0.2528 0.9260 0.0743 0.2508 0.9222 0.0779 0.2581 0.9241
C 0.9858 0.8087 0.2504 0.9912 0.8117 0.2573 0.9855 0.8059 0.2594
H 0.1306 0.0675 0.4632 0.1382 0.0702 0.4719 0.1324 0.0729 0.4825
H 0.1851 0.3272 0.2745 0.1883 0.3265 0.2777 0.1880 0.3379 0.2863
H 0.1507 0.4150 0.9830 0.1477 0.4119 0.9787 0.1532 0.4260 0.9847
H 0.9608 0.6947 0.3335 0.9686 0.6993 0.3429 0.9596 0.6885 0.3459
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B.2 Phonon frequencies

Table B.2: All calculated frequencies for protonated naphthalene at I' compared to ex-
perimental infrared (IR) and Raman spectra taken from Ref. [216]. The calculated mode
symmetries in the second column inform the matching to the IR and Raman frequencies (X,
for IR and X, for Raman). The LDA and PBE frequencies have been ordered to correspond
to the respective DF-cx mode with the largest projection (and hence same symmetry). All

frequencies are in cm ™!,

mode sym. @BEF_(Z IR Raman a é}iﬁ @I;]ii
4 B, 53.7 - 56 49.5 62.8
5 Ay 54.2 - - 57.6 68.5
6 A, 63.1 - 69 58.4 78.0
7 B. 72.9 - - 75.4 91.0
8 B, 78.7 - 81 81.9 94.1
9 A, 82.4 - 88 86.1  102.1
10 Ay 100.5 - - 110.7 1225
11 A, 121.2 - 120 113.6  128.8
12 B, 139.7 - 141 135.6 1534
13 Bu 1771 176 - 1773 181.7
14 A, 195.1 - - 196.6 199.2
15 Ay 213.1 - - 2111 2247
16 Bu 216.3 - - 2145 2220
17 B. 357.8 362 - 3585 3604
18 A, 360.2 400 - 3614  365.0
19 B, 387.5 - 390 3889 3924
20 A, 393.1 - - 393.8 396.8
21 A, 464.4 - 467  468.0  469.9
22 Ay 469.7 - - 4732 4738
23 B, 470.0 - - 4739 4746
24 B. 480.1 478 — 4825 486.4
25 B, 505.2 - - 5083 5120
26 A, 506.4 - - 5094 5136
27 B, 508.8 - 509  512.0 516.5
28 A, 509.6 - 514  513.3  518.3
29 B. 615.5 581 - 619.2  621.2
30 A, 617.7 618 - 621.2  623.7
31 Ay 624.1 - - 629.0 635.3
32 Bu 629.2 - - 633.6 640.2
33 A 715.0 - - 7209 7126

o
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Table B.2 (continued)

mode sym. @gi:z IR Raman a éii @%]ii
34 B, 718.1 - 725 723.6  715.8
35 B, 760.1 - - 763.7 7731
36 A, 760.9 - 765 764.9  776.2
37 A, 772.2 - - 7783 7844
38 Bu 773.2 780 - 779.0 7714
39 B, 775.4 - 786 781.4  789.7
40 A, 787.1 - - 793.0 786.9
41 A, 791.6 - — 795.2 799.5
42 B. 793.3 810 - 7972  802.1
43 Ay 839.5 841 - 845.0 8388
44 B. 843.2 — —  849.8 844.0
45 A, 878.6 - 878 885.8  885.6
46 B, 893.0 - - 9004 901.0
47 A, 926.8 - - 930.2 9314
48 B, 930.8 - 933 934.6  935.4
49 B, 942.1 — - 9499 9477
50 A, 947.2 - 953 955.6  950.4
51 B. 957.0 955 - 965.1 961.5
52 A, 957.0 - - 966.6 961.2
53 A, 975.2 970 - 984.1  978.7
54 A, 981.0 - 980 989.3  986.5
55 B. 981.5 - - 991.0 985.2
56 B, 984.7 - - 993.1  989.7
57 B. 1011.8 1008 - 1018.4 1021.6
57 Bu 1011.8 1008 - 1018.4 1021.6
58 Ay 1012.1 — - 1018.7 1023.4
59 A, 1018.6 - - 1025.3 1025.9
60 B, 1022.8 - 1021 10289 1029.3
61 A, 1118.1 — - 11229 11111
62 B. 1118.1 1125 - 1123.1 11124
63 A, 1138.6 — — 11435 1125.8
64 B, 1141.0 — - 1146.3 1131.5
65 A, 1145.6 1144 - 1150.3 1130.1
66 A, 1148.8 - 1148  1152.8 1132.5
67 B. 1152.5 — — 1158.3 1139.8
68 B, 1156.8 — 1168 1161.7 1141.2
69 A, 1215.1 1209 - 1221.6 1225.1
70 B 1216.1 - - 1222.0 1224.6

=1
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Table B.2 (continued)

mode sym. @gi:z IR Raman Q éii @%]ii
71 B, 1239.2 - 1240  1245.1 1233.3
72 A, 1241.6 - — 12479 1237.7
73 A, 1259.4 — - 1264.6 1256.6
74 B. 1263.9 1265 - 1269.2 1260.2
75 A, 1380.1 1361 - 1386.4 1413.3
76 B. 1381.1 - - 1386.8 1374.1
7 A, 1382.7 - —  1388.5 13724
78 Bu 1383.1 1389 — 1389.6 1414.7
79 B, 1391.2 - 1380  1395.6 1420.8
80 A, 1392.0 - - 1396.3 1424.5
81 B, 1448.3 — 1446  1454.0 1449.3
82 B, 1451.6 - — 1457.6 1457.0
83 A, 1453.6 - — 1459.6 1460.0
84 A, 1456.1 — 1465 1461.8 1455.3
85 Bu 1508.5 1509 — 1515.7 1523.1
86 A, 1511.1 — - 1518.1 1526.0
87 A, 1568.7 - - 1575.2 15934
88 B, 1571.4 - 1579 15779 1596.5
89 A, 1591.2 — - 1598.4 1610.9
90 Bu 1591.8 1595 — 1598.9 1611.2
91 B, 1623.9 — - 1630.4 1651.4
92 A, 1624.2 - 1636  1630.7 1651.6
93 A, 3057.1 3022 - 3101.0 3047.2
94 A, 3057.4 - 2980 3101.7 3049.6
95 Bu 3058.2 - - 3102.8 3048.9
96 B, 3059.0 - 3058 3103.8 3051.0
97 A, 3070.1 3029 - 3112.9 3060.5
98 B. 3070.7 3029 - 3112.7 3059.9
99 A, 3070.8 - - 3113.6 3059.3
100 B, 3071.1 - - 3113.5 3057.9
101 Ay 3077.5 3056 - 3122.7 3066.8
102 B. 3077.7 3056 - 3122.5 3065.5
103 B, 3077.9 - - 3121.9 3066.7
104 A, 3078.2 - - 3122.8 3067.0
105 B. 3083.2 3076 - 3125.8 30744
106 A, 3084.0 - - 3129.1 3074.1
107 B, 3084.3 - - 3127.7 30744
108 A 3084.6 - - 31274 3073.8

=1
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Figure B.1: Full phonon band structures of solid d0-naphthalene calculated with DF-cx,
LDA, and PBE. The DF-cx and LDA unit cells are relaxed prior to the phonon calculation.
PBE frequencies are calculated with experimental lattice parameters, and only the internal
coordinates are relaxed.
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Table B.3: Comparing frequencies calculated with DF-cx@QQpp., at I' of fully deuterated

naphthalene (wp) with protonated naphthalene (wy). The respective mode numbers highlight

the reordering caused by the isotope change. All frequencies are in cm™*.

np WD nu WH wH /wD np WD nu WH wH /WD

4 50.2 4 53.7 1.070 57 824.8 66 1148.8 1.393

5 52.5 5 54.2 1.032 58 826.1 65 1145.6 1.387

6 59.0 6 63.1 1.069 59 829.7 68 1156.8 1.394

7 70.7 7 72.9 1.031 60 832.7 67 1152.5 1.384

8 74.2 8 78.7 1.061 61 834.4 54 981.0 1.176

9 77.2 9 82.4 1.067 62 835.3 46 893.0 1.069
10 97.4 10 100.5 1.032 63 854.1 59 1018.6 1.193
11 112.2 11 121.2 1.080 64 857.8 60 1022.8 1.192
12 128.8 12 139.7 1.084 65 869.1 61 1118.1 1.286
13  163.0 13 177.1 1.087 66 870.0 47 926.8 1.065
14 179.6 14 195.1 1.086 67 871.0 62 1118.1 1.284
15 193.7 15 213.1 1.100 68 872.0 48 930.8 1.067
16 195.8 16 216.3 1.105 69 1011.9 71 1239.2 1.225
17  326.1 17 357.8 1.097 70 1012.2 72 1241.6 1.227
18 3284 18 360.2 1.097 71 1033.9 74 1263.9 1.222
19 3424 19 387.5 1.132 72 1035.3 73  1259.4 1.216
20 347.3 20 393.1 1.132 73 1093.0 69 1215.1 1.112
21 397.7 22 469.7 1.181 74 1093.7 70 1216.1 1.112
22 406.8 24 480.1 1.180 75  1246.3 77 1382.7 1.109
23  411.5 21 464.4 1.129 76 1250.7 76 1381.1 1.104
24 417.9 23 470.0 1.125 77 1286.8 81 1448.3 1.125
25 488.3 27 508.8 1.042 78 1290.3 84 1456.1 1.128
26 488.9 26 506.4 1.036 79 1352.2 75 1380.1 1.021
27  489.7 25 505.2 1.032 80 1352.5 78 1383.1 1.023
28 491.5 28 509.6 1.037 81 1358.1 82 1451.6 1.069
29 537.9 33 715.0 1.329 82 1360.1 83 1453.6 1.069
30 540.2 34 718.1 1.329 83 1394.1 79 1391.2 0.998
31 540.5 31 624.1 1.155 84 1394.8 80 1392.0 0.998
32 547.6 32 629.2 1.149 85 1445.6 85 1508.5 1.044
33  589.2 29 615.5 1.045 86  1446.0 86 1511.1 1.045
34 591.8 30 617.7 1.044 87 1543.1 87 1568.7 1.017
35 622.5 38 773.2 1.242 88 1544.5 88 1571.4 1.017
36 630.5 40 787.1 1.248 89 1547.4 89 1591.2 1.028
37 643.5 37 772.2 1.200 90 1547.5 90 1591.8 1.029
38 649.0 39 775.4 1.195 91 1597.7 91 1623.9 1.016
39 654.0 43 839.5 1.284 92 1597.8 92 1624.2 1.017
40 655.7 44 843.2 1.286 93 2254.1 94 3057.4 1.356
41 688.4 35 760.1 1.104 94  2254.8 93 3057.1 1.356
42 689.9 36 760.9 1.103 95 2255.3 96  3059.0 1.356
43  732.8 41 791.6 1.080 96 2255.4 95 3058.2 1.356
44 734.0 42 793.3 1.081 97  2264.7 98 3070.7 1.356
45 753.3 49 942.1 1.251 98 2264.8 97 3070.1 1.356
46  755.2 50 947.2 1.254 99  2265.9 100 3071.1 1.355
47 761.0 45 878.6 1.155 100  2266.0 99 3070.8 1.355
48  765.7 56 984.7 1.286 101 2278.1 103 3077.9 1.351
49 787.6 51 957.0 1.215 102 2278.7 104 3078.2 1.351
50 788.0 52 957.0 1.215 103 2278.8 102 3077.7 1.351
51 798.8 53 975.2 1.221 104 2279.4 101 3077.5 1.350
52 801.2 55 981.5 1.225 105 2285.8 105 3083.2 1.349
53 818.2 63 1138.6 1.392 106 2286.0 106  3084.0 1.349
54 819.6 57 1011.8 1.235 107  2286.3 107 3084.3 1.349
55 820.3 58 1012.1 1.234 108  2286.8 108 3084.6 1.349

56 822.6 64 1141.0 1.387
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Appendix C

Appendix for Electron-phonon
coupling in naphthalene

C.1 Computational parameters

Ground state DFT calculations are performed with the ABINIT code [294] using norm-
conserving pseudopotentials, and setting the plane waves kinetic energy cutoff to 45 Ha.
We use the Perdew-Burke-Ernzerhof (PBE) functional in combination with the Grimme-
D3 correction [121, 124] to account for London dispersion forces. To obtain the electronic
ground state density, we sample the Brillouin zone on a Monkhorst-Pack k-grid of 2 x4 x 2.
All electronic energies in this paper are given relative to the Fermi level.

The phonons and associated potential derivatives are calculated with DFPT, using a
coarse Monkhorst-Pack g-grid of 4x6x4. This q-grid gives well converged phonon frequencies
and displacements after interpolation of the dynamical matrix, as shown in our previous
work [210]. The phonon potentials and self-energy are calculated explicitly with 6 x 8 x 6
g-grid, and interpolated onto a 12x 14 x12 q-grid, which converges the renormalization and
broadening values within a few meV (see Fig. C.4 in the Appendix).
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C.2 Lattice parameters

Table C.1: Lattice parameters used in this work. Experimental crystal structures are avail-
able at the Cambridge Structural Database [181]. The identifiers for the structures measured
at 5 K and 295 K are NAPHTA31 and NAPHTAS3G6, respectively, and published in association

with [187]. (Lengths in A, angles in degrees, volumes € in A3)

a b c 15} Q
PBE-D3 (Qppr) 8.077 5.900 8.620 124.35 339.14
Exp. 5K 8.080 5.933 8.632 124.65  340.41

Exp. 295K (Q295x) 8.256 5.983 8.677 12273  360.56

C.3 Phonon frequencies
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Figure C.1: Phonon band structure of intermolecular bands of perdeuterated naphthalene
calculated with PBE-D3 at Qppr. Experimental neutron scattering frequencies are taken
from Ref. [219].
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Figure C.2: Phonon band structure of naphthalene calculated with PBE-D3 at Qppr. Ex-
perimental Raman and IR frequencies are taken from Ref. [216].
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Figure C.3: Comparison of phonon band structures calculated with lattice parameters re-
laxed with PBE-D3 (Qppr) and with fixed experimental room temperature lattice parameters
(Q295K). Both calculations are done with PBE-D3. The lattice parameters mainly affect the
soft intermolecular modes below 20 meV.
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C.4 Convergence of self-energy
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Figure C.4: Convergence w.r.t.
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highest valence and lowest conduction band at I'. The four q grids used from right to left
are (2x4x2), (4x6x4), (6x8x6), and (12x14x12). Interpolated grids use square markers.
Notable is the much smoother convergence of the conduction band, which is the absolute
minimum at I'. The valence band at I' is 0.23 eV below the valence band maximum.
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Figure C.5: Convergence w.r.t. the smearing value n of the electron-phonon self-energy of
the highest valence and lowest conduction band at I'. Interpolated grids use square markers
and are labeled as “fine@coarse” to indicate the q-grids used. Notable is the much smoother
convergence of the conduction band, which is the absolute minimum at I'. The valence band
at [ is 0.23 eV below the valence band maximum.
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C.5 Phonon decomposition of ZPR
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Figure C.6: Individual contributions of the phonon modes to the renormalization of the
CBM plotted against frequency, with a Lorentzian smearing of 1 meV (red solid line). The
grey dotted line at 19 meV indicates the separation of inter- from intramolecular modes. The
blue dashed line shows the cumulative integral of the individual contributions.

For a more detailed analysis of the ZPR and temperature dependence we now look at the
individual phonon contributions to the renormalization.
Reorganizing Eq. (2.27) we can write

TR (w) =) T (W) + IR =) IR () (C.1)
vq

vq

to obtain the self-energy for each phonon. For this analysis we calculate the self-energy on a
g-grid of 6x8x6 without interpolation. In Fig. C.6 we plot the real part of each ng{,yq(sgk) at
0K, i.e., each phonon’s contribution to the ZPR. To account for finite sampling of reciprocal
space we used a Lorentzian smearing of 1 meV.

The immediate take-away from this plot is that intramolecular phonon modes around
0.19eV have the largest individual contributions, which is in agreement with previous stud-
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ies [107, 109]. Overall however, the contribution as a function of phonon frequency is dis-
tributed relatively equally over the frequency range, especially for the VBM, as can be seen
from the integral of the spectral density (blue line in Fig. C.6). The intermolecular modes
situated below 19meV (gray dashed line in Fig. C.6) contribute comparably little to the
ZPR. Only these weakly coupling intermolecular and few soft intramolecular modes are pop-
ulated at ambient temperatures, and contribute to the further reduction of the gap at finite
temperatures.

C.6 k-independence of self-energy

36 7 ° 521( . DOS B 36
3.4 - L 3.4
Z J
=, 3.2 - 3.2 5
3.0 L 3.0
7 T 0.2 0.0

DFT eigenvalues Xt (w) (eV)

Figure C.7: (Left) Electronic band structure of the two lowest conduction bands along I' — Z
in the BZ. Each circle indicates an electronic state nk for which we explicitly calculated the
self-energy X . (Middle) The density of states in the middle is plotted to highlight the
correlation to the self-energy as discussed in the main text. (Right) The real and imaginary
part of the electron-phonon self-energy of naphthalene for the states circled in the band
structure plot on the left. The color of each self-energy matches the corresponding circle.

Here we test the k-independence approximation of the electron-phonon self-energy used in
the main text. In Fig. C.7 we compare the frequency-dependent self-energy along the I' — Z
path, the direction of the largest dispersion for the conduction bands. Even along this
relatively dispersive k-path, the real and imaginary parts of the self-energy show very little
variation, validating the k-independence approximation. Additionally, we can also see that
the frequency-dependent self-energy varies very little across the two bands. The combined
k- and n-independence leads to the excellent agreement between the mobilities calculated
with Eq. (5.2) and Eq. (5.5).



Appendix C. Appendix for Electron-phonon coupling in naphthalene 102

As laid out in the main text, the electronic states of Davydov pairs around the band
gap (for example HOMO and HOMO-1, or LUMO and LUMO+1) interact only very weakly
with their neighboring Davydov pairs, since they are energetically far enough apart. Since
the resulting wave functions retain their gas-phase-like character throughout the Brillouin
zone, the electron-phonon matrix elements become largely independent of k. Additionally,
this separation of bands is on the order of 0.3-0.4eV, and thus at the upper end of our
phonon spectrum. Hence, significant contributions to the self-energy, i.e., terms with small
denominators in Eq. (2.25), will only come from scattering within these Davydov pairs. These
two factors lead to the k- and n-independence of the frequency-dependent self-energy. Since
both these properties are very typical for organic crystals, we expect to see this approximation
to hold for other systems as well.

C.7 Mobility as function of energy

Table C.2: Mobility values calculated with 95k at 300 K, comparing the values pugors
obtained with the self-energy relaxation time approximation Eq. (5.2), with u(e) from
Eq. (5.5), where we express the mobility as product of four independent functions of en-
ergy u&" o< [de D(g) f'(£)v2(e)7(g). Mobility values are given in cm?/Vs.

hole electron
o 1, e e 1, Hew
HBoltz 1.198 2.735 0.239 0.667 0.313 0.209
w(e) 1.213 2.769 0.241 0.663 0.323 0.209

relative error 0.013 0.012 0.008 0.005 0.033 0.003




Appendix C. Appendix for Electron-phonon coupling in naphthalene 103

.'.\‘
%\ 40 _ T /"La /I/Boltz .,'I \" 40 -
R R ¥ t
HUJ Mo =i /L(é) / ‘I
‘ - / \
S Hex / \l
N / I"\\ \
/ A
g 20 VARV 20 A
)
% /,', III “‘-‘. ——
~—~ 4 n NG
/ / W /, -~
SN “/, ,’l _____ ~ ‘\'\ ,"."'::,,—-’ k'\,\
O i DR T e mcnn e N 0 e S— e -
T T T T T T
< 10 10 T— i
N2 s = ___f,:\'s\.\ ‘__’.' \_.\
—~ls 0 2muer 0 - "zl R
) Q% RNty
= 3 —10 T T T —10 T T T
—0.2 —-0.1 0.0 3.1 3.2 3.3
g (eV) e (eV)

Figure C.8: Comparing the integrand of the mobility from the explicit summation over nk in
the self-energy relaxation time approximation in Eq. (5.2) (tpol, solid transparent line) with
the product of the four independent functions D(e), f'(g), v2(¢), and 7(¢) from Eq. (5.5)
(u(e), dashed lines).

C.8 Eigenvalue—self-consistent self-energy
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Figure C.9: Convergence of the electronic energies using the eigenvalue-self-consistent
electron-phonon approach for bands around the band gap. The energy difference at the
first step is equal to the renormalization obtained from the on-the-mass-shell approximation.
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Figure C.10: Comparing the self-energy (top) and spectral function (bottom) of the one-
shot with the eigenvalue—self-consistent (evSC) self-energy calculation for the second lowest
conduction band (LUMO+1) at I". The energy of the DFT eigenvalue is marked with a gray
dotted line.

In Fig. C.10 we compare the eigenvalue—self-consistent (evSC) with the one-shot approach
by looking at the self-energy and spectral function of the second lowest conduction band
(LUMO+1) at I". The changes in the self-energy and spectral function are quite significant.
The main peaks of the real and imaginary parts are red-shifted by almost 0.2 eV, and a
second peak develops at around 3.5 eV, above which the self-energy is mostly unchanged in
comparison. This directly correlates with the renormalized density of states (DOS), where
the lower energy states are renormalized by 0.1-0.2 eV, and the higher states remain un-
shifted.

This change in the self-energy has a large impact on the spectral function. Both the
position of the main quasiparticle peak as well as the shape of the spectral function are
altered. The renormalization of the main quasiparticle peak changes from —0.17eV for the
one-shot calculation to —0.03eV for evSC. Furthermore, instead of the one broad phonon
satellite in the one-shot calculation, the evSC spectral function shows two satellites, one
at higher, and one at lower energies. The satellite at 3.1eV actually becomes the main
quasiparticle peak at other k-points. A similar transition can be clearly seen in Fig. 5.6 for
the valence band. About half-way between I' and Z, the quasiparticle peak shifts its weight
from 0.3eV to 0eV. The same transition in the conduction bands is less visible because the
bands are much more broadened out.
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Figure C.11: Comparing the renormalizations and lifetimes of the evSC calculation with the
on-the-mass-shell approximation (£(¢”)) and the quasiparticle solution (£(¢)). Valence bands
are at k = A, and conduction bands at I', coinciding with the VBM and CBM, respectively.
The renormalizations (top) are calculated at 0 K using Qppr lattice parameters. For the
lifetimes (bottom) at 300 K we used 95k to account for lattice expansion. Overall, the
on-the-mass-shell approximation agrees better with the evSC approach.
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electron

Figure C.12: Comparing the energy dependent velocities (Eq. (5.6)) and lifetimes (Eq. (5.7))
of the hole (top) and electron (bottom) carriers at 300 K (Qppr) between the one-shot (solid)
and evSC (dashed) calculations. The high electron velocities around 3.2V are an artifact
caused by the breakdown of the quasiparticle picture near the band splitting.
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