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Abstract

Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase
commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with
altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies
containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database
analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-
induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in
response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to
the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is
predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in
ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential
target for pharmacological intervention.
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Introduction

Alcohol use disorders (AUDs) are a group of devastating

conditions with serious health and social consequences. The World

Health Organization estimates that 76.3 million people have an

AUD and that each year the harmful use of alcohol kills 1.8

million people (WHO Global Status Report on Alcohol 2004).

Genetic and environmental factors contribute to the development

of AUDs. The heritability for alcohol dependence is approxi-

mately 0.5, indicating a strong genetic component for predispo-

sition to this disease [1,2]. Several genes have been linked to

alcohol dependence and behavioral responses to alcohol, including

COMT, which is involved in catecholamine metabolism, ALDH2

and ADH1B, enzymes involved in alcohol metabolism, and several

GABAA receptor subunits [3]. However, the genetics of AUDs

remain poorly understood and the predisposition to AUDs likely

involves many genes. We have employed an invertebrate model

organism, the fruit fly Drosophila melanogaster, to identify novel genes

that modify the behavioral response to ethanol [4]. This approach

has been successfully used to identify candidate genes that regulate

not only acute behavioral responses to ethanol but also alcohol

consumption in mammals [5].

Here, we describe the identification of anaplastic lymphoma

kinase (ALK) as a candidate gene for AUDs based on evidence

from flies, mice, and humans. ALK is a receptor tyrosine kinase in

the insulin receptor family that was first identified as an oncogenic

chromosomal translocation in anaplastic large cell lymphoma [6].

More recently, translocations and mutations in ALK have been

associated with lung cancer [7] and neuroblastoma [8,9,10,11],

suggesting a key function for ALK in the development of several

cancers. With regard to the nervous system, Drosophila Alk (dAlk) is

important for axon targeting in the retina and synapse

development at the neuromuscular junction [12,13]. In mice, Alk

is expressed in the developing and adult nervous system [14,15]

and inhibits hippocampal progenitor cell proliferation as well as

depression-associated behaviors [16]. One human study has

shown an association of polymorphisms in ALK with schizophrenia

in a Japanese population [17], suggesting that ALK potentially

affects the development of psychiatric disorders.

We have identified dAlk as a transcript regulated by Drosophila

LIM-domain only (dLMO) using gene expression microarrays.

Previous studies implicated dLmo and the mammalian homologs

Lmo3 and Lmo4 in behavioral responses to alcohol and cocaine

[18,19,20]. We therefore hypothesized that Alk function might also
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regulate behavioral responses to these drugs of abuse. Here, we

provide data supporting this hypothesis using experimental

approaches that test ethanol-related behaviors in flies, mice, and

humans. We found that Alk regulates the acute sedating effect of

ethanol in flies and mice as well as ethanol consumption in a

binge-drinking model in mice. In humans, polymorphisms in ALK

were found to be associated with a low level of response to alcohol

in two measures, body sway and subjective high, two phenotypes

that predict future AUDs [21,22]. Together, these data suggest

that ALK is a candidate gene predisposing individuals to a higher

risk for developing AUDs.

Results

dAlk expression is regulated by dLmo and modulates
ethanol-induced sedation in Drosophila

Recently we found that the Drosophila LIM-domain only (dLMO)

transcriptional regulator controls sensitivity to ethanol-induced

sedation [20]. To identify novel transcriptional targets of dLMO

that might mediate its effects on behavioral responses to ethanol, we

performed gene expression microarray analysis of flies carrying

either a dLmo loss-of-function mutant, EP1306 [18], or a gain-of-

function mutant, BxJ [23,24]. We discovered 555 genes, out of

18,952 surveyed, whose expression was significantly altered in one

or both of the dLmo mutants compared to control flies (Table S1).

The 555 genes were clustered using the HOPACH algorithm [25],

resulting in 7 clusters. Since the classically described function of

dLmo is negative transcriptional regulation of genes [26], we focused

on cluster 3, containing 43 transcripts exhibiting increased

expression in the dLmo loss-of-function and decreased expression

in the dLmo gain-of-function mutant. The gene encoding the fly

homolog of anaplastic lymphoma kinase (dAlk), encoding a receptor

tyrosine kinase in the insulin receptor superfamily, was a member of

this cluster (Figure 1A). dAlk expression was decreased by 14% in BxJ

flies and increased by 26% in EP1306 flies. We did not observe any

changes in the expression of the dAlk ligand Jeb in the dLmo mutant

flies, suggesting a specific effect on dAlk expression and not other

members of this pathway (data not shown). To confirm the

microarray results, we examined dAlk expression using quantitative

real-time PCR (qPCR) in EP1306 and BxJ flies. dAlk expression was

increased by 18% in the EP1306 flies, consistent with the

microarray results (Figure 1B). However, we were unable to

recapitulate the small decrease in dAlk expression in BxJ flies

observed in the microarray study (data not shown). It is possible that

levels of dLMO are sufficiently high such that an additional increase

in the BxJ mutants would not significantly affect dAlk expression.

ALK protein levels were also increased by 20% in the heads of

EP1306 flies when examined by western blotting (Figure 1C),

indicating that ALK protein levels changed with a similar

magnitude as the transcript in the EP1306 mutant. We next

examined dAlk RNA expression in flies carrying additional dLmo

loss-of-function alleles, Hdp and Pdrm [18] and found that dAlk

expression was indeed increased by ,30% in the dLmo mutants

compared to control flies (Figure 1D), also consistent with the

expression data in the EP1306 mutant.

We next examined whether dAlk might modulate the flies’

sensitivity to ethanol-induced sedation. A Flybase search revealed

two P-element insertions in Alk, f01491 (Exelixis Collection at the

Harvard Medical School), located in a 59 intron of the gene, and

MB06458 (Bloomington Drosophila Stock Center), located in the

39 untranslated region (Figure 2A). Homozygous flies carrying the

f01491 insertion are not viable as adults and were therefore tested

as heterozygotes. Flies carrying the MB06458 insertion are

homozygous viable and appear normal. To determine whether

the insertions affect dAlk protein levels, we examined protein

lysates from whole flies on western blots using an antibody to

dALK [27]. Flies carrying the f01491 insertion showed a 76%

reduction in dALK compared to wild-type controls (Figure 2B).

We did not observe a change in dALK levels in flies carrying the

MB06458 insertion (data not shown). We speculate that, since this

is a weaker allele, the MB06458 insertion may affect Alk expression

in a subtle or more restricted, tissue-specific manner. Flies

transheterozygous for f01491and MB06458 were small and sickly

and could therefore not be tested behaviorally; these data show,

however, that the two P element insertions are allelic. We also

crossed heterozygous flies carrying the Alk1 allele [27], which

expresses a truncated protein and is an ALK functional null, with

heterozygous f01491 mutant flies. We were unable to recover any

transheterozygous Alk1/f01491 mutants, indicating a failure of

these mutations to complement.

Figure 1. dLmo regulates expression of dAlk. (A) Microarray
analysis of dLmo gain-of-function (BxJ), loss-of-function (EP1306), and
control flies (Ctl, w;iso). Three samples of RNA from fly heads of each
genotype were hybridized to Affymetrix Drosophila 2.0 oligonucleotide
microarray chips and subjected to HOPACH clustering after data
processing and normalization. Shown is cluster 3, containing 43 genes
showing an increase in dLmo gain-of-function and decrease in loss-of-
function mutants. The position of dAlk in the cluster is indicated by an
arrow. Green color indicates decreased expression and red increased
expression (fold change) compared to the control. dAlk expression
changes were significant by ANOVA (P = 0.015) (B) qPCR showing an
18% increase in dAlk expression in flies carrying the EP1306 allele. Total
RNA was isolated from whole flies and cDNA synthesized for analysis by
PCR. Expression of the dAlk transcript was normalized to the control
transcript Rpl-32. (C) Increased ALK protein expression in EP1306 fly
heads compared to control fly heads (Ctl) by western blotting. ImageJ
quantification of the blots and normalization to a-tubulin protein levels
indicated an overall 20% increase in ALK in EP1306 fly heads. (D) qPCR
indicating increased dAlk expression in dLmo loss-of-function mutant
flies Hdp and Pdrm. *P = 0.05 by ANOVA, n = 6–7 independent biological
replicates.
doi:10.1371/journal.pone.0022636.g001

Alk Regulates Behavioral Responses to Ethanol
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We tested mutant flies for sensitivity to ethanol sedation using a

modified loss-of-righting (LOR) assay and found that the f01491 and

MB06458 insertions conferred increased resistance to ethanol

sedation (Figure 2C, D). The time for 50% of the flies to become

sedated (ST50) was calculated from the sedation curves by linear

interpolation [5]. Flies carrying the f01491 insertion sedated

significantly later than control flies, with an ST50 of 11.5 min

compared to 8.4 min (Figure 2C). Flies with the MB06458 insertion

also exhibited significantly delayed sedation with an ST50 of

13.5 min compared to 10.5 min for the control line (Figure 2D).

The effect on ethanol sedation in these lines was not due to a

difference in pharmacokinetics, as controls and mutant flies absorbed

the same amount of ethanol (Figure S1). We next examined whether

re-expressing dAlk in neurons of f01491 mutant flies would rescue the

ethanol sedation phenotype of the mutant. The f01491 mutant flies

were crossed to flies carrying elav-GAL4c155 to drive neuronal

expression of dAlk from the P-element insertion in the f01491

mutant, which contains UAS sites in the orientation appropriate for

GAL4-dependent transcription. The transcript expressed from the

f01491 insertion contains the entire protein-coding region of dAlk,

since the P-element is located 59 of the ORF (Figure 2A). f01491 flies

carrying the elav-GAL4 transgene exhibited normal ethanol sensitivity

implying a complete rescue of the behavioral phenotype (Figure 2E,

F), and indicating that dAlk expression in neurons is sufficient for

normal ethanol sedation sensitivity. These results suggest that the

normal function of dAlk is to promote enhanced sensitivity to ethanol.

The behavioral response of dAlk mutants to ethanol is consistent with

the negative regulation of dAlk by dLMO, since we have found that

the function of dLMO is to promote resistance to the sedating effect

of ethanol [20].

Alk expression correlates with behavioral responses to
ethanol in mice

We hypothesized that Alk may regulate behavioral responses to

ethanol in mammals since the expression of murine Alk is

negatively regulated by LMO4 (Lasek et al., submitted) and Lmo3

and Lmo4 play roles in regulating ethanol and cocaine-related

behaviors in mice [19,20]. Using the databases available in

GeneNetwork (www.genenetwork.org), we tested the genotype of

BXD recombinant inbred (RI) strains at a polymorphic marker in

the Alk locus, rs4137129, for associations with two types of

measures: gene expression in specific brain regions and ethanol-

Figure 2. Insertions in dAlk affect ethanol sedation in flies. (A) Schematic of the Alk gene, showing the position of the f01491 and MB06458 P-
element insertions. The boxes represent exons and connecting lines indicate introns. Shaded boxes illustrate the protein coding region. Arrow shows
the direction of transcription. (B) Western blot showing reduced expression of dALK protein in heterozygous flies carrying the f01491 insertion. Blot
was stripped and probed with antibody to a-tubulin to demonstrate equal loading of total protein. (C, D) Ethanol sedation curves and ST50 graphs
(inset) of flies carrying the f01491 (C) and MB06458 (D) insertions, illustrating increased resistance of dAlk mutant flies to ethanol-induced sedation.
Error bars, SEM, n = 8. P = 0.002 (f01491) and P = 0.008 (MB06458), ANOVA. (E) Ethanol sedation curves of flies carrying the f01491 insertion and elav-
GAL4c155, showing rescue of f01491 ethanol sedation resistance phenotype by re-expressing dAlk in neurons of the mutant. (F) ST50 values for the
ethanol sedation curves in (E). *P = 0.0018 by ANOVA.
doi:10.1371/journal.pone.0022636.g002

Alk Regulates Behavioral Responses to Ethanol
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related behaviors (see Materials and Methods for a description of

the analysis). We identified three traits in BXD recombinant

inbred mice that differed by genotype at the Alk locus and

correlated with variation in Alk expression in at least one brain

region. These traits were ethanol-induced ataxia [28] and two

highly inter-correlated measures of ethanol drinking, preference

and intake [29]. The genetic influence on these traits is shown as a

heat-map for chromosome 17 (Figure 3A), which also depicts the

location of the Alk locus and apparent Alk cis-regulation of

expression in two brain regions, the hippocampus and striatum.

Alk expression in the hippocampus and striatum is higher in strains

with the DBA/2J genotype at the Alk locus. Moreover, higher Alk

expression in striatum strongly correlates with decreased ethanol

intake (Figure 3B), whereas higher Alk expression in the

hippocampus correlates with increased sensitivity to the ataxic

effect of ethanol (Figure 3C). Together, these data suggest that Alk

may be involved in behavioral responses to ethanol in mice.

Alk regulates ethanol sedation in mice
To test directly whether Alk is involved in regulating behavioral

responses to ethanol, we generated Alk knockout (AlkKO) mice by

targeting exons 20–21, which encode the juxtamembrane and N-

terminal portion of the tyrosine kinase domain (Figure S2). AlkKO mice

are fertile, viable, and appear normal, consistent with an indepen-

dently generated AlkKO line which targets exon 22 and results in a

truncated transcript [16]. We were also unable to discern any gross

locomotor defects in the AlkKO mice, either under naı̈ve conditions or

in response to a saline injection (data not shown). We examined ALK

protein expression in the striatum (specifically, nucleus accumbens) of

our AlkKO mice and confirmed a loss of full-length ALK protein

(Figure 4A), suggesting that we have generated a loss-of-function

mutant similar to that described in Bilsland et al. [16]. We next

examined AlkKO mice for their behavioral response to ethanol in a loss

of righting reflex (LORR) test. Male and female wild-type and

homozygous AlkKO mice were tested at two sedating doses of ethanol,

3.6 and 4.0 g/kg. At each dose of ethanol, we observed significant

effects of genotype, but no effects of sex or sex by genotype

interactions. Since we observed no effect of sex, we combined the

LORR data for male and female mice (Figure 4B). ANOVA of the

combined data demonstrated that AlkKO mice show a significant

increase in the amount of time to recover the righting reflex at both

doses of ethanol. Heterozygous AlkKO mice were also tested and did

Figure 3. Putative regulation of ethanol-related behaviors and brain Alk expression by the Alk locus. (A) Heat map of mouse
chromosome 17 (right panel) depicting correlations between ethanol-related traits (lanes 1–3), Alk expression in specific brain regions (lanes 4–10)
and genotype at the Alk locus (lane 11). Legend for the heat map is shown on the left. Blue indicates that the C57BL/6J genotype at the locus is
associated with increased expression of the trait, red indicates the same for DBA/2J genotype, and increased likelihood ratio statistic (LRS) is indicated
by darker color. The red region surrounding the marker rs4137129 in the Alk locus (lane 11) is arbitrarily colored and indicates the extent of linkage
disequilibrium. (B) Scatter plot depicting the correlation between Alk expression in the striatum and ethanol intake. Lower Alk expression was
associated with increased ethanol intake. (C) Scatter plot depicting the correlation between hippocampal Alk expression and the latency to fall in
seconds as a measure of ethanol-induced ataxia using the screen test. Lower Alk expression was correlated with increased latency to fall.
doi:10.1371/journal.pone.0022636.g003

Alk Regulates Behavioral Responses to Ethanol
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not show a difference compared to wild-type controls (data not

shown). To determine if the difference in the LORR recovery time

was due to alterations in ethanol metabolism and clearance in the

AlkKO mice, we examined blood ethanol concentrations (BEC) at

various time points after an injection of 4.0 g/kg ethanol (Figure 4C).

No differences in the BEC were observed between genotypes. These

data indicate that Alk negatively regulates ethanol-induced sedation

time without affecting ethanol metabolism and clearance in mice.

Alk regulates ethanol intake in mice in a binge drinking
model

Since Alk expression in the striatum is negatively correlated with

ethanol intake across the BXD RI strains (Figure 3B), we

hypothesized that AlkKO mice would consume more ethanol than

control mice. We tested ethanol intake in a limited intermittent-access

drinking in the dark paradigm adapted from Rhodes et al. [30], in

which mice drink to intoxication. Male wild-type and homozygous

AlkKO mice were examined for consumption of a 20% ethanol

solution over a 4-hour period 3 times per week during the dark cycle,

for a total of 8 sessions. We observed a significant effect of genotype

and drinking session, but no genotype by session interaction. This

analysis indicates that all mice escalated their intake of ethanol after

repeated sessions and that AlkKO mice consumed more ethanol overall

than wild-type controls under these conditions (Figure 5A). Hetero-

zygous male AlkKO mice were also tested and did not show a

significant difference in ethanol intake when compared to wild-type

controls (data not shown). An advantage of testing mice in the dark

phase under limited access conditions is that mice will drink to

intoxication. To confirm that the AlkKO mice drank intoxicating levels

of alcohol, we tested the BEC of mice immediately following the final

drinking session. Mice had blood ethanol levels greater than 0.04%

(Figure 5B). Moreover, the AlkKO mice reached BEC levels

significantly higher (.0.08%) than wild-type controls. To determine

whether loss of Alk function might generally affect fluid consumption,

we tested AlkKO mice for water intake using the same conditions used

for ethanol consumption. No differences were observed between

wild-type controls and AlkKO mice (Figure 5C). In conclusion, Alk

negatively regulates alcohol consumption in mice without affecting

general fluid consumption, suggesting that the normal function of Alk

may be to curb excessive alcohol intake.

Polymorphisms in human ALK are associated with the
level of response to ethanol

We next explored the sequence variation in human ALK to

determine if polymorphisms in this gene may be correlated with

alcohol responses in humans. We sequenced the entire coding

sequence of ALK (29 exons) in 348 subjects, all of whom had their

response to an oral alcohol challenge measured in a laboratory

setting [31]. After rapidly consuming approximately three drinks,

the level of response (LR), representing each subject’s reaction to

Figure 4. AlkKO mice show increased sedation in response to ethanol. (A) Western blot indicating loss of full-length ALK protein in the
striatum of AlkKO mice (2/2) compared to heterozygous AlkKO (+/2) and wild-type (+/+) mice. Blot was stripped and probed with antibody to GAPDH
to indicate equal protein loading. (B) LORR in AlkKO and wild-type mice at 3.6 and 4.0 g/kg ethanol. Shown is the time to recovery from sedation.
*3.6 g/kg, F1,24 = 10.54, P = 0.003; *4.0 g/kg, F1,28 = 8.98, P = 0.006. (C) Blood ethanol concentration in AlkKO mice after an injection of 4.0 g/kg ethanol
indicating no difference compared to wild-type controls. Shown is the blood ethanol concentration (BEC) in mg% over time. Error bars, SEM.
doi:10.1371/journal.pone.0022636.g004

Figure 5. Increased ethanol consumption in AlkKO mice. (A) Ethanol consumption in wild-type (+/+) and homozygous mutant (2/2) AlkKO

mice, expressed in g/kg over a 4-hour period for 8 drinking sessions in the dark. There was a significant effect of genotype (genotype: F1,119 = 7.71,
P = 0.013; session:F7,119 = 10.19, P,0.001; genotype by session interaction: F7,119 = 1.12, P = 0.356). (B) Blood ethanol concentration (BEC, mg%) in wild-
type and homozygous AlkKO mice after the final drinking in the dark session, indicating increased BEC in AlkKO mice. *P = 0.02. (C) Water consumption,
expressed in g/kg over a 4-hour period for one drinking session in the dark, indicating no effect of genotype on general fluid intake. Error bars, SEM.
doi:10.1371/journal.pone.0022636.g005

Alk Regulates Behavioral Responses to Ethanol
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alcohol, was measured every 30 minutes. Two LR tests were

performed, motor coordination as measured by anterior/posterior

body sway (BSA) and lateral body sway (BSL), and subjective

‘‘high’’ feeling using the Subjective High Assessment Scale

(SHAS). All polymorphisms discovered through sequencing were

then tested by regression for correlation between genotype and

quantitative LR measures taken at 60 minutes post alcohol

ingestion, the time-point when alcohol LR maximizes (see

Materials and Methods for details).

Sequencing ALK in 348 subjects resulted in the discovery of 15

single nucleotide polymorphisms (SNPs). Nine of these SNPs were

previously identified (dbSNP build 130) and the remaining 6 SNPs,

all of which have a minor allele frequency (,1%), are newly

discovered. For analysis, 7 SNPs with a minor allele frequency

(MAF) of less than 1% were eliminated because markers with such a

low MAF have essentially no power to detect association and would

serve only to obscure potential associations with more informative

markers if they are included in multiple test corrections.

The analysis uncovered 4 markers that are associated with at

least one of the LR phenotypes at a nominal significance level

(P,0.05). Two of these markers are associated with BSL with a

false discovery rate (FDR) q-value of ,0.05 (Table 1). Because of

linkage disequilibrium among these markers (data not shown) it is

likely that the different markers are not uncovering independent

associations; rather, the data are consistent with a single genetic

factor affecting alcohol LR that is in linkage disequilibrium with all

four SNPs. We next explored in more detail the genotypic effect of

one SNP, rs17007646, on two LR phenotypes, BSL and SHAS.

Subjects heterozygous and homozygous for the minor allele at

rs17007646 demonstrated reduced BSL in response to alcohol

when compared to the major allele (Figure 6A). Similarly, subjects

homozygous for the minor allele at rs17007646 reported a lower

SHAS score than subjects homozygous for the major allele

(Figure 6B). These data suggest that the minor allele at rs17007646

is associated with decreased sensitivity to alcohol in two behavioral

measures, body sway and subjective high.

Discussion

The evidence presented here indicates that Alk contributes to

behavioral responses to ethanol in invertebrates and mammals,

including humans. Moreover, we found that dAlk expression is

regulated by dLMO. LMO proteins are transcriptional regulators

that function to repress or activate transcription through

interactions with DNA binding proteins [26]. dLMO appears to

repress dAlk expression, since dAlk increases in dLmo loss-of-

function mutants. The ethanol sedation phenotype of dLmo and

dAlk mutants is consistent with a negative regulatory role of dLMO

on dAlk expression. The dLmo EP1306 mutant, in which dAlk

expression is increased, showed increased sensitivity to ethanol

sedation [20], whereas the dAlk f01491 mutant, with decreased

dAlk expression, was resistant to ethanol sedation. These data

define a novel regulatory pathway involved in ethanol-induced

sedation in Drosophila melanogaster.

We observed phenotypic similarities between flies, mice, and

humans in the acute response to alcohol as a function of genotype

at the Alk locus. In the fruit fly, hypomorphic alleles of dAlk caused

resistance to the motor incoordinating and sedating effects of

ethanol. In mice, a polymorphism in Alk that is associated with low

expression in the hippocampus also correlates with resistance to

ethanol-induced ataxia. In humans, SNPs in ALK are associated

with resistance to ethanol-induced ataxia as measured by body

sway in response to an alcohol challenge. Insofar as motor-

incoordinating behaviors related to ethanol can be compared

Figure 6. Effect of ALK genotype at rs17007646 on behavioral
responses to alcohol in human subjects. (A) Body sway in the
lateral direction (BSL) in cm/min as a function of genotype, indicating
decreased BSL in response to alcohol in heterozygous individuals and
individuals homozygous for the minor allele. (B) Subjective High
Assessment Scale (SHAS) score in response to an alcohol challenge as a
function of genotype. Individuals homozygous for the minor allele
report a lower SHAS score. Shown are the group means. Error bars, SEM.
Hom1, subjects homozygous for the major allele; Het, heterozygous
subjects; Hom2, subjects homozygous for the minor allele.
doi:10.1371/journal.pone.0022636.g006

Table 1. Polymorphisms in human ALK significantly associated with altered behavioral responses to alcohol.

SNP ID MAF SNP Position Amino Acid Phenotype Genotypes Tested n Value p-value q-value

rs56132472 0.10 Exon 29 T1446T BSL HOM1 vs. HET 329 0.39 0.0011 0.0310

rs17007646 0.13 Intron 28 non-coding BSL HOM1 vs. HET 330 0.33 0.0028 0.0387

rs1881421 0.42 Exon 29 D1529E BSL HOM1 vs. HET 323 0.24 0.0126 0.1159

rs17007646 0.13 Intron 28 non-coding BSA HOM1 vs. HOM2 329 0.48 0.0255 0.1245

rs56132472 0.10 Exon 29 T1446T BSA HOM1 vs. HET 328 0.25 0.0269 0.1245

rs4622670 0.30 Intron 20 non-coding SHAS HOM1 vs. HOM2 326 20.40 0.0270 0.1245

rs17007646 0.13 Intron 28 non-coding SHAS HOM1 vs. HOM2 333 0.53 0.0434 0.1716

Columns (from left to right) show the single nucleotide polymorphism identifier (SNP ID), minor allele frequency (MAF), the position of the polymorphism in ALK (SNP
position), the amino acid change in the ALK protein (Amino Acid), the associated alcohol-related phenotype (Phenotype), the genotypic classes compared for
association (Genotypes Tested), the number of subjects in the statistical test (n), the quantitative effect of being homozygous for the common allele vs. the other
genotypic classes in the previous column, expressed in standard deviations (Value), the p-value rejecting the null hypothesis (genotype does not affect phenotype,
p-value), and the FDR q-value multiple test correction.
doi:10.1371/journal.pone.0022636.t001
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between species, these results suggest that reduced Alk expression

and/or function may result in resistance to the ataxic effect of

ethanol. Interestingly, we found that AlkKO mice spent more time

sedated in response to ethanol, suggesting that complete loss of Alk

function leads to increased sensitivity to ethanol in this particular

behavioral measure. The LORR test measures the length of time

mice spend sedated and does not correlate with ethanol-induced

ataxia in different strains of inbred mice [32]. Our data suggests

that Alk differentially regulates ethanol-induced ataxia and LORR

in mice. It is also possible that developmental compensation occurs

in the Alk null mutant to alter sedation time in the LORR test;

alternatively, this effect may be due to a brain-region specific

defect not uncovered in BXD mice.

In addition to a role for Alk in the acute response to ethanol, we

found that Alk regulates ethanol consumption in mice. Not only

does reduced Alk expression in the striatum of BXD recombinant

inbred mice correlate with increased ethanol intake in a two-bottle

choice protocol, but global loss of ALK function (in AlkKO mice)

leads to increased ethanol consumption in a limited-access binge

drinking paradigm. We hypothesize that reduced ALK expression

or function in humans (perhaps in individuals carrying minor

alleles) might lead to increased ethanol consumption. Although not

directly addressed in the current studies, low LR to ethanol in

humans is correlated with increased risk for developing AUDs

[2,33]. We found 4 SNPs in ALK, all in linkage disequilibrium, that

are associated with a low LR to ethanol in at least one of two

behavioral measures, subjective high assessment and body sway,

suggesting that ALK expression or function may be involved in the

LR to ethanol and future development of AUDs. Only one of

these SNPs, rs1881421, results in an amino acid change (Asp 1529

to Glu) located in the C-terminal region of the protein. This amino

acid is not conserved between flies, mice, and humans and its role

in ALK protein function is unknown. Determining the causative

mutation(s) in ALK that may be involved in the decreased LR to

ethanol is an area for future investigation.

How might signaling through ALK regulate behavioral

responses to ethanol? In flies and mammalian cells in culture,

ALK is known to activate the MAPK/ERK pathway

[27,34,35,36,37,38,39]. We previously demonstrated that in-

creased ERK signaling, through the receptor tyrosine kinase

EGFR, in Drosophila neurons results in resistance to ethanol-

induced sedation [5]. If ALK similarly stimulates ERK phosphor-

ylation, then one would predict that loss of dAlk function would

lead to decreased ERK phosphorylation and increased sensitivity

to ethanol-induced sedation. However, the results described here

indicate that reducing ALK levels instead leads to increased

resistance to the sedating effect of ethanol in Drosophila. In an

attempt to discern whether ERK phosphorylation is altered with

loss of ALK function, we examined ERK phosphorylation in the

heads of mutant f01491 flies by western blotting. We did not

observe any changes in ERK under these conditions (AWL, CLK

and UH, unpublished results). It is possible that levels of

phosphorylated ERK are altered in a subset of neurons in the

brain that we could not detect with western blotting of whole

heads, or that changes in ERK phosphorylation are too subtle to

detect by western blotting. Alternatively, ethanol treatment may be

required to determine if ERK phosphorylation is altered in dAlk

mutants. Another hypothesis is that dAlk may signal through a

different pathway, such as JAK/STAT or PI3K to affect ethanol-

induced sedation in Drosophila [40].

In a related experiment in mice, we examined levels of

phosphorylated MEK, an upstream activator of ERK, in the

striatum of ethanol-naı̈ve AlkKO mice. Interestingly, we found a

41% increase in MEK phosphorylation in this brain region (Figure

S3). Increased expression of genes in the ERK pathway has been

demonstrated in mouse lines selectively bred for high ethanol-

preference [41]. Our data in the AlkKO mice might suggest that

increased ERK signaling could be responsible for the increased

ethanol consumption in these mice. Whether ALK normally

inhibits ERK activation in the striatum, or whether increased

MEK phosphorylation is due to compensatory changes in the

AlkKO mice is a subject for future investigation. Our data,

combined with the findings in ethanol-preferring mice, suggest

that treatment with MEK inhibitors might be a potential

therapeutic strategy for excessive ethanol consumption and AUDs.

Faccidomo et al. tested the MEK inhibitor SL 327 for ethanol self-

administration in C57BL/6 mice and observed a biphasic

response to MEK inhibition [42]. Low doses increased operant

responding for ethanol, while high doses decreased responding.

Ethanol induces c-fos expression, an effect that is suppressed in

alcohol-dependent animals [43]. This suppression is alleviated by

the MEK inhibitor UO126 only in dependent animals, suggesting

a complicated relationship between MEK activity and alcohol

dependence.

Interestingly, the ALK marker rs1881421 in humans, which

appears to be associated with body sway in response to an alcohol

challenge (Table 1), is also associated with schizophrenia in a

Japanese population [17], implicating ALK in other neuropsychi-

atric diseases beyond AUDs. In addition, we have discovered that

Alk regulates behavioral responses to cocaine in mice (Lasek et al.,

submitted); Alk may therefore regulate behavioral responses to

multiple drugs of abuse. Future studies will focus on the neural and

molecular mechanisms of Alk function in order to gain a greater

understanding of its role in AUDs and other neuropsychiatric

disorders.

Materials and Methods

Ethics Statement
Human subjects that had DNA re-sequenced were part of the

San Diego Sibling Pair Investigation [31,44], who underwent

written informed consent procedures as approved by the

University of California, San Diego Human Subjects Protections

Committee. All animal protocols were in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and

approved by the Ernest Gallo Clinic and Research Center

Institutional Animal Care and Use Committee (approval number

09.11.198). The Gallo Center is accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC) International.

Drosophila Culture and Strains
All flies were maintained on standard cornmeal and molasses

agar food at 25uC and 70% humidity. The BxJ mutant has been

described previously [24]. The dLmo loss-of-function mutants

EP1306, Hdp[R26] and Pdrm[5–73] have been described previ-

ously [18]. Lines were out-crossed for at least five generations to a

w1118 stock isogenic for Chromosomes II and III; these ‘‘w; iso’’

flies served as the genetic background control for quantitative PCR

and microarray experiments. The dAlk P-element insertion mutant

MB06458 was obtained from the Bloomington Drosophila Stock

Center (Bloomington, IN, USA) and f01491 was obtained from the

Exelixis Collection at the Harvard Medical School. The presence

of each insertion in the Alk locus was confirmed by PCR. Lines

were outcrossed for at least 5 generations to white Berlin (f01491) or

2202U (MB06458). The white Berlin and 2202U strains served as

genetic background controls for the corresponding mutant lines in

Alk Regulates Behavioral Responses to Ethanol

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22636



behavioral assays. All experiments used adult male flies which

were collected 2–4 days following eclosion.

Gene Expression Microarrays
All microarray data are MIAME compliant. Raw data has been

deposited in NCBI’s Gene Expression Omnibus and are accessible

through GEO Series accession number GSE25988. RNA was

isolated from 3 groups of 200 fly heads from each genotype and

hybridized to Affymetrix Drosophila 2.0 oligonucleotide micro-

array chips at the Partners HealthCare Center for Personalized

Genetic Medicine Microarray Facility (Harvard University).

Microarray data was processed and analyzed as described in

Kong et al. [45]. Genes were selected as differentially expressed by

pairwise t-tests between the w;iso control, the BxJ, and the EP1306

mutants with a cutoff of P,0.05 following normalization and

subtraction of the averaged w;iso control. The 555 genes that were

chosen for clustering were then further selected by ANOVA with a

P,0.05. Clustering was performed using the HOPACH (Hierar-

chical Ordered Partitioning and Collapsing Hybrid) algorithm

[25].

Real-time Quantitative PCR
Total RNA isolation from whole flies using TRIzolH (Life

Technologies, Carlsbad, CA USA), cDNA synthesis, and real-time

quantitative PCR were performed as described in Corl et al.[5].

RNA was isolated from 6–7 independent biological replicates of

flies. Pre-designed 206 TaqManH probe and primer mixes

targeting Alk (Dm01797078_g1) and the ribosomal protein control

transcript RpL32 (Dm02151827_g1) were purchased from Life

Technologies. Data was normalized using the standard curve

method and assessed for statistical significance using ANOVA.

Drosophila Behavioral Assays
Ethanol sedation assays were performed essentially as previously

described [5,46]. Samples of 25–30 male flies were allowed to

equilibrate for ,10 min to humidified air in the booz-o-mat

apparatus [4] before starting exposure to a 100:50 mixture of

ethanol vapor:humidified air (100:50 E:A). Ethanol exposure

commenced at 0 min of the assay and was continuous thereafter.

At 2-min intervals, each tube of flies (8 tubes per assay) was twirled

and the number of flies that appeared unable to right themselves

was scored by an experimenter blinded to sample identity. Typical

assay duration was 30 min.

Animals
AlkKO mice were backcrossed to C57BL/6J for 4 generations

prior to behavioral testing. Heterozygous mice were intercrossed

to generate wild-type and homozygous littermates for behavioral

tests. Animals were group housed, unless they were tested for

ethanol consumption, at which point they were singly-housed for

two weeks prior to testing ethanol intake. Food and water were

provided at all times and animals were on a 12 hour light-dark

cycle.

Generation of Alk knockout mice
An EcoRI fragment of the mouse Alk genomic DNA locus was

used to prepare the Alk targeting construct, in which the two exons

encoding the juxtamembrane domain and N-terminal portion of

the kinase domain of Alk (exons 20 and 21, respectively) were

replaced by a neomycin expression cassette. An EcoRI site was

introduced into the targeted locus by the neomycin cassette to

facilitate subsequent genotyping of targeted ES cells and mice. A

herpes simplex virus–thymidine kinase gene cassette to enable

negative ES cell selection with ganciclovir was inserted in the 59

end of the Alk-neomycin construct. Electroporation of the

linearized Alk targeting vector into E14 ES cells was done as

described [47,48]. Correctly targeted ES cell clones with normal

karyotypes were injected into C57BL/6 blastocysts to generate

chimeric mice for subsequent breeding to obtain germline

transmission. Mice were genotyped by Southern blot analysis or

PCR. AlkKO mice were genotyped by PCR using primers to Alk and

the neomycin resistance gene (Primers, 59-39: Alk forward,

ACCCCCTCACAGCGGACACCTATC; Alk reverse, TGGGG-

ACAGGGGCAGATGATTGAC; Neomycin forward, ATCTC-

CTGTCATCTCACCTTGCTC; Neomycin reverse, GTAAAG-

CACGAGGAAGCGGTCAGC). Figure S2 shows a representa-

tive PCR genotyping.

Western blots
For western blots on whole flies or fly heads, approximately 30

frozen flies or 100 heads were homogenized in 1 mL of RIPA

buffer (10 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1%

nonidet P-40, 0.5% sodium deoxycholate, and 1% SDS)

containing freshly added protease inhibitors (aprotinin, pepstatin,

and phenylmethanesulfonyl fluoride). After homogenization,

lysates incubated on ice for 1 hr, and were centrifuged at 4uC
for 10 min. The supernatant was removed and treated for

electrophoresis as described below. For western blots on mouse

brain, punches of fresh nucleus accumbens tissue were frozen in

liquid nitrogen. Tissue was thawed on ice and homogenized in

50 mL of RIPA buffer containing freshly added complete mini

protease inhibitor tablet (Thermo Fisher Scientific, Asheville, NC).

After clarifying lysates by centrifugation, a BCA protein assay

(Thermo Fisher Scientific) was performed on samples. 46 LDS

buffer (Life Technologies) containing b-mercaptoethanol was

added to 20 mg of lysate. Samples were subjected to electropho-

resis and western blotting using the NuPAGEH NovexH Tris-

Acetate mini gels (Life Technologies) and the ECL Plus western

blotting detection system (GE Healthcare, Piscataway, NJ)

according to manufacturer’s instructions. Western blots were

probed with ALK-c antibody (for mouse ALK, ab650, Abcam,

Cambridge, MA) diluted 1:500 in 5% bovine serum albumin or

with Drosophila ALK rabbit antibody [27] diluted 1:5000 in 5%

milk. Blots were probed with HRP-conjugated secondary

antibodies (rabbit or mouse, GE Healthcare) diluted 1:5000, then

stripped using Restore PlusTM Western blot stripping buffer and

re-probed with an antibody to GAPDH or Tubulin (Thermo

Fisher Scientific).

Loss of the Righting Reflex (LORR)
Male and female wild-type and homozygous AlkKO mice, aged

2–6 months were injected i.p. with 20% ethanol in saline (v/v) at a

dose of 3.6 g/kg. After injection, each mouse was placed on its

back and tested for the ability to right itself. The mouse was

determined to have lost the righting reflex if it could not right itself

3 times within 30 sec. and regained the righting reflex if it could

fully right itself 3 times within 30 sec. The duration of the loss of

righting reflex was calculated as the difference between the time

when the reflex was lost and when it was regained. One week after

the first test, mice were tested again at a dose of 4 g/kg ethanol.

Data were analyzed for statistical significance using ANOVA.

Measurement of Blood Ethanol Concentration
Blood ethanol concentration (BEC) was measured in the same

group of mice used in the LORR experiment three weeks after the

final LORR test. Mice were injected with 4.0 g/kg of ethanol i.p.

and 20 mL of blood was obtained via tail vein puncture at 10, 30,
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60, 90, 120, and 180 min post-injection. Blood samples were

stored at -80uC until BECs were determined using an NAD-ADH

enzymatic assay [49]. BECs were also measured immediately after

the 8th session of the limited intermittent-access drinking

experiment.

Limited intermittent-access drinking in the dark
The intermittent-access drinking protocol was adapted from

Rhodes et al. [30]. Ethanol-naive mice were singly housed in single

grommet cages in a reverse light-dark cycle room (lights off from

10 a.m. to 10 p.m.) and allowed to acclimate for two weeks prior to

the study. Following acclimation, home cage water bottles were

replaced with a single bottle of 20% v/v ethanol in water at noon

for 4 hours on Monday, Wednesday, and Friday, for a total of 8

ethanol sessions. Bottles were weighed before and after each

session and mice were weighed once a week. Baseline water

consumption was measured one day before the beginning of

ethanol access by weighing a water bottle before and after a

4 hour session. Mice had ad libitum access to water when ethanol

was not present. Ethanol consumption (g ethanol/kg mouse/4 hrs)

was calculated as the difference between bottle weight before and

after drinking sessions. Drinking volumes were corrected for

spillage by subtracting weight lost from two control bottles of 20%

ethanol placed on empty cages for the duration of the sessions.

Data were analyzed for statistical significance by 2-way RM

ANOVA.

GeneNetwork methods and statistics
To examine whether Alk might be involved in the expression of

ethanol-related behaviors, complementary database approaches

similar to those described in Lu et al. were employed [50]. First, the

genotypes of the BXD recombinant inbred (RI) strains at a marker

in the Alk locus, rs4137129, were tested for associations with

ethanol-related behaviors in GeneNetwork (www.genenetwork.

org). Genotypic differences in the expression of the behavior were

considered significant at P,0.05 by uncorrected t-tests for the

comparison of C57BL/6J and DBA/2J genotype. Second,

variation in Alk expression in multiple brain regions, including

the whole brain [51], cerebellum, hippocampus [52], neocortex

[53], nucleus accumbens, prefrontal cortex, and striatum, was

examined for correlations with RI strain means for all of the

available behaviors in GeneNetwork. We used a cutoff of |r|$0.5

to identify potentially meaningful correlations between Alk

expression and behavior. The traits identified by both techniques

were then combined, resulting in a list of traits that differed as a

function of genotype at the Alk locus and were associated with

variation in Alk expression in at least one brain region.

Human subjects and testing protocol
Recruited subjects met the following criteria: ages 18–29; had

previously consumed alcohol but did not meet dependence

criteria; had at least one parent with repetitive alcohol-related

life problems who met the criteria for alcohol dependence using

the Diagnostic and Statistical Manual of the American Psychiatric

Association, 4th edition (DSM IV); and were part of a family

where at least two siblings met the same criteria (although

incomplete recruitment did yield many single sibling families).

Recruited siblings were given an alcohol challenge by consuming a

20% v/v solution of 0.75 ml/kg of ethanol (0.6 g/kg for women,

and 0.9 g/kg for men) within an 8-minute period. Doses were

chosen to produce similar blood alcohol concentrations among

individuals. At baseline, 15 min, 30 min, and every half hour after

consuming the alcohol, subjects filled out the Subjective High

Assessment Scale (SHAS) indicating their feelings of intoxication

on 13 items, each rated on a 36-point scale indicating perceived

subjective changes from baseline. Subjects were also tested for

motor coordination by quantifying body sway over a 1 minute

period (BSA-body sway anterior/posterior and BSL-body sway

lateral).

Genetic association analysis
In this analysis, the SHAS and BS scores at the time of peak

alcohol effect (60 min) were used. 348 subjects were genotyped

and tested for association. The subjects comprise 179 independent

families: 34 single sibling families; 115 two sibling families; 21

three sibling families; 4 four sibling families. Phenotypes were

corrected for non-normality using the Box-Cox transformation

and scaled to mean = 0 and SD = 1. The tests of association were

performed in R with the lmekin function of the kinship package.

This function provides a linear mixed effects model whereby the

genetic relatedness among individuals (based on the kinship

coefficient) is incorporated into the covariance structure of the

random effects. The fixed effect is used for the tests of association

and adjustments for covariates. It included the covariate sex plus

the test SNP (a factor of genotypes). Two contrasts were examined,

each with the Wald test: the major homozygote (Hom1) against

the heterozygote (Het); and the major homozygote against the

minor homozygote (Hom2). Statistical tests were reduced by only

testing markers with an MAF.1% and eliminating the Hom2

against the Het as the power of these tests is very low due to small

numbers in one of the genotype classes. FDR q-values were

calculated using the method of Storey and Tibshirani [54].

DNA preparation
DNA was extracted from blood specimens within 5 days of

collection. DNA was extracted using Gentra Puregene reagents

and protocols (Qiagen, Valencia, CA USA). Extracted DNA was

quantified using the Pico Green method (Life Technologies) and

all stocks were normalized to a common concentration for

sequencing assays.

Human genomic re-sequencing and genotyping
All SNP discovery and genotyping was performed using

fluorescent Sanger sequencing of PCR templates generated

directly from a subject’s genomic DNA. Primers flanking the

ALK exons were used to directly isolate sequencing template from

genomic DNA. Sequencing/genotyping was performed by

fluorescent Sanger chemistry as implemented by Applied Biosys-

tems (Life Technologies) directly applied to the PCR amplified

ALK exons. The sequences generated were analyzed for the

presence of SNPs and genotyped using the software package

Mutation Surveyor from SoftGenetics LLC (State College, PA,

USA). To maximize sensitivity and accuracy, all analysis was

performed on both strands and all heterozygote calls were verified

by human inspection.

Supporting Information

Figure S1 Flies carrying the MB06458 insertion do not
show altered ethanol absorption. For each sample, 25 male

control and MB06458 flies were exposed for 15 min to ethanol at a

dose of 100:50 (ethanol vapor:air) and immediately frozen.

Ethanol concentration was measured using a NAD:ADH

enzymatic assay on homogenized flies. Shown is the % ethanol

concentration obtained in each group of flies. Error bars, SEM,

n = 5.

(EPS)
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Figure S2 Generation of AlkKO mice. (A) Scheme for

generating AlkKO mice. An EcoRI fragment of the Alk genomic

DNA locus was used to develop the Alk targeting vector, in

which the exons coding for juxtamembrane domain of the ALK

protein and the ATP binding pocket of the kinase domain, and

their flanking sequences were replaced by a neo expression

cassette. An EcoRI site was introduced into the targeted locus by

the neo cassette. A herpes simplex virus–thymidine kinase gene

cassette mediating negative ES cell selection with ganciclovir was

inserted in the 59 end of the Alk-neo construct. Correctly targeted

ES cell clones with normal karyotypes were injected into

blastocysts to generate chimeric mice for subsequent breeding

to obtain germline transmission. Letters indicate restriction

enzyme sites (B) Example of PCR genotyping of the AlkKO mice.

Shown is a representative agarose gel illustrating PCR product.

Mice were genotyped using primers to Alk at the neo insertion

site to determine the presence or absence of the wild-type allele

and to neo to determine the presence or absence of the insertion

(NEO). The genotype (+/+, +/2, 2/2) based on the PCR is

indicated above the gel, with a negative control (no template

DNA) for PCR and the 100 bp molecular weight marker on the

right side of the gel. Note the presence of a single PCR product

indicates either wild-type (+/+) or homozygote (2/2), while the

presence of both Alk and NEO PCR products indicates a

heterozygote (+/2).

(EPS)

Figure S3 Increased MEK phosphorylation in the
striatum of AlkKO mice. Striatum was dissected from the

brains of adult male mice and analyzed using the PathScanH
Phospho-MEK1 and Total MEK1 Sandwich ELISA kits from

Cell Signaling Technology. Shown is the ratio of phosphorylated

MEK to total MEK (pMEK/MEK) in wild-type (+/+) and AlkKO

(2/2) mice. *P = 0.005 by Student’s t-test, n = 5–7.

(EPS)

Table S1 Transcripts showing significantly altered
expression in dLmo mutants EP1306 and BxJ. Columns

(from left to right) indicate the Affymetrix probe set identifier, the

gene symbol, the FlyBase annotation, the cluster number from

HOPACH clustering, the mean expression value of the transcript

(normalized to expression in control w;iso flies and expressed as

log2) in flies carrying the BxJ and EP1306 mutations, and the

ANOVA p-value.

(XLS)
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