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ABSTRACT OF THE THESIS

Parametric Resonance of Magnetization

Excited by Electric Field

By

Yu-Jin Chen

Master of Science in Chemical and Material Physics

University of California, Irvine, 2016

Professor Ilya N. Krivorotov, Chair

This thesis describes the experiments that demonstrate the ability to efficiently excite magne-

tization parametrically by electric field. The experiments are done with nanoscale magnetic

tunnel junctions, which are multilayer thin film devices patterned into nanopillar shape.

One of the layers possesses strong perpendicular magnetic anisotropy and exhibits strong

voltage-controlled magnetic anisotropy. This magneto-electric effect allows one to modulate

the perpendicular magnetic anisotropy of the layer and parametrically excite large-amplitude

oscillations of the magnetization. The results of this experiment show that it is possible to

parametrically excite resonance in a magnetic nanostructure using electric field and that the

threshold voltage for this process is low: it is found to be well below 1 Volt. This paves the

way towards developing energy-efficient spintronic devices based on parametric excitation of

magnetization by electric field.
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Chapter 1

Introduction

Manipulation of magnetization by electric field is a central goal of spintronics. Recent

progress towards this goal includes magnetization reversal [12, 13] and ferromagnetic res-

onance [14, 15] driven by electric field. In particular, the effect known as voltage-controlled

magnetic anisotropy is featured as the magneto-electric mechanism for controlling magne-

tization by electric field. This thesis will describe the experiment that demonstrates how

this magneto-electric effect can efficiently manipulate magnetization by electric field through

parametric excitation. The results of this experiment further the development of spintronic

devices for technologically relevant applications, such as spin wave logic devices. [35]

In Chapter 2, I will give background information that is necessary for understanding the

physics in the experiments. It will include an overview of several significant effects in the

nanostructures called magnetic tunnel junctions that are used in the experiment. It will also

describe the physics of some experimental methods used in characterizing the samples.

In Chapter 3, I describe the experiment which demonstrates the ability to excite parametric

resonance of magnetization in a nanodevice via electric field. It describes the experimental
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methods, including specific sample configuration, some details of the preparation of the

setup, and the results which are compared to theory.

Finally, I present conclusions and future outlook in Chapter 4.
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Chapter 2

Background

2.1 Magnetic Tunnel Junctions

The devices under study are nanoscale magnetic tunnel junctions (MTJs), which in their

most basic form are trilayer structures with two ferromagnetic layers separated by an insulat-

ing layer. As depicted in FIg. 2.1, typical thicknesses of the layers range from a few nanome-

ters down to less than one nanometer. Typically, MTJs are patterned into a nanopillar

structures with lateral dimensions that range from sub-micron down to tens of nanometers.

One useful property of MTJs is the tunneling magnetoresistance (TMR) effect, with which

we can electrically read out the relative orientation of the ferromagnetic layers by measuring

the resistance of the MTJ. The tunneling magnetoresistance value then describes the dif-

ference in resistance between the parallel (low resistance) and anti-parallel (high resistance)

orientations of the two magnetizations.

TMR =
RAP −RP

RP

(2.1)
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Figure 2.1: Magnetic tunnel junction. Schematic of a magnetic tunnel junction, a
nanoscale trilayer structure with two ferromagnets separated by an insulating spacer.

The TMR model developed by Julliere [10]) is schematically illustrated in Fig. 2.2 and is valid

for amorphous barriers. The origin of the effect is attributed to spin-dependent tunneling

through the MTJ’s insulating barrier when voltage is applied perpendicular to the plane

of the MTJ layers (CPP or current-perpendicular-to-plane geometry). The electrons must

tunnel through the insulating barrier, and the tunneling conductance of the MTJ depends

on the density of states for majority and minority bands of both ferromagnets:

G ∝ D↑,1D↑,2 +D↓,1D↓,2 (2.2)

Gp ∝ Dmaj
1 Dmaj

2 +Dmin
1 Dmin

2 (2.3)

GAp ∝ Dmaj
1 Dmin

2 +Dmin
1 Dmaj

2 . (2.4)

Here GP and GAP are the conductances for the parallel and anti-parallel magnetization

configurations, respectively. The D↑ and D↓ are the density of states for up and down

spins, respectively, and the superscripts maj and min denote majority and minority bands,

respectively. The numbers 1 and 2 denote the corresponding ferromagnet. As shown in

Fig. 2.2 and equations (2.3) and (2.4), the current is essentially split into two currents. The

majority band dominates in the parallel case and ends up being the high conductance (low
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resistance) state while the anti-parallel case results in low conductance for both channels

(high resistance).

Figure 2.2: Tunneling magnetoresistance schematic. Basic schematic of tunneling mag-
netoresistance through an amorphous barrier. The different orientations of magnetization
lead to different density of states and therefore different tunneling conductance.

Tunneling through crystalline MgO barriers is more complex but also results in different

resistance states depending on relative orientation of the magnetizations. The conductance

is strongly dependent on the density of states of the Bloch states. In particular, it is strongly

dependent on the symmetry of the Bloch states in the ferromagnets as well as the evanescent

states in the insulator. These, in turn, depend on the relative orientation of the magnetiza-

tions of the ferromagnets. [9]

The TMR effect by itself does not help to study magnetization dynamics if both layers in

the MTJ are free to move and thus obscure the finer details of the behavior of a single

ferromagnet. To compensate for this, there are several ways to effectively pin one of the

layers against easy manipulation by magnetic field. One way is to simply make one of the

layers thicker, thereby requiring more energy to rotate the magnetization. Another way is to

place an antiferromagnet adjacent to one of the layers. This couples the ferromagnetic layer

to the antiferromagnet by exchange bias [6] and can leave the ferromagnet strongly pinned.
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In our structures, both methods are used to pin one of the ferromagnetic layers (called the

fixed layer), and the layer that is relatively easy to manipulate is called the free layer.

Figure 2.3: Shape anisotropy. Shape anisotropy creates stable states for the free layer
magnetization. In the case of uniaxial anisotropy, the magnetization prefers to lie along an
easy axis (parallel or anti-parallel).

Typically, the MTJs we study are patterned into nanopillar structures, and the lateral cross

section can be a non-circular shape. Often, as in this thesis, we use samples that have

elliptical cross section, as shown in Fig. 2.3. This gives rise to an in-plane shape anisotropy (a

preferred direction for magnetization) that also helps to define the parallel and anti-parallel

orientations of the magnetization. The shape anisotropy is due to the demagnetization

energy, which arises from buildup of magnetic charge at the boundaries of a sample due

to the shape of the sample. [6] In the case of a uniaxial anisotropy, the magnetization lies

along a preferred easy-axis (or along a preferred easy-plane). In particular, the parallel and

anti-parallel alignments of the free and fixed layers are usually along the easy-axis of the

sample.

In order to read orientations of magnetizations other than parallel or anti-parallel, the resis-

tance of the structure must be determined for intermediate angles. The angular dependence
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of the conductance is modelled as:

G(θ) = 〈G〉(1 + P1P2 cos(θ)) (2.5)

where 〈G〉 = (GP +GAP )/2 is the average of the parallel and anti-parallel state conductances,

P1 and P2 are the spin polarizations of each ferromagnet, and the angle θ is the angle between

the magnetizations of the two layers. [1] This makes the conductance proportional to the

projection of the free layer magnetization along the direction of the fixed layer.

2.2 Magnetization Dynamics

Magnetization dynamics for a single spin (or macrospin) is often instructive when trying

to understand the dynamics of the free layer in a magnetic nanostructure. The macrospin

magnetization dynamics can be described by the Landau-Lifshitz-Gilbert (LLG) equation,

which has the form:

dM

dt
= −γM×Heff +

α

Ms

M× dM

dt
(2.6)

where M is the magnetization (with Ms as the saturation magnetization), γ is the gyromag-

netic ratio, Heff is the effective field, and α is the Gilbert damping. The effective field Heff

is the gradient of the free energy with respect to the magnetization and typically includes

contributions from exchange field, demagnetization, anisotropy, and applied field. [8]

The first term causes the magnetization to precess around the effective field, which is also the

equilibrium direction of magnetization in the steady state (dM/dt = 0). The second term

is the phenomenological Gilbert damping term that represents dissipation in the system

and tends to decrease the amplitude of precession and realign the magnetization with the

equilibrium direction.
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2.3 Spin Transfer Torque

Besides manipulation by magnetic field, the free layer of the MTJ can be manipulated by

injection of electric current. In 1996, Slonczewski [2] and Berger [3] independently predicted

the effect known as spin transfer torque (STT), also referred to as spin torque (ST). The

origin of the effect comes from mutual exchange of angular momentum between the local

magnetization and the polarization of electron spins in the current. A ferromagnet acts as a

spin filter at its interface, absorbing the transverse components of spin angular momentum

and leaving a spin-polarized current exiting the ferromagnet. The spin-polarized current

is polarized collinear to the ferromagnet, and when this current is injected into another

spin filter (another ferromagnet), the same spin filtering effect occurs (see Fig. 2.4). The

components of the polarization transverse to the magnetization of the second ferromagnet

are absorbed and apply a torque to the magnetization, which is the spin transfer torque.

Figure 2.4: Spin transfer torque. Spin filtering at the interfaces of ferromagnets leads to
spin-polarized currents and the spin transfer torque effect. j is the direction of conventional
current, and the circles traveling through the layers represent electron current.

Therefore, the spin-polarized current would apply a torque to the magnetization of the second

ferromagnet if the spin polarization of the current and the magnetization are non-collinear.
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The torque tends to mutually align the polarization of the current and the magnetization,

as shown in Fig. 2.4 and Fig. 2.5.

Figure 2.5: Direction of spin transfer torque. The spin transfer torque acts to either
align or turn away the magnetization from its direction of spin polarization. The torque is
proportional to the current and therefore changes sign on reversal of the current polarity.

Magnetization dynamics in the presence of spin torque can be described by the addition of a

spin torque term to the LLG equation. The new equation is known as the Landau-Lifshitz-

Gilbert-Slonczewski (LLGS) equation, which has the form:

dM

dt
= −γM×Heff +

α

Ms

M× dM

dt
− β(I)g(θ)M× (M× p) (2.7)

where β(I) is proportional to the current and represents the magnitude of the spin torque,

g(θ) is the angular dependence of the spin torque, and p is the unit vector describing the

spin-polarization of the current. [2, 8] The spin torque term contains a double cross product

that captures the geometry of the angular momentum transfer, and the term is proportional

to the polarity and amplitude of injected current (see Fig. 2.5).
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Figure 2.6: Magnetization dynamics torque diagram. Schematic of torques for mag-
netization dynamics involving spin torque. The τH is the field and precession torque, the τd
is the damping torque, and the τST is the spin transfer torque. The spin transfer torque can
act as anti-damping if the polarization is opposite to the direction of the effective field.

In the appropriate geometry, the spin torque term can act as anti-damping, as shown in

Fig. 2.6. This happens when the polarization of the spin current has a component opposite

to the direction of effective field. When this is the case, there are three possible regimes of

excited magnetization dynamics: damped oscillations, steady-state precession, and switching

of the ferromagnet. [2, 8] In the low-current regime, damping still dominates over the effect

of spin torque, and the resulting oscillations continue to damp towards the equilibrium

direction. In a high current regime, the energy delivered to the system by spin torque

cancels the energy lost due to damping and a steady-state precession can occur. At yet

higher currents, the spin torque becomes strong enough to overcome the anisotropy energies

and reverses direction of the magnetization.
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2.4 Voltage-Controlled Magnetic Anisotropy

In addition to spin torque, there has been great interest in manipulation of magnetization by

electric field, which relies on the magneto-electric (ME) effect in magnetic solids [17]. One

prominent manifestation of the ME effect is modification of magnetic anisotropy in response

to applied electric field [23, 24, 25]. A recently discovered ME effect at the interface between

a ferromagnetic metal (e.g. Fe) and a non-magnetic insulator (e.g. MgO) [25, 26, 27, 28] is

promising for ultra-fast manipulation of magnetization in nanoscale spintronic devices [13].

This interfacial ME effect called voltage-controlled magnetic anisotropy (VCMA) originates

from different rates of filling of d -like electron bands at the Fe/MgO interface in response to

electric field applied perpendicular to the interface. Since electrons in different bands con-

tribute unequally to the uniaxial perpendicular magnetic anisotropy (PMA) at the Fe/MgO

interface, electric field modulates PMA [27, 28]. This electric field induced anisotropy is

promising for energy-efficient manipulation of magnetization because, unlike spin torque, it

does not rely on high electric current density resulting in large Ohmic losses [29].

VCMA appears in the LLG as an anisotropy term in the effective field. One can write the

first-order uniaxial anisotropy energy density as:

ε = Ku1 sin2(θ) = Ku1(1− (m · u)2). (2.8)

Here, Ku1 is the uniaxial anisotropy constant, m = M/Ms is the normalized magnetization,

and the unit vector u is along the symmetry axis of the uniaxial anistropy. The VCMA

effective field is then:

HVCMA = − 1

Ms

∂ε

∂m
=

2Ku1

Ms
(m · u)u. (2.9)

11



This leaves the torque due to VCMA as:

τV CMA = −γM×HVCMA ∝
2Ku1

Ms
cos(θ) sin(θ). (2.10)

The torque is then maximized when the angle between magnetization and the uniaxial

anisotropy axis is at 45 degrees. In the experiment described later, it is not the direct

VCMA torque that plays a role in exciting magnetization dynamics but the modulation of

the uniaxial anisotropy energy.

2.5 Spin Torque Ferromagnetic Resonance (ST-FMR)

One major application of spin torque to nanomagnetic systems is the spin torque ferro-

magnetic resonance (ST-FMR) technique. A diagram of the typical circuit for this type of

measurement is shown in Fig. 2.7. It consists of a microwave generator, a bias tee, a lock-in

amplifier, and optionally a dc bias source of some type (current or voltage). In this tech-

nique, an amplitude-modulated microwave current is sent through the ac arm of the bias tee

to the device under test and excites magnetization dynamics. Due to the presence of magne-

toresistance effects, magnetic oscillations result in oscillations of the device resistance. The

ac resistance oscillations then mix with the ac microwave current to produce a dc rectified

voltage. The lock-in amplifier detects the voltage by locking in to the modulation frequency

of the microwave drive. [30, 31]
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Figure 2.7: Spin torque ferromagnetic resonance. Schematic of a spin torque ferro-
magnetic resonance setup. An amplitude-modulated microwave current is sent through the
bias tee to the device and excites magnetization dynamics. The resistance oscillations due
to these dynamics mixes with the microwave current to produce a rectified voltage that is
detected by lock-in technique.

Typically, one sweeps the microwave drive frequency while holding a constant external mag-

netic field. When the drive frequency matches that of a magnetic resonance (a spin wave

eigenmode), the rectified voltage shows a peak. By changing the applied field, one can record

the resonance frequency and field to fit for anisotropy values using the appropriate Kittel

formula. One can also fit the linewidth as a function of resonance frequency to obtain a

measure of the Gilbert damping of the system. [4] In contrast, conventional ferromagnetic

resonance measurements do a field sweep while holding a constant drive frequency. This is

also possible in the ST-FMR setup, and it often results in spectra that are easier to interpret

if one is interested in fitting the linewidth for damping.

The lineshapes one can see in the ST-FMR spectra have also been thoroughly studied [32,

31]. The curves can generally be well-fitted to symmetric Lorentzian and anti-symmetric

Lorentzian line shapes. The different types of torques have also been associated with different

13



lineshapes. The Slonczewski or in-plane spin torque shows up as a symmetric Lorentzian.

There is also the field-like spin torque which results in anti-symmetric Lorentzians. [32] The

torque due to VCMA also appears as an anti-symmetric Lorentzian in ST-FMR spectra. [15]

2.6 Parametric Excitation

Parametric excitation of magnetic systems is analogous to parametric excitation in classical

systems. One prominent example is that of a child on a swing, changing her moment of

inertia by moving her legs back and forth in a periodic fashion. The child is modulating

a parameter of the system, in this case the moment of inertia of the swing-child pendulum

(and thus the resonance frequency), and will excite large-amplitude oscillations at the proper

frequency of modulation. This is parametric resonance, and it occurs when a parameter of

the system such as the resonance frequency or the damping is modulated at nearly twice the

natural frequency of the system.

Parametric excitation of magnetization by external magnetic field has been thoroughly stud-

ied in bulk and thin-film ferromagnets [4]. In these experiments, a parameter of the magnetic

system (external field) is modulated with a frequency near twice the ferromagnetic resonance

frequency f0 of the system. Parametric excitation is a nonlinear process, in which the para-

metric drive acts as negative effective magnetic damping competing with positive intrinsic

damping [4, 5]. At a threshold amplitude of the parametric drive, the negative damping

exceeds the intrinsic damping and magnetization oscillations with a frequency near f0 are

excited.

Parametric excitation of magnetization has several important advantages over direct exci-

tation by external magnetic field with a frequency near f0. First, parametric excitation

efficiently couples not only to the uniform precession of magnetization but also to other spin

14



wave eigenmodes. This allows excitation of short wavelength spin waves by simply choosing

the parametric drive frequency to be twice the desired spin wave frequency. Second, para-

metric pumping can be used for frequency-selective amplification of spin waves [22]. Third, it

can be employed for spin wave amplification and phase error corrections [18]. All these prop-

erties of parametric pumping are highly desirable for manipulation of magnetization in the

field of nanomagnonics [19, 20]. However, parametric excitation of spin waves by microwave

magnetic field in metallic ferromagnets is not energy efficient because of the relatively high

threshold fields (tens of Oe) [21] and the relatively high currents needed to generate them.

Replacing magnetic field pumping by electric field (VCMA) pumping solves this problem and

allows parametric excitation of magnetic oscillations in metallic ferromagnets by a low-power

microwave drive.
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Chapter 3

Parametric Resonance Excited by

Electric Field

Here I show that magnetic oscillations in a nanoscale magnetic tunnel junction can be gen-

erated via electric field induced parametric resonance. In the experiment, microwave elec-

tric field at twice the ferromagnetic resonance frequency modulates perpendicular magnetic

anisotropy of the MTJ free layer and thereby parametrically excites oscillations of its mag-

netization.

3.1 Device and DC Characterization

The devices under study are elliptical nanoscale magnetic tunnel junctions with lateral di-

mensions 70 nm×150 nm, schematically shown in Fig. 3.1. The junctions are patterned from

(bottom lead)/ Ta(5)/ PtMn(15)/ SAF/ MgO(0.83)/ Co20Fe60B20(1.58)/ Ta(5)/ (cap) mul-

tilayers (thicknesses in nm) deposited by magnetron sputtering. Here SAF = Co70Fe30(2.3)/

Ru(0.85)/ Co40Fe40B20(2.4) is the pinned synthetic antiferromagnet, which has magnetic
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moments lying in the plane of the sample. The equilibrium direction of the Co20Fe60B20 free

layer magnetization is normal to the sample plane due to interfacial PMA [15]. Prior to

patterning, the multilayers are annealed for 2 hours at 300 ◦C in a 10 kOe in-plane magnetic

field that sets the pinned layer exchange bias direction parallel to the MTJ long axis.

Figure 3.1: Measurement setup for electrical characterization. Schematic of the
measurement setup.

All measurements were made in the setup schematically shown in Fig. 3.1. The setup has

a microwave generator, a spectrum analyzer, a microwave amplifier, and a DC sourcemeter

connected through a bias tee and power divider. The circuit is connected to the sample by a

microwave probe. This setup allows application of DC and microwave voltages to the MTJ,

and it also allows measurement of DC and microwave signals generated by the MTJ.

First, a DC measurement is made to characterize the device resistance, which will be impor-

tant for figuring out the magnetic state and calculating the amplitude of microwave drive.

Fig. 3.2 shows conductance G of the MTJ measured as a function of in-plane magnetic field

Hx applied parallel to the MTJ long axis. The shape of the G(Hx) curve is congruent to

the shape of the Mx(Hx) hysteresis loop [15], where Mx is the normalized projection of the

free layer magnetization onto the applied field direction. The hysteresis loop confirms the

17



out-of-plane easy axis of the free layer. The center of the loop is shifted from zero field due

to a residual 0.06 kOe stray field from the SAF.

Figure 3.2: MTJ conductance and magnetic configuration. MTJ conductance as a
function of in-plane magnetic field Hx applied parallel to the MTJ long axis. The diagrams
indicate the magnetic configuration at different parts of the conductance curve.

3.2 Spin Torque Ferromagnetic Resonance

Prior to performing microwave measurements, the circuit without the sample was calibrated

so the microwave generator would source flat power as a function of excitation frequency.

Since the parametric excitation amplitude is a function of microwave drive frequency and

amplitude, this calibration is key to ensuring consistent measurement of the threshold re-

quired for parametric resonance. The calibration was done by placing a power meter in place

of the sample location and sourcing microwave signal from the generator while the amplifier

was powered on. Power flatness was calibrated to within less than 0.1 dB of the setpoint
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power, as delivered to a 50 Ω load. Impedance mismatch between the microwave equipment

and the MTJ will change the microwave current and voltage at the sample, which is taken

into account through characterization of the MTJ resistance as mentioned above. In princi-

ple, imaginary parts of the impedance could come into play through parasitic capacitances

or inductances, but this was not taken into account in this experiment and is thus assumed

to be negligible. [7]

We employ spin torque ferromagnetic resonance to characterize the spectral properties of

the spin wave eigenmodes of the MTJ. I will briefly review the technique and introduce

notation that is used later in describing the parametric resonance signal. As mentioned

previously, a small amplitude microwave drive current GVac sin(2πfdt) is applied to the MTJ

and excites oscillations of magnetization at the drive frequency fd. Here, G is the device

conductance, Vac is the amplitude of the microwave voltage, and fd is the drive frequency.

The resulting resistance oscillations Rac sin(2πfdt + φ) of the MTJ at the drive frequency

lead to partial rectification of the microwave drive voltage Vac and generate a direct voltage

Vr. Here, Rac is the amplitude of the ac resistance oscillations and φ is the phase difference

between resistance oscillations and microwave drive, which can be different from zero. Peaks

(or dips) in ST-FMR spectra Vr(fd) arise from resonant excitation of spin wave eigenmodes

of the MTJ [30, 31].
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Figure 3.3: ST-FMR spectrum. ST-FMR spectrum measured at Hx = 0.06 kOe.

Fig. 3.3 shows an ST-FMR spectrum of the MTJ measured at Hx = 0.06 kOe. Two spin

wave eigenmodes are present in this spectrum with the lowest-frequency (f0 = 0.91 GHz)

mode being the quasi-uniform mode of the free layer [34]. From the spectral linewidth of

the quasi-uniform mode we can estimate the Gilbert damping parameter to be α ∼ 0.0384,

which is typical for a CoFeB layer of this thickness [15]. Dependence of ST-FMR spectra

on Hx is summarized in Fig. 3.4. The frequency of the quasi-uniform mode increases with

increasing absolute value of the net in-plane field due to the second order uniaxial PMA

present in this system [15].
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Figure 3.4: ST-FMR f(H) contour plot. Dependence of ST-FMR spectra on Hx.

Fig. 3.5 shows dependence of the quasi-uniform mode frequency on direct voltage bias Vdc

applied to the MTJ. The observed linear frequency shift arises exclusively from VCMA be-

cause Ohmic heating, damping-like ST, and field-like ST are all expected to induce quadratic

frequency shifts in Vdc for the perpendicular orientation of the SAF and free MTJ layers

employed in this experiment. The slope of the line in Fig. 3.5 is approximately equal to

(γ/2π)(dHu/dVdc), where the gyromagnetic ratio γ is taken to be 176 GHz/T and Hu is the

PMA effective field. The data in Fig. 3.5 gives VCMA efficiency dHu/dVdc = 526 Oe/V,

which is typical for this material system [15].
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Figure 3.5: Quasi-uniform mode frequency vs. voltage. Quasi-uniform mode frequency
versus direct voltage bias Vdc measured at Hx = 0.06 kOe.

3.3 Microwave Emission Measurements

After we have characterized the possible excitation modes via ST-FMR, we can attempt to

excite these modes parametrically (through vCMA) rather than by direct excitation (through

ST). We use the so-called parallel pumping geometry to parametrically excite the free layer

quasi-uniform mode [16]. In this geometry, magnetization of the free layer is parallel to the

oscillating PMA effective field Hu. We apply a constant 0.06 kOe in-plane magnetic field

along the long axis of the ellipse to compensate the in-plane SAF stray field acting on the

free layer. We then apply a parametric drive voltage Vac to the MTJ at drive frequency

fd near 2f0 (twice the resonance frequency of the quasi-uniform mode). The microwave

voltage results in modulation of PMA at the drive frequency, fd, due to VCMA. This can
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parametrically excite magnetization oscillations at half the drive frequency, fd/2, [16] which

gives rise to the MTJ resistance oscillations

Rac cos(2π
fd

2
t+ φ). (3.1)

These resistance oscillations can be detected via their mixing with the microwave current

GVac cos(2πfdt) (3.2)

through the junction, which generates voltage signals proportional to Rac at frequencies fd/2

and 3fd/2:

Vmix(t) = GVac cos(2πfdt) ·Rac cos

(
2π
fd

2
t+ φ

)
=

1

2
GVacRac

[
cos

(
2π
fd

2
t− φ

)
+ cos

(
2π

3fd

2
t+ φ

)]
. (3.3)

Therefore, in order to detect the parametric resonance, we tune the spectrum analyzer to

a window around the ferromagnetic resonance frequency f0. As we sweep through the mi-

crowave drive frequencies near twice the resonance frequency 2f0, we should detect emissions

on the spectrum analyzer if we do indeed excite parametric resonance.

As illustrated in Fig. 3.1, we amplify Vmix(t) and measure its spectrum with a microwave

spectrum analyzer. We used a +22 dB gain amplifier which operates in the frequency range

0.1 GHz to 1.5 GHz, and this gain was accounted for in the later analysis of microwave drive

amplitude.
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3.4 Experimental Results

In this section, I present power spectra of Vmix(t) measured by the spectrum analyzer near

fd/2. Similar spectra are observed near 3fd/2. Fig. 3.6 displays power spectral density

(PSD) P (f) of Vmix(t) measured at several fixed values of the drive frequency fd near 2f0

and drive amplitude Vac = 0.185 V. The maximum of each power spectrum is observed

exactly at fd/2, clearly illustrating that magnetization dynamics of the free layer is excited

parametrically at half the drive frequency. The linewidths of the measured spectral peaks are

in the range of several MHz. This linewidth mostly arises from thermal fluctuations of the

free layer magnetization (fluctuations of the phase φ and amplitude Rac in equation (3.3)).

Fig. 3.7 illustrates that parametric excitation of the quasi-uniform mode has well-pronounced

resonant character: significant amplitude of the parametric oscillations is observed only in a

narrow range of the drive frequencies near 2f0.
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Figure 3.6: Power spectral density of parametric resonance signal. Power spectral
density (PSD) of the microwave signal emitted by the MTJ under VCMA parametric drive
of Vac = 0.185 V. Curves are vertically offset for clarity.

Fig. 3.8 displays dependence of P (fd/2) on the drive amplitude Vac and drive frequency

fd. This figure illustrates the parametric excitation efficiency and clearly demonstrates

that the observed microwave emission from the sample shows a threshold character in Vac.

This threshold behavior is expected for parametric resonance that is excited when effective

negative damping from the parametric drive exceeds the positive natural damping of the

excited mode [4, 5]. Fig. 3.8 also shows that the parametric resonance frequency fpr (defined

as the drive frequency fd that gives maximum power P (fd/2) at a given value of microwave

drive Vac) shifts to lower values with increasing drive amplitude, as expected for a uniaxial

ferromagnet [11]. The shape of the parametric instability region in Fig. 3.8 is a typical

Arnold tongue of a nonlinear parametric oscillator [33].
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Figure 3.7: Power spectral density contour plot. Dependence of the parametrically
generated emission spectra on the drive frequency.

Figure 3.8: PSD contour vs. frequency and drive amplitude. PSD peak plotted versus
drive frequency and drive amplitude reveals typical Arnold tongue shape characteristic of
parametric excitation.
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3.5 Theory and Analysis

Here, I describe the theory developed by our collaborators: Roman Verba, Vasil Tiberke-

vich, and Andrei Slavin. The theory describes how to calculate the threshold of parametric

resonance excited by VCMA in the presence of thermal fluctuations. We used this theory

to experimentally determine the threshold in our system. In the theoretical description of

the MTJ magnetization dynamics we use the macrospin approximation, assuming uniform

magnetization distribution inside the free layer. We use an expansion of the free layer mag-

netization into static and dynamic parts: M(t) = Ms(µ + c(t)m + c∗(t)m∗), where µ is

the unit vector in the direction of the static magnetization, m is the vector structure of the

quasi-uniform spin wave mode, and c is the dimensionless amplitude of the quasi-uniform

spin wave mode. One can derive the following dynamic equation [4, 16]:

dc

dt
+ i(ω0 + T |c|2)c+ Γc = hpV00e

iωptc∗ + η(t) (3.4)

where ω0 = 2πf0 is the ferromagnetic resonance (angular) frequency, T is the nonlinear

frequency shift, and Γ is the damping rate. hp is the effective pumping field, V00 is the

efficiency of parametric interaction, and the term η(t) describes thermal noise (details in

[37]).

3.5.1 Theoretical Calculation of the Threshold

The excitation threshold can be theoretically calculated and compared to our experimental

value. It is given by [4, 16] hth = Γ/V00 in units of A/m. The parametric interaction efficiency

is equal to [16]:

|V00| =
γµ0

2
ε, ε =

∣∣∣∣ m∗ ·m∗

(m∗ · (µ×m))

∣∣∣∣ (3.5)
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where γ is the gyromagnetic ratio taken to be 176 GHz/T as before, µ0 is the permeability

of vacuum, and ε is the averaged ellipticity of the quasi-uniform mode. The damping rate

Γ = 2π × 0.0351 GHz we obtained as the half width at half maximum (HWHM) from ST-

FMR measurements. Since the mode profile in an out-of-plane magnetized elliptical disk is

generally not entirely uniform, the mode ellipticity was calculated using a micromagnetic

mode profile using the MuMax3 simulation software [36]. The calculation gives ε ∼ 0.26

and results in a threshold value of hth = 89 Oe, or Vth = 0.169 V by using the experimental

VCMA efficiency.

If one were to use the uniform mode approximation, ε = ωM |Nx − Ny|/(2ω0), where ωM =

2πMs (with Ms = 950,000 A/m), Nx and Ny are the components of the demagnetization

tensor, and ω0 = 2π × 0.9113 GHz is the resonance frequency. For our elliptical nanopillar

geometry, we use the theory of [38] to calculate Nx = 0.014 and Ny = 0.040. In this case,

the ellipticity is much higher ε = 0.477, and the threshold is found to be hth = 52.5 Oe, or

Vth = 0.100 V.

3.5.2 Experimental Determination of the Threshold

In experiment, the exact position of the excitation threshold could be determined by fitting

the dependence of oscillation power on microwave drive amplitude.

Data Analysis

In order to quantitatively determine the experimental value of the threshold drive voltage

Vth needed to excite parametric resonance of the quasi-uniform mode, we analyze reduced

power of this mode p as a function of the drive amplitude Vac. By definition, p = |c|2 where

c is the dimensionless amplitude of the quasi-uniform mode as described previously. c is

28



proportional to the amplitude of the MTJ resistance oscillations, so that p ∼ (GRac)
2. It is

clear from equation (3.3) that PSD of the reduced power p(f) is proportional to P (f)/V 2
ac

for any Vac. In Fig. 3.9a, we plot its resonant value P (fpr/2)/V 2
ac, which is proportional to

p(fpr/2), as a function of Vac.

Figure 3.9: Parametric resonance threshold. a, Normalized PSD peak amplitude
P (fpr/2)/V 2

ac measured at parametric resonance as a function of the parametric drive am-
plitude Vac. Best fits of equation (3.6) and equation (3.7) to the data (solid lines) give the
parametric resonance threshold voltage Vth = 0.136 V. b, Dependence of the PSD spectral
linewidth (half width at half maximum) on the parametric drive amplitude Vac measured at
parametric resonance.
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Analytic expressions for p(fpr/2) have been derived in the limit of Vac � Vth. In this

limit, magnetization dynamics are small-amplitude thermal fluctuations amplified by the

parametric drive:

p(fpr/2) =
C1

(Vth − Vac)2
. (3.6)

In the opposite limit of Vac � Vth, thermal fluctuations can be neglected and the following

analytic expression for the reduced power p can be derived:

p = C2

√
V 2

ac − V 2
th. (3.7)

For our system, p in equation (3.7) can be replaced by p(fpr/2) because the measured spectral

linewidth of P (f) at fd = fpr shown in Fig. 3.9b depends weakly on Vac for Vac > 0.16 V.

Therefore, we can fit the data in Fig. 3.9a using equation (3.6) in the small amplitude limit

and equation (3.7) in the large amplitude limit. The best fit to the data in the Vac � Vth

(Vac � Vth) limit shown by the blue (red) line in Fig. 3.9a gives Vth = 0.136 V. In this fitting

procedure, C1 and C2 are free fitting parameters while Vth is treated as a common fitting

parameter for both the small and large amplitude limits. (See the next section on fitting.)

It is instructive to compare the measured Vth to its theoretically expected value, which

was calculated for the MTJ geometry and the measured VCMA efficiency. The calculated

threshold voltage for the case of a uniform mode was Vth = 0.100 V while using a non-uniform

mode profile from simulations yielded Vth = 0.169 V. The experimental value is between these

two values, which lends support to the VCMA origin of the observed parametric resonance.

This indicates the experimentally excited mode is not entirely uniform, and the mode profile

found in simulation might not match the one in experiment. We could reasonably attribute
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the discrepancy to deviation of the sample shape from the ideal elliptical cylinder shape,

which would have a large impact on the ellipticity of the excited mode.

In our experiment, spin-polarized tunneling current flows through the MTJ, which results in

ST and Oersted field acting on the free layer. However, these types of drive play a negligible

role in exciting parametric resonance compared to the VCMA drive. The Oersted field has

nearly circular symmetry and therefore it poorly couples to the quasi-uniform mode. The

field-like ST was shown to be small compared to the damping-like ST in previous studies of

these samples [15]. The effective field of the damping-like ST lies in the sample plane, which

corresponds to perpendicular pumping geometry. It is known that parametric excitation of

the quasi-uniform mode is not possible in this geometry.

Fitting

The fitting was done with Python by using the leastsq method in the scipy.optimize

module. The function performs a least-squares method of non-linear curve fitting. In this

particular case, the two fitting functions were applied to different regions of the normalized

peak power as a function of drive voltage, which is proportional to the reduced power p(Vac).

The threshold Vth was the common parameter between fitting functions. The errors (dif-

ferences between fit and data) were calculated individually for each fitting region, and then

these errors were concatenated as the total error to be reduced by the leastsq function,

eventually converging on the threshold Vth = 0.136 V.

We chose the data range where Vac < 0.1 V for the low-power fit because at that point the

threshold does not change significantly (less than ∼0.1% relative error) if a lower cutoff is

selected. If one chooses to include one more data point to the right, the threshold changes

by ∼1%.
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We chose the data range where Vac > 0.16 V for the high-power fit because it is the region

when linewidth does not vary much so we can neglect thermal effects and use the analytic

function derived for high drive amplitude.

3.6 Parametric Resonance Detected by ST-FMR

Our experiment employs an MTJ magnetic configuration with in-plane SAF and out-of-

plane free layer. It is convenient for unambiguous demonstration and quantitative analysis

of parametric resonance excited by VCMA. However, we find that VCMA-driven parametric

resonance is ubiquitous and can be observed in other types of MTJ configurations as well.

Fig. 3.10 shows the out-of-plane magnetic field dependence of ST-FMR spectra measured for

a 30 nm×95 nm MTJ with out-of-plane equilibrium configuration of both the free and SAF

layers. Because of the smaller amplitude of the ST-FMR rectified voltage in this collinear

geometry, we employed ultra-sensitive ST-FMR with magnetic field modulation [34] rather

than conventional ST-FMR with amplitude modulation.
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Figure 3.10: Parametric resonance in ST-FMR. ST-FMR spectra of an MTJ with
out-of-plane SAF and free layers measured as a function of out-of-plane magnetic field.
Resonance at twice the quasi-uniform mode frequency arises from parametric excitation of
the quasi-uniform mode.

The ST-FMR spectra measured at a large value of the microwave drive voltage Vac = 0.396 V

reveal several spin wave eigenmodes of the free layer. Another prominent resonance is ob-

served at twice the frequency of the lowest-frequency (quasi-uniform) spin wave eigenmode.

In this collinear MTJ geometry, the microwave resistance oscillations of the device have

a significant component at twice the excited spin wave mode frequency and mix with the

parametric drive at twice the mode frequency to give rise to a rectified voltage peak at 2f0

measured by ST-FMR. The amplitude of this additional resonance at 2f0 relative to the

amplitude of the resonance at f0 increases with increasing Vac, which is a signature of a

thermally smeared threshold behavior similar to that in Fig. 3.9a. The out-of-plane collinear

geometry is commonly employed in spin transfer torque magnetic random access memory
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(STT-MRAM), and parametric resonance signals in ST-FMR of STT-MRAM can potentially

be used for characterization of the free layer properties such as magnetic damping.
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Chapter 4

Conclusion

In summary, this work shows that magneto-electric coupling can be used to excite paramet-

ric resonance of magnetization by electric field. We employed voltage-controlled magnetic

anisotropy at the CoFeB/MgO interface to excite parametric oscillations of a CoFeB free

layer magnetization in nanoscale magnetic tunnel junctions. The threshold voltage for para-

metric excitation in this system is found to be well below 1 Volt, which is attractive for

applications in energy-efficient spintronic and magnonic nanodevices such as spin wave logic

[35]. This work opens a new route for excitation of magnetization dynamics in thin films of

metallic ferromagnets and nanodevices based on magnetic multilayers.

For future work, parametric excitation of magnetization is a versatile method for generating

short-wavelength spin waves [16]. A natural extension of this work is to develop nanowire

devices based on those proposed in [16], using ferromagnetic metals in a nanowire geometry

with contacts that utilize VCMA to generate and manipulate propagating spin waves.
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[34] Gonçalves, A. M. et al. Spin torque ferromagnetic resonance with magnetic field mod-

ulation. Appl. Phys. Lett. 107, 172406 (2013).

[35] Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005

(2010).

[36] Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133

(2014).

[37] Verba, R. et al. Theory of ground-state switching in an array of magnetic nanodots by

application of a short external magnetic field pulse. Phys. Rev. B 87, 134419 (2013).

[38] Beleggia, M. et al. Demagnetization factors for elliptic cylinders. J. Phys. D: Appl. Phys.

38, 3333 (2005).

39


	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Background
	Magnetic Tunnel Junctions
	Magnetization Dynamics
	Spin Transfer Torque
	Voltage-Controlled Magnetic Anisotropy
	Spin Torque Ferromagnetic Resonance (ST-FMR)
	Parametric Excitation

	Parametric Resonance Excited by Electric Field
	Device and DC Characterization
	Spin Torque Ferromagnetic Resonance
	Microwave Emission Measurements
	Experimental Results
	Theory and Analysis
	Theoretical Calculation of the Threshold
	Experimental Determination of the Threshold

	Parametric Resonance Detected by ST-FMR

	Conclusion



