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ABSTRACT OF THE DISSERTATION

Analysis of Social and Flow Networks

By

Zahra Askarzadeh

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2021

Professor Tryphon T. Georgiou, Chair

In this thesis, we study problems in analysis of social and flow networks. Specifically, we study

models of social interactions between individuals who discuss and form opinions about a sequence

of issues. We also study quantifying macroscopic circulation in a given planar graph.

A social network is a medium for the exchange of information, ideas, and influence among its

members. In recent years, availability of large amounts of data from online social networks have

drawn the attention of many researchers to study opinion formation and the evolutionary behaviors

in social networks. In this thesis, we revisit several types of opinion dynamics models and review

relevant results from the literature. We then present a set of new results related to both modeling

and analysis of social networks. Starting with analyzing DeGroot-Friedkin model, we establish

existence and uniqueness of its fixed point using local inverse function theorem and Hadamard’s

global inverse function theorem. Motivated by DeGroot-Friedkin model, we then propose a group

of nonlinear Markov chain models of social interaction for the purpose of assessing opinion evolu-

tion in social networks. We seek and develop conditions that determine when such system display

oscillations, manifest chaos, or lead to a stable equilibrium that represents consensus. We also

provide extensions of proposed models to count for different subgroups of interacting individuals.

Flow networks are typically used to model problems involving the transportation of mass between

xi



nodes, through routes that have limited capacity. Examples of such problems that motivate our

research are modeling traffic on a network of roads and blood current in heart. Based on these

examples, we introduce a new concept of maximal global circulation and explore 3-partitions that

expose this type of macroscopic feature of networks. Herein, graph circulation is motivated by

probabilistic flows (Markov chains) on graphs. Our goal is to quantify the large-scale imbalance

of network flows and delineate key parts that mediate such global features. While we introduce

and propose these notions in a general setting, here, we only work out the case of planar graphs.

We explain that a scalar potential can be identified to encapsulate the concept of circulation, quite

similarly as in the case of the curl of planar vector fields. Beyond planar graphs, in the general

case, the problem to determine global circulation remains at present a combinatorial problem.
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Chapter 1

Introduction

A network is a collection of objects (called nodes or vertices) in which some pairs of the objects

are connected together. The connections between the vertices are called edges. A network can

be used to model many types of relations and dynamical processes in a wide range of areas, e.g.,

computer science, biological, and social systems. This thesis is focused on problems involving

analysis of social networks and flow networks.

Social networks has enabled individuals to be more closely connected and has provided huge

amount of data available for analysis regarding how individuals interact over networks. Con-

sequently, there has been increased interest in understanding how individuals form opinion and

interact with others in their social network. The study of social interaction is important because

it allows researchers to predict behavior of network and may further be motivated by potential

marketing applications.

Flow networks are typically used to model problems involving the transportation of mass between

nodes, through routes that have limited capacity. Modeling traffic on a network of roads, blood

current in heart, fluid in a network of pipes, and airline scheduling are examples of flow networks.
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This thesis is concerned with analysis of social networks and flow networks. Specifically, the

problems that we address are (i) modeling social interactions between individuals who discuss on a

sequence of issues and assessing stability of such models; (ii) quantifying macroscopic circulation

in a given planar graph. In the remainder of this chapter, a broad literature survey of each one of

these fronts of research is described.

1.1 Literature review on opinion dynamics

Here, we present a broad literature review of classical opinion dynamics models and DeGrootian

models which are our focus and motivations of research in Chapters 3 and 4.

1.1.1 Classical opinion dynamics models

Here, we review list of well-known models that have been proposed to illustrate opinion dynamics.

These models can be divided into two main groups, the models in which the opinion space is

continuous, e.g., the DeGroot [24], Friedkin-Johnsen (FJ) [35], Deffuant and Weisbuch [23], and

Hegselmann-Krause model [48] and the models in which the opinion space is discrete, e.g., Sznajd

[78] and Galam model [39].

DeGroot model describes opinion formation in a group of interacting individuals as a repeated

weighted averaging process. In this model, at each time step every person updates his/her opinion

as the weighted sum of their own opinion and those of the neighbors. The Friedkin-Johnsen model

is an extension of the DeGroot model in which each agent has different level of stubbornness. The

Hegselmann-Krause model and the Deffuant-Weisbuch model are known as bounded confidence

models. In these models, if the opinion distance between two individuals is less than the confidence
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bound, that is, opinion threshold, then these individuals communicate and influence each other’s

opinion. In these models, the opinion threshold is the main factor that influences opinion consensus

and drives stabilization.

The Sznajd model describes the concept of social validation. In this model, If two people have the

same opinion, their neighbors will start to agree with them otherwise their neighbors will start to

argue with them. In the Galam model, there are two opinions in the opinion space. The update rule

has three steps; In the first step, agents are randomly distributed in groups of a specific size. In the

second step, the opinion of the each group is updated using majority rule, meaning that at this step

each group is agreed on either of the two opinions. Third, agents are reshuffled. And this process

will be repeated.

1.1.2 DeGroot-Friedkin model and its variants

The dynamics of DeGroot-Friedkin model has been proposed by Jia et al.[52]. This model extends

the DeGroot model by using the mechanism of reflected appraisal from sociology [33]. In this

mechanism, individuals’ thoughts, emotions, and behaviors are affected by the displayed thoughts,

emotions, and behaviors of other individuals. In the literature, there have been several variations

and extensions of DeGroot-Friedkin model. For example, Jia et al. [52] analyzed the model for

the case that the individuals form opinions with reducible relative interactions. Chen et al. [15] ex-

tended the DeGroot-Friedkin model to the case where the relative interaction matrix is switching

and stochastic. Xu et al. introduced a modified DeGrootFriedkin model in which reflected ap-

praisal and opinion dynamics take place on a single issue. He analyzed this model for the special

case of doubly stochastic influence network [88]. Recently, Jia et al. analyzed it for the general

case [52]. Chen et al. [17] proposed continuous time self-appraisal model. DeGroot-Friedkin

model was used to analyze a social network with dynamically changing network topology [89].
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Halder [45] showed that the DeGroot-Friedkin map can be viewed as entropic mirror descent over

the standard simplex. Also, the proposed model [61] which investigates information spread over

cybersocial network of agents is adopted from DeGroot-Friedkin model.

One of the important modification of DeGroot-Friedkin model is to investigate the evolution of

social power in influence networks with stubborn individuals. Tabatabaei et al.[65] studied the

evolution of interpersonal influences in a group of stubborn individuals as they discuss a sequence

of issues. Abrahamsson et al. [2] studied the effect of stubborn agents who influence their neigh-

bors but always stick to their initial opinions. Zhou et al. [92] studied the effect of partially

stubborn agents on a modified DeGroot model.

In opinion dynamics, sometimes is of interest to guide the forming opinions to reach either a

consensus or even more a specific consensus target. Here, we mention related works on this subject

which are built on modified DeGroot-Friedkin models. Dong et al. [27] developed a consensus

building process in opinion dynamics. Specifically, they proposed a strategy in which they add a

minimum number of interactions in the social network to form a consensus based on leadership.

Hegselmann et al. [47] studied a social network in which there is at least one strategic agent who

can change its opinion in a way that at the end guides as many agents as possible towards a certain

interval of the opinion space.

In Chapter 4, which is taken from Askarzadeh et al. [9], we proposed a general class of nonlinear

Markov Chain models for evolution of individual’s self-confidence in a social network, motivated

from the DeGroot-Friedkin model. Our proposed models have two main differences from original

DeGroot-Friedkin model. The first difference is that individuals update their self-confidence levels

in finite time without waiting for the opinion process to reach a consensus on any particular issue.

The second difference is the presence of feedback that enhances or, perhaps, diminishes the in-

fluence of particular individuals within the group, and thereby modifies the transition mechanism

4



based on the outcome of past interactions between them.

1.2 Literature review on circulation for planar graphs

In this section, we present a literature review of related topics to circulation on graphs. Circulation

itself is a new concept in graphs that we introduce and discuss thoroughly in Chapter 5. Here, we

mention two of its applications and the related papers. Then, we present a review of related papers

on graph partitioning since the macroscopic circulation relates to partitioning of a graph into three

parts as we discuss in Chapter 5.

Perhaps, circulation is nowhere more apparent than in air currents at the planetary scale [14, 72,

90]. The vorticity, locally as well as at earth-scale, very much as in planar vector fields, can be

quantified by a suitably defined scalar potential and, as we will explain, this scalar potential helps

quantifying maximal circulation macroscopically.

Within the fields of biology and medicine, potential applications of network analysis are also

widespread [63, 71]. For instance, circular propagation of action potentials in the heart elec-

trical conduction system, known as “reentry,” is a mechanism of pathologic impulse conduc-

tion that underlies a self-sustaining cardiac rhythm abnormality. Reentry appears to account for

most tachyarrhythmias1; these may lead to life-threatening arrhythmias and sudden cardiac death

[42, 51, 54]. Potential application of our framework on assessing macroscopic circulation in a

directed graph model of cardiac conduction system will be discussed in Section 5.7.

Graph partitioning has been approached with different tools and for a variety of applications, such

as, community detection. Earlier contributions abound. We mention Anderson et al. [6, 7] who

discussed local partitioning of an undirected and directed graph, respectively, and Chung [28]

1Tachycardia is the medical term for an abnormally fast heartbeat of more than 100 times per minute at rest.
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who considers directed graphs and generalizes the classical Cheeger inequality in this setting via

PageRank and an algorithm proposed in [7]. On the other hand, a notion of global partitioning

was considered by Wang et al. [85] via a hierarchical algorithm and a recursive implementation

of Spectral graph partitioning, whereas Arora et al. [8] considered partitioning having sparsest

cuts. To the best of authors’ knowledge, graph partitioning as a way to capture global circulation

has not been proposed before; large-scale network circulation is closely connected to a suitable

partition of the graph and is developed in the context of academic and real-world examples. We

present theory and a computational framework for embedded planar graphs by taking advantage of

insights drawn from the well-known Helmholtz-Hodge decomposition of vector fields in Chapter

5.

1.3 Contribution and organization

In this section, objectives and contributions of each chapter are discussed.

• In Chapter 3, we analyze stability of DeGroot-Friedkin model where we establish existence

and uniqueness of the fixed point for this model. To this end, we first write the inverse map of

DeGroot-Friedkin model. Having stablished that the Jacobian of the inverse map is nonzero,

we use local inverse function theorem to show existence of the fixed point. We show that

the uniqueness of the fixed point follows from Hadamard’s global inverse function theorem.

We also calculate closed form solution for fixed point of the map for the society of three

individuals.

• There are several key contributions in Chapter 4. First, we introduce a class of nonlin-

ear Markov Chain models for the formation of an individual’s self-confidence in a social

network, motivated by DeGroot-Friedkin. Our proposed setting has two key differences
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from original DeGroot-Friedkin model. The first one is that individuals update their self-

confidence levels in finite-time without waiting for the opinion process to reach a consensus

on any particular issue. The second is that feedback is postulated that potentially enhances

or, perhaps, diminishes the influence of particular individuals within the group, and thereby

modifies the transition mechanism based on the outcome of past interactions between indi-

viduals and subgroups. Second, we prove that if Jacobian of these stochastic maps have only

positive entries, then these maps are strictly contractive in l1-norm. Specifically, l1-distance

to the equilibrium serves as a Lyapunov function for these maps. Third, we provide a bound

on the induced l1 -incremental gain of stochastic maps in terms of the induced l1 -gain of

the Jacobian. Fourth, we discuss conditions for local attractiveness of a periodic orbit of the

map. Fifth, we extend our proposed models to account for different subgroups of interacting

individuals.

• In Chapter 5, we introduce a concept of circulation on graphs. To the best of our knowledge,

this concept does not appear to have been studied at any length. Circulation is motivated

by its applications in analyzing air currents at the planetary scale and cardiac conduction

system for detecting reentry. We discuss how circulation relates to partitioning a graph

into three parts. Maximal circulation follows from suitable 3-partition that maximizes the

circulation flow. For planar graphs, we propose an algorithm by which macroscopic cir-

culation can be effectively computed via a scalar potential with support on the dual graph.

The algorithm quantifies circulation and follows corresponding 3-partitioning of the graph.

For general graphs macroscopic circulation and the corresponding graph partitioning re-

main challenging combinatorial problems. In addition, we show the effect of embedding on

macroscopic circulation and how non-equivalent embeddings of a graph leads to different

values for macroscopic circulation.
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Chapter 2

Background

2.1 Concepts and basics on graph theory

In mathematics, a graph is an abstraction that represents a set of similar things and the connections

between them, e.g. cities and the roads connecting them, networks of friendship among people,

web sites and their links to other sites. In this chapter, we present an overview on basics of graph

theory and graph representation.

2.1.1 Graph definition and basics

A graph, G, is a collection of vertices, V = V(G), and edges, E = E(G). Each pair e = (vi, vj) of

vertices in E(G) is an edge of G, and e is said to join vi and vj, vi is called adjacent to vj, and vi

and vj are called neighbors. We can represent vertices with nodes or points. An edge connects two

vertices or connects a vertex to itself. We draw the edges as lines, segments, arcs, etc.
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Definition 1. Different types of graphs: When a graph has ordered pairs of vertices, it is called

a directed graph, otherwise it’s called undirected graph. In directed graphs, the edges of the graph

represent a specific direction from one vertex to another. When there is an edge representation as

(vi, vj), the direction is from vi to vj. Whereas in undirected graphs, there is no specific direction

to represent the edges.

A loop is an edge that connects a vertex to itself. Multiple edges are edges that have the same end

nodes, meaning that more than one edge connects two vertices. A graph with neither loops nor

multiple edges is called a simple graph. If a graph has multiple edges but no loops then it is called

a multigraph. If it has loops (and possible also multiple edges) then it is called a pseudograph.

The graph G ′ = (V ′,E ′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. By allowing V

and E to be infinite sets, we obtain infinite graphs.

Definition 2. Path, connectivity, Distance: A path in an undirected graph G = (V,E) is a se-

quence of nodes v1, v2, . . . , vk−1, vk with the property that each consecutive pair vi, vi+1 is joined

by an edge in E. For directed graphs, we must traverse the edges in the correct direction. Two paths

from node vi to node vj are internally disjoint if they have no common internal vertex. A cycle is

a path v1, v2, . . . , vk−1, vk in which v1 = vk,k > 2, and the first k− 1 nodes are all distinct.

If, for each pair of vertices, we can find a path between them, then the graph is said to be connected.

Otherwise graph is disconnected. A connected graph is k-edge-connected if it remains connected

after removing fewer than k edges. A connected graph is k-vertex-connected if it remains con-

nected whenever fewer than k vertices are removed. Bridge is an edge that if removed will result

in a disconnected graph.

The length of a path is the number of edges in the path. The distance between two vertices vi and

vj, denoted by dist(vi, vj), is the length of the shortest path joining them.

9



1
4

3

2

Figure 2.1: Directed graph G

2.1.2 Graph Representation

Here, we review three methods of graph representation and their properties: adjacency matrix,

incidence matrix and laplacian matrix.

Adjacency Matrix: Let G = (V,E) be a graph where V = {v1, v2, ..., vn} and E = {e1, e2, ..., em}.

An Adjacency Matrix, A = [aij]
n
i,j=1, is an n × n binary matrix in which value of aij element is

equal to 1 if there exists an edge originating from vi and terminating to vj, otherwise the value is

0. For undirected graphs the matrix is symmetric (AT = A). Summation of numbers in row i is

equal to the degree of node i or outdegree (the number of outgoing edges at each vertex) in case of

directed graph. Summation of numbers in a column i is equal to the degree of i or indegree (the

number of incoming edges at each vertex) in case of directed graph. Given below is Adjacency

matrix for the directed graph in Fig. 2.1

A =



0 1 0 1

0 0 1 0

1 0 0 0

0 0 1 0


.
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Incidence Matrix: The incidence matrix of G is an n×m matrix B, where each row corresponds

to a vertex and each column corresponds to an edge such that if el is an edge between vi and vj,

el = (vi, vj), then all elements of column l are 0 except bil = bjl = 1 in case of undirected graph

and bil = −1,bjl = 1 in case of directed graph. Given below is incidence matrix for the directed

graph in Fig. 2.1

B =



−1 0 1 −1 0

1 −1 0 0 0

0 1 −1 0 1

0 0 0 1 −1


.

Laplacian Matrix: Given a simple graph G with n vertices, its Laplacian matrix Ln×n is defined

as

L = D−A

In which D is the degree matrix and A is the adjacency matrix of the graph. Degree matrix, D, is

a diagonal matrix whose (i, i) entry is equal to the degree of the ith vertex of G, deg(vi), which

counts the number of times an edge terminates at that vertex. In an undirected graph, this means

that each loop increases the degree of a vertex by two. In a directed graph, the term degree may

refer either to indegree or outdegree. If deg(v) = 0 we call it an isolated vertex.

By definition, row sum of the Laplacian matrix is zero, L1 = 0. As a result 1 is an eigenvector

of the Laplacian with eigenvalue 0. It can be shown that all the other eigenvalues of Laplacian are

non-negative. To show this, let 0 = λ1 6 λ2 6 . . . 6 λn be the eigenvalues of the Laplacian

matrix. For all v ∈ Rn,
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∑
(i,j)∈E

(vi − vj)
2 =

1

2

∑
i∈V

∑
j∈V:(i,j)∈E

(vi − vj)
2

=
1

2

∑
i∈V

∑
j∈V:(i,j)∈E

(v2i − 2vivj + v
2
j)

=
1

2

(∑
i∈V

v2idi +
∑
j∈V

v2jdj

)
−
∑
i∈V

∑
j∈V

viaijvj

=
∑
i∈V

div
2
i −
∑
i,j∈V

aijvivj

= vTLv (2.1)

The first equality holds because the sum on the right counts each edge twice, once as (i, j) and

once as (j, i). Thus, we have shown that vTLv > 0, ∀v ∈ Rn. Therefore, by the variational

characterisation of eigenvalues, λ2 > 0. As the eigenvalues are arranged in increasing order, it

follows that all other eigenvalues are also non-negative. Also, it can be shown that Laplacian of

a graph has as many eigenvalues equal to zero as there are connected components in the graph.

In particular, if the graph is connected, i.e., it consists of a single connected component, then the

eigenvalue zero is simple, and all other eigenvalues are strictly positive. Here, we also discuss the

cheeger constant and its connection with Laplacian matrix.

The Cheeger constant h of an undirected finite graph G is a prominent measure of the connectivity

of G, and is defined as

h := min

{
|∂A|

|A|
: A ⊆ V(G), 0 < |A| 6

1

2
|V(G)|

}

where ∂A is the edge boundary of A. Intuitively, if the Cheeger constant is small but positive, then

there exists a bottleneck, in the sense that there are two large sets of vertices with few links (edges)
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between them. The Cheeger constant is large if any possible division of the vertex set into two

subsets has many links between those two subsets.

Computing the Cheeger constant exactly for an arbitrary graph is NP-hard [40, 57]. However,

even though we may not be able to compute the Cheeger constant directly we can still get a good

estimate for it by using the eigenvalues of the normalized Laplacian. In particular, it is well known

that the Cheeger inequalities relate the spectral gap of the Laplacian matrix, λ, of a graph with its

Cheeger constant

2h > λ >
h2

2∆

where ∆ is the maximum degree for the nodes in G. Cheeger inequality is one of the main tools for

bounding the mixing time for random walks on undirected graphs.

2.2 Concepts and basics on Markov chains

In this section we define various useful concepts and notations. We provide an overview of some

known results on Markov chains, while also introducing notation that will be used throughout the

thesis to deal with vectors and matrices, and random walks on graphs.

2.2.1 Markov chains

A Markov chain is a sequence of random variables taking value in the finite state-space X =

{1, 2, . . . , n} with the Markov property, meaning that evolution of the Markov process in the future

depends only on the present state and does not depend on past history.
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Let Xt ∈ {1, ...,n} denote the location of a random walker at time t ∈ {0, 1, 2, ...}, then a discrete-

time Markov chain is time-homogeneous if Pr[Xt+1 = j|Xt = i] = Pr[Xt = j|Xt−1 = i] = Πi,j

, where Π = [Πi,j] ∈ Rn×n is the transition matrix of the Markov chain. By definition, each

transition matrix Π is row-stochastic, i.e., Π1n = 1n. A state i has period k > 1 if any chain

starting at state i can return to state i only at multiples of the period k, and k is the largest such

integer. If k = 1, then the state is known as aperiodic, and if k > 1, the state is known as

periodic. If all states are aperiodic, then the Markov chain is known as aperiodic. A Markov chain

is irreducible if for all i, j there exists some t such that Πti,j > 0. In the literature, an irreducible,

aperiodic Markov chain is referred to ergodic.

If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution p,

whose entries are non-negative and sum to 1, which is unchanged by the operation of transition

matrix Π on it and so is defined by pΠ = p. In particular, p is the unique left eigenvector of Π

corresponding to eigenvalue 1.

Let π > 0 be a probability distribution over X. A Markov chain with transition matrix Π is said to

be reversible with respect to π if

∀i, j ∈ X : πiΠi,j = πjΠj,i.

Any symmetric matrix Π is trivially reversible (w.r.t. the uniform distribution π). If a Markov

chain Π is reversible w.r.t. π, then π is a stationary distribution for Π.

Let Xt ∈ {1, ...,n} denote the location of a random walker at time t ∈ R+, then a continuous-time

Markov chain is time-homogeneous if Pr[Xt = j|X0 = i] = Pr[Xt+s = j|Xs = i] = Πij(t) for all

t > 0, s > 0, where Π(t) = [Πij(t))]i,j∈Xt ∈ Rn×n is the transition matrix of the Markov chain.

The evolution of the continuous-time Markov chain is determined by the solution to the first-order

differential equation Π ′(t) = Π(t)Q, where Π(t) = exp(Qt) and Q = [qij]
n
i,j=1 is a transition
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rate matrix of the process describing the instantaneous rate at which a continuous time Markov

chain transitions between states and it satisfies

−qii =: qi > 0,

qij > 0,∀i 6= j,

qi =
∑
j6=i

qij

That is, Q1n = 0n, where 1n, 0n denote column vectors with ones and zeros, respectively. A

probability distribution p is stationary if and only if pTQ = 0T . If the continuous-time Markov

chain is ergodic. Then it admits a unique stationary distribution.

The following theorem is used in the proofs of the main results introduced in this thesis.

Theorem 1. (Perron-Frobenius): Let A = [aij]n×n be a matrix with nonnegative elements. Sup-

pose there exist N such that AN has only positive elements, and let λA be its spectral radius. Then

I) λA > 0 is an eigenvalue of A;

II) λA is a simple eigenvalue;

III) There exists an eigenvector v corresponding to λA with strictly positive entries;

IV) v is the only non-negative eigenvector of A;

V) Let B = [bij] be an n × n matrix with nonnegative elements. If aij 6 bij, ∀i, j 6 n and

A 6= B, then λA < λB
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2.2.2 Markov chains on graphs

Discrete-time Markov chains can be represented with weighted directed graphs G = (V,E,Π) with

node sets V := {1, ...,n}, edge set E ⊂ V×V , and transition matrixΠ. In this representation, nodes

are identified with elements of the state-space. We put a directed edge between states i, j if Πi,j >

0, with edge-weight Πi,j, and there is no edge between two states i and j if Πi,j = 0, meaning

that the weight of the edge (i, j) is interpreted as the weight associated with the probability of

transition from node i to node j. If the Markov chain is irreducible then its graphical representation

G(Π) is strongly connected. In case the graphical representation is an undirected graph, then it is

equivalent to G(Π) being connected. For an irreducible Markov chain Π, if G(Π) is undirected then

aperiodicity is equivalent to G(Π) being non-bipartite.

Continuous-time Markov chains can be represented with weighted directed graphs G = (V,E,Q)

with node sets V := {1, ...,n}, edge set E ⊂ V × V , and associated transition rate matrix Q =

[Qi,j]
n
i,j=1. As before, nodes are identified with elements of the state-space. We put a directed edge

between states i, j if qi,j > 0, with edge-weight qi,j, and there is no edge between two states i and

j if qi,j = 0, meaning that the weight of the edge (i, j) is interpreted as the rate of transition from

node i to node j. One could also look at the entry −1/qi,i as the average time at which the walker

leaves node i and 1/qi,j as the average time for a jump from i to j.

16



Chapter 3

Dynamics of DeGroot-Friedkin Map

3.1 Introduction

Studying models of interactions among agents in complex networks has been received lots of

attention in literature over the last several decades [3, 4, 5, 34, 53, 81, 82]. The subject of this

chapter, opinion dynamics, is included in this category and relates to many problems in different

areas including economics, sociology, politics and etc. Proposed models of opinion dynamics

concern on how individual’s opinion evolve over time. The first model was proposed by French,

which was an averaging model. This model has been changed and today it is known widely as

DeGroot model [24]. Other important models of opinion dynamics which have received attention

in literature are Abelson [1], Friedkin-Johnsen (FJ) [37], and Hegselmann-krause model [48].

Our research in this chapter is motivated by the DeGroot-Friedkin model, which is proposed and

characterized in [53]. This model is for studying evolution of self appraisal and social power for a

group of individuals who form opinion on a sequence of issues. DeGroot-Friedkin model has two

stages. In the first one, the averaging rule by DeGroot is used to update opinions of individuals
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for a particular issue, and in the second one, reflected appraisal mechanism by Friedkin is used to

update social power of individuals for the next issue [53, 68, 69].

In this chapter, we first review DeGroot model and Friedkin Mechanism as an introduction to

explain DeGroot-Friedkin model. For the special case of two and three individuals discussing

on a sequence of issues, we drive closed form solution for the fixed point of DeGroot-Friedkin

model. Then, for the general case, we analyze equilibria and stability of the model. Our stability

analysis is an alternative approach to the one proposed by Jia [53]. Lastly, we review an extension

of DeGroot-Friedkin model to study evolution of individuals’ self-confidence over time.

Notation

The set of real-valued n-dimensional vectors is denoted by Rn, and its corresponding non-negative

orthant as Rn+. The notation > is used for matrix transpose, � for Hadamard product, det(·) for

determinant, and diag(·) for diagonal matrix. For i = 1, . . . ,n, we use εi to denote the ith standard

basis vector in n-dimensions. The symbols 1 and 0 denote the column vectors of all ones, and all

zeros, respectively. The standard (n − 1)-simplex, whose vertices are ε1, . . . , εn, is given by

Sn−1 := {x ∈ Rn : 0 6 x 6 1,1>x = 1}. We denote the (n − 1)-sphere centered at the

origin with radius r by Sn−1(r) := {x ∈ Rn : x>x = r2}, and its non-negative orthant part by

Sn−1
+ (r) := Sn−1(r)

⋂
Rn+. The interior of a set X is denoted by Xo, the standard Euclidean norm

is denoted by || · ||, and we use the following notation for Kronecker Delta: δij = 1 for i = j, and

0 otherwise. The notation
∑
symm

stands for symmetric sum.
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3.2 DeGroot-Friedkin Model

In this section, we review a dynamical model for the evolution of the social influence network

called DeGroot-Friedkin model. We start with describing the well-known DeGroot model. Then

we explain how Jia et al. [53] for the first time combined this model with Friedkin mechanism to

introduce DeGroot-Friedkin model.

3.2.1 DeGroot Model

We consider a society consist of n individuals where everybody has an opinion on a sequence of

subjects, s ∈ {0, 1, 2, 3, . . .}. The opinion of individuals about subject s at time t is represented

by a vector of probabilities x(s, t). Each individual has a fixed set of neighbors and communicate

with them. The relation between individuals can be represented by a directed graph in which nodes

represent individuals and the directed edges represent neighbor relations. The weights of directed

edges represent the weight that individuals put on each other’s opinions and is represented by an

influence matrix Π(s) where Πij(s) is the weight that individual i puts on individual j’s opinion.

This matrix is issue-dependent and row stochastic meaning that its rows consists of nonnegative

real numbers, with each row summing to 1. DeGroot averaging model describes the evolution of

individuals’ opinion about each issue s as follow

xi(s, t+ 1) = Πii(s)xi(s, t) +

n∑
j=1,j6=i

Πij(s)xj(s, t), (3.1)
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or in a matrix representation as

x(s, t+ 1) = Π(s)x(s, t) (3.2)

with initial condition of x(s, 0). In this model, there is a psychological meaning for the elements of

influence matrix. Diagonal element Πii is representing the self-confidence of individual i and the

off diagonal elementΠij is representing interpersonal weight which indicates how much individual

i’s opinion is affected by opinion of individual j based on j’s displayed opinions.

For simplicity, for the self-confidence Πii(s) of the ith individual, we use the notation of pi(s) ∈

[0, 1]. we decompose the off-diagonal entries as Πij(s) = (1 − pi(s))Cij. The reason is that Π is

assumed to be row stochastic, meaning that 1−pi(s) is the total amount that individual i’s opinion

is affected by others. In this decomposition, the Cij coefficients are the relative interpersonal

weights that the ith individual assigns to other individuals. With Cii = 0, the matrix C, which we

refer to as the relative interaction matrix, is row-stochastic with zero diagonal. Notice that, while

the self-confidence are issue-dependent, the matrix C is issue-independent, that is, constant. With

these notations and assumptions, each influence matrix in the sequence is written as

Π(p(s)) = diag(p(s)) + (In − diag(p(s)))C. (3.3)

Hence, the DeGroot Dynamic over a specific issue can be rewritten as

x(s, t+ 1) = (diag(p(s)) + (In − diag(p(s)))C) x(s, t). (3.4)

It is well known that for the DeGroot model, the limit of opinions for each issue s is

lim
t→∞ x(s, t) = lim

t→∞Π(p(s))tx(s, 0) = v(p(s)) ′x(s, 0)1n (3.5)
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in which v(p(s)) is the left eigenvector for the influence matrixΠ(p(s)) associated with eigenvalue

one. From Perron-Frobenius theorem, v(p(s)) has strictly positive entries and is unique.

Hence, the individuals’ opinions converge to a convex-combination of their initial opinion. And

the v(p(s))i coefficients represent the amount that each individual controls the final outcomes for

a particular issue s. Particularly, these coefficients manifest the social power of the individuals in

determining the final opinions.

3.2.2 DeGroot-Friedkin Model

DeGroot-Friedkin Model describes how self-confidence of individuals evolve across sequence of

issues. This model combines the DeGroot model for describing opinion evolution over a single

issue and Friedkin model to describe how the individuals’ self-confidence evolve over a sequence

of issues.

Based on psychological mechanism of reflected appraisal introduced by Friedkin, the evolution of

the self-confidence from issue to issue can be explained. In this mechanism, we wait till consensus

is achieved on a particular issue s then we update the self-confidence of individuals for the next

issue. This update is based on the contribution that the individuals had over the prior issue outcome,

mathematically

p(s+ 1) = v(p(s))

where v(p(s)) is the left eigenvector of the influence matrix in 3.3.

Jia et al. provided the explicit mathematical expression for DeGroot-Friedkin model, see Lemma

2.2 in [53]. Here, we summarize their result and use the same explicit mathematical expression for
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our analysis:

DeGroot-Friedkin model is a continous map p(s) 7→ p(s+ 1) = f(p(s), c), where s = 0, 1, 2, . . .

is the issue index, p(0) ∈ Sn−1 is the given initial condition, the parameter vector c ∈ Son−1 is

the Perron-Frobenius left eigenvector of the relative interaction matrix C, which is row stochastic,

zero diagonal, and irreducible and hence the elements of c are positive proper fractions which sum

up to one. The continuous map f : Sn−1 7→ Sn−1 is given by

f(p(s), c) =


εi if p = εi ∀ i ∈ {1, . . . ,n},(

c1

1− p1(s)
, . . . ,

cn

1− pn(s)

)>/ n∑
i=1

ci

1− pi(s)
otherwise.

(3.6)

Here, we use this explicit mathematical expression, first we find the fixed point of the map for the

case n = 2 and 3, second for the general case we provide a rigorous and comprehensive analysis

of the equilibria and stability. Note that this stability analysis is an alternative approach to the

proposed analysis by Jia [53].

Fixed Points of DeGroot-Friedkin model for n = 2 and 3

Case for n = 2:

In this case, we write the fixed point equation for (3.6) as

c2p
∗
1

1−p∗2
= c1 ⇔ p∗1 +

c1
c2
p∗2 = c1

c2

c1p
∗
2

1−p∗1
= c2 ⇔ c2

c1
p∗1 + p

∗
2 = c2

c1

⇔
 1 c1

c2

c2
c1

1


p∗1
p∗2

 =

c1
c2

c2
c1

 , (3.7)

wherein the determinant of the square matrix is always zero, meaning (3.7) has either infinitely

many solutions or no solution. Since c1 = c2 = 1
2
, equation (3.7) has infinitely many solutions. In
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other words, the DeGroot-Friedkin dynamics is degenerate for n = 2 case since any point on the

simplex S1 is a fixed point.

Case for n = 3:

For this case, the fixed point equation for (3.6) can be written as

c2p
∗
1

1− p∗2
+
c3p
∗
1

1− p∗3
= c1 ⇔ (c2 + c3)p

∗
1 + c1p

∗
2 + c1p

∗
3 − c1 =

∑
symm

c1p
∗
2p
∗
3, (3.8)

c3p
∗
2

1− p∗3
+
c1p
∗
2

1− p∗1
= c2 ⇔ c2p

∗
1 + (c1 + c3)p

∗
2 + c2p

∗
3 − c2 =

∑
symm

c1p
∗
2p
∗
3, (3.9)

c1p
∗
3

1− p∗1
+
c2p
∗
3

1− p∗2
= c3 ⇔ c3p

∗
1 + c3p

∗
2 + (c1 + c2)p

∗
3 − c3 =

∑
symm

c1p
∗
2p
∗
3. (3.10)

Motivated by the common quadratic nonlinearity in (3.8), (3.9) and (3.10), we subtract (3.9) from

(3.8), and (3.10) from (3.9), and use the condition that p∗1 + p
∗
2 + p

∗
3 = 1, to get a system of linear

equations:


c3 c3 c1 − c2

c2 − c3 c1 −c1

1 1 1



p∗1

p∗2

p∗3

 =


c1 − c2

c2 − c3

1

 , (3.11)

wherein the determinant of the 3× 3 matrix is 1− 2||c||2. If 1− 2||c||2 6= 0, the unique solution of

(3.11) follows from Cramer’s rule as

p∗ =
1

1− 2||c||2


c21 − (c2 − c3)

2

c22 − (c1 − c3)
2

c23 − (c2 − c1)
2

 . (3.12)

23



In addition, it is necessary to impose the condition that p∗i ∈ (0, 1). For example, for p∗1 > 0, we

need to have 1 − 2||c||2 < 0 and c21 − (c2 − c3)
2 < 0 or 1 − 2||c||2 > 0 and c21 − (c2 − c3)

2 > 0.

The first set of conditions reach to the contradiction of p∗1 < 0 but for the second set of conditions

we have (c1 − c2 + c3)(c1 + c2 − c3) > 0 ⇒ c2 <
1
2
and c3 <

1
2
, similarly, we can obtain that

c1 <
1
2
. Notice that without considering zero diagonal elements for C, we obtain that ci should be

less that 1
2
.

Lemma 2. The set S2

⋂
S2
+(

1√
2
) is the incircle of the equilateral triangular face of S2.

Proof. Notice that the equilateral triangular face of S2 has sides of length
√
2. From basic geom-

etry, the incenter of the equilateral triangular face of S2 coincides with the centroid (1
3
, 1
3
, 1
3
), and

the inradius is equal to the ratio of the area of the equilateral triangle and its semi-perimeter, that

is,
√
3
4 ×2

1
2×3×

√
2
= 1√

6
. Thus, it suffices to prove that the sets S2 and S2

+(
1√
2
) intersect, and that the

intersection is a circle centered at (1
3
, 1
3
, 1
3
) with radius 1√

6
.

Due to symmetry, the distance between the center of S2
+(

1√
2
) to S2, is equal to the distance of the

origin to centroid (1
3
, 1
3
, 1
3
), that is, 1√

3
. Since 1√

3
< 1√

2
, hence S2 and S2

+(
1√
2
) intersect, and the

intersection is a circle of radius
√

( 1√
2
)2 − ( 1√

3
)2 = 1√

6
centered at (1

3
, 1
3
, 1
3
). Hence the statement.

Fixed Points for the General Case.

To show the existence and uniqueness of fixed point p∗ ∈ Son−1, we start by rewriting the fixed

point equation corresponding to (3.6) as a map p∗ 7→ c, given by the linear equation

Xc = c, (3.13)
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where X is a zero-diagonal n× n matrix with (i, j)th entry

Xij =


p∗i

1−p∗j
for i 6= j,

0 otherwise.
(3.14)

Notice that since p∗ ∈ Son−1, the expression (3.14) is well-defined. Furthermore, since any column

of X has sum one, and all entries of the column are non-negative, hence each entry must lie in

interval [0, 1]. Thus, X is a column stochastic matrix with zero-diagonal, which implies that ci =∑
j6=iXijcj 6

∑
j6=i cj = 1 − ci, and hence 0 < ci 6 1

2
for all i = 1, . . . ,n. Consequently,

solving (3.13) for c has the interpretation of computing the right Perron-Frobenius eigenvector for

the column stochastic matrix X. In what follows, we first use (3.13) to solve for c as a function

of p∗ in closed-form, and then utilize that solution to establish the existence and uniqueness of the

inverse map c 7→ p∗.

Lemma 3. Considering the map in 3.13, we can solve for c as a function of p∗ in closed-form of

ci = kp
∗
i (1− p

∗
i )

where k = 1
1−||p∗||2

.

Proof. Writing ci = ci
(

1
1−p∗i

−
p∗i

1−p∗i

)
, and since p∗i 6= 1, we can transcribe (3.13) as the system

of equations

ci

1− p∗i
= p∗i

n∑
j=1

cj

1− cj
, ∀ i = 1, . . . ,n. (3.15)

Introducing change-of-variable γi := ci
1−p∗i

, notice that (3.15) gives γi ∝ p∗i , i.e., γi = kp∗i where

k is a normalization constant. We thus obtain ci = kp∗i (1− p
∗
i ) and k = 1

1−||p∗||2
.
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Lemma 4. ForD = diag (d1, . . . ,dn), and n× 1 vectors u, v, we have

det
(
D+ uv>

)
=



(
1+

n∑
i=1

uivi

di

)
n∏
i=1

di if D is nonsingular,

uivi

n∏
j=1

j6=i

dj if only the ith diagonal element of D is zero,

0 otherwise.

(3.16)

Proof. First, let us consider the case ofD being nonsingular. Then

det
(
D+ uv>

)
=det

(
D
(
I+D−1uv>

))
= det (D) det

(
I+D−1uv>

)
= det (D)

(
1+ v>D−1u

)
(3.17a)

=

(
1+

n∑
i=1

uivi

di

)
n∏
i=1

di, (3.17b)

where (3.17a) follows from Sylvester’s determinant identity.

Next, consider the case when exactly one (say ith) diagonal entry of D is zero, and rest (n − 1)

diagonal entries are non-zero. Let R and C be the shorthand for row and column, respectively. Per-

forming elementary column operations Cj 7→ Cj −
vj
vi
Ci for all j such that 1 6 j < i, followed by

elementary row operations Rk 7→ Rk−
uk
ui
Ri for all k such that n > k > i, we transform det(D+

uv>) to a upper-triangular determinant with diagonal entries d1, . . . ,di−1,uivi,di+1, . . . ,dn, and

thus the determinant evaluates to the product of these entries.

Finally, consider the case when more than one diagonal entry of D are zero. Then at least two

rows ofD+ uv> are same as the corresponding rows of uv>, and are linearly dependent. Hence

in this case, the determinant equals zero.
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Theorem 5. Given c ∈ Sn−1

⋂
(0, 1

2
]n, dynamics (3.6) admits a unique fixed point p∗ ∈ Son−1.

Proof. Using Lemma 3, direct calculation yields the Jacobian for map p∗ 7→ c as

Jp∗ 7→c :=
∂ci

∂p∗j
=

1− 2p∗i
1− ||p∗||2

δij +
2p∗i (1− p

∗
i )p

∗
j

(1− ||p∗||2)
2 , ∀ i, j = 1, . . . ,n, (3.18)

which can be written in “diagonal-plus-rank one” form

diag

(
1 − 2p∗

1− ||p∗||2

)
+

2p∗ � (1 − p∗)

(1− ||p∗||2)
2 (p∗)

> . (3.19)

At this point, two cases need to be considered, viz. Case I: none of the entries in p∗ is equal to

1
2
, and Case II: exactly one of the entries in p∗ is equal to 1

2
. Nothing else is possible other than

these two cases since p∗ ∈ Son−1. We next show that det(Jp∗ 7→c) 6= 0.

For Case I, the diagonal matrix in (3.19) is invertible, and using Lemma 4, we get

det (Jp∗ 7→c)

∣∣∣∣
Case I

=

n∏
i=1

(1− 2p∗i )

(1− ||p∗||2)
n

(
1+

2

1− ||p∗||2

n∑
i=1

(p∗i )
2 (1− p∗i )

1− 2p∗i

)
. (3.20)

We now have two sub-cases: viz. Case I.A: 0 < p∗i <
1
2

for all i = 1, . . . ,n, and Case I.B:
1
2
< p∗i < 1 for exactly one i ∈ {1, . . . ,n} and 0 < p∗j <

1
2

for all j 6= i. For Case I.A, each term

in (3.20) is positive, and so is the determinant. For Case I.B, the question arises whether

1+
2

1− ||p∗||2

n∑
i=1

(p∗i )
2 (1− p∗i )

1− 2p∗i
(3.21)
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may become equal to zero or not. In fact, we now demonstrate that (3.21) is non-zero for any p∗

under Case I. To this end, notice that for (3.21) to be equal to zero, we must have

n∑
i=1

(p∗i )
2(1− p∗i )

1− 2p∗i
=

||p∗||2 − 1

2

⇒
n∑
i=1

(
1

2
(p∗i )

2 −
1

4
p∗i −

1

8

)
−

1

8

n∑
i=1

1

2p∗i − 1
= −

1

2
+

||p∗||
2

2

⇒
n∑
i=1

1

2p∗i − 1
= 2− n ⇔

n∑
i=1

(
yi −

1

yi

)
= 0 ⇔

n∑
i=1

cos θi =

n∑
i=1

sec θi, (3.22)

where yi := 2p∗i − 1 ≡ cos θi ∈ (−1, 1) \ {0} for all i = 1, . . . ,n. In other words, (3.22) must

have solution for p∗i ∈ (0, 1)\{1
2
} under constraint

∑n
i=1 p

∗
i = 1, or equivalently for yi ≡ cos θi ∈

(−1, 1) \ {0} under constraint
∑n
i=1 sec θi = 2− n. Noticing that

n∑
i=1

∏
j6=i

(
1− 2p∗j

)
= n− 2

[
(n− 1)

∑
symm

p∗1

]
+ 22

[
(n− 2)

∑
symm

p∗1p
∗
2

]
+ . . .

+(−1)n−2

[
(n− (n− 2))

∑
symm

p∗1 . . .p
∗
n−2

]
+ (−1)n−12n−1

[
(n− (n− 1))

∑
symm

p∗1 . . .p
∗
n−1

]
,

we rewrite (3.22) as

∑
symm

p∗1p
∗
2p
∗
3 − 2× 21

∑
symm

p∗1p
∗
2p
∗
3p
∗
4 + 3× 22

∑
symm

p∗1p
∗
2p
∗
3p
∗
4p
∗
5 − . . .

+(n− 3)(−1)n−4 2n−4
∑
symm

p∗1 . . .p
∗
n−1 + (n− 2)(−1)n−3 2n−3p∗1 . . .p

∗
n = 0. (3.23)
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Since p∗i ∈ (0, 1) \ {1
2
}, introducing zi := 1

p∗i
∈ (1,∞) \ {2}, we further rewrite (3.23) as

∑
symm

z1 . . . zn−3 − 2× 21
∑
symm

z1 . . . zn−4 + 3× 22
∑
symm

z1 . . . zn−5 − . . .

+(n− 3)(−1)n−4 2n−4
∑
symm

z1 + (n− 2)(−1)n−3 2n−3 = 0. (3.24)

Noting zi > 1, we substitute zi(λ) = 1+ λxi in (3.24), where λ > 0 is a free parameter, to obtain

n−3∑
r=0

(
n− r

(n− 3) − r

)
λr
∑
symm

p∗1 . . .p
∗
r − 2× 21

n−4∑
r=0

(
n− r

(n− 4) − r

)
λr
∑
symm

p∗1 . . .p
∗
r + . . .

+(n− 3)(−1)n−4 2n−4

1∑
r=0

(
n− r

1− r

)
λr
∑
symm

p∗1 + (n− 2)(−1)n−3 2n−3 = 0, (3.25)

which follows from the fact that for k = 1, . . . ,n− 3, we have

∑
symm

z1z2 . . . zk =
∑
symm

(1+ λp∗1)(1+ λp
∗
2) . . . (1+ λp

∗
k) =

(
n

k

)
+

(
n− 1

k− 1

)
λ
∑
symm

p∗1

+

(
n− 2

k− 2

)
λ2
∑
symm

p∗1p
∗
2 + . . .+

(
n− (k− 1)

k− (k− 1)

)
λk−1

∑
symm

p∗1 . . .p
∗
k−1 + λ

k
∑
symm

p∗1 . . .p
∗
k.(3.26)
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Rearranging (3.25), we arrive at

λ0
[(

n

n− 3

)
− 2× 21

(
n

n− 4

)
+ . . .+ (n− 3)(−1)n−4 2n−4

(
n

1

)
+ (n− 2)(−1)n−3 2n−3

]
+

λ

[(
n− 1

n− 4

)
− 2× 21

(
n− 1

n− 5

)
+ . . .+ (n− 3)(−1)n−4 2n−4

]∑
symm

p∗1 + . . .+ λn−3
∑
symm

p∗1 . . .p
∗
n−3

=

n−3∑
k=0

(−1)(n−3)−k 2(n−3)−k ((n− 3) − (k− 1))
k∑
r=0

(
n− r

k− r

)
λr
∑
symm

x∗1 . . . x
∗
r

=

n∑
k=3

a(k)λn−k
∑
symm

x∗1 . . . x
∗
n−k = 0, (3.27)

where

a(k) :=

k−2∑
j=1

(
k

k− j− 2

)
(−1)j−1 2j−1j. (3.28)

Let φ(t) :=
k−2∑
j=1

(
k

k− j− 2

)
tj, and notice that a(k) = φ′(−2) = 1

4

(
1− (−1)k

)
(k− 1) > 0 for

all k = 3, . . . ,n. In addition, for fixed n > 3, since all the a(k)’s cannot vanish at the same time,

(3.27) does not have any solution for λ > 0 and p∗i ∈ (0, 1) \ {1
2
}. Consequently, (3.22) does not

have any solution for p∗i ∈ (0, 1) \ {1
2
}, and thus (3.21) remains non-zero for any p∗ under Case I.

For Case II, the diagonal matrix in (3.19) has exactly one zero (say the ith entry) along its diagonal,

and the rest of the diagonal entries are non-zero. Using Lemma 4, we then have

det (Jp∗ 7→c)

∣∣∣∣
Case II

=
2(p∗i )

2 (1− p∗i )

(1− ||p∗||2)
n+1

n∏
j=1

j6=i

(
1− 2p∗j

)
, (3.29)

which is non-zero for all p∗ ∈ Son−1, since none of the p∗j inside the (n−1)-term product in (3.29)
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is equal to 1
2

due to j 6= i.

Having established that det(Jp∗ 7→c) 6= 0, by local inverse function theorem, we conclude that for

any c ∈ Sn−1

⋂
(0, 1

2
]n, there exists p∗ ∈ Son−1. Uniqueness of p∗ follows from a version of

Hadamard’s global inverse function theorem (see [? , Thm. 6.2.8]), since Sn−1

⋂
(0, 1

2
]n is simply

connected, det(Jp∗ 7→c) 6= 0 everywhere in Son−1, and the map p∗ 7→ c is proper. The last condition

(“properness”) requires that each compact set in Sn−1

⋂
(0, 1

2
]n has compact pre-image in Son−1,

which is met since the pre-image is necessarily bounded, and closed (boundary points of a compact

set in Sn−1

⋂
(0, 1

2
]n comes from boundary of the pre-image in Son−1, thanks to det(Jp∗ 7→c) 6= 0).

This concludes the proof.

3.3 Extension of DeGroot-Friedkin Model

In DeGroot-Friedkin model opinion consensus is achieved on a particular issue s before individ-

uals’ self-confidence are updated. In other words, we need to wait for many or infinite number

of time steps before updating the individuals’ self-confidence. In practice, when a group of indi-

viduals discuss on a sequence of issues, they don’t necessarily converge on a particular opinion

and they may discuss an issue for a finite number of times. In order to count for these situations,

Xu et al. [88] introduced a modified DeGroot-Friedkin Model. In this model, individuals’ self-

confidence are updated and they are set to be equal to the perceived social power for issue s after

T times discussions

pi(s+ 1) = xi(s, T).
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This means that individuals self-confidence are updated along the time of discussions and we don’t

need to wait for opinion consensus on a particular issue s. Note that if we tends T to the infinitely

we will recover DeGreoot-Friedkin model. Based on this assumption, 3.4 can be rewritten as

p(s+ 1) = (diag(p(s)) + (In − diag(p(s)))C)p(s) (3.30)

Based on the modified DeGroot-Friedkin Model in 3.30, in the next chapter, we propose a group

of nonlinear models to capture evolution of individuals’ self-confidence. Then, we assess stability

of them.

3.4 Summary

In this section, we had a review on DeGroot model and DeGroot-Friedkin model. For the special

case of three individuals, we found closed form solution for the fixed point of the DeGroot-Friedkin

model. Then, we developed a complete analysis for uniqueness and existence of the fixed point

of DeGroot-Friedkin model. Our proposed approach is an alternative to analysis of Jia et al. [53].

We also discussed a modified DeGroot-Friedkin model proposed by Xu et al. [88], which allows

individuals to update their self-confidence levels after each discussion on a particular issue. Based

on this idea, in the next chapter we introduce a group of nonlinear models that describe self-

confidence evolution in a group. A comprehensive analysis of the proposed models is the main

focus of the next chapter.
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Chapter 4

Stability Theory of Stochastic Models in

Opinion Dynamics

4.1 Introduction

Models of social interactions and the formation of opinions in large groups have been receiving

increasing attention in recent years (see [3, 5, 17, 34, 53, 70] and the references therein). As the

basis for social exchanges, an averaging mechanism has been postulated in the literature, whereby

the outcome represents a weighted sum of individual preferences or beliefs. In turn, the averaging

mechanism itself is modified by the outcome of past interactions, reflecting relative increase or

decrease in the confidence and, thereby, influence of particular individuals. Such feedback models

can be traced to [24, 32, 36, 48].

Averaging schemes leading to consensus are broadly relevant in coordination of dynamical systems

such as co-operating drones or ground robots, sensor networks, formation flight, and distributed

frequency regulation in power grid, see, e.g. [12, 13, 91]. The distinguishing feature of social
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interaction models has been the postulate of a suitable nonlinear effect that enhances or, perhaps,

diminishes the influence of particular individuals in the group. The purpose of this chapter is first

to step back, and view the dynamics as a nonlinear random walk. We then develop a stability theory

for corresponding stochastic maps by resorting to the `1 metric. The key element of our approach

is to consider the differential of the stochastic maps and assess whether these are contractive in `1.

More specifically, we consider a discrete-time (or rather, discrete-indexed, where the index may

represent issue being considered) process {Xt | t ∈ Z+} taking values on a finite state-space X =

{1, 2, . . . , n}. We denote byp(t) the marginal probability vector, i.e., its entry pi(t) = Pr(Xt = i)

is the occupation probability of state i at iteration index t, and postulate a transition mechanism

that depends nonlinearly on the occupation probability (a.k.a. belief state) of the process according

to the rule:

Πij := Pr(Xt+1 = j | Xt = i) = ρi(t)δij + (1− ρi(t))Cij, (4.1a)

ρi(t) := r(pi(t)), (4.1b)

where C := [Cij]
n
i,j=1 is a row-stochastic matrix1, δij equals one for i = j and zero otherwise, and

r(·) is a differentiable function

r : [0, 1] 7→ [0, 1].

In general, the mapping r(·) needs to be neither onto nor invertible (nor independent of i, as taken

at the early part of the chapter, for simplicity). Typical examples include

r(x) = x, 1− x, 1− e−γx, or e−γx, for some γ > 0. (4.2)

1A matrix C is referred to as stochastic (or, row-stochastic, for specificity) provided Cij > 0 for all (i, j) and∑
j Cij = 1. Such matrices map the probability simplex into itself (or into another, if not square).
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Equation (4.1a) represents a model for a “lazy” random walk where the transition probabilities

Cij are modified to increase/decrease the “prior” return-probability from Cii to ρi + Cii(1 − ρi),

in a way that depends on the probability of the corresponding state, since ρi(t) = r(pi(t)). For

this reason, we refer to r(·) as the reinforcement function. Thus, the essence of the above model

is that the random walk adapts the return probability of each state so as to promote or discourage

residence in states with high marginal probability. An alternative interpretation of the time t-

marginal probabilities is as representing confidence or influence which, accordingly, is modified

constructively or destructively by the likelihood of the particular state of the process. It has been

argued, for instance, that high confidence and success in an argument, begets higher confidence.

The model in (4.1) provides an example of a discrete-time, discrete-space nonlinear Markov semi-

group that maps the probability simplex on X into itself [55]. In general, for a nonlinear Markov

semigroup to define finite-dimensional distributions (and thereby a random process), one needs

to decide on a stochastic representation as in (4.1), which may not be unique. Then, once the

transition probabilities are specified as a nonlinear function of the state, the stochastic process can

be defined in the form of a time inhomogeneous-Markov chain [55, Chapter 1]. Such nonlin-

ear Markov models arise naturally as limits of interacting particle systems that model processes

with mass-preserving interactions [55, Section 1.3]. Herein, we will not be concerned with the

probabilistic nature and properties of such systems, but instead focus on the dynamical response

and stability of equilibria on the probability simplex. Thus, for the most part, we will focus on

stochastic maps with transition probabilities as above.

In the context of opinion dynamics, the matrix C = [Cij]
n
i,j=1 in (4.1), encodes the influence of

neighboring nodes–a standing assumption throughout is thatC corresponds to a strongly connected

aperiodic Markov chain. With regard to the reinforcement mechanism, of particular interest are
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exponentially-scaled transition kernels (introduced here)

Πij(x) = (1− e−γxi)δij + e
−γxiCij, and its “opposite” (4.3a)

Πij(x) = e
−γxiδij + (1− e−γxi)Cij, (4.3b)

as well as the linearly-scaled kernels

Πij(x) = γxiδij + (1− γxi)Cij, and (4.4a)

Πij(x) = (1− γxi)δij + γxiCij (4.4b)

which have been considered in, e.g., [53]. Naturally, in all these cases, Π = [Πij]
n

i,j=1 and

Π =
[
Πij
]n
i,j=1

are row-stochastic (i.e., rows sum to one). Those two models will be analyzed

in some detail as they provide rather insightful examples of the dynamics that one can expect of

such models. We highlight ranges of parameters where globally stable behavior is observed and

where the process tends towards a stationary distribution and, others, where multiple equilibria,

periodic orbits, or chaotic behavior is observed. Local stability of equilibria (i.e., local stationarity

of distributions), if that is the case, can be assessed using the theory developed in Section 4.2.

The evolution of the marginal probability (column) vector p(t) corresponding to (4.1) (also, (4.3)

and (4.4)) is as follows:

p(t+ 1) = Π(p(t))Tp(t), (4.5a)

with

Π(p(t))T = D(p(t)) +CT (I−D(p(t))), (4.5b)
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and a diagonal matrix

D(p(t)) = diag(r(p(t))), (4.5c)

where “(·)T” as usual denotes transposition. As noted, throughout, C is row stochastic and cor-

responds to a strongly connected and aperiodic chain. The starting point for the evolution is

p0 ∈ Sn−1, where

Sn−1 := {x ∈ Rn | xi > 0,
∑
i

xi = 1}

denotes the probability simplex. By Son−1 we will denote the (open) interior of Sn−1.

A closely related alternative model for the evolution of influence and opinion dynamics that has

appeared in the literature, is to postulate the transition mechanism

p(t+ 1) =
[
Π(p(t))T

]
FP

, (4.6)

where the notation
[
ΠT
]
FP

represents the mapping ΠT 7→ q ∈ Sn−1 of an irreducible (row)

stochastic matrix Π to its corresponding Frobenius-Perron eigenvector, i.e., to the unique proba-

bility (column) vectorq that satisfiesΠTq = q. The relation between the two update-mechanisms,

(4.5a) and (4.6), can be understood by virtue of the fact that
(
Π(p(t))T

)k
p(t) is approximately

equal to the right Frobenius-Perron eigenvector of Π(p(t))T for sufficiently large k, and hence

a suitable modification of the dynamics in (4.5a) (i.e., by introducing a suitably high exponent)

approximates the dynamics in (4.6). We will not be concerned with the update mechanism in

(4.6), as our primary interest is in the general transition mechanism (4.5a). It is reasonable to ex-

pect that stochastic maps in either form, (4.5a), or (4.6), for specific choices of kernel Πij(·) and

generalizations (see Sections 4.5-4.6), have appealing properties as models of opinion dynamics.
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The exposition in our manuscript proceeds as follows. In Section 4.2, we provide conditions that

ensure contractivity in `1 (Theorem 6 and Propositions 11, 12), quantify the `1-gain (Theorem 14),

and give conditions for attractiveness of a periodic orbit (Proposition 13). We discuss “exponential

influence” models in Section 4.3 and DeGroot-Friedkin models in Section 4.4. In both sections

we present and analyze representative dynamical behaviors via examples. We comment briefly on

the continuous-time counterpart of such models and, in Section 4.6 we introduce local coupling in

the reinforcement mechanism to model grouping between colluding subgroups in opinion forming,

and comment on extensions of the theory to account for such interactions. Section 4.8 provides

concluding remarks and directions.

4.2 `1-contractivity

We consider stochastic maps of the particular form

f : Sn−1 → Sn−1 : p 7→ f(p) := Π(p)Tp = q, (4.7a)

whereΠ(p) is of the form

Π(p)T = CT0D(p) +CT1 (I−D(p)), (4.7b)

with C0, C1 both row stochastic, andD(p) diagonal with entries bounded by one; the expression

(4.5b) is the special case where C0 is the identity matrix. Note that Π(p) has nonnegative entries

with rows summing to one for all p ∈ Sn−1. Under suitable conditions, which often hold for the

type of dynamics that we consider, f turns out to be contractive, and even strictly contractive2 in

2The map f is strictly contractive on S ⊂ Sn−1 if there exists ε > 0 that may depend on S so that

(1− ε)‖pb − pa‖1 > ‖f(pb) − f(pa)‖1,
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`1, in Sn−1 or subsets thereof as specified.

Denote by T the tangent space of the probability simplex, i.e.,

T := {δ ∈ Rn | 1Tδ = 0}

with 1 the column vector of ones. The Jacobian of f(·) is

df : T → T : (δj)
n
j=1 7→

(
n∑
i=1

Πijδi

)n
j=1

+

(
n∑

i,k=1

∂Πij

∂pk
piδk

)n
j=1

where, by interchanging indices, the latter term can be written as

(
n∑

k,i=1

∂Πkj

∂pi
pkδi

)n
j=1

.

Thus, df can be written in a matrix form as

df : δ 7→

ΠT +
[
∂ΠT

∂p1
p, . . . ,

∂ΠT

∂pn
p

]
︸ ︷︷ ︸

QT

δ. (4.8)

Since 1TCTi = 1T , for i ∈ {0, 1}, the columns on the second entry in the expression forQT satisfy

1T
(
∂ΠT

∂pj
p

)
= 1T

(
CT0
∂D

∂pj
p−CT1

∂D

∂pj
p

)
= 1T

∂D

∂pj
p− 1T

∂D

∂pj
p = 0.

for all pa,pb ∈ S. It is contractive if the statement holds for ε = 0.
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Hence,3

1TQT = 1TΠT = 1T . (4.9)

The following serves as a key ingredient in subsequent developments.

Theorem 6. Let f(·) be as in (4.7) with D(p) continuously differentiable, and suppose that the

Jacobian matrixQ defined in (4.8) has strictly positive entries in Son−1. The following hold:

(a) f is strictly contractive in `1 in compact subsets of Son−1.

(b) Provided f has a fixed point in Son−1, this fixed point is the only fixed point and it is globally

attracting.

Proof. Consider two probability vectors pa and pb in Son−1, and let α := (pb − pa)+ be the

vector with the positive entries of the difference pb − pa and β := −(pb − pa)− contain the

entries that originally appear with negative sign, while setting the remaining entries to be zero in

both cases. Thus,

pb − pa = α− β,

but in this representation α and β have non-negative entries and have no common support, i.e.,

αiβi = 0 as they are not simultaneously 6= 0. Since 1T (pb−pa) = 0, it follows that 1Tβ = 1Tα,

hence,

‖β‖1 = ‖α‖1 =: γ

3It is easy to see that this property also holds for maps that are composition of maps with the structure in (4.7).
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and

‖pb − pa‖1 =
∑
i

|pbi − p
a
i |

= ‖β− α‖1

=
∑
i

βi +
∑
i

αi

= ‖β‖1 + ‖α‖1

= 2γ.

Now consider a path p(λ) = (1− λ)pa + λpb for λ ∈ [0, 1] and consider comparing the distance

between pb and pa to the length of the path

q(λ) = Π(p(λ))Tp(λ), λ ∈ [0, 1].

Clearly,

dp(λ) = (α− β)dλ,

and thus

∫ 1
λ=0

‖dp(λ)‖1 =
∫ 1
0

‖α− β‖1dλ

= ‖α− β‖1
∫ 1
0

dλ = ‖pb − pa‖1.

The entries ofQ are bounded away from zero in any compact subset of Son−1, hence we can assume

that they are greater than ε
n

along the path, for some ε > 0 which may depend on the compact
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subset. Then,

∫ 1
λ=0

‖dq(λ)‖1 =
∫ 1
0

‖Q(p(λ))T (α− β)‖1dλ

6 (1− ε)

∫ 1
0

(
‖Q(p(λ))Tβ‖1 + ‖Q(p(λ))Tα)‖1

)
dλ (4.10)

= (1− ε)

∫ 1
0

(‖β‖1 + ‖α‖1)dλ (4.11)

= (1− ε)‖pb − pa‖1.

To see why the inequality (4.10) holds, note that for each λ,

vβ := Q(p(λ))Tβ and vα := Q(p(λ))Tα

are vectors with positive entries, while ‖vβ‖1 = ‖β‖1 = γ, and ‖vα‖1 = ‖α‖1 = γ since Q is

row stochastic. The entries of vβ are strictly larger than ε
n
‖β‖1 = εγ

n
and, similarly, the entries of

vα are strictly larger than the same value, ε
n
‖α‖1 = εγ

n
. Therefore,

‖vβ − vα‖1 6 ‖vβ‖1 + ‖vα‖1 − 2εγ

= 2γ(1− ε),

establishing the claimed inequality. Finally, the metric property of ‖ · ‖1 implies that

‖q(1) − q(0)‖1 6
∫ 1
λ=0

‖dq(λ)‖1,

where q(1) = Π(pb)Tpb and q(0) = Π(pa)Tpa. Hence,

‖Π(pb)Tpb −Π(pa)Tpa‖1 6 (1− ε)‖pb − pa‖1.

42



This proves the first claim (part (a)).

Now assuming that f has a fixed point pa in Son−1, consider any other point pb ∈ Sn−1 and the

path p(λ) = (1 − λ)pa + λpb for λ ∈ [0, 1] as before. Since pa is in the interior of Sn−1 there

is an ε1 > 0 such that B`1(p, ε1) := {p ∈ Sn−1 | ‖p − pa‖1 6 ε1} is also in the interior of

Sn−1. The elements of Q(p) are greater than, ε2
n

, for some 0 < ε2 < 1, in B`1(p, ε1). Split the

path {p(λ) | λ ∈ [0, 1]} into two parts: {p(λ) | λ ∈ [0, λ1]} that is contained in B`1(p, ε1) and

{p(λ) | λ ∈ [λ1, 1]} that is not. The portion of the path that is in B`1(p, ε1) contracts when mapped

via f by 1− ε2, whereas the length of remaining is nonincreasing. Thus,

‖f(pb)−f(pa)‖1 6
∫λ1
0

‖dq(λ)‖1 +
∫ 1
λ1

‖dq(λ)‖1

6 (1− ε2)

∫λ1
0

‖dp(λ)‖1 +
∫ 1
λ1

‖dp(λ)‖1

6 (1− ε2)λ1‖pb − pa‖1 + (1− λ1)‖pb − pa‖1

6 (1− ε2λ1)‖pb − pa‖1.

Finally, we notice that 1− ε2λ1 6 1− ε2ε1/2 since ‖pb − pa‖1 6 2. In total, the `1-distance be-

tween pa and the elements of the sequence pb, f(pb), f(f(pb)), . . . , reduces to zero exponentially

fast with a rate of at least 1− ε2ε1/2. This proves the second part (part (b)).

Remark 7. We note that analogous results to Theorem 6 for `1-contractivity for monotone non-

linear compartmental continuous-time systems were proven in Como etal. [19, 20] (e.g., see [20,

Lemma 1]), and that similar ideas underlie the differential Finsler-Lyapunov framework of Forni

and Sepulchre [30, 31] as well as work on monotone and hierarchical systems [21, 60, 75]. While

our approach in this chapter is to derive conditions on the differential map δ 7→ Q(p)Tδ so as

to guarantee `1-contractivity of the map p 7→ Π(p)Tp on Sn−1, it would be interesting to inves-

tigate a discrete-time Finsler-Lyapunov function approach analogous to the continuous-time case

known in the literature (see e.g., Theorem 1 in [30]). Thus, the objective would be to construct
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a Finsler-Lyapunov function V(p,δ) : Sn−1 × T → R>0 for the augmented map
(
p, δ

)
7→(

Π(p)Tp, Q(p)Tδ

)
so as to guarantee `1-contractivity of the map p 7→ Π(p)Tp.

Remark 8. If f is a general nonlinear map, the Jacobian matrix Q may fail to be stochastic for

two reasons. First, the elements ofQ may fail to be non-negative. Second, the normalization (4.9)

may fail unless Π has a particular structure, as for instance the one in (4.7). A simple example to

demonstrate the failure of (4.9) is

 p1

p2

 7→
 p1 p2

p2 p1


 p1

p2

 .

For this example one can readily see that 1TQT = 21T 6= 1T .

Remark 9. At times it is easy to ensure that f in Theorem 6 has a fixed point in the interior of

Sn−1. For instance, if C0 = I is the identity matrix, and since CT1 (I − D)p = (I − D)p and

C1 corresponds to a simply connected aperiodic chain, (I−D)p is the corresponding Frobenius-

Perron eigenvector and therefore lies in the interior of Sn−1. Conclusions can be drawn for p,

accordingly, depending onD.

Corollary 10. Let Π(p) be row-stochastic and differentiable in p, and suppose that the Jacobian

of the map f(·) in (4.7a) has non-negative entries. Then, f is contractive (but not necessarily strictly

contractive) in the `1-metric.

Stronger statements that build on the theorem are stated next. All results hold for functional forms

that are more general than the exponential and linear models considered in this chapter.

Proposition 11. Let matrixΠ(p) be row-stochastic and continuously differentiable in p. Suppose
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f has a fixed point p? in Son−1, and for a suitable integer m the differential (Jacobian) of the mth

iterant

fm(p) :=

m︷ ︸︸ ︷
f(f(. . . f(p))) (4.12)

has strictly positive entries for all p ∈ Son−1. Then, p? is the unique fixed point of f and it is

globally stable.

Proof. By assumption, p? is a fixed point of fm since fm(p?) = fm−1(p?) = · · · = p?. Now

applying Theorem 6 to fm we conclude that p? is the unique fixed point of fm and is globally

stable. Therefore, p? is also a unique fixed point of f, and the global stability of p? with respect to

f follows from the continuity of f.

Proposition 12. Let matrixΠ(p) be row-stochastic and continuously differentiable in p. Suppose

that p? in Son−1 is a fixed point of f in (4.7a) and that, for a suitable integerm, themth power

(df|p?)m

of the Jacobian of f evaluated at p? has strictly positive entries. Then p? is a locally attractive

equilibrium.

Proof. The expression (df|p?)m is precisely the Jacobian of themth iterate, i.e.,

(df|p?)m = d

m︷ ︸︸ ︷
f(f(. . . f)) |p? .

By continuity, the entries of dfm, with fm :=

m︷ ︸︸ ︷
f(f(. . . f)), will remain positive in a neighborhood

of p?. It is then clear that fm, which is stochastic and satisfies the conditions of Theorem 6, has

p? as a (locally) attractive fixed point. Therefore, using the continuity of f, we conclude that p? is
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a locally attractive fixed point for f.

Proposition 13. Let matrix Π(p) be row-stochastic and continuously differentiable in p, and

assume that pi, for i = 0, 1, 2, . . . ,m− 1, is a periodic orbit for f in (4.7a), i.e.,

p(i+1)mod(m) = f(p(i)mod(m)).

Suppose that the product of the Jacobians

(
df|p(i+m)mod(m)

)
. . .
(
df|p(i)mod(m)

)
has strictly positive entries for some i. Then, the periodic orbit is locally attractive.

Proof. Under the stated condition, for any i, pi is a locally attractive fixed point for themth iterant,
m︷ ︸︸ ︷

f(f(. . . f)) |pi . The fact that the orbit is locally attractive now follows from the continuity of f.

We provide next a bound on the induced `1-incremental gain of stochastic maps in terms of the

induced `1-gain of the Jacobian

‖df|T‖(1) := max{‖QTδ‖1 | 1Tδ = 0, ‖δ‖1 = 1}.

This strengthens substantially the applicability of the framework since it relaxes the positivity re-

quirement on the Jacobian, albeit this relaxed condition may be more challenging to verify globally.

Theorem 14. Let f be a differentiable stochastic map as in (4.7a) and as before the Jacobian

df(p)| is represented by a matrixQ(p)T . For any pb,pa ∈ Sn−1,

‖f(pb) − f(pa)‖1 6 max
p∈Sn−1

‖df(p)|T‖(1)‖pb − pa‖1,
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and, in general,

‖df|T‖(1) =
1

2
max
j,k

n∑
i=1

|(Q(p))ji − (Q(p))ki|. (4.13)

Proof. The first claim is straightforward since, with α,β as in the proof of Theorem 6,

‖f(pb) − f(pa)‖1 6
∫ 1
λ=0

‖dq(λ)‖1

=

∫ 1
0

‖Q(p(λ))T (β− α)‖1dλ

6

(
max

p∈Sn−1

‖df(p)|T‖(1)
) ∫ 1

0

‖β− α‖1dλ

=

(
max

p∈Sn−1

‖df(p)|T‖(1)
)
‖pb − pa‖1.

Any δ ∈ T with ‖δ‖1 = 1 can be written as δ = 1
2
(β − α) with α,β having nonnegative entries

and ‖α‖1 = ‖β‖1 = 1, as before, and at any given p ∈ Sn−1,

‖df|T‖(1) = max{‖QT (p)δ‖1 | δ ∈ T}

=
1

2
max{‖QTβ−QTα‖1 | α,β ∈ Sn−1}. (4.14)

The claim follows by convexity. To see this, note that ‖QTβ − ν‖1, for ν constant, is a convex

function of β ∈ Sn−1. Therefore the maximal value will be attained at an extreme point, i.e., a

vertex, and likewise when maximizing with respect to α. Thus, the extremal will be at a point

where both β and α have a single nonzero element (and thereby select a corresponding row of

Q).

We note that the expression (4.13) for the induced `1-norm of linear maps is the so-called Markov-
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Dobrushin coefficient of ergodicity [25, 41, 62, 77] that characterizes the contraction rate of

Markov operators with respect to this norm (also, total variation). For nonlinear operators on

probability simplices (nonlinear Markov Chains), the same is true. The above propositions pro-

vide candidate certificates for stability of equilibria p? and highlight the fact that the `1-distance is

a natural Finsler-Lyapunov function in the sense of Forni and Sepulchre [30]. The essence is that

`1-contractivity of the nonlinear dynamics pnext = f(p), and stability of fixed points or periodic

orbits, may be deduced from the infinitesimal properties of f in the `1-metric. The approach is

illustrated in the next sections.

4.3 Exponential-influence models

In this section we analyze the model in (4.5a) for the cases where the reinforcement function r(x)

is either 1− e−γx or e−γx, for some γ > 0. The first choice satisfies r(0) = 0 and r′(0) = γ, and

thereby strengthens the return probabilities4 for states with relatively large marginal probability at

corresponding times t. The second choice has r(0) = 1 and r′(0) = −γ, has the tendency to do

the opposite.

Throughout we assume that C is an irreducible aperiodic row-stochastic matrix, and we denote by

c the unique (positive) Frobenius-Perron left eigenvector, i.e., c satisfies

CTc = c.

It is normalized so that 1Tc = 1 and, because of the irreducibility assumption, c has positive

entries.
4Naturally, the rates also depend on the choice of C.
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4.3.1 Case r(x) = 1 − e−flx for 0 < fl 6 1.

Proposition 15. With C as above and for any γ ∈ (0, 1] consider the map

p(t) 7→ f(p(t)) = p(t+ 1), where (4.15a)

f(p(t)) =
(
diag(1− e−γp(t)) +CT diag(e−γp(t))

)
p(t). (4.15b)

The following hold:

i) f(·) is contractive in `1,

ii) f has a unique fixed point p? with entries satisfying e−γp
?
ip?i = κci, for some κ > 0,

iii) starting from an arbitrary p(0) ∈ Sn−1,

p? = lim
t→∞p(t).

Proof. The Jacobian df is of the form

δ 7→ (diag(r(p) + p� r′(p))

+CT (I− diag(r(p) + p� r′(p)))
)
δ

=
(
diag(1− e−γp + γp� e−γp) +CT diag(e−γp − γp� e−γp)

)︸ ︷︷ ︸
Q(p)T

δ,

where� denotes the entry-wise multiplication of vectors, and for a vector v = (vi)
n
i=1, e

v denotes

the vector with entries evi . Since both functions 1 − e−γx + γxe−γx and e−γx − γxe−γx take

non-negative values on [0, 1],Q(p)T is a (column) stochastic matrix. Thus, f is contractive.

Any fixed point of f must satisfy

p =
(
diag(1− e−γp) +CT (e−γp))

)
p. (4.16)
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Rearranging terms we see that pe−γp is proportional to c (the Frobenius-Perron vector of C), and

therefore,

pie
−γpi = κci, i = 1, . . . ,n. (4.17)

The function xe−γx is monotonic on [0, 1] and hence, for any

κ 6
1/(γe)

max
i

{ci}
=: κmax,

there is a unique solution {pi | i = 1, . . . ,n} of (4.17). Let now s(κ) :=
∑
i pi. The function

s(κ) is monotonically increasing as a function of κ and has s(0) = 0. For κ = κmax one of the

pi’s is equal to 1 and hence s(κmax) > 1. Thus, the equation s(κ) = 1 has a unique solution that

corresponds to the probability vector p? that satisfies (4.16). Thus the fixed point p? is unique.

Further,Q inherits irreducibility from CT in Son−1 since it has the same pattern of positive entries;

in addition it is aperiodic, irrespective ofC, because its diagonal is not zero. Hence, independently

of p, there exists integerm such that

Q(

m−1︷ ︸︸ ︷
f(. . . f(p)) )T . . .Q(f(p))TQ(p)T (4.18)

has all entries positive. The expression in (4.18) is precisely the differential of the mth iterant (cf.

(4.12)). By Proposition 11, p? is globally attractive.

Remark 16. More in the style of DeGroot-Friedkin models [24, 32] of the general form (4.6), one

may consider a model

p(t+ 1) =
[
diag(1− e−γp(t)) +CT diag(e−γp(t)))

]
FP

. (4.19)
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Then, diag(1− e−γp(t))+CT diag(e−γp(t))) is irreducible and therefore, an alternative formula

for p(t+ 1) is

p(t+ 1) = lim
m→∞

(
diag(1− e−γp(t)) +CT diag(e−γp(t)))

)m
p(t).

Comparing with (4.15), the fixed point p? in Proposition 15 is also a fixed point for (4.19).

4.3.2 Case r(x) = 1 − e−flx for fl > 1.

The case γ > 1 is substantially different. Here, there can be several attractive points of equilib-

rium for the nonlinear dynamics in (4.15) and even more complicated nonlinear behavior. In fact,

we suggest that such a behavior may be more appropriate for models of opinion dynamics as it is

reasonable to expect a different outcome depending on the starting point (that encapsulates confi-

dence/beliefs of individuals). We illustrate the behavior with two numerical examples for 3-state

Markov chains to highlight differences with the case when γ 6 1.

Example

We consider the dynamics in (4.15) for a 3-state Markov chain (i.e., n = 3) with γ = 4 and

C =


0.8 0.1 0.1

0.4 0.2 0.4

0.4 0.4 0.2

 . (4.20)
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The left Frobenius-Perron eigenvector of C is (2/3, 1/6, 1/6)T . The fixed-point conditions for

possible stationary distributions become

e−4p?
1p?1 = κ

2

3
,

e−4p?
2p?2 = κ

1

6
,

2p?2 + p
?
1 = 1.

Upon eliminating κ between the first two, and substituting p1 in terms of p2, we obtain

1− 2p?2
p?2

e−4(1−3p?
2) = 4. (4.21)

This equation has the unique solution

p? := (0.9904, 0.0048, 0.0048)T .

It turns out that this is a locally attractive fixed point. This can be verified by evaluating the

Jacobian of f at p? as

df|p? =


1.0113 0.3849 0.3849

−0.0056 0.2303 0.3849

−0.0056 0.3849 0.2303

 .

Even though the Jacobian has negative entries it is still strictly contractive. Indeed, we explicitly

evaluate the induced gain using Theorem 14 and this is

‖df|T‖(1) =
1

2
max{1.2528, 1.2528, 0.3092} = 0.6264 < 1.
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Thus p? is a stable fixed point. This analysis is consistent with simulations shown in Fig. 4.1.

In the figure we depict trajectories (in different color) starting from random initial conditions that

clearly tend to p?.
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Figure 4.1: Convergence of trajectories to a unique fixed point for the 3-state exponential model
(4.15) with γ = 4 and influence matrix C given by (4.20).
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Example

Once again we consider a 3-state Markov chain with γ = 4, but this time we take

C =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 . (4.22)

The fixed-point equations have 7 solutions (taking into account symmetries). Out of those, three

are attractive fixed points with coordinates cyclically selected from {1 − a,a/2,a/2} for a =

0.046. The remaining four are unstable fixed points. One is at the center (1/3, 1/3, 1/3)T (due to

symmetry), and the rest have coordinates cyclically selected from {1−a,a/2,a/2} for a = 0.874.

Just like the previous example, we can verify stability by computing the Jacobian df at fixed points.

For instance, for the fixed point p?
a = (0.954, 0.023, 0.023)T , we have

df|p?
a
=


1.0620 0.4141 0.4141

−0.0310 0.1718 0.4141

−0.0310 0.4141 0.1718

 ,

and

‖df|T‖(1) =
1

2
max{1.2958, 1.2958, 0.4846} = 0.6479 < 1.
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Applying Theorem 14, we conclude that p?
a is a stable fixed point. For another fixed point p?

b =

(0.1260, 0.4370, 0.4370)T , we have

df|p?
b
=


0.7004 −0.0651 −0.0651

0.1498 1.1302 −0.0651

0.1498 −0.0651 1.1302

 ,

and

‖df|T‖(1) =
1

2
max{1.9608, 1.9608, 2.3907} = 1.1954 > 1.

Numerical evidence shown in Fig. 4.2 confirms that p?
a is stable and p?

b is unstable. Convergence

of trajectories depends on the initial conditions with respect to the basins of attraction for the three

stable fixed points. The qualitative behavior of the trajectories around the four unstable and three

stable fixed points is illustrated in Fig. 4.3.

4.3.3 Case r(x) = e−flx for fl 6 1.

In this case there is a unique fixed point and it is always globally attractive. We summarize our

conclusions as follows:
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Figure 4.2: For the 3-state exponential model (4.15) with γ = 4 and influence matrix C given by
(4.22), trajectories converge to one of the three stable fixed points.

Proposition 17. For any γ ∈ [0, 1] consider

p(t) 7→ f(p(t)) = p(t+ 1), where (4.23a)

f(p(t)) =
(
diag(e−γp(t)) +CT diag(1− e−γp(t))

)
p(t). (4.23b)

The map f is contractive in `1 and, starting from an arbitrary p(0) ∈ Sn−1, the limit p? =

limt→∞ p(t) exists, is unique, and its entries satisfy
(
1− e−γp

?
i

)
p?i = κci, for some κ > 0.
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Figure 4.3: The qualitative behavior of dynamics (4.15) with γ > 1 as observed in Fig. 4.2, where
three stable fixed points (solid circles) and four unstable fixed points (empty circles) coexist on the
simplex.

Proof. First, the Jacobian matrixQ(p)T is of the form

diag(e−γp − γp� e−γp) +CT diag(1− e−γp + γp� e−γp).

Notice that Q(p)T is differentiable in p, and for γ 6 1, is a (column) stochastic matrix with

non-negative entries. Therefore, by Corollary 10, the map (4.23) is contractive in `1 and inherits

irreducibility from CT in Son−1. Following a similar line of argument as in Proposition 15, unique-

ness of the fixed point for map (4.23) is guaranteed. Next, we write the stationarity conditions

p? =
(
diag

(
e−γp

?)
+CT diag

(
1− e−γp

?))
p?,

equivalently,

(
1− e−γp

?)� p? = CT
(
1− e−γp

?)� p?,
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to obtain that

(
1− e−γp

?
i

)
p?i = κci, i = 1, . . . ,n, (4.24)

where ci denotes the i-th entry of the Frobenius-Perron vector ofC and κ =
∑n
i=1

(
1− e−γp

?
i

)
p?i .

4.3.4 Case r(x) = e−flx for fl > 1.

In this case too there exists a unique fixed point in any dimension (any n). This follows easily as

the fixed-point conditions are the same,

(
1− e−γp

?
i

)
p?i = κci.

Then, for all γ > 0, (1−e−γx)x is a monotonically increasing starting at 0 for x = 0. Solving for a

given κ, the sum
∑n
i=1 p

?
i (κ) is also monotonically increasing function of κ and its value exceeds

1 for a suitable κ. Thus, there is a unique solution p?i (κ) which is a probability vector (and the p?i ’s

sum up to 1).

However, interestingly, the nonlinear dynamics now display diverse behaviors. Below we give

three examples. In the first two the unique fixed point is attractive, but they differ, in that assurances

for stability are drawn (for the second example) by computing the norm of the differential of higher

iterants (2nd in this case). In the third example we observe a 2−periodic attractive orbit.
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Figure 4.4: For the 3-state exponential model (4.23) with γ = 4 and influence matrix C given by
(4.25), trajectories converge to the unique stable fixed point p? = (1/3, 1/3, 1/3)T .

Example

We consider a 3-state Markov chain with γ = 4, and

C =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 . (4.25)
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Since C is doubly stochastic, the unique fixed point for (4.24) is p? = (1/3, 1/3, 1/3)T , and we

have

df|p? =


−0.0880 0.5440 0.5440

0.5440 −0.0880 0.5440

0.5440 0.5440 −0.0880

 ,

and

‖df|p?‖(1) =
1

2
max{1.2640, 1.2640, 1.2640} = 0.6320 < 1.

Using Theorem 14, we conclude that p? is a stable fixed point.

Example

For γ = 4, now take

C =


0 0 1

0.5 0.5 0

0.5 0.5 0

 .

The unique fixed point is again p? = (1/3, 1/3, 1/3)T . Here,

df|p? =


−0.0880 0.5440 0.5440

0 0.4560 0.5440

1.0880 0 −0.0880

 ,
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and

‖df|p?‖(1) = 1.1760.

However,

‖df2|p?‖(1) = 0.7911.

This ensures local attractiveness.

Example

Once again we consider a 3-state Markov chain with γ = 4, but we now take

C =


0 0 1

0.8 0 0.2

0.8 0.2 0

 . (4.26)

Uniqueness of a fixed point is guaranteed. This turns out to be

p? = (0.4173, 0.1537, 0.4298)T .

It turns out that

df|p? =


−0.1261 0.6333 0.9031

0 0.2084 0.2258

1.1261 0.1583 −0.1289



61



has `1-norm equal to 1.255, and so do the differentials of higher order iterants. However, a stable

2-periodic orbit now appears alternating between

pa=(0.1943, 0.1042, 0.7015)T and pb=(0.6450, 0.2005, 0.1545)T .

The periodic orbit is locally attractive. The Jacobians at these two points are

df|pa =


0.1024 0.4923 0.8873

0 0.3846 0.2218

0.8976 0.1231 −0.1092


and

df|pb =


−0.1197 0.7290 0.6352

0 0.0888 0.1588

1.1197 0.1822 0.2060

 ,

respectively, and it can be verified that the norm of their product is ‖df|padf|pb‖(1) = 0.8750.

Interestingly, ‖df|pbdf|pa‖(1) = 0.7120, which is different, but < 1 too (as expected). Stability

can be ascertained by Proposition 13. An expalantion, as pointed out by an anonymous referee, is

that as a particular state gets “more probable”, it actually is associated with “less confidence”, and

hence there is indecision oscillating between alternatives.
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Figure 4.5: For the 3-state exponential model (4.23), γ = 4, and C given by (4.26), the unique
fixed point p? = (0.4173, 0.1537, 0.4298)T is unstable and there is an attractive 2-periodic orbit
between pa and pb, verified by the time history (inset graph).

4.4 DeGroot-Friedkin Model and its Variants

We now consider the two classes of nonlinear Markov chains with r(x) = γx and 1 − γx, for

0 < γ 6 1. The bounds 0 < γ 6 1 ensure that Π(p) (in (4.5a)) remains stochastic for all values

of the probability vector p and any C. For small values of γ, γx ' 1− e−γx and, evidently, these

models approximate the corresponding exponential models of Section 4.3.
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4.4.1 Case r(x) = flx

The case where r(x) = x and C is restricted to be doubly stochastic has been studied in [88] and

referred to as a modified/one-step DeGroot-Friedkin model. Existence and stability of the fixed

point were analyzed and, in particular, it was conjectured that the equilibrium is stable for any irre-

ducible row stochastic matrixC (see [88]). Herein, we consider the general class where r(x) = γx.

For this class of models, very much as in the case of the exponential models, we can ascertain `1

strict-contractivity for a range of values for γ, while for other values, we can ascertain stability on

a case by case basis. We begin with the following proposition for general irreducible stochastic C

and γ 6 1
2
.

Proposition 18. For γ 6 1
2

consider

p(t) 7→ f(p(t)) = p(t+ 1), where (4.27a)

p(t+ 1) =
(
diag(γp(t)) +CT diag(1− γp(t))

)
p(t). (4.27b)

The map f is contractive in `1, the iteration for t = 0, 1, . . . converges to a unique fixed point

p? = limt→∞ p(t), and

(1− γp?i )p
?
i = κci, for a suitable κ > 0. (4.28)

Proof. As before, the Jacobian df is now

δ 7→
(
diag(2γp) +CT diag(1− 2γp)

)︸ ︷︷ ︸
QT (p)

δ.

For 0 < γ 6 1
2
, Q(p) is element-wise non-negative. Corollary 10 ensures that f is contractive in
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`1. The unique fixed point p? satisfies

CT (1− γp?)� p? = (1− γp?)� p?,

and therefore, p?i satisfies (1− γp?i )p
?
i = κci with κ = 1 − γ||p?||22. The global stability of p?

follows a similar argument as in Proposition 15.

For the range γ ∈ [1
2
, 1] all-encompassing conclusions cannot be drawn and examples have to be

worked out on a case by case basis. However, more can be said based on the induced norm of df

even when the elements of df may have negative entries. Specifically, it is possible to obtain a

closed-form expression for maxp∈Sn−1
‖df|T‖(1) for γ ∈ (1

2
, 1]. IfC has zero diagonal (a standard

assumption in DeGroot-Friedkin literature), then for 1
2
< γ < 1

2
(1+mini 6=jCji), it can be shown

that the map f remains `1-contractive and consequently p? in (4.28) remains globally attractive. In

passing, we note that for γ = 1, trivially, the vertices of Sn−1 are fixed points while, in general,

when γ 6= 1, this is not the case. Also, when C is doubly stochastic and γ 6= 1, 1
n
1 is the unique5

fixed point of (4.27).

4.4.2 Case r(x) = 1 − flx

We first establish that the corresponding map admits a unique fixed point for any γ > 0, and show

that it is `1-contractive for γ 6 1
2
.

Proposition 19. Consider

p(t) 7→ f(p(t)) = p(t+ 1) where (4.29a)

p(t+ 1) =
(
diag(1− γp(t)) +CT diag(γp(t))

)
p(t). (4.29b)

5That 1
n
1 is a fixed point can be verified directly, whereas the fact that there is no other fixed point can be argued

in a similar manner as [88, Theorem 2].
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For any γ > 0, there is a unique fixed point p?, where

p?i =

√
ci

n∑
i=1

√
ci

, i = 1, . . . ,n. (4.30)

For 0 < γ 6 1
2
, f is `1-contractive and in this case p? is an attractive fixed point.

Proof. The fixed-point condition

γp? � p? = CTγp? � p?

implies that p?i must equal κ
√
ci, for each i and some κ > 0. Thus, the fixed point is always unique

and is as claimed. For 0 < γ 6 1
2
, the Jacobian df

δ 7→
(
diag(1− 2γp) +CT diag(2γp)

)︸ ︷︷ ︸
QT (p)

δ

is element-wise non-negative, inherits irreducibility from CT in Son−1, and as before, f is `1-

contractive.

Once again, for γ ∈ [1
2
, 1], analysis can be done on a case by case basis and no general conclusion

can be drawn. Similar to the comment in Section 4.4.1, we can find a closed-form expression

for maxp∈Sn−1
‖df|T‖(1) for γ ∈ (1

2
, 1]. Then requiring maxp∈Sn−1

‖df|T‖(1) < 1, it can be

shown that if C has zero diagonal (a standard assumption in DeGroot-Friedkin literature), then for

1
2
< γ < 1

2
(1−mini 6=jCij)

−1, the map f is guaranteed to be `1-nonexpansive.

66



4.5 Continuous-time Framework

The framework presented extends naturally to continuous-time. Indeed, a continuous-time analog

of (4.5) as a dynamical system on Sn−1 is given by

ṗ(t) = LT (I− diag(r(p(t))))p(t), (4.31)

where L = C−I is a Laplacian matrix satisfying L1 = 0. It is clear that (I−diag(r(p(t))))L is a

Laplacian matrix as (I− diag(r(p(t))))L1 = 0. The scaling by diag(r(p(t))) can be interpreted

to play a similar role–it promotes or discourages staying at a state i in accordance with the current

value of the corresponding occupation probability pi. The special case when r(p) = p was

recently considered in [17].

Lemma 20. If p? is a fixed point of the continuous time model in 4.31 and Jacobian of the map

has positive entries at this point, then p? is locally stable.

Proof. For stability analysis of 4.31, we start by linearizing the nonlinear model using the taylor

expansion (f(p+ δ) − f(p) ≈ ḟ(p)δ).

ṗ(t) = LT (I− diag(r(p(t))))p(t)

= f(p)

Hence, we have
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f(p+ δ) − f(p) = LT (I− diag(r(p+ δ)))(p+ δ) − LT (I− diag(r(p)))p

= LT (p+ δ− rp− rδ− δ2ṙ− δṙp− p+ rp)

= LTdiag(1− r(p) − ṙ(p)p)δ

=Mδ.

Therefore, the linearized model and its solution has the general form of

δ̇(t) =Mδ(t),

δ(t) = e(Mt)δ0.

Discretization of the solution is as follow

δ(t+ ∆) = e(M∆)δ(t),

δ(t+ ∆) = (I+M∆)δ(t).

Thus, from 6, we know that if Jacobian of the map (in this case e(M∆)) has positive entries then

map is contractive in `1-norm.

Note that ifM∆ be a Metzler matrix (matrix in which all the off-diagonal components are nonnega-

tive (equal to or greater than zero)), then we know that entries of the Jacobian would be nonnegative

(exponential of the Metzler matrix is a nonnegative matrix). It means that for stability analysis of

4.31, we only need to check that diag(1− r(p) − ṙ(p)p) has positive diagonal elements.
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4.6 Groupings

It is quite interesting to speculate about the effect of colluding sub-group in opinion forming. In-

deed, everyday experience suggests that opinion is often reinforced within groups of like-minded

individuals that draw confidence upon the collective wisdom, or lack of. To account for such

interactions, we use a stochastic matrix W to model the joint influence between group mem-

bers by weighing their collective states via r(Wp), which should be contrasted with individual-

reinforcement of opinion/confidence modeled by r(p). This is independent and in addition to C,

which is used to model information flow over the total influence network. A reasonable choice

for W is to be block diagonal where the blocks correspond to different subgroups of interacting

individuals. The special case whereW is identity matrix reduces to the earlier setting.

In fact, what we propose herein is an “interacting particle” analogue for nonlinear Markov chains,

modeled as follows:

p(t+ 1) = Π(p(t))Tp(t)

=
(
diag(r(Wp(t))) +CT (I− diag(r(Wp(t))))

)
p(t). (4.32)

In particular, using a fixed-point argument as in [53], we establish existence results for the cases

r(x) = x and r(x) = 1− e−x, and a general stochastic matrixW.

Proposition 21. Let r(x) = x or r(x) = 1 − e−x, and W a stochastic matrix. Assume that

ck <
1
2

for all k. The Markov nonlinear model (4.32), has at least one fixed point in the interior of

probability simplex Sn−1.

69



Proof. Any fixed point of (4.32) must satisfy

pj = Fj(p) :=
1

1+
∑
k6=j ck/(1−rk)

cj/(1−rj)

.

Since

∑
k6=j

ck

cj(1− rk)
>
∑
k6=j

ck

cj
> 1,

there exists ε > 0 small enough such that

(∑
k6=j

ck

cj(1− rk)
− 1

)
ε−
∑
k6=j

ck

cj(1− rk)
ε2 > 0.

It follows

1

1+
∑
k6=j

ck
cj(1−rk)

ε
< 1− ε.

Combining the above we obtain

Fj(p) 6
1

1+
∑
k6=j

ck
cj(1−rk)

ε
< 1− ε.

On the other hand, given

p ∈ Sε := {p ∈ Sn−1 | pi 6 1− ε, ∀i = 1, . . . ,n},

it is easy to see r(Wp) ∈ Sε due to the facts that r(x) 6 x andW is stochastic. Thus, F(Sε) ⊂ Sε.

Clearly, F is continuous. Therefore, by Brouwer fixed-point theorem, there exists p? such that

p? = F(p?).
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The ”nonlocal interaction” matrix W may in general introduce negative off-diagonal elements in

df. The theory in Section 4.2 applies on a case by case basis, but no general conclusion can be

drawn at this point regarding global stability of particular class of models as we did earlier. Indeed,

for r(x) = 1− e−x, a matrix representation of the differential (4.8) becomes

Q(p)T = diag(1− e−Wp) +CT diag(e−Wp)

+(I−CT ) diag(p� e−Wp)W.

This, in general, has negative entries, which however doesn’t imply that the fixed point is unsta-

ble. The theory in Section 4.2 applies and attractiveness of equilibria can be ascertained by e.g.,

explicitly computing the `1-gain of df|T.

Below is an example in S2. We take r(x) = 1− e−Wx,

C =


0.8 0.1 0.1

0.4 0.2 0.4

0.4 0.4 0.2

 (4.33)

and

W =


0.5 0.5 0

0.5 0.5 0

0 0 1

 . (4.34)

Numerically (Fig. 4.6), we see that the system has a unique fixed point, p? = (0.6975, 0.1744, 0.1282)T ,

which is stable. This results are consistent with element-wise positiveness of the Jacobian of (4.32)
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Figure 4.6: For the 3-state model (4.32) with influence matrixC andW given by (4.33) and (4.34),
trajectories converge to the unique fixed point p? = (0.6975, 0.1744, 0.1282)T .

which is evaluated at p?,

df|p? =


0.8932 0.2812 0.3068

0.0872 0.5052 0.3068

0.0196 0.2136 0.3865

 .

It is worth mentioning that simulation with the same C but this time with W = I3×3 gives p? =

(0.8014, 0.0993, 0.0993)T . Hence, as expected, the influence between member of the sub-group

has a strengthening effect.
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4.7 Connection to Interacting particles systems

Consider a collection of N weakly interacting particles, in which each particle evolves as a contin-

uous time pure jump cadlag stochastic process taking values in a finite state space X = {1, · · · ,d}.

The evolution of this collection of particles is described by an N-dimensional time-homogeneous

Markov process = {Xi,N}i=1,··· ,N, where for t > 0, Xi,N(t) represents the state of the ith particle

at time t. The jump intensity of any given particle depends on the configuration of other particles

only through the empirical measure

µN(t) =
1

N

N∑
i=1

δXi,N(t), t ∈ [0,∞) (4.35)

where δa is the Diract measure at a. Consequently, a typical particle’s effect on the dynamics of

the given particle is of order 1
N

.

Note that µN(t) is a random variable with values in the space (Sn−1)N(X) = Sn−1(X) ∩ 1
N
Zd,

where (Sn−1)N(X) is the space of probability measures on X, equipped with the usual topology of

weak convergence. The jump intensities of all particles will have the same functional form. Thus,

if the initial particle distribution of XN(0) = {Xi,N(0)}i=1,··· ,N is exchangeable, then at any time

t > 0, XN(t) = {Xi,N(t)}i=1,··· ,N is also exchangeable.

Roughly speaking, such a result states that on any fixed time interval [0, T ], the particles become

asymptotically independent as N → ∞, and that for each fixed t the distribution of a typical

particle converges to a probability measure p(t), which coincides with the limit in probability

of the sequence of empirical measures {µN(t)}N∈N as N → ∞. Under suitable conditions, the

function t → p(t) can be characterized as the unique solution of a nonlinear differential equation

on Sn−1(X) of the form 4.5a where for each p ∈ Sn−1(X),Π(p) is a rate matrix for a Markov chain
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on X. This differential equation admits an interpretation as the forward equation of a ”nonlinear”

jump Markov process that represents the evolution of the typical particle. In the context of weakly

interacting diffusions, this limit equation is also referred to as the McKean-Vlasov limit.

4.8 Summary

We presented conditions that guarantee global attractiveness of equilibria of nonlinear stochastic

maps; these are Theorems 6 and 14 and Propositions 11, 12, and 13 in Section 4.2. The criteria can

be effectively used in certain cases where structural features can be exploited. Interest stems from

modeling dynamical interactions over social networks. In Sections 4.3 and 4.4, we highlight appli-

cation of the theory in representative examples where the complementing statements of Section 4.2

are pertinent, respectively. Section 4.6 presents a natural generalization of opinion models where

the dynamics are modified by local interactions between subgroupings of the interacting agents.

We expect that the development herein, i.e., both the theory as well as the new class of exponen-

tial models that we present in Sections 4.3 and 4.6 to provide impetus for further advances. In

particular, a research direction of practical significance is to quantify the effect of uncertainty and

disturbances in such models. In general, it is of interest to quantify the effect of bias/disturbance

in the dynamic response (e.g., shift in the position and nature of equilibria).
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Chapter 5

Macroscopic Network Circulation for

Planar Graphs

5.1 Introduction

Time asymmetry of traffic flow in city streets is unmistakable, as it flows in one direction around

city squares and one-way in many city streets as well. Yet, from a macroscopic vantage point,

circulation may or may not be evident. Flux from one part of town to another may average out

with flux in the opposite direction. When this is not the case, it is of interest to identify the nature

and to quantify any large scale imbalance in global circulation. Likewise, in another example that

motivated this work, it is of interest to detect circulatory action potentials in the heart electrical

conduction system. Such large scale imbalance patterns, peered via a collection of sensors, un-

derly self-sustaining cardiac rhythm abnormalities1. Thus, herein, we seek to define and identify

macroscopic circulation in a network/graph that captures flow asymmetry at large scale.

The mathematical setting used to contemplate model flows on graphs is that of a stationary discrete-
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time Markov model, where the probability flux represents a vector field on the network of the nodes

and edges of a Markov chain. In this setting, the famous Cheeger inequality relates the likelihood

of transitioning between two parts in a 2-partition of the nodes, across, in either direction, as well

as the rate of mixing, to spectral properties of the graph Laplacian. As a 2-partition aims to capture

bottlenecks that impede mixing, the Cheeger constant duly takes into account the relatively size of

the boundary between the two parts. In a similar manner, contemplating the elements of circula-

tory imbalance, we are led naturally to a 3-partition of the network. After all, in a 2-partition, the

probability current across the boundary, at stationarity, balances out. Tell-tale signs of circulatory

asymmetry requires at least three parts. In general, flux-imbalance at the micro or macro level

may manifest only when more that two components interact and exchange “mass.” For a 3-state

partitioning of a network into parts A, B, and C, the net flow from A → B (which is considered

positive when the net flux is in the direction of B), by detailed-balance, must equal to the net flux

from B → C, and must also equal the net flux from C → A. Thereby, the asymmetry manifests

itself as a network circulation current. For reasons similar to those underlying the Cheeger con-

stant, careful consideration of the size and regularity of the boundary between the three parts is

warranted and may need to be duly restricted.

Graph theory has impacted many fields in mathematics, physics, network science, biology, medicine,

and engineering [8, 63, 71]. Typically, applications relate to clustering, community detection, par-

allel computation, and so on. Yet the concept of circulation discussed at present does not appear

to have been studied at any length. Thus, a main contribution of the present work is motivate and

study circulation in graphs and the topology of corresponding partitions. Further, a computational

framework is developed that applies to embedded planar graphs; for general graphs macroscopic

circulation and the corresponding graph partitioning remain challenging combinatorial problems.

The structure of the chapter is as follows. In section 5.2, we discuss connection between proba-

bility currents and flow fields on graphs. In section 5.3, we highlight the concept of macroscopic
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circulation in the context of Markov chains. The setting of Markov chains is not restricted by

the dimensionality of possible embedding of the respective graph, but the formulation of global

circulation in general requires further refinement. In section 5.4, we discuss planar graph and

the decomposition of flows accordingly. In section 5.5, we introduce an algorithm for calculating

scalar potential supported on the dual graph and propose a method for partitioning the graph into

three parts and calculating macroscopic circulation. The issue of embedding is revisited in sec-

tion 5.6 where it is explained that a given graph may have non-equivalent embeddings, leading to

different values for the macroscopic circulation. In sections 5.6.1 and 5.7, we detail additional illu-

minating examples. For convenience, the important notations used in this chapter are summarized

in Table 5.1.

Table 5.1: Table of notations.
Symbols Definitions

N number of the nodes, N > 3
V = {v1, . . . , vN} node set

E edge set
F face set

G := (V,E) directed graph
G∗ dual of graph G

GF directed graph with the adjacency matrix having the zero pattern of F
Gchordal
F triangulated graph GF
πij transition probability between every two nodes i, j
Π transition probability matrix
πT the (unique left/row Frobenius-Perron) eigenvector of Π with eigenvalue 1

π = [πi]
N
i=1 is the column stationary probability vector of the Markov chain

P probability current matrix
F net flux on G

W vector filed
φ scalar potential
ψ vector potential
∂AB boundary between sets A and B which is defined as {e = (va, vb) ∈ E | va ∈ A, vb ∈ B}

⊕ , ◦ entry-wise Boolean addition and multiplication of characteristic vectors, respectively
1, 0 (column) vectors with all 1’s and all 0’s, respectively

S (n, k) Stirling number of the second kind: S (n, k) = 1
k !

∑k
i=0 (−1 )i

(
n
i

)
(k − i)n

(number of ways to partition a set of n labeled objects into k nonempty unlabeled subsets)

77



5.2 Probability currents & flow fields on graphs

We explain flows on graphs in the context of Markov chains. These can be thought as a canonical

model to represent flows on discrete spaces in the form of probability currents induced by the

Markov structure.

Consider a time-homogeneous, discrete-time, N-state finite Markov chain Xt, with t ∈ N, with

states V = {v1, . . . , vN}, comprised of the nodes of a network, and transition probabilities πij, i.e.,

P {Xt+1 = vj | Xt = vi} = πij.

We assume that the Markov chain is ergodic and hence, irreducible and aperiodic. Thus, the matrix

Π := [πij]
N
i,j=1 has non-negative entries and is such that Π1 = 1, where 1 denotes a column vector

with all entries equal to 1. The ergodicity assumption implies that for a sufficiently large integer

k (e.g., k = N), Πk has all entries positive. The dimensionality of vectors and matrices will be

explicit, unless their dimension is clear from the context. The Markov chain is associated to a

graph G := (V,E), where the (directed) edge set E is specified by the allowed transitions, i.e.,

E = {e = (vi, vj) |πij 6= 0}.

Throughout, G is assumed to be strongly connected as it follows from the ergodicity assumption of

the Markov chain.

Let now π = [πi]
N
i=1, where 1Tπ = 1, denote the stationary probability (column) vector of the

Markov chain. Thus, πT is the (unique left/row Frobenius-Perron) eigenvector of Π with eigen-

value 1, i.e.,

πTΠ = πT .
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Throughout, (·)T denotes transposition and diag(π1, . . . ,πN) = diag(π) denotes a diagonal matrix

with the specified diagonal entries. Thence,

P := diag(π1, . . . ,πN)Π (5.1)

represent probability current pij = πiπij from vertex vi to vj. Probability currents quantify flux

on G.

Our aim in this chapter is to identify (large scale) imbalance in the net flux across G, and to this

end, we will be working mostly with the anti-symmetric part of P (modulo a factor of 1/2)

F = P − PT . (5.2)

Any element of matrix F is the difference between the incoming and outgoing flow for each node

of G, defined as Fij = pij − pji, where pij is defined in 5.1. This retains information on only local

flux imbalance between any two nodes, and removes all the self-loops. Note that since, Π1 = 1,

it follows that P1 = PT1, and therefore, that F1 = 0 (the zero vector) as well. Imbalance between

the incoming and outgoing flow at a node indicates sink/source character which corresponds to

non-vanishing divergence in the case of vector fields. Thus, we refer to a flow field F on G as

“divergence free” if and only if the local net flux imbalance between any two nodes is zero, i.e.,

F1 = 0. When F is not divergence free, it can be replaced by its restriction on the complement of

the range of 11T , namely, (I − 1
N
11T )F(I − 1

N
11T ), so that F1 = 0; this relates to a projection

onto the space of divergence free flows. For further discussion on such a decomposition see Section

5.4.2.
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Once again, consider a “divergence free” flow field F on G. Besides the fact that

F = −FT (5.3a)

F1 = 0, (5.3b)

the positive part of F, namely, F+ := [max{Fij, 0}]
N

i,j=1, has entries that are less than or equal those

in P, and since 1TP1 = 1,

1TF+1 6 1. (5.3c)

It turns out that (5.3a-5.3c) characterize divergence-free flow fields on graphs. I.e., any antisym-

metric matrix with the above properties originates from a Markovian probability structure. We

state the precise result below.

Proposition 22. Consider anN×N matrix F and assume that (5.3a-5.3c) hold. Then F originates

as a divergence-free flow-field on a graph G = (V,E), with |V| = N, associated with a Markov

probability structure.

Proof. If (5.3c) holds with equality, let P = F+, otherwise define

P :=M+ F+, (5.4)

for a symmetric matrixM =MT , of the same size, with nonnegative entries such that

1TM1 = 1− 1TF+1,

ensuring that πT := 1TP has all entries positive. This is clearly possible from the standing as-
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sumptions. Now, verify that

Π = diag(πv1 , . . . ,πvN)
−1P (5.5)

is a transition probability matrix that leads to the divergence-free flow field F. Specifically, i) Π

has non-negative entries. ii) In view of πT = 1TP and (5.5), πTΠ = πT holds. iii) Note that

F = F+ − FT+ and hence, F+1 = FT+1 from (5.3b). It follows that P1 = PT1, and from (5.5) the

definition πT = 1TP, that Π1 = 1. iv) Lastly, P − PT = F+ − FT+ = F.

5.3 Macroscopic circulation on graphs

Consider an N ×N antisymmetric matrix F of net fluxes that defines a divergence-free flow field

on a (simple) graph G. We seek a suitable definition of (maximal) macroscopic circulation by

partitioning the states into three subsets A, B, and C, in such a way so as to maximize the flux

between the parts. We discuss first the simplest case, of three states, and proceed to define the

concept of circulation and flow-density in general.

Three-state example

We consider a three-state Markov chain (N = 3) in Fig. 5.1, where for convenience we label the

three nodes as A,B,C, i.e., V = {A,B,C}. The net flux matrix on G (anti-symmetric part of the

probability current matrix P, modulo a factor of 1/2) is

F =


0 −γ γ

γ 0 −γ

−γ γ 0

 ,
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with the directionality encoded in the sign of γ. Obviously, the off-diagonal entries of F must have

the same magnitude, since F1 = 0. Evidently, the value |γ| quantifies circulation in this example.

The weighted oriented graph of net fluxes is shown in Fig. 5.2. For the case of a three-state Markov

chain, a close-form expression for γ can be obtained in terms of Π, though this is immaterial and

not to be expected in general. 2

C

A B

pCC

pAA pBB

pCB

pBC

pAB

pBA

pCA

pAC

Figure 5.1: Probability currents in a 3-state Markov chain.

C

A B

pAC − pCA = γ γ = pCB − pBC

γ = pBA − pAB

Figure 5.2: Weighted oriented graph of net fluxes.
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General case

We now consider the general case with N states, as before, and data for net flux between nodes in

F. We seek partitioning the graph into three subsets of nodes

A,B,C ⊂ V

that are pairwise non-intersecting with

V = A ∪B ∪ C.

Such a triple of subsets of V will be referred to as a 3-partition.

Define the characteristic (column) vector IS of a set S ⊆ V, with V ordered, as follows: the vth

entry of IS is equal to 1 when v ∈ S and 0 otherwise. It is convenient to define entry-wise Boolean

addition and multiplication of characteristic vectors, ⊕ and ◦, respectively, and also the notation

1, 0 to denote the (column) vectors with all 1’s and all 0’s, respectively.

Lemma 23. (A,B,C) is a 3-partition of V if and only if

IA ⊕ IB ⊕ IC = 1, (5.6a)

IA ◦ IB = IB ◦ IC = IC ◦ IA = 0, (5.6b)

Proof. Relation (5.6a) is equivalent to V = A ∪B ∪ C. Then, (5.6b) is equivalent to the pair-wise

non-intersection condition.

Given a flow field (net-probability flux) matrix F, as before, and a 3-partition (A,B,C) of the

(ordered) vertex set V, then ITAFIB is the (signed) flux directed from A to B. That is, if ITAFIB < 0,
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the net flux, summed over all edges connecting directly A and B, is directed from B into A. Thus,

ITAFIB = −ITBFIA,

while the absolute value |ITAFIB| is the total net flux between the two parts.

Lemma 24. For any 3-partition (A,B,C) of the (ordered) vertex set V,

ITAFIB = ITBFIC = ITCFIA.

Proof. Note that ITAFIA = 0, since F is antisymmetric, and that IA ⊕ IB∪C = IA∪B∪C = 1. Then,

ITAFIB + ITAFIC = ITAFIB∪C

= ITAFIB∪C + ITAFIA

= ITAF1 = 0.

Thus,

ITAFIB = −ITAFIC

= ITCFIA.

And, similarly, ITBFIA = ITCFIB.

In view of the above, it is natural to define the circulation

c(A,B,C) := |ITAFIB|
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Figure 5.3: 3-partition into non-contiguous pairs.

1 2

3

45

6

Figure 5.4: 3-partition into contiguous pairs

associated to any given 3-partition and, accordingly, the maximal macroscopic circulation

cmax := max
3-partitions

c(A,B,C).

Evidently, c(A,B,C) depends on the partition as well as the “divergence-free” flow field on the

graph G = (V,E) that is specified by the skew symmetric matrix F. Herein, we prefer to let F be

specified from the context, instead of using a more cumbersome notation such as cF(A,B,C).

A moment’s reflection reveals that these concepts do not take into account the topology of the

partition. More specifically, the nature and size of the boundary between the parts of the partition

may be relevant to the type of global feature we may want to capture. We highlight this point with

the following example, and then return to define normalized notions of macroscopic circulation.
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Six-state example

Consider hexagonal planar graph in Fig.’s 5.3 and 5.4. The two figures display color-coded 3-

partitions, where in the first, pairs that constitute each of the three parts are not contiguous, whereas

in the second, pairs of nodes in each of the three parts are neighboring and connected. The net flux

matrix F is

F =



0 1 0 0 0 −1

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1

1 0 0 0 −1 0


(5.7)

Let A denote the green set of nodes and B the red. In the first of these two 3-partitions, ITAFIB = 2,

whereas in the second ITAFIB = 1. The difference between the two is that the “circulatory flux”

in the first 3-partition is counted twice due to the fact that the boundary between the parts A and

B, denoted by ∂AB has size 2, as it consists of two edges, and is traversed “twice” by any complete

transport around a cycle. In the second choice for a 3-partition, ∂AB = 1. 2

The above examples suggest normalizing the flux between any two parts of a partition, by dividing

by the size of the corresponding boundaries. That is, normalizing ITAFIB by dividing with the size

of the boundary, namely, |∂AB| which denotes the cardinality of the set

∂AB := {(vi, vj) | vi ∈ A, vj ∈ B, and (vi, vj) ∈ E}

of edges between the two parts A, B, brings us to a notion of density flux associated with the
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boundary separating two parts of any partition,

f(∂AB) :=
|ITAFIB|

|∂AB|
.

Accordingly, the minimal density flux of the partition, is

fmin(A,B,C) := min{f(∂AB), f(∂
B
C ), f(∂

C
A)}, (5.8)

and similarly for the maximal. This approach leads us to a combinatorial problem. In fact, for

a graph with n vertices, the total number of possible cases to consider for solving (5.8) is equal

to Stirling number of the second kind, S (n, 3 ) [73]. Thus, below, we focus on planar graphs and

explain how to compute suitable notions of macroscopic circulation via a scalar potential supported

on the dual graph.

5.4 Planar graphs and network circulation

We assume that geographic proximity of nodes is dictated by an actual embedding of a graph into

a linear metric space, specifically R2. Graphs that can be embedded in R2, without intersection of

edges, are called planar. In this case flow fields have a strong resemblance to planar vector fields.

For planar vector fields there is a well known decomposition into gradient flow and curl that cap-

tures circulation. In fact, circulation can be conveniently quantified by a scalar potential. In a

similar manner, for planar graphs, circulation relates to a scalar potential on the vertex set of a

dual graph as we will explain shortly.1 We proceed to review some facts on planar graphs, as well

1The dual graph G∗ of a planar graph G is a planar graph that each of its vertices corresponds to a face of G and each
of whose faces corresponds to a graph vertex of G. Two nodes in G∗ are connected by an edge if the corresponding
faces in G have an edge as a boundary.
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as elements of the Helmholtz-Hodge decomposition of vector fields that provides insight into the

corresponding decomposition of flow fields on graphs.

5.4.1 Planar graphs

A graph is referred to as planar when it can be drawn on the plane in a way that no edges cross

each other and intersect only at their endpoints (vertices). The study of planar graphs goes back

to Euler who showed that, for simple and connected planar graphs on the simply connected space

R2, i.e., with zero genus g, the Euler characteristic2 χ(g) = 2 in (5.9)

|V|− |E|+ |F| = χ(g)

χ(g) = 2− 2g

(5.9)

where F is the face3 set. Euler formula is not sufficient to ensure planarity. A condition that fully

characterizes planarity was given in 1930’s by Kuratowski and Wagner in the form of absence of

two specific subgraphs, K5 or K3,3 [56, 76, 79, 84].

The next important consideration is how to embed a planar graph in R2. For this we refer to [67]. It

turns out that there may exist several “nonequivalent embeddings” [38, 86]. As we explain below,

network circulation depends on the particular embedding.

Every planar graph can be drawn on a sphere (and vice versa) via stereographic projection. This

amounts to identifying points on R2 with points on the (Riemann) sphere by corresponding the

“north pole” with the “point at∞” and any other pair in line with the north pole (the line containing

a point on the sphere and the corresponding projection on R2) (see Fig. 5.5).

2Euler characteristic is a topological invariant, a number that describes a topological space’s shape or structure
regardless of the way it is bent.

3The exterior of the graph needs to be counted as a face, and it is referred to as the outside face.
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Figure 5.5: Stereographic Projection.

For any planar graph G, and any face f of G, the graph can be redrawn on the plane in such a way

that f is the “outside face” of G. This can be effected by rotating the projection of the graph onto

the Riemann sphere so that the image of the face contains the north pole. But, besides sliding and

rotating the graph projection on the Riemann sphere, other transformations are possible that may

change the local ordering of vertices, leading to non-equivalent embeddings of the graph on R2.

More precisely, for our purposes, two graph embeddings are said to be equivalent if their corre-

sponding projections onto the sphere can be continuously rotated (and the corresponding vertices

shifted onto the sphere without crossing edges) so as to match. The equivalence of two graphs is

exemplified in Fig. 5.6. For the reasons we just explained, that the positioning of the north pole

leads to equivalent embeddings, there are |F| isomorphic embeddings for every planar graph, as

stated next.

Figure 5.6: Isomorphic graphs and sequence of graph morphisms; θ and h are rotation and projec-
tion maps, respectively.
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Lemma 25. There are |F| isomorphic embeddings for every planar graph.

Proof. Figure 5.6 exemplifies the equivalence between two planar embeddings, as discussed lead-

ing into the lemma. More specifically, consider a graph G with a given embedding h : R2 → S2

that maps G to Gs on sphere S2. A homeomorphism θ : S2 → S2 rotates the position of nodes

and edges of Gs on the outside of S2, placing the “north pole” within any of the |F| possible faces.

Then, h−1 ◦ θ ◦ h produces an equivalent graph embedding.

5.4.2 Helmholtz-Hodge decomposition

We now turn to a brief overview of concepts of vector fields. The Helmholtz-Hodge decomposition

simplifies the analysis by bringing up important properties such as incompressibility and vorticity

that can thereby be studied directly [49, 50].

According to the Helmholtz-Hodge decomposition Theorem, the space of a vector field can be

uniquely decomposed into mutually L2-orthogonal sub-spaces using potential functions [11]. These

components can be calculated as the gradient of a scalar potential φ and curl of a vector potential

ψ, namely,

W = ∇φ+∇×ψ+ h,

where ∇φ is the curl-free component (i.e., ∇ × ∇φ = 0) of the vector field W, and ∇ × ψ is

its divergence-free component (i.e., ∇ · ∇ ×ψ = 0), whereas the harmonic component h is both

divergence-free and curl-free.

The curl-free component: Since the divergence of a curl is zero, we can compute φ, the scalar

potential associated with the curl-free component of the vector field W, as the solution of the
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following Poisson equation.

∇ ·W = ∇·∇φ = ∇2φ

where the last equality holds because the divergence of a gradient is the Laplacian.

The divergence-free component: Since the vorticity (normal component of the surface curl) of a

gradient field vanishes, the following identity holds: n̂ . (∇×W) = n̂ . (∇× ψ). Using the fact

that vorticity of the surface curl of a scalar potential is just the surface Laplacian of the potential,

we have

n̂ . (∇×W) = ∆ψ (5.10)

where n̂ is the normal vector. Equation (5.10) is obeyed if the scalar field ψ is a solution of the

above Poisson equation.

In the case of vector fields on R2, the curl can be expressed as Ψ = J∇ψ, where J is an antisym-

metric matrix andψ a scalar potential. It follows (Stokes’ theorem) that the flux crossing any curve

connecting two points a and b on R2 is given by the difference of the endpoint potentials. As a

consequence we have the following.

Proposition 26. The flux across the path connecting the extrema of a curl potential field is maxi-

mum.

Proof. With J the operator that rotates a vector on R2 counter-clockwise by π/2, the flux across

any path linking a and b is

I =

∫b
a

J∇ψ . Jds=

∫b
a

∇ψ . ds= ψ (b) − ψ (a). (5.11)
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Hence,

max(I) = max
a,b∈R2

(ψ(b) −ψ(a)). (5.12)

The analogue of Theorem 26 over discrete vector fields on graphs is discussed next.

5.4.3 Planar Net Flux Graph

Starting with an antisymmetric net flux matrix F = [Fij]i,j in (5.2) of a Markov chain on a planar

graph, we consider the graph with adjacency matrix having the zero pattern of F; the space of

vertices and edges are the collection of the nodes and edges, respectively, that have corresponding

non-zero elements in F, VF = {vi ∈ V|Fij 6= 0 for some vj ∈ V}, EF = {eij ∈ E | Fij 6= 0} . In

addition we specify a sign function σ : VF × VF → {−1, 1} that assigns an orientation, specifically

σ(i, j) = sign(Fij) for all non-zero elements of the net flux matrix, and define the directed graph

GF(VF,EF,σ). The vector of edge flow weights

W = (wij)i,j

corresponding to edges eij ∈ EF with values wij = |Fij| represents the flow field. The space of all

flow fields is denoted by UF and assumes a Helmholtz-Hodge decomposition,

UF = Ucurl
F ⊕ Uharmonic

F ⊕ U
gradient
F ,

where U
gradient
F and Ucurl

F are curl-free and divergent-free components and ⊕ denotes the direct

sum of vector spaces. If Wcurl,Wharmonic,Wgradient denote projections of W in the respective
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components, then clearly Wgradient = 0, since by assumption F has no “sources.”

We wish to capture circulation in a similar manner as in planar flow fields and thereby we seek

a curl potential ψ. The harmonic component Wharmonic relates to circulation about “holes” (non-

triangular faces [59]) in the graph. Thus, before we proceed, we triangulate GF, and generate a new

graph Gchordal
F so as to remove holes and ensure that the harmonic component is zero.

5.4.4 Triangular Planar Graph

The curl component of the flow field is defined on triangles, i.e., cycles of length 3 [59]. The cycle

graphs of more than 3 vertices are considered as holes and their edge flow as harmonic components

of the flow field.

To remove the harmonics, we replace the holes that are not bounded by triangles with chordal

subgraphs. That is, we add minimum number of chords, which are the edges with zero flux that are

not part of the cycle but each connects two vertices of the cycle. This way, we generate a planar

chordal graph such that every chordless cycle subgraph is a triangle. Fig. 5.10 shows a triangulated

graph with two different embeddings (original graphs are shown in Fig. 5.9). It can be seen that

graph triangulation strongly depends on the embedding.

The corresponding potential function ψ is now defined on the graph’s faces, and hence, can be

assigned to the nodes of the dual graph, (Gchordal
F )∗. The maximum flux, in complete analogy

with (5.12), is then obtained by identifying those vertices of the dual graph with minimum and

maximum curl potentials.
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5.4.5 Non-planar Graphs

Graphs that cannot be drawn on a plane or sphere without edge crossings, i.e., non-planar, can

always be drawn on a surface of higher genus [87]. A surface is said to be of genus g ∈ {0, 1, 2 . . .}

if it is topologically homeomorphic to a sphere with g handles [46]. For instance, the genus of a

sphere is 0, and that of a torus is 1. Accordingly, a graph is said to have genus g if it can be drawn

without crossings on a surface of genus g, but not on one of genus g− 1. It can be easily seen that

K5 and K3,3 are graphs of genus 1 (toroidal graphs); Fig. 5.7 exemplifies K3,3 drawn on the torus

T 2. The graph is drawn by assigning points and continuous, non-intersecting (except at end-points)

paths corresponding to the vertices and edges of the graph, respectively. The dual of a non-planar

graph can also be drawn on the torus in a similar fashion to a planar graph.

Figure 5.7: A toroidal graph (K3,3): (a) Embedding on R2; (b) The projective plane; (c) Embedding
on a torus.

The decomposition of a continuous vector field on the torus (as a manifold) is more complicated

than on a sphere. In this case, the divergence-free component Ucurl
F , can be partitioned into a

toroidal and a poloidal part [10, 74] –a restricted form of the usual Helmholtz decomposition. We

contend that an analogous decomposition of a flow field of genus 1 graph can be similarly obtained;

the corresponding poloidal component is once again generated by a scalar potential (as in the

case of planar graphs) whereas the poloidal component is harmonic and represents flux/circulation

around holes (of the torus). A detailed analysis on how to compute maximal graph circulation for

graphs of genus 1 is not available at present.
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5.5 Graph Partitioning

We summarize the insights gained and highlight the steps needed in Algorithm 1 which helps

obtain a 3-partition corresponding to maximal circulation by providing the curl potential ψ on the

vertices of its dual graph (i.e., faces of the original graph) and how to numerically calculate these.

The outcome depends on the embedding of GF (cf. Section 5.6).

Algorithm 1: Finding curl potential extrema
Input:
An embedded strongly connected, aperiodic, planar, directed graph G with a transition
matrix Π.

Offline Preprocessing:
1. Calculate the net flux matrix F from (5.2).
2. Construct and triangulate GF as described in Section 5.4.3, to generate Gchordal

F .
3. Find dual graph (Gchordal

F )∗.
4. Set the potential ψ for the outside face to zero.
Computations:
Find ψ for vertices of the dual graph using (5.11), i.e., obtain ψ so that the difference
between values at the nodes of the dual graph (corresponding to faces of the primal) equals
the flux of the corresponding edge of the primal graph, ψ(faceleft) −ψ(faceright) = Fij
assuming a consistent orientation.

Output:
Two faces of the primal with potential extrema.

Knowing ψ allows carving 3-partitions that entail maximal circulation. Indeed, any set of two

paths on the dual graph between the points of ψ-extrema separates the graph in the three regions,

A,B and C, discussed earlier. This is summarized next.

Theorem 27. Consider a divergence-free flow field W on the edges of a strongly connected directed

graph. Algorithm 1 generates the chordal directed graph Gchordal
F and its dual with an associated

curl potential ψ. There exist paths in the dual graph connecting two chosen extrema points of ψ

that provide a 3-partition with maximal macroscopic circulation.

Proof. Completion of the graph into a chordal graph is the first step of the algorithm and was
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explained before. We compute ψ as follows. We assign 0 at the vertex of the dual of the chordal

graph corresponding to the outside face, and proceed to assign values to the remaining vertices of

the dual graph so that the difference between values of adjacent vertices equals the (signed, e.g., in

the counter-clockwise sense) flux on the corresponding edge of the primal graph. We now explain

the last part of the theorem.

Since Gchordal
F is triangular, its dual is 3-edge-connected [44]. By Menger theorem [26, 64], for 3-

edge-connected graphs every pair of vertices has 3 edge-disjoint paths in between. Now consider a

pair of vertices on the dual graph, v∗min and v∗max, corresponding to the minimum and maximum

of ψ, respectively. There are 3 edge-disjoint paths P1, P2, and P3, connecting v∗min and v∗max.

These paths can generate three cycles as follows.

Cij = Pi ∪ Pj, (1 6 i < j 6 3)

where Cij ∈ C, and C is a family of cycles in (Gchordal
F )∗.

If paths P1, P2, and P3 are also internally disjoint, then they will generate three cycles C12, C23, and

C13. If C12 and C23 are contractible, by 3-path condition [22, 66, 80], C13 is also contractible. We

only need to show that if P2 lies between P1 and P3, then C13 is surface separating and4 int(C13) =

int(C23) ∪ int(C12) ∪ P2 . It follows from Euler’s formula that the genus of int(C13) ∪ C13 is

zero, and thus C13 is contractible.

Since Cij’s are also discrete Jordan curves and equivalent to the bonds of Gchordal
F [16, 58, 87], by

properly selecting interior or exterior of those cycles, these delineate three disjoint and connected

sets of primal vertices. Then, by (5.12), the flow that crosses their shared boundaries (i.e., P1, P2,

and P3) is maximal.
4 int(·) and ext(·) denote interior and exterior, respectively.
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If P1,P2,P3 are edge-disjoint paths between v∗min and v∗max, but not internally disjoint, there

exists cycles Cij’s that are self-intersecting. That is, the int(Cij) is not path-connected and, hence,

not contractible.

Figure 5.8: Cases of 3 edge-disjoint paths between v∗min and v∗max: P1,P2,P3 are (a) internally
disjoint, (b,c) not internally disjoint.

Fig. 5.8 exemplifies cases discussed in the above proof. In case (a) the three cycles C12 =

P1 ∪ P2,C23 = P2 ∪ P3, and C13 = P1 ∪ P3 are contractible. Therefore, all 3-partitions,

int(C12), int(C23), ext(C13) are connected. The cases (b,c) correspond to cycles that are self-

intersecting. Specifically, in Fig. 5.8(b) only C12 is self-intersecting, whereas in Fig. 5.8(c) all

three cycles are self-intersecting. Accordingly, the corresponding 3-partitions may not be con-

nected.

Corollary 28. If there exist 3 edge-disjoint paths that are vertex-disjoint, then each 3-partition is

connected.

Fig. 5.11 exemplifies Theorem 27 for a planar graph with two non-equivalent embeddings, where

P1,P2,P3 are marked with different colors and the 3-partitions are marked using different colors

(red, blue, green) and shapes (�, ◦,4). In the next section we explain how the output of algorithm

1, and consequently the partitioning, depends on the embedding.
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Table 5.2: Two embeddings of a graph with non-isomorphic corresponding duals.

G∗1 G∗2

5.6 Effect of Embedding on Partitioning

Whitney showed that 3-connected graphs have unique embedding, and consequently unique dual

graph [86]. But in general it is possible that if we consider two different embeddings G1,G2 of a

planar graph G, the duals G∗1,G
∗
2 become non-isomorphic, Table 5.2. And this may result into a

different output of algorithm 1.

5.6.1 Example

Given transition matrix for a planar graph as in (5.13), net flux matrix is calculated using equation

(5.2). Fig. 5.9 indicates two possible graphs which are constructed based on calculated net flux

matrix in (5.14). These two embeddings of a connected planar graph are related by flipping at

separating pair5. As described in 5.4.3, graphs are triangulated, G ′1,G
′
2 in Fig. 5.11.

Π =



0 0.25 0 0 0.25 0 0.25 0.25

0.333 0 0.333 0.333 0 0 0 0

0 0.25 0 0.25 0 0.25 0 0.25

0 0.333 0.333 0 0.333 0 0 0

0.333 0.333 0 0.333 0 0 0 0

0 0 0.333 0 0 0 0.333 0.333

0.5 0 0 0 0 0.5 0 0

0.25 0 0.25 0 0 0.25 0.25 0



(5.13)

5In graph theory, a vertex separator for nonadjacent vertices a and b is a vertex subset S ⊂ V such that the removal
of S from the graph separates a and b into distinct connected components.
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Figure 5.9: Two possible embeddings, constructed based on net flux matrix in (5.14).
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Figure 5.10: Triangulated of the graphs in Fig. 5.9.
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G ′1 G ′2

F =



0 −0.0076 0 0 0.014 0 −0.016 0.0096

0.0076 0 0.0082 0.0099 −0.0256 0 0 0

0 −0.0082 0 0.0017 0 −0.0025 0 0.009

0 −0.0099 −0.0017 0 0.0116 0 0 0

−0.014 0.0256 0 −0.0116 0 0 0 0

0 0 0.0025 0 0 0 −0.014 0.0115

0.016 0 0 0 0 0.014 0 −0.03

−0.0096 0 −0.009 0 0 −0.0115 0.03 0



(5.14)
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Figure 5.11: Triangulated and dual of the graphs in Fig. 5.9 and their 3-partitions.
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Based on Algorithm 1, a vector of curl potentials for each triangulated graph is calculated,

ψ1=[0,−0.0076, 0.0181, 0.0082, 0.0064, 0.0064, 0.0064, 0.0064,−0.0096, 0.0205, 0.009]T ,

ψ2=[0,−0.0076, 0.0181, 0.0082, 0.0064, 0.0064, 0.0064, 0.016,−0.014,−0.0025]T .

(5.15)

where ψij corresponds to the curl potential of the jth face of graph G ′i, i ∈ {1, 2}. The faces with

maximum and minimum potential for G ′1 and G ′2 are {f8, f9} and {f2, f8}, respectively. Applying

Theorem 27, the 3-partitions for them are {{6}, {7}, {1, 2, 3, 4, 5, 8}} and {{4, 8}, {2, 3, 6}, {1, 5, 7}},

respectively.

This example highlights that the output of Algorithm 1 and consequently the partitioning of a graph

varies with the embedding. Hence, in order to determine faces with extremum potentials we need

to specify the embedding along with the transition matrix. To specify the embedding, we need

to conduct a rotation system; there exists a unique such rotation system for every locally oriented

graph embedding [43].
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5.7 Application of Network Circulation in Cardiology

While graph theory has been widely used to model biological systems, in the field of cardiac

electrophysiology, its application is fairly new. Perhaps one of the first applications of directed

networks in studying the excitation of the human heart [83]. In this section, we briefly discuss

the application of network circulation in cardiac conduction system for a specific case known as

“reentry.”

Reentry is a mechanism of pathologic impulse conduction and describes a self-sustaining cardiac

rhythm abnormality. In fact, reentry may account for most tachyarrhythmias found in patients

that could lead to life-threatening arrhythmias and sudden cardiac death [42, 51, 54]. A model

for reentry is shown in Fig. 5.12. In normal conduction, a single action potential [29] travels

down each branch and through a common, connecting pathway. In reentry, the action potential

propagates in a circus-like closed loop manner and continuously depolarizes the cardiac muscles

around the abnormal area.

Figure 5.12: Normal conductoin and reentry circuit.

Reentry can take place within a small local region within the heart or it can occur between the atria

and ventricles (global reentry) (see Fig. 5.13) and can cause atria and/or ventricular tachycardia.

Local reentry could be as a result of conduction blocks, whereas global reentry is formed due to
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an accessory pathway6. A well-know complication that occur in the latter case is Wolff-Parkinson-

White (WPW) pattern that can transition into ventricular tachycardia and sudden death without

prompt diagnosis and treatment [54].

Figure 5.13: Local and global reentry in heart.

A permanent treatment for such cases is a cardiac ablation by destroying the abnormal conduction

pathways with heat. Many complications can occur from cardiac ablation and it is crucial to

locate the abnormal conduction pathways by precise cardiac mapping [18, 51]. The proposed

macroscopic circulation concept in this chapter can be used as a diagnostic tool for detecting the

source of arrhythmias and potential target cells for ablation.

5.8 Summary

In this work we introduced a notion of circulation and explored this concept for planar graphs

where computations are simple. We shown how circulation for planar graphs relates to partitioning

of the graph into three parts. We proposed an algorithm to effectively partition the planar graph

and calculate circulation. It will be of great interest to consider whether such concepts can be

quantified by spectral properties of the graph Laplacian as is the case for geometric properties in

the case of the Cheeger inequality.

6Accessory pathways are muscle bridges connecting the atria and the ventricle, also called Kent bundles.
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Chapter 6

Conclusions and Future Work

• The purpose of Chapter 3 is analysis of DeGroot-Friedkin model. In our approach, we used

local inverse function theorem and Hadamard theorem to establish the existence and unique-

ness of the fixed point. Another interesting direction of research for studying DeGroot-

Friedkin model could be geometrical analysis, the reason is that the fixed point of the model

could be interpreted as intersection of a system of hyperbola equations. We also found the

closed form solution for the fixed point of the map for the special case of three individuals

discussing on the sequence of issues. Future research may also focus on finding closed form

solution of the fixed point for the general case of having a group of n individuals.

• In Chapter 4, we proposed a groups of nonlinear Markov chain models to capture social in-

teractions in a group of people who discuss on a sequence of issues. In our setting, despite

DeGroot-Friedkin model, individuals don’t need to wait for opinion consensus on a partic-

ular issue s before updating their self-confidence. This setting allows individuals to update

their self-confidence during the discussion. In addition, in this setting the random walk

adapts the return probability of each state so as to promote or discourage residence in states
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with high marginal probability. We developed stability theory which allows drawing gen-

eral conclusions on attractiveness of equilibria of nonlinear evolution models on probability

simplices, i.e., stochastic evolutions. Besides the current interest in modeling dynamical

interactions over social networks, the theory applies more broadly as similar models are per-

tinent in other types of interaction. Also, we extended our proposed models to study effect

of colluding subgroup in opinion forming.

Future research should focus on the effect of uncertainty and disturbances in such models.

We can also expand the analysis to the continuous-time setting. Continuous-time frame

has several possible merits. Stability analysis in continuous-time turns out to be simpler

than for the discrete-time evolution. On the other hand, analysis of the continuous-time

dynamics may provide valuable insight into the dynamics of the discrete-time evolution.

Also, modification of the proposed models in order to count for stubborn agents in the group

is another relevant topic of research.

• In Chapter 5, We have introduced maximal graph circulation of ”divergence free” flows on

graphs and related this with suitable 3-partitions. The 3-partitions can be seen as ”commu-

nities” (of nodes, cells, etc.) on the path that supports the maximizing circulatory current.

Where as computational issues for general graphs remain a combinatorial challenge, planar

graphs are amenable to a systematic analysis framework. Planar graphs are of great impor-

tance in cadriac electrophysiology, since the heart muscle may be seen as homeomorphic

to a sphere where planar graphs can be projected. This last application was a motivating

example for the work presented, and it is our hope that the concepts laid out in this work

will facilitate the development of diagnostic tools for detecting the source of arrhythmias

and potential target cells for ablation.

A natural next step in this direction of research is to calculate macroscopic circulation for
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general graphs. Although we have demonstrated the advantages of planar graphs and the fact

that calculating circulation for the special case of planar graph is simple. But in practice,

many problems are modeled with general graphs and also in the proposed algorithm for

calculating circulation we need to first check graph planarity but for large graphs this is

not preferable. Further, the proposed algorithm does not always preserve connectivity of

partitions. Of our interest is to study the effects of partitions’ connectivity in macroscopic

circulation.
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