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As the field of computer-aided drug discovery matures, it has become evident that viewing 

a molecular target independent of its biological context is often an oversimplification. To this end, 

our lab has developed an all-atom model of an influenza virus particle. In this dissertation, I present 

analysis of molecular dynamics simulations of this virus particle by Markov state modeling. I begin 

with the analysis of influenza neuraminidase, which includes construction of a Markov state model 

to characterize the catalytic site dynamics. This Markov state model provides a quantitative 

framework for comparison to dynamics of isolated influenza neuraminidase simulations to validate 



 xii 

the virus particle model. Next, I identify the probable group 1 influenza hemagglutinin binding 

site for the antiviral Arbidol. Here, a Markov state model is constructed from the virus particle 

simulations to characterize the dynamics of the proposed binding site. Finally, I conclude with a 

recent review outlining multiscale simulation approaches to drug-protein binding, for which 

Markov state modeling is included. 
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Mesoscale All-Atom Influenza Virus 

Simulations Suggest New Substrate Binding 

Mechanism 
 

1.1 Abstract 
Influenza virus circulates in human, avian, and swine hosts, causing seasonal epidemic and 

occasional pandemic outbreaks. Influenza neuraminidase, a viral surface glycoprotein, has two 

sialic acid binding sites. The catalytic (primary) site, which also binds inhibitors such as 

oseltamivir carboxylate, is responsible for cleaving the sialic acid linkages that bind viral progeny 

to the host cell. In contrast, the functional annotation of the secondary site remains unclear. Here, 

we better characterize these two sites through the development of an all-atom, explicitly solvated 

model of the pandemic influenza A H1N1 2009 viral envelope, containing ~160 million atoms. 

Molecular dynamics simulations of this crowded subcellular environment, coupled with Markov 

state model theory, provide a novel framework for studying realistic molecular systems at the 

mesoscale and allow us to quantify the kinetics of the 150-loop transition between the open and 
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closed states. An analysis of chloride ion occupancy along the neuraminidase surface implies a 

potential new role for the neuraminidase secondary site, wherein the terminal sialic acid residues 

of the linkages may bind before transfer to the primary site where enzymatic cleavage occurs. 

Altogether, our work breaks new ground for molecular simulation in terms of the size, complexity, 

and methodological analyses of the simulated components, as well as provides fundamental 

insights into the understanding of substrate recognition processes for this vital influenza drug target, 

suggesting a new strategy for the development of anti-influenza therapeutics. 

 

1.2 Introduction 

Influenza virus infection is responsible for millions of deaths worldwide each year. The 

Center for Disease Control estimates that pandemic influenza A H1N1 2009 (pH1N1) virus 

infection affected 60.8 million people, resulting in 12,468 casualties in the United States alone1,2. 

Along with others, this strain dramatically contributes to yearly epidemics, continuously fueling 

the concerns about the emergence of a new pandemic strain.  In addition, the increasingly 

widespread resistance to antiviral medications is compounding this threat3, thus requiring the 

development of novel approaches for the prevention and treatment of influenza virus infection. 

One such strategy is to target the viral surface glycoprotein neuraminidase (NA), which promotes 

viral progeny release from the host cell by cleaving terminal sialic acid residues4–6. Previous work 

has identified the importance of characterizing the dynamics of the NA catalytic site for drug 

design7–12, understanding mechanisms of antiviral resistance13, and deciphering the mechanisms 

underlying substrate binding14–17.  

The catalytic (primary, 1°) site of NA is highly flexible, in part due to the adjacent 150- 

and 430-loops (residues 147–152 and 429–433, respectively, N2 numbering)11,14,18. The 
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significance of this flexibility is highlighted by structural comparison of the phylogenetically 

distinct group-1 (N1, N4, N5, and N8) and group-2 (N2, N3, N6, N7, and N9) NAs, which 

illustrates that opening of the 150-loop in the group-1 structures leads to the formation of the so-

called 150-cavity12 that can bind compounds with increased specificity and potency10. However, 

crystal structures of pH1N1 NA (pN1) reveal that, unlike all other group-1 NAs, its 150-loop is 

closed and therefore no 150-cavity is present19. In contrast, previous investigations utilizing MD 

simulations have found that the 150-loop of pN1 is in the open state ~60-65% of the time18,20.  

NA also contains a secondary (2°) sialic acid binding site adjacent to the catalytic site. This 

site was first identified as a hemadsorption site in avian-origin influenza NAs21–25 and was not 

initially believed to be present in swine-origin strains due to non-conservation of critical residues 

at this site23,26. However, more recent studies provide support for the presence of a 2° site in swine-

origin influenza NAs, including pN116,17. The precise mechanism by which this 2° site functions 

remains unclear, however a number of studies have demonstrated its role in receptor binding27–30 

and catalytic efficiency27,28. In addition, previous Brownian dynamics (BD) simulations of single 

glycoproteins and various substrates suggested that both endogenous ligands and the drug 

oseltamivir carboxylate bind faster to the 2° site than the 1° site (i.e., the kon rate is 2- and 7-fold 

higher for the N1 and N2 2° site, respectively, vs. the corresponding 1° site)17. Finally, the 2° site 

has recently been identified as a target for a novel influenza virus inhibitor31,32, further highlighting 

the need to understand its role in viral infectivity.  

To study the 1° and 2° sites in the context of the viral surface, we used integrative modeling 

to construct a fully atomistic model of the pH1N1 viral envelope (Figure 1.1A). This was built 

using high-resolution crystallographic structures of individual glycoproteins (~1.9 – 2.6 Å 

resolution)19,33 that were spatially positioned according to a lower-resolution cryo-electron 
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tomography (cryo-ET, ~16-20 Å resolution) map of a viral particle34. Our viral envelope construct 

includes 30 NA tetramers (120 monomers) and 236 hemagglutinin (HA) trimers (708 monomers) 

embedded in a phospholipid bilayer, with realistic density and patterning taken directly from the 

cryo-ET. The entire pH1N1 all-atom system modeled here amounts to ~160 million atoms (fully 

solvated) and is ~115 nm in diameter. As such, it is amongst the largest biophysical system yet 

studied with all-atom molecular dynamics (MD).  

Over the past decade, studies of viruses at the molecular and coarse-grained (CG) levels 

have given unique insights into these systems, complementing and extending available 

experimental data by providing highly detailed models at never-before-seen scales, as well as 

suggesting testable biological hypotheses (predictions)35,36. Work by Schulten and coworkers 

established the first explicitly solvated atomic MD simulation of an intact virus, the satellite 

tobacco mosaic virus (~17 nm diameter, ~1 million atoms, 50 ns dynamics), in 200637. Zink and 

Grubmuller in 2009 used steered MD to explore the dynamics of the explicitly solvated icosahedral 

shell of the southern bean mosaic virus (~36 nm diameter, ~4.5 million atoms, 100 ns)38. In 2010, 

Ayton and Voth developed and simulated an implicitly solvated CG representation of the immature 

HIV-1 virion (~125 nm diameter, 280,000 CG particles)39. In 2012, Larsson and coworkers 

simulated with explicitly solvated all-atom MD the satellite tobacco necrosis virus (~17 nm 

diameter, ~1.2 million atoms, ~1 us)39, and Roberts et al. developed a fully atomic poliovirus (~30 

nm diameter, ~2.8-4 million atoms, 50 ns)40 . In 2013, Schulten and coworkers built and simulated 

a fully atomic representation of the HIV capsid (~70 nm diameter, ~64 million atoms, ~100 ns)41, 

and Andoh et al. in 2014 simulated an all-atom poliovirus capsid (~30 nm diameter, ~6.5 million 

atoms, ~200 ns)42. Samson and colleagues in 2015 reported an explicitly solvated CG influenza 

virus simulation (~80 nm diameter, 5 million particles) 43. In two separate studies in 2016, Reddy 
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and Samson44, and Bond, Verma and coworkers45, reported coarse grained simulations of the 

Dengue viral membrane (~50 nm diameter, ~1 million particles). Aside from the rich structural, 

dynamical, and biophysical insights that these studies each provided, the investigations have 

collectively pushed the capabilities of molecular simulation, often relying on the world’s fastest 

and most advanced computing architectures.   

The work reported here breaks new ground in molecular simulation as the first explicitly 

solvated atomic-scale simulation of a fully lipid-enveloped viral coat (~120 nm diameter, ~160 

million particles, ~120 ns). To further characterize the structural dynamics of the viral envelope 

and its glycoproteins, we combined our mesoscale all-atom MD simulations with Markov state 

model (MSM) theory46–48, thus enabling the extraction of long-timescale (e.g., microseconds) 

individual glycoprotein dynamics in a crowded environment from the short timescale MD (e.g., 

nanoseconds) of the fully intact viral surface. The accuracy and utility of MSMs have been 

demonstrated by experimental validation for many use cases including protein-protein binding, 

small-molecule binding kinetics, and protein-folding rate prediction49–51. Correspondingly, the 

approach reported here, which relies on the many copies of single glycoproteins present within a 

biologically accurate environment, provides a novel methodological advance for extracting long 

time-scale dynamics from short simulations through the powerful MSM theoretical framework at 

subcellular and cellular scales.  

Here, we quantitatively compare the alterations in dynamics when moving from the single-

protein scale simulations to a significantly more complex biological scene. By exploiting the whole 

pH1N1 viral envelope treated entirely with atomic resolution, this study provides unprecedented 

insights into the two sialic acid binding sites of NA (e.g., 1° and 2°). Our mesoscale atomic 

simulations suggest that the NA 1° site is even more flexible than previously appreciated and 
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provide the first rigorous kinetic characterization of the 150-loop dynamics. Furthermore, our work 

suggests that the 2° site, which is more solvent exposed and, in some strains, has a higher kon rate 

than the 1° site17, may be responsible for initially capturing sialic acid residues, which are then 

electrostatically guided to the 1° site for enzymatic cleavage. Within this context, our mesoscale 

simulations unveil an unprecedented cooperative interplay between the two sites that further 

illuminates the process of sialic acid/oseltamivir carboxylate recognition and the 2° site functional 

annotation. This fundamental discovery may be used as a rationale for the development of novel 

anti-influenza small molecule therapeutics targeting NA. 
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Figure 1.1 Mesoscale simulations enhance conformational sampling of the viral glycoproteins. 
(A) A fully intact all-atom model of the influenza A H1N1 2009 (pH1N1) virion, containing over 160 million atoms, 
shown without explicit water molecules, was simulated with all-atom molecular dynamics simulations. Hemagglutinin 
(HA) glycoproteins shown in royal (dark) blue, neuraminidase (NA) glycoproteins shown in ice (light) blue. (B) Top 
view of a single NA monomer in surface representation with the catalytic site (white), secondary site (yellow), 150-
loop (red) and 430-loop (green) highlighted. (C-E) Principal Component Analysis (PCA) was performed by 
considering the motions of the Ca atoms of 19 1°-pocket residues. PCA histograms were independently normalized 
so the bins containing the minimum and maximum number of points were blue and red, respectively. (C) PCA analysis 
of the four monomers sampled during a single-NA-tetramer simulation (“single glycoprotein"). (D) PCA analysis of 
the 120 monomeric trajectories extracted during the last 8.33 ns of the “terminal-coat” simulation. (E) PCA analysis 
of all 120 monomeric trajectories extracted from the “complete-coat” simulation.   
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1.3 Influenza Virus All-Atom Simulations 

We performed 121 ns of viral coat simulation production dynamics using NAMD252 and 

CHARMM36 all-atom additive force fields53. This complete viral envelope (“complete-coat”) 

simulation included 30 NA tetramers, yielding 14.5 µs of monomeric simulation (121 ns ⨉ 30 

tetramers ⨉ 4 monomers/tetramer). Each glycoprotein structure used to build the initial complete-

coat system was taken from a fully-equilibrated microseconds-long individual simulation (see 

Supporting Information, SI, for materials and methods). To broaden conformational sampling and 

more efficiently use supercomputer resources, we forked the complete-coat simulation twice. All 

simulations were run on the Blue Waters petascale supercomputer, using 114,688 processors, 

equivalent to 16,384 Blue Waters nodes or 4,096 physical nodes. The simulation averaged 25.57 

steps/sec. Frames were written every 10,000 steps (20 ps), ultimately occupying 11.66 terabytes 

of disk space. Data analysis drew upon conformations extracted at equally-spaced timepoints from 

these trajectories. More details about model building, MD simulations and physical properties of 

the lipid bilayer (Figure 1.7) are reported in the SI. 

To explore the flexibility of the 1° pocket, we concatenated the MD trajectories of all 120 

NA monomers and calculated the principal components of 19 pocket-lining NA residues by 

considering their Ca atoms (heatmap, Figure 1.1C-E). We selected these 19 residues because they 

are homologous to those within 5 Å of the crystallographic oseltamivir carboxylate from the 2HU4 

structure12. To judge whether mesoscale simulations enhance conformational sampling, we 

compared the complete-coat simulations (Figure 1.1E) to five simulations of isolated NA tetramers 

embedded in small lipid-bilayer patches, described in a previous work (“single glycoprotein”, 

Figure 1.1C)54. Collectively, these individual simulations sampled 1.0 µs of monomeric dynamics 

(5 simulations ⨉ 50 ns/simulation ⨉ 1 NA tetramer ⨉ 4 monomers/tetramer), while the complete-
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coat simulations sampled 14.5 µs of monomeric dynamics. To further improve comparison, we 

next considered only the terminal 8.33 ns of the complete-coat simulation (“terminal-coat”), which 

is equivalent to 1.0 µs of monomeric dynamics (1 simulation ⨉ 8.33 ns/simulation ⨉ 30 NA 

tetramer ⨉ 4 monomers/tetramer) (Figure 1.1D). In all the cases, the motions of the Ca atoms of 

the same 19 residues were projected onto the first two principal components of the complete-coat 

NA trajectories, and the resulting heatmaps were compared (Figure 1.1C-E). Strikingly, the 

principal component analysis (PCA) of the NA active-site residues indicates that the complete-

coat simulation more thoroughly explored the conformational landscape, even after controlling for 

total simulation time. 

To better study the 1° site conformations sampled by the complete-coat simulation, we 

applied k-means clustering to the PCA points of Figure 1.1E. Visual inspection of cluster centroids 

(represented by black dots in Figure 1.1E, structures in Figure 1.8) corresponding to four 

representative 1° site conformations reveals that R292 and R371, two key residues known to 

interact with the sialic acid carboxylate group, are the most flexible. In contrast, the carboxylate-

stabilizing R152 residue moves outward in only one of the four conformations. Other pocket-lining 

residues such as R118 and D151, which previous works suggest may play a role in the molecular 

mechanisms of oseltamivir resistance13, are also relatively flexible in the apo state.  

The PCA and clustering analysis demonstrates that the complete-coat simulation sampled 

rare, distinct 1° pocket states (Figure 1.1E) not evident in the single-glycoprotein (Figure 1.1C) or 

terminal-coat (Figure 1.1D) simulations. This enhanced conformational sampling may simply be 

a product of the large number of NA copies blanketed across the viral surface; however, we do 

expect some effects from the viral surface environment including long-range electrostatic forces 

and glycoprotein-glycoprotein interactions that only the complete-coat simulation can capture. 
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1.4 pN1 Catalytic Site Dynamics 

To explore the dynamics of the catalytic site, we analyzed the volume of the 1° and 

contiguous adjacent pockets over the course of the 120 monomeric NA simulations (Figure 1.2)55. 

We compared the volume of each frame to the volume of our starting crystal structure pN1 (PDB 

ID: 3NSS19 with a closed 150-cavity, as well as with a structure of a non-pandemic N1 (PDB ID: 

2HTY12 with an open 150-cavity. From this analysis we find that the volume of the 1° site and 

adjacent regions ranges from 0 to 4440 Å3, with an average of 1536 Å3. By comparison, crystal 

structures of N1 with and without an open 150-cavity have volumes of 800 and 1088 Å3, 

respectively (PDB IDs 3NSS and 2HTY). This indicates that the volume and depth of the catalytic 

and adjacent sites are remarkably increased over what has been observed in crystal structures 

(Figure 1.2C). Contributing to this additional cavity volume and depth are two novel subpockets 

near residues G351 and E227, buried deep inside - but contiguous with - the 1° site (Figure 1.2B). 

The ability of these new sites to bind small molecules was assessed with FTMap, a server for 

mapping binding hot spots in macromolecules56, which suggested that the G351 sub-pocket can 

accommodate small-molecule ligands. Similar to the 150-cavity and 430-cavity, the G351- and 

E227-adjacent subpockets may provide new ligand-binding opportunities. 

The volumetric and dynamical properties of the 1° site revealed in our simulations suggest 

that NA can accommodate many structurally distinct and complex sialoglycan receptors as part of 

the host-cell recognition process. Indeed, human glycans are vastly diverse in both their sugar 

composition and configuration (e.g., long, short, biantennary, triantennary, etc)57. As such, 

transient deepening and broadening of the 1° NA site may allow the glycoprotein to accommodate 

bulkier (e.g., long, bi/triantennary) and longer glycan receptors. Given that our simulations model 

the entire virion coat, it may be that full pocket opening only occurs in a crowded viral-surface 
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environment. Alternatively, our simulations may capture full pocket opening because the viral coat 

includes many replicates of individual glycoproteins, enabling extensive conformational sampling.  

Using the intramolecular distance between the 150- and 430-loops as a metric for 150-cavity 

formation, we constructed a two-state MSM to estimate the timescales of 150-loop opening and 

closing motions in the complete-coat simulations. Ultimately, we find the stationary distribution 

(equilibrium probabilities) of the open and closed states to be similar (0.53 and 0.47, respectively). 

Correspondingly, the time to transition between the two states (i.e., the mean first-passage time, 

MFPT) is also roughly equal (39 ± 15 ns for open to closed and 29 ± 11 ns from closed to open), 

indicating that loop opening and closing occur at similar rates (Figure 1.3).  MSM calculations are 

detailed in the SI and Figure 1.9, Figure 1.10, Figure 1.11, and Figure 1.12. 

To understand the impact of sampling the loop dynamics in a crowded viral environment, 

we also constructed an MSM using structures extracted from simulations of isolated NAs 

embedded in planar bilayers patches54 using the same protocol. Again, we found that the 

populations of the open and closed states are highly similar (0.61 and 0.39, respectively), though 

less than in the complete-coat simulations, and that the MFPTs between the states are overlapping 

with those from the complete-coat model (open to closed and closed to open after 50 ± 96 ns and 

72 ± 44 ns, respectively). The 150-loop dynamics of both the complete-coat and single 

glycoprotein simulations are nearly equivalent, though the error associated with the MSM model 

constructed from the viral-envelope simulations is much smaller, likely due to the increased 

simulation time. This comparison indicates that 150-cavity dynamics are not influenced by the 

crowded environment of the viral envelope, an expected result given that this pocket faces inwards, 

towards the neighboring three monomers within the single tetramer, rather than being oriented 

outwards.  



 12 

 

  
 

Figure 1.2 Volumetric and ligand binding “hot spot” analyses of the 1° active site. 
(A) NA is shown in blue ribbon, and the pocket volume is filled with semi-transparent gel. The 1° catalytic site, 430-
loop, and 150-loop are visible. (B) NA is shown as solid, and ligand-binding hotspots are metallic. A portion of the 
surface-rendered protein was removed to facilitate visualization of internal cavities. This NA conformation has a 
notably open G351 pocket, which has a high propensity to bind ligands (metallic spheres). (C) Histogram of the NA 
catalytic-site volumes sampled during the MD simulations. As reference, the volumes of the same active-site cavity 
from two crystal structures are indicated with black-circled stars. X-ray structure 3NSS19 (pH1N1 with a closed 150-
cavity) has a volume of 800 Å3; x-ray structure 2HTY12 (H5N1 with an open 150-cavity) has a pocket volume of 1088 
Å3. The simulated-pocket volumes range from 0 to 4440 Å3; the average pocket volume is 1536 Å3. 
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Figure 1.3 Two-state MSM with representative structures from the complete-coat simulation. 
The equilibrium populations of the open and closed states are approximately equal in both the complete-coat and 
isolated-NA simulations. Correspondingly, the mean first-passage times between the states are approximately equal. 
150-loop and 430-loop are represented with green and red thicker ribbons, respectively. 
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1.5 Secondary binding site: functional annotation 

We note that all FDA-approved NA inhibitors, as well as the endogenous ligand sialic acid, 

contain negatively charged carboxylate groups. Considering the hypothesis that the 2° site 

contributes to catalytic efficiency by recruiting and keeping substrates within close proximity to 

the catalytic site27,28, and given that prior BD simulations indicate that substrates bind faster to the 

2° site than the 1° site17, we postulate that sialic acid first binds to the more solvent exposed 2° 

site. Subsequently, the electrostatics of the NA surface guides the substrates to the 1° enzymatic 

site.  

Although sialic acid substrates were not included in the complete-coat simulation, we 

propose that the negatively charged chloride anions in the bulk solvent surrounding the NA 

monomers serve as a rough surrogate for negatively charged ligand moieties that may associate 

with the glycoprotein surface. To identify regions favorable to chloride occupancy, we 

concatenated the 120 monomeric NA simulations and aligned by the alpha-carbons of the 1° site. 

The chloride atoms were binned into 3,375,000 voxels (0.67 Å x 0.67 Å x 0.67 Å each). We 

focused on voxels containing chloride counts greater than three standard deviations above the 

mean. Strikingly, our simulations reveal that a volume of high chloride occupancy connects the 1° 

and 2° sialic acid binding sites (Figure 1.4). This path is wide enough to allow negatively charged 

small molecules such as sialic acid or oseltamivir carboxylate to move from the 2° site to the 1° 

active site. Additional regions of high chloride density are depicted in Figure 1.13. This result 

provides evidence that the two sites may act cooperatively, supporting the work of Lai et al.16, 

which confirmed that pN1 has a 2° site that can bind sialic acid.  

This discovery suggests a biophysical mechanism for the previously uncharacterized 2° 

site. Sialic acid receptors may first bind the 2° site before being transferred to the 1° sialidase site 
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(Figure 1.5). We propose that our chloride distribution analysis is well suited for studying these 

possible mechanisms of molecular transfer. Unlike a simple electrostatic map, our analysis 

accounts for both electrostatic and steric factors, as well as for the conformational dynamics 

sampled over all 14.5 µs of monomeric simulation in the context of the whole-virus environment. 

In addition, this proposed “bind and transfer” mechanism is in good agreement with prior 

experimental results and proposed mechanisms27.  
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Figure 1.4 Chlorine anion distribution within the NA binding sites. 
The chlorine anion distribution shows the pathway between the 1° and 2° sites. NA is drawn in iceblue cartoon. 
Selected regions of high chloride occupancy are illustrated as dotted silver bubbles. Additional regions are shown in 
Figure S2. Two sialic acids (PDB ID 1MWE)  are superimposed in the catalytic (center) and 2° (upper right) sites for 
reference23. 

 

 

 
 

Figure 1.5 The predicted sialic acid binding mechanism involving the NA secondary site. 
Yellow stars represent a sialic-acid-containing glycan substrate. Blue half circles represent NA. The 1° active site 
and 2° site are labeled 1° and 2°, respectively. 
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1.6 Conclusions 

Our work suggests a novel NA binding mechanism wherein a sialic acid containing 

substrate (e.g., a glycan receptor) first binds the 2° site, as predicted by earlier BD simulations17. 

After binding, the substrate is transferred to the catalytic site via electrostatic interactions. Finally, 

the catalytic site cleaves the terminal sialic acid substrate. In other words, a budding viral particle 

might use the 2° site to first attract the sialic acid-tipped receptors before these are cleaved within 

the catalytic-site, ultimately allowing viral escape from the infected host-cell surface. Moreover, 

MSM and volumetric analyses have served to further expand the functional annotation of the 1° 

site and surrounding regions, disclosing exceptional deepening and broadening dynamical 

properties of the catalytic pocket. Our findings might be exploited to design novel multi-pronged 

inhibitors capable of reaching these NA additional cavities unveiled in our multiscale simulations.  

Taken together, this information provides fundamental insights into the understanding of sialic 

acid/oseltamivir carboxylate recognition, suggesting new strategies for the development of NA 

inhibitors.  
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1.8 Supplementary Information 

1.8.1 Preliminary single-glycoprotein neuraminidase molecular dynamics simulations 

To generate glycoprotein structures for use in the larger virion-coat simulations, we first 

performed microsecond simulations of single NA and hemagglutinin (HA) glycoproteins 

embedded in small lipid-bilayer patches. The single-glycoprotein NA simulations are described in 

ref. 54, but the HA simulations have never been published. The remainder of this section describes 

these simulations in detail. 

We created a homology model of the influenza A HA extra-virion domain with 

Schrödinger's Prime module, using the sequence of the Shandong 2009 H1N1 strain (accession 

number F2YI86) and the 2WR058 structure as a template. Protonation states were assigned using 

PDB2PQR59 with PROPKA60–63 at pH 7.0. The homology model was minimized and geometry-

optimized using Schrödinger's Maestro suite.  

To model the HA transmembrane domain, we searched the Protein Data Bank64 for 

analogous extended trimeric alpha-helical bundles. The 2WPQ structure65 was identified as a good 

candidate. Modeled alpha helices with the appropriate HA sequence were then aligned to the 

helices of the 2WPQ structure. Inter-virion domains, likely unstructured, were added to the 

modeled transmembrane domain. The HA extra-virion domain with appropriate disulfide bonds 

was positioned relative to the transmembrane and inter-virion domains using VMD66. This 
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complete HA structure was then embedded in a lipid bilayer, as described in ref. 54. To resolve 

steric clashes, any lipid or membrane component within 3.0 Å of the protein was removed using 

PyMolecule, a beta version of the now-published Scoria Python package67 for easily manipulating 

3D molecular data. More details on the system building of the single glycoproteins can be found 

in ref. 54.  

 

1.8.2 Building the virion-coat model from a simplified cryoelectron-tomography “point 

model” 

Experimental collaborators provided us with a simple point model of the influenza exterior 

derived from electron tomography 12. Surface points represented the lipid-covered virion surface. 

The NA and HA “spikes” were represented as lines that protruded from the viral surface. 

Positioning the glycoprotein models.  

Five distinct conformations of HA and NA, respectively, were extracted from the single-

glycoprotein (GP) microsecond simulations using RMSD clustering68, as implemented in the 

GROMACS computer package69. See ref. 54 for details. These GP conformations were 

programmatically positioned at the appropriate locations on the cryoelectron-tomography-derived 

point model using PyMolecule67,70. 

The point model suggested that some GPs were in very close proximity, making steric 

clashes unavoidable. To resolve these clashes, a multi-step process was used. First, GPs that were 

sufficiently distant from their neighbors were fixed. Using a Monte-Carlo method, the remaining 

GPs were allowed to randomly "jump" to adjacent regions on the virion surface. With every 

random jump, the distances between neighboring GPs were again evaluated, and any GP 

sufficiently distant from its new neighbors was also fixed. Additionally, with each jump, each GP 
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had a 10% chance of being returned to its original location, assuming that location was not 

occupied by another GP. This ensured that GPs did not wander too far from their initial, 

experimentally determined locations. 

The ultimate goal of fixing every GP was, unfortunately, not achievable using the above 

method alone. Consequently, during the course of the Monte Carlo procedure, the distance cutoffs 

were gradually relaxed. This gradual relaxing kept the number of potential steric clashes to a 

minimum but did introduce the possibility that some GPs would clash. 

Following the Monte Carlo procedure, we performed a pairwise distance comparison between the 

heavy atoms of all neighboring GPs to correct these occasional clashes. Two GPs were said to 

clash if the distance between any of their heavy atoms was less than 1.0 A. Those GPs that clashed 

with the greatest number of their neighbors were deleted first, followed by the less egregious 

offenders. Ultimately, it was only necessary to eliminate 10-15% of all the GPs to resolve all GP-

GP steric clashes. 

Inserting M2 channels.  

For completeness sake, we randomly positioned eleven identical models of the M2 

transmembrane domain, derived from the 2L0J structure, at viral-surface regions that were not 

occupied by GPs. The published M2 structures available at the time of model construction did not 

allow us to create a full-sequence M2 homology model. Subsequent examination of the model 

(after extensive simulation) also revealed that the channels had the incorrect orientation. 

Fortunately, these channels are sparsely distributed. They are also too distant from the GP 

ectodomains to impact NA and HA sialic-acid binding sites on nanosecond timescales.  

Generating the lipid bilayer.  
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LipidWrapper71, a PyMolecule-based program designed for creating large-scale lipid-

bilayer models of arbitrary geometry, was used to carpet the entire asymmetrical surface of the 

virion point model with phosphatidylcholine (POPC) molecules. LipidWrapper used a large planar 

lipid-bilayer model as input, generated using the CHARMM-GUI server72,73. Lipid residues that 

came within 3 Å of any protein were deleted. 

 

1.8.3 Complete virion-coat all-atom simulations 

As mentioned above, the NA and HA glycoproteins used to populate the viral surface were 

themselves taken from microsecond-long MD simulations and so were extensively pre-

equilibrated. In contrast, equilibrating the atomistic, mesoscale bilayer proved challenging. By 

subjecting the viral-coat model to iterative rounds of minimization, simulation, and hole patching, 

we ultimately obtained a bilayer that was fairly stable and equilibrated. The viral-surface model 

did not include the virion interior. To maintain the overall geometry of the model in the absence 

of structure-supporting interior components, we also fixed the positions of every 10th inner-leaflet 

lipid head group. 

All simulations were run on 114,688 processors, equivalent to 16,384 Blue Waters nodes 

or 4,096 physical nodes using NAMD52 and CHARMM36 all-atom additive force fields53. Over 

the course of the simulations, NAMD performed 252 benchmark calculations, which averaged 

25.57 steps/sec (51.14 fs of simulation per sec of real time). Frames were written to the simulation 

trajectories every 10,000 steps (20 ps), ultimately occupying 11.66 terabytes of disk space.  

After 40.14 ns, the productive simulation was forked into two daughter simulations that 

continued for 30.60 and 15.16 ns, respectively. The second daughter simulation was then also 

forked into simulations that lasted 20.70 and 14.44 ns, respectively. In one of the instances, a single 
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hole developed in the virion bilayer after roughly 20 ns. This hole comprised roughly 0.2% of the 

entire virion surface area and so had a minimal effect on complete-coat dynamics. It was repaired 

prior to launching the 14.44-ns simulation. Taken together, these simulations constitute 121.04 ns 

total. Data analysis drew upon equally spaced conformations extracted from these trajectories. 

 

1.8.4 Lipid Analysis 

Phospholipid curvature values were calculated by extracting the coordinates of the 

phosphorous atoms of the headgroups and fitting a sphere to surrounding lipids within a 200 Å 

radius (Figure 1.7). The inverse radius of the fitted sphere gives the curvature value. The sphere 

fit was calculated using the least squares algorithm available from NumPy 74. The area per lipid 

was estimated at each lipid coordinate by dividing the number of lipids within the 200 Å radius by 

the surface area of the spherical cap as calculated from the radius of curvature.  

 

1.8.5 Volumetric and FTMap analysis 

After aligning all 120 NA monomeric trajectories by the active-site Cα, we used POVME 

to measure the pocket shapes and volumes across all trajectories (grid spacing 2.0) 55. The frame 

with the largest G351-adjacent pocket was fed into FTMap to predict druggable hotspots56. We 

performed the same FTMap analysis with an NA crystal structure (PDB ID: 2HU4)12.  

 

1.8.6 Markov state models  

MSMs of the 150-cavity were constructed from both the complete-coat simulations and the 

isolated NA simulations with trajectory frames taken every 0.02 ns and 0.05 ns, respectively. The 

minimum distance between I149 and P431 was selected as the input feature for model construction. 
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Trajectory frames were clustered into 300 microstates by k-means clustering, as implemented in 

the PyEMMA software package75. A lag time of 10 ns was selected for model construction, and 

the resulting models were validated by the Chapman-Kolmogorov (CK) test (Figure 1.9 and Figure 

1.10). PCCA++ in conjunction with a hidden Markov state model (HMM) (lag time of 2 ns) was 

used for coarse-graining the MSMs into two metastable states, with validation by the CK test 

(Figure 1.11 and Figure 1.12). Confidence intervals were calculated using Bayesian hidden 

Markov state models (BHMMs) corresponding to the described HMMs. 

 

1.8.7 Chloride anion analysis 

We concatenated all 1°-site-aligned NA monomers, together with nearby chloride ions, 

into one trajectory. A box with dimensions 100 Å x 100 Å x 100 Å, centered on the 1° sialic-acid 

binding site, was divided into 3,375,000 voxels (0.67 Å x 0.67 Å x 0.67 Å each). We then tallied 

the number of chloride anions falling within each voxel, regardless of the associated monomer or 

frame. To identify regions that favor chloride occupancy, we applied a high-pass filter, retaining 

only voxels with chloride counts greater than three standard deviations above the mean (Figure 

1.13). 
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Figure 1.6 Cross section of the influenza viral envelope model. 
The phospholipid bilayer is colored in pink, and the two glycoproteins hemagglutinin and neuraminidase are colored 
in blue and light gray, respectively.
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Figure 1.7 3D and Mercator projection plots of area per lipid and lipid curvature values. 
Plots of area per lipid (A-D) or curvature (E-F) values associated with the phospholipids at time t = 70ns. The 
phospholipid headgroups are represented via 3D plot (A-B) or Mercator projection (C-D). The left and right columns 
plot the lipids from the inner or outer layer of the phospholipid bilayer, respectively. E-F) Curvature values associated 
with the outer layer of the bilayer are plotted via 3D plot or Mercator projection, respectively.  
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Figure 1.8 An illustration of four representative 1°-pocket conformations taken from the complete-coat 
simulation. 
Key residues are shown as licorice. An oseltamivir molecule taken from 2HU4 has been superimposed on the structure 
for reference but was not included in the simulations. 
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Figure 1.9 Implied time scale plots with errors. 
Calculated for MSMs from the (A) viral coat and (B) single glycoprotein simulations. 

A 

B 
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Figure 1.10 Chapman-Kolmogorov test. 
Calculated for (A) viral coat and (B) isolated NA MSMs. 

 

 
 
  

A 

B 



 29 

 
 

 
 

Figure 1.11 Implied time scale plots with errors. 
Calculated for the HMMs from the (A) viral coat and (B) single glycoprotein simulations. 
  

B 

A 
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Figure 1.12 Chapman-Kolmogorov test. 
Calculated for (A) viral coat and (B) isolated NA HMMs. 
 

B 
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Figure 1.13 Chlorine anion distribution. 
Regions of high-chloride occupancy beyond those depicted in Figure 4 are included. NA is drawn in iceblue cartoon. 
Regions of high chloride occupancy are illustrated as dotted black bubbles. Two sialic acids are superimposed in the 
1° and 2° sites for reference (PDB ID 1MWE)23.  
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On the Structural Basis of Group 1 Influenza 

Fusion Inhibition by Arbidol 

 

2.1 Abstract 

Influenza virus infection continues to be a major healthcare issue and the combination of 

the strain-specificity of vaccines with the increased circulation of therapeutic resistant strains 

drives the need for new approaches for the prevention and treatment of infection. Arbidol is a 

broad-spectrum antiviral with demonstrated activity against both group 1 and 2 influenza 

hemagglutinin subtypes. While the Arbidol binding site has been determined for group 2 

hemagglutinins, it remains unidentified for group 1 hemagglutinins. Further, based on differences 

between group 1 and group 2 hemagglutinins, it is unknown whether or not Arbidol binds in a 

group-specific manner. Integrative modeling techniques combining cryo-electron tomography 

with x-ray crystallography, homology modeling, and protein-protein docking have led to the 

construction of an all-atom model of the 2009 H1N1 influenza viral coat. Using the petascale 

computing machine Blue Waters, we have performed molecular dynamics simulations of this 

model. From these simulations, individual hemagglutinin trajectories have been extracted and 
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analyzed with the construction of a Markov state model. From our Markov state model, we present 

evidence of a druggable pocket that is able to accommodate Arbidol. Further, this druggable site 

is located in an analogous position to the known group 2 Arbidol binding site, suggesting that the 

binding of Arbidol to influenza hemagglutinin is not group specific. Structural insights obtained 

here will facilitate the development of the next generation of influenza therapeutics. 

 

2.2 Introduction 

Influenza virus infection (IVI) is a major healthcare concern, with 3-5 million cases of 

severe disease reported and 300,000 to 500,000 deaths worldwide each year 76. Currently, 

vaccination is the primary strategy for the prevention and control of IVI. However, as a result of 

the rapid mutation of the virus, vaccine protection is strain-specific and a new vaccine must be re-

engineered annually 77. Treatment of IVI is limited to two classes of FDA-approved drugs: matrix 

protein 2 inhibitors and neuraminidase inhibitors. However, many circulating strains of influenza 

exhibit resistance to one or more of these inhibitors 3. The combination of strain-specific vaccines 

with the increased circulation of therapeutic resistant strains drives the need for a novel approach 

for the prevention and treatment of IVI 78,79.  

Structural understanding of the influenza virus and its components is critical for the 

development of novel prophylactic and therapeutic approaches. The influenza virus surface is 

decorated with the glycoproteins hemagglutinin (HA) and neuraminidase (NA). HA, which is 

present in the greatest numbers, is responsible for host cell binding and fusion. Following binding 

to the recognition element, sialic acid, on the host cell, the virus enters the cell by endocytosis. 

Within the endosome, a drop in pH triggers a large-scale rearrangement of HA to enable fusion of 

the viral and host cell membranes, allowing the release of viral ribonucleoproteins into the host 
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cell cytoplasm for viral replication 80. The unique structure of HA facilitates its function in the 

viral life cycle. The HA protein is trimeric, comprised of a head region (HA1) which contains the 

receptor binding site and a stem region (HA1/HA2) which contains the fusion machinery 81. 

Whereas the head region of HA is highly variable, the HA stem region is largely conserved. 

Targeting this highly conserved and functionally critical stem region is therefore an enticing 

approach for the treatment of IVI. 

One promising IVI treatment that targets the HA stem region is Arbidol, a broad-spectrum 

antiviral with demonstrated activity against multiple strains of influenza A virus. Prior to the 

identification of the Arbidol binding site, experiments demonstrated that Arbidol binds group 1 

HAs with higher affinity than group 2 HAs 82. Recently, x-ray crystal structures of Arbidol in 

complex with two group 2 HAs (H3 and H7) reveal that it binds in a hydrophobic cavity in the 

stem region between adjacent protomers 83. The binding site is composed of A, C, and C' alpha-

helices from HA2 (“C'” refers to the adjacent protomer) and short C-terminal loops and an N-

terminal beta-hairpin from HA1 (Figure 2.1A). To date, no structures of Arbidol in complex with 

a group 1 HA have been solved; potentially owing to structural differences between group 1 and 

group 2 HAs near the Arbidol binding site (Figure 2.1B). Upon examination of the apo group 1 

and 2 crystal structures, two major differences are evident: (1) the extra turn of helix A between 

residues 57-60, and (2) the presence of a salt bridge between residues K58-E97', both serving to 

occlude the Arbidol binding site. These structural differences in conjunction with differential 

binding affinities make it unclear if Arbidol binds in a group-specific manner, hindering its further 

development as a specific and optimized influenza therapeutic. Therefore, structural and 

dynamical insights into the potential of group 1 HA to bind Arbidol are critical for the development 

of the next generation of influenza therapeutics.  



 35 

 
 

Figure 2.1 Arbidol binding site. 
 (A) Arbidol binds in a hydrophobic cavity between two adjacent protomers of HA. Residues with side chains that 
face towards the binding site are shown as sticks, Arbidol is represented in ball and stick. Residues from HA1 (light 
blue) are italicized, residues from HA2 (dark blue) are written in standard font. (B) Comparison of apo H3 (teal, PDB 
ID 4FNK 84) and H1 (magenta, PDB ID 1RU7 85) HAs reveals two main structural differences: (1) the extra turn of 
helix-A between residues 57-60, and (2) the presence of the K58-E97' salt bridge in H1, that occlude the Arbidol 
binding site.  
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2.3 Results 

Recent work in our lab has led to the construction of atomically detailed, three-dimensional 

physical models of multiple variants of the influenza viral coat using integrative modeling that 

combines high-resolution x-ray crystallography, homology modeling, and protein-protein docking 

of the membrane-bound glycoproteins with cryo-electron tomography (Figure 2.2) 86. The systems 

are some of the largest simulated to date, each ~100 nm in diameter with ~160 million atoms. The 

2009 H1N1 model was selected to be studied in greater detail and was simulated for ~120 ns using 

all-atom molecular dynamics (MD) simulations. From this simulation, 234 individual HA 

trajectories have been extracted resulting in a total of ~28 µs of HA simulation.  In this study, we 

present the first structural and kinetic basis for the probable group 1 HA Arbidol binding site, 

identified and characterized by the construction of a cell-scale, ensemble based Markov state 

model (MSM) 87. MSMs are a powerful tool enabling the study of long time-scale dynamics from 

many shorter, independent trajectories 48,88, and as such are well-suited for our system. Cell-scale 

ensemble based MSMs differ from the standard approach in that, in place of utilizing many distinct 

copies of single protein simulations, we instead draw our statistical sampling directly from the 

many copies of each substituent as simulated in the ‘mesocape’ 89. This approach then enables the 

theoretically rigorous extraction of long timescale dynamics of particular cellular components in 

the context of biological complexity; thus, the effects of protein crowding and correlated effects 

of neighboring components are taken into account.  

From the MSM, four major metastable states with exchange times on the order of 

microseconds are identified, differing primarily in the conformation of residues 57-60 in helix-A 

and the presence or absence of the K58-E97' salt bridge (Figure 2.3).  These four states 

(representative structures shown in Figure 2.3) represent diverse conformations, referred to as 
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crystallographic closed (yellow), irregular (green), semi-open (blue), and open (red). The 

crystallographic closed state includes structures with crystal-like conformations where helix-A is 

unwound after K58 and the K58-E97' salt bridge is present, completely occluding the Arbidol 

pocket. In the irregular state, helix-A is kinked between residues 51-54.  In the semi-open state, 

helix-A partially unwinds beginning at residue 57 and the Arbidol pocket remains largely occluded 

by the K58-E97’ salt bridge. Finally, in the open state, helix-A is unwound after residue 56, and 

the K58-E97' salt bridge is broken. 

With respect to the transitions between the four macrostates the crystallographic closed, 

irregular, and open states are well connected; however, the semi-open state is isolated and is only 

accessible from the open state (Figure 2.3). Transitions between these states involve the folding or 

unfolding of helix-A and the breaking or forming of the K58-E97' salt bridge or some combination 

thereof. Since we see no transitions between the semi-open state and closed state, this suggests 

that the unwinding helix-A is coupled with the breaking of the salt bridge. Similarly, helix 

rewinding is linked to salt bridge formation. Analyzing the flux from the closed to the open state, 

the observed mean first-passage time (MFPT) from closed to open is ~10 µs and from open to 

closed is ~4 µs. The ~2.5-fold greater MFPT of the closed to open transition can be attributed to 

the stability resulting from both the presence of a salt bridge and the additional secondary structure.  

In the open structure, a primary pocket, formed by the same residues as the group 2 Arbidol 

binding site, as well as an extended pocket beyond the primary binding site, have been identified 

(Figure 2.4). The primary pocket is predominantly nonpolar, consistent with the group 2 binding 

site. The group 1 and group 2 pockets primarily differ in the conformation of loop-B. The C-alpha 

RMSD of all pocket residues is 2.1 Å, whereas the C-alpha RMSD of loop-B (residues 56-60) is 

4.4 Å. The primary contribution to the ~2-fold increase in RMSD can be attributed to the differing 
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orientations of K58 and N60. In group 1, K58 is pointed inward and N60 is at the opening of the 

pocket; in group 2, K58 is at the opening of the pocket and N60 points inward. To assess the 

potential of the pocket to accommodate Arbidol, rigid receptor docking was performed using 

Schrodinger’s Glide 90. The resulting docked pose of Arbidol is in good agreement with the 

crystallographic pose, retaining the relative positioning of the indole and thiophenol rings. The 

limitations of rigid-receptor docking preclude precise determination of the pose or interactions of 

Arbidol within the H1 pocket, and therefore will be the topic of future work.  

In H1, the secondary pocket is an extension of the primary pocket and forms between the 

C, C', and C'' alpha-helices involving residues 104-106, 102'-106', and 102''-106''. In contrast to 

the primary pocket, which is predominantly nonpolar, the extended pocket is primarily composed 

of charged residues. Computational solvent mapping with FTMap was used to identify putative 

ligand binding ‘hotspots’ on the open H1 structure 91.  Three smaller hotspots are located within 

the primary pocket, while the largest hotspot is located in the extended pocket. These results are 

consistent with the characterization of the primary and extended pockets as predominantly 

nonpolar and charged, respectively. We therefore highlight the potential of the extended pocket 

for forming stronger, more specific contacts than are available within the primary pocket. As such, 

the identification of this novel secondary pocket invites the possibility to develop more selective 

and potent antivirals via optimization of current compounds to exploit these novel specific 

interactions. 
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Figure 2.2 Individual HA trajectories are extracted from the viral coat simulation and are then featurized for 
analysis by the construction of an MSM. 
(A) All-atom model of the H1N1 viral coat with HA in magenta, NA in white, and M2 ion channels in light blue. (B) 
234 HA trimer trajectories are extracted from the viral coat simulation, resulting in a total of ~28 µs of HA simulation. 
(C) 8 pairwise distances between alpha carbons of residues constituting the Arbidol binding site as well as the phi and 
psi angles of residues 57-60 in helix-A were selected as the input features for model construction. 
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Figure 2.3 Representative structures of the four major macrostates with mean first-passage times shown.  
Macrostates are colored as follows: crystallographic closed (yellow), irregular (green), semi-open (blue), open (red). 
The width of the colored outline of each state is proportional to its population and the width of each arrow is 
proportional to the transition probability. Arrows representing transitions are colored by the state from which they 
originate. (Note: MFPTs indicated are calculated for all potential pathways.) 
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Figure 2.4 View of the primary pocket and pocket extension. 
A, C, and C'' helices shown in red cartoon; residues constituting the primary and secondary pockets shown in red 
and pink surface, respectively; docked Arbidol shown in cyan carbon ball and stick. In contrast to the primary 
binding site, which is largely nonpolar, the secondary site is constituted of mainly charged residues. 
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2.4 Discussion 

In order to determine whether or not Arbidol binding is group specific, we present an 

analysis of influenza viral coat MD simulations by construction of an MSM. By this analysis we 

identify the probable group 1 Arbidol binding site at the same position as the group 2 binding site. 

Further, these two pockets not only share the same location, but also are consistent in terms of 

polarity, shape, and size. Rigid receptor docking demonstrates the capacity for Arbidol to be 

accomodated within this pocket. In addition to the identification of this primary binding site, we 

identify and characterize a novel extension of this pocket. Solvent hotspot mapping highlights both 

the primary pocket and the pocket extension as druggable hotspots. Ultimately, identification and 

characterization of the primary pocket and pocket extension make way for the development of 

more specific and potent antiviral compounds. 

 

2.5 Methods 

2.5.1 System preparation and simulation 

The influenza viral coat model was prepared and simulated according to the procedure 

outlined in ref. 86.  

2.5.2 Markov state models 

An MSM of the Arbidol site was constructed from the complete-coat simulations with 

trajectory frames taken every 0.02 ns. To capture the dynamics of the binding pocket in the MSM, 

8 pairwise distances between alpha carbons of residues constituting the Arbidol binding site as 

well as the phi and psi angles of residues 57-60 in helix-A were selected as the input features for 

model construction. Dimensionality reduction was performed using time-lagged independent 

component analysis (TICA) 92 and trajectory frames were clustered into 300 microstates by k-
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means clustering in TICA space, as implemented in the PyEMMA software package 75. A lag time 

of 30 ns was selected for model construction, and the resulting models were validated by the 

Chapman-Kolmogorov (CK) test (Figure 2.5 and Figure 2.6). PCCA++ in conjunction with a 

hidden Markov state model (HMM) was used for coarse-graining the MSM into metastable states. 

6 metastable states are identified. Two of these states, both of which represent closed pocket 

conformations, have total combined population of less than 1% and are excluded from further 

analysis. 
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Figure 2.5 Implied timescale plot for HA MSM. 
 

 

 
 

Figure 2.6 Chapman-Kolmogorov test for HA MSM.   
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Multiscale Simulations Approaches to Model 

Drug-Protein Binding 

 

3.1 Abstract 

Simulations can provide detailed insight into molecular processes involved in drug action, 

such as protein-ligand binding, and so contribute to drug design and development. A range of 

different processes with a large range of length and timescales, may be involved, and 

understanding these different scales typically requires different types of simulation method. Ideally, 

simulations should be able to connect across scales, to analyse and predict how changes at one 

scale affect or play out on another. Multiscale simulation methods, which combine different levels 

of treatment, are an emerging frontier with great potential in this area. Here we review multiscale 

frameworks of various types, and some applications to biomolecular systems. 

 

3.2 Introduction 

Protein-ligand interactions are integral to coordinating the complex functions of cellular 

activity. Such interactions include the binding of signaling molecules, enzyme substrates, toxins, 
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regulating factors, or other proteins to the protein of interest 93–99.  Of particular interest for 

pharmaceutical development is the binding of drug molecules that mimic, inhibit, or modulate 

native protein-ligand interactions for therapeutic effect.  Molecular simulations are increasingly 

involved in drug discovery pipelines in understanding protein-drug binding interactions, and also 

have the potential to reduce cost and time of drug discovery associated with synthesizing and 

experimentally testing many compounds 100,101. Simulations can be used as screens during the hit 

identification phase and also provide insight for lead optimization, as well as to analyze drug 

resistance 102,103. Developments in computer architecture, such as GPUs, and the promise of 

exascale computing power are transforming the range and scope of biomolecular simulations 104. 

Simulations can reveal molecular mechanisms and analyze them in a level of detail and dynamic 

resolution beyond the reach of experiment. A particular focus is in understanding and predicting 

drug binding and kinetics 105,106. Increasingly it is clear that the biological activity of many drugs 

depends on the rates of association or dissociation from their targets, rather than their binding 

affinity 93–96,107.  

Simulations face conflicting challenges in this arena, with a tension between the need to 

address long timescales for some relevant processes (large-scale conformational changes, 

macromolecular association, and beyond to changes in organelles and cells) and the requirement 

for accurate description of molecular interactions and reactions for reliable predictions. Methods 

exists to simulate biomolecules at different length scales, ranging from quantum mechanical 

electronic structure calculations to atomistic, coarse-grained, and continuum models, that have 

well-established domains of applicability and can provide useful predictions of biologically 

relevant properties when applied with simulation techniques to sample underlying  dynamics 108. 

There is great potential impact to be realized through the combination of these different types of 
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methods, e.g. in predicting the higher-level effects of changes at the molecular level by connecting 

across the scales. There is further promise in leveraging and connecting to experimental, genetic, 

and other biological data.  

Here, we review emerging multiscale methods for studying protein-ligand binding, 

relevant to drug design and development for small-molecules therapeutics.  Multiscale techniques 

bridge spatial and/or temporal scales, coupling together two or more different types of modelling 

approaches, with varying degrees of the ‘tightness’ of coupling (Figure 3.1). Two or more different 

levels of representation may coexist within a single simulation, a switch between independent 

levels can be triggered when a critical configuration or milestone is reached , or sampling at a 

lower, computationally cheaper level can enhance and/or be informed by calculations at a higher 

level, with information being directly passed between different types of simulation. Here, these 

different simulation methods are roughly ordered in decreasing ‘coarseness’. This coarseness is 

also closely correlated with the cost of such a simulation for a given system and timescale.  
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Figure 3.1 Depiction   of the approximate spatial and temporal scales of various simulation approaches as 
well as the multiscale methods used to bridge the gaps between individual methods. 
Molecular Mechanics methods underly most biomolecular dynamics simulations and can thus use atomistic 
representations or coarse grained models for larger systems and longer time scales.  
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3.3 Main 

 

3.3.1 Combining molecular dynamics and Brownian dynamics for binding  

Drug-protein binding typically occurs in two main steps: first, non-specific and long-range 

electrostatic interactions driving initial association and location of the binding site, followed by 

specific short-range interactions at the binding site (where specificity of interactions is key). This 

immediately suggests that the whole binding and recognition process can be simulated by a 

combination of different methods to simulate these two aspects, and indeed this has inspired 

multiscale approaches. The diffusion-limited rate constant of two molecules approximated as 

spheres in aqueous solution is on the order of 109-1010 M-1s-1 109,110. However, as a result of 

molecular and hydrodynamic interactions, crowding, geometric constraints of binding sites, and 

gating effects, the observed rate constants of ligand binding occur over a much broader range, 103 

to 1010 M-1s-1. Brownian dynamics (BD) simulations solve the Langevin equation in the 

overdamped limit, and often achieve decreased computational cost by neglecting internal degrees 

of freedom and describing solvent implicitly with a dielectric constant 111. As such, BD simulations 

are well-suited for studying the long-range interactions that dictate ligand association, particularly 

the electrostatic steering involved in forming the initial ligand-protein encounter complex.  BD 

simulations were combined with all-atom molecular dynamics (MD) simulations in one of the 

earliest multiscale approaches to protein-ligand binding 112. Chang et al. presented a multiscale 

approach to model binding pathways of ligands to HIV-1 protease that involves initial coarse-

grained BD simulations followed by all-atom MD simulations initiated from snapshots of the BD 

trajectories 113. The low cost of the coarse-grained BD simulations allows for extensive sampling 

of multiple association pathways. The pathway data generated from these simulations serves as 
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the starting point for multiple follow up studies, providing detailed descriptions of the drug binding 

process 114,115. 

 

3.3.2 Milestoning/ SEEKR for calculations of association and dissociation rates kon and koff 

Milestoning is a technique used to subdivide, simulate, and statistically reconnect regions 

of simulation space called milestones 116–120. This approach is highly amenable to a multiscale 

simulation framework because simulations at each milestone are fully independent, as well as 

agnostic to the simulation type used, because only transition probabilities and transition times 

between any pair of milestones are required to compute the quantities of interest (e.g., binding or 

unbinding rates). There are multiple examples using milestoning with MD simulations to study 

ligand binding 121,122. In particular, Simulation Enabled Estimation of Kinetic Rates (SEEKR) is a 

multiscale milestoning simulation technique that directly combines MD and BD simulations to 

calculate kon, koff, and the free energy of protein-ligand binding, with a focus on small molecule 

drugs 123–125. Fully atomistic MD simulations are used in regions close to the binding site, where 

molecular flexibility and atomistic detail are essential, and rigid-body BD simulations are used in 

the regions farther away from the binding site, where molecular flexibility is less important, 

affording a dramatic savings in computational cost (Figure 3.2). SEEKR reduces the compute time 

required for calculations via an enhancement in sampling of rare events due to statistical 

bootstrapping, and it is ‘embarrassingly’ parallel, as each independent milestone can be simulated 

concurrently. SEEKR has been shown to effectively rank-order ligands by both koff and binding 

free energy for the biosynthetic receptor system, β-cyclodextrin 125. SEEKR has also been 

employed to calculate kon, koff, and the binding free energy for the well-studied model system 

trypsin with the noncovalent binder, benzamidine 124. In addition, the binding and unbinding rates 
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calculated with this method are well-suited to be used as parameters for larger-scale 

phenomenological and diffusion-based models, furthering the multiscale nature of the SEEKR 

methodology.  
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Figure 3.2 SEEKR is designed for calculations of ligand receptor binding kinetics in multiscale framework 
using molecular dynamics and Brownian dynamics.  
Regions closest to the binding site are simulated with atomistic MD and the regions furthest away is simulated using 
rigid body BD. Ligands are placed on each spherical milestone and only simulated until an adjacent milestone is 
touched. Arrows in red represent MD trajectories and blue arrows represent BD trajectories. Statistics from each of 
the independent simulations are then combined to estimate association and dissociation rates as well as binding affinity. 
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3.3.3 Markov State Models and Reaction-Diffusion Methods 

Markov state models (MSMs) describe memoryless transitions between different states of 

a system, enabling the study of long-timescale dynamics from short-timescale MD simulations of 

biomolecular systems 47,126,127. Although MSMs alone can be used to investigate some instances 

of drug-protein binding 49,128–130, often this is not suitable as it is still limited to relatively small 

biomolecules and complexes and is limited by the high cost of MD simulations and the timescales 

involved. In contrast to MD, particle-based reaction-diffusion (RD) simulations are able to model 

larger and more complex systems but lack producing atomic level detail. By combining MD-based 

MSMs with RD simulations in a technique called MSM/RD, processes such as drug-protein 

binding can be modeled at large time- and lengthscales, while conserving atomistic details 131. 

More specifically, MSM/RD can be used to model intracellular dynamics and describe diffusion, 

association, and dissociation on the cellular scale. Dibak et al. demonstrate the utility of MSM/RD 

approaches for biomolecular systems with application to carbon monoxide diffusion into the heme 

cavity of myoglobin. Extensions of this methodology which incorporate more complex cellular 

environments have the potential to become a powerful tool for studying off-target effects of drug 

molecules. The MSM/RD framework is also highly generalizable, with the potential be 

incorporated into many of the existing powerful RD tools 132. 

 

3.3.4 Enhanced Sampling Simulations 

Enhanced sampling simulations (usually based on atomistic MD) are increasingly used to 

study and predict drug binding kinetics. There is potential to apply enhanced sampling methods in 

multiscale formwork to extend their scope. For example, they can be applied with coarse-grained 

model linked to atomistic to extend across scales and at a higher level of detail can be linked to 
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more rigorous molecular representations based on quantum mechanical electronic structure 

calculations.  

Atomistic molecular dynamics simulations can provide good descriptions of biomolecular 

interactions, and with free energy approaches can analyze determinants of binding affinity. 

However, even with emerging supercomputer resources, timescales are limited to the nanosecond-

microsecond regime, so it is in general difficult to simulate multiple binding events unless a biasing 

or enhanced sampling method is applied to accelerate the process or focus sampling on a desired 

region of phase space. Many such methods exist, and can be applied with different potential 

functions (atomistic, coarse-grained, QM/MM, etc). An example of an enhanced sampling 

simulations approach is the calculation of residence times τ (τ = 1/koff) using τ-random accelerated 

molecular dynamics (τ-RAMD) for a diverse set of inhibitors of an important cancer target, the 

human N-terminal domain of heat shock protein 90α (N-HSP90). The τ-RAMD method relies on 

generating a random force which allows exit of the ligands within a short simulation time. τ-

RAMD gives an excellent correlation between computed residence time (τcomp) and measured τexpt 

values for 78% of the compounds 107. 

Metadynamics (MetaD) simulations 133 of various types are being increasingly widely used 

in drug discovery, e.g. prediction of binding kinetics and exploration of ligand binding or 

unbinding pathways 134,135. MetaD sampling techniques reply on choosing appropriate collective 

variables (CV) to describe the slow degrees of freedom and it’s a non-trivial task to achieve. Many 

recent developments have been evolved so far to address this issue 136. Bernetti et al. showed that 

multiscale MetaD (a combination of MD, MSM and Path-CV) is capable to estimate the binding 

free energy of antagonist alprenolol to its β2-adrenergic receptor 137. Another development relies 

on the variational approach to conformational dynamics within the metadynamics (VAC-MetaD) 
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framework which address the slow degrees freedom of the systems under study 138. Brotzakis et 

al. used this approach to trypsin-benzamidine complex and determined  the absolute free energy 

of binding (∆Gbind) as well as the unbinding rate (koff) at low computational cost 139.   

The accuracy of the predictions from such simulations, and ligand binding free energy 

calculations generally, may now be limited in many cases by the potential functions used: typical, 

atomistic ‘molecular mechanics’ forcefields do not allow for changes in electronic polarization 

and are limited in their description of electrostatics and dispersion effects 140. Coarse-grained 

representations (which e.g. group together atoms in an amino acid sidechain), while allowing long 

simulations of large molecular systems, do not provide detailed descriptions of molecular 

interactions and by their nature cannot discriminate fine details. Calculations using quantum 

mechanics can in principle provide accurate descriptions of molecular structure, interactions and 

reactions, but while encouraging progress has been made in extending their range of applicability 

(e.g. to whole small proteins), their high computational demands means that they allow only very 

limited sampling 141,142.  

 

3.3.5 Combining QM Methods with Atomistic Representations 

Multiscale approaches provide a route to combine the accuracy of high-level methods with 

the need for significant sampling. Quantum mechanics/molecular mechanics (QM/MM) methods 

are a paradigm of multiscale modelling. They combine a electronic structure description of a small 

region with a simpler empirical MM (usually atomistic) representation of the surroundings (e.g. 

protein, solvent). The QM treatment can provide an accurate description of the electrostatics and 

polarization of the high-level region, and model chemical reactivity, e.g. to study covalent 

reactivity in situ 103. As a ligand binds to a protein, its environment changes significantly, e.g. from 
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fully solvated to buried within the protein. This may cause significant changes in the polarization 

of the ligand preferably when a charged residue is close to ligand, affecting its interactions, but the 

effects of such changes are not included in invariant charge MM models. The effects of electronic 

polarization changes on binding kinetics can investigated by combining QM/MM free energy 

calculations with enhanced sampling simulation of binding (Figure 3.3). An example is the 

anticancer drug imatinib binding to c-Src kinase 143, combining metadynamics simulation of 

binding with QM/MM free energy corrections at critical points along the (un)binding pathway. In 

essence, the free energy change for changing from a MM to a QM treatment of the ligand is 

calculated, for the bound complex, for the transition state (TS), and for unbound ligand in solution, 

by replica exchange Monte Carlo simulations using a Metropolis-Hastings-Warshel algorithm 144. 

The results show that there is a significant difference in the free energy between these 

environments when compared with MM ones, and polarization has the effect of increasing the off 

rate, bringing it closer to the experimental value.  

QM/MM methods allow chemical reactions to be investigated in proteins and are now 

widely applied in modelling enzyme-catalyzed reactions, and increasingly in other relevant areas 

such as covalent inhibition and prediction of drug metabolism. In this last area, they can be 

combined with coarse-grained and atomistic molecular dynamics simulations. An example is a 

multiscale protocol combining simulations at these three different levels applied to metabolism of 

the anticoagulant R-warfarin by cytochrome P450 3A4 145. A model of the membrane-bound 

enzyme was assembled and investigated by coarse-grained MD, and this level of theory was also 

applied to investigate association with warfarin in the membrane. The coarse-grained models were 

converted into an atomistic simulation to investigate drug binding within the enzyme, and these 

simulations were in turn converted to QM/MM models to investigate oxidation R-warfarin in the 
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active site. The simulations showed important effects of the membrane, e.g. on the channels 

controlling access to the active site and gating residues. This multiscale coarse-grained-atomistic-

QM/MM protocol is applicable to other membrane-bound enzymes.  
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Figure 3.3 A practical Multiscale simulation approach to modeling drug-protein binding kinetics combing 
atomistic metadynamics simulations and QM/MM free energy calculations. 
(A) A schematic representation of the unbinding pathway of the drug from its target showing relevant states: the bound 
protein-ligand complex, TS and unbound state. (B) The one-dimensional free energy profile calculated using a 
combination of Parallel tempering metadynamics (PT-MetaD) and Path-CVs. The profile shows that the drug unbinds 
though a TS with a barrier height of ~16.0 kcal/mol. (C) The representative structures/snapshots found in each 
minimum on the free energy profile. d. The free energy cycle used to calculate the MM to QM/MM free energy 
difference. The ∆G"#$$

%&→&& and G()*+,
%&→&& represents the correction free energy of the ligand in the bulk as well as in 

bound state, respectively.  
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3.4 Conclusions and Outlook 

Multiscale biomolecular simulation methods are emerging and developing rapidly, 

promising increased insight and impact in drug development. Multiscale simulation methods 

connect across one or more scales to investigate, for example, how changes at one level drive or 

affected by changes at another, and by doing so bring a new depth of mechanistic understanding 

and unprecedented level of predictive power to drug discovery. Drug action is multiscale, in that 

molecular-level changes lead to macroscopic changes in biological systems, and in thus the process 

small molecule binding to a receptor of interest leads to changes across many levels. Here, we 

have focused on methods for understanding such binding and unbinding processes; these methods 

will contribute to understanding how they exert their effects at higher levels of biological 

organization. The challenges involved are many and varied, reflecting the complexity of biological 

systems and the dynamics of drug targets. As the examples reviewed briefly here show, significant 

progress has been made in integrating different types of simulation methods to link across diverse 

time- and length- scales. They have provided insight into the factors determining drug association 

rates and residence times, and the causes of drug resistance. Together with more expansive studies 

carried out on larger datasets, continued improvements to force fields, and connections to quantum 

mechanical approaches, the scope and power of multiscale simulation will certainly increase. 

Detailed comparison with experiment is essential in developing and testing such methods, which 

in turn will inform experimental design and analysis, and data engineering. Furthermore, additional 

potential will likely be realized through the incorporation of experimental and genetic data in fully 

integrative biological simulation methods 146.  
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