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ABSTRACT OF THE DISSERTATION
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Degenerative cervical myelopathy (DCM) is a chronic, progressive disorder characterized
by the age-related degeneration of osseocartilaginous structures within the cervical spine resulting
in narrowing of the spinal canal and chronic compression of the spinal cord. Chronic spinal cord
compression can result in persisting neck pain and neurological deficits including loss of fine
motor skills, weakness or numbness in the upper limbs, and gait abnormalities and imbalance,
ultimately requiring surgical intervention to relieve cord compression. DCM is the most common
form of spinal cord injury in adults and as the elderly population continues to grow, incidence of
DCM will rise alongside an increased demand on healthcare resources. Further investigation into
the neural response to chronic spinal cord compression may not only inform disease progression

and prognosis but may benefit patient monitoring and treatment planning.



This dissertation aims to elucidate how symptom presentation, degree of spinal
compression, microstructural and cellular integrity of theaffected cord, and sex impact supraspinal
structure and function in patients with DCM. To address the goals of the dissertation, we
implemented a multimodal neuroimaging approach including anatomical, functional, and diffusion
imaging of the brain and T2-weighted, diffusion, and metabolic imaging of the spine. First, we
characterized and compared spinal cord compression induced alterations in cerebral morphometry
and functional connectivity between symptomatic DCM and asymptomatic spinal cord
compression (ASCC) patients to further uncover potential compensatory neural mechanisms
driving symptom presentation and disease progression. Because the degree of cervical cord
compression is not strongly linked to symptom severity, we investigated whether macrostructural,
microstructural, and metabolic properties of the cervical spinal cord result in conventional
anatomical and functional alterations within the brains of patients with DCM. Lastly, we identified

sex-specific differences on cerebral structure and functional connectivity in patients with DCM.

In summary, the dissertation revealed unique cerebral signatures betweensymptomatic and
asymptomatic patients, novel insights into the interrelationship between spinal and supraspinal
alterations, and sex-specific supraspinal reorganization in patients with DCM. Findings from this
work contribute to our knowledge of disease characteristics and compensatory neural mechanisms;
and may benefit future development of non-invasive imaging biomarkers, more precise predicative
models to inform disease progression, and novel pharmacological strategies to enhance

neuroprotective mechanisms and functional recovery in patients with DCM.
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CHAPTER 1

Degenerative Cervical Myelopathy

1.1 Introduction

Degenerative cervical myelopathy (DCM) is a progressive condition characterized by the
deterioration of osseocartilaginous structures within the cervical spine resulting in chronic
compression and injury to the spinal cord [1,2]. Degeneration of spinal vertebrae, ligaments, and
soft tissues can cause persisting neck pain, while spinal canal narrowing and cord compression can
induce neurological symptoms including loss of fine motor skills, weakness and/or numbness of
the upper extremities, and limb dyscoordination [1,3]. DCM is the most common cause of spinal
cord dysfunction in people over the age of 55 [4,5] and with a growing elderly population, the
incidence of DCM is expected to rise. In some cases, chronic spinal cord compression and
worsening of symptoms ultimately requires surgical intervention to relieve compression on the
spinal cord [6]. Management and treatment of DCM can further benefit from a more
comprehensive understanding of the neuropathological mechanisms driving symptom
presentation, disease progression, and functional recovery. The present chapter will provide a
review of DCM epidemiology, pathophysiology, and natural history, as well as an overview of

previous neuroimaging findings within the brains and spinal cords of patients with DCM.



1.2 Epidemiology

Although DCM is considered the leading cause of spinal cord impairment in the elderly,
estimation of disease prevalence and incidence remains challenging. The term DCM was recently
introduced to encompasses both cervical spondylotic myelopathy (CSM) and ossification of the
posterior longitudinal ligament (OPLL) [7,8]. As a result, previous epidemiological studies
reported incidence of CSM and OPLL as separate clinical entities [9]. Additionally, disease
prevalence is difficult to capture due a portion of patients with DCM who may experience subtle
or no symptoms and thus are not presented in the clinical setting. Further, evaluation of DCM
incidence rate is problematic and oftenunderestimated because it is challenging to measure disease
onset, particularly prior to symptom presentation. Incombination with the disorder being relatively
understudied, most epidemiological investigations are often conducted in specific geographical
locations and therefore do not represent more general populations.

In North America, the estimated incidence and prevalence of DCM was reported to be a
minimum of 41 and 605 per million, respectively [8]. However, non-myelopathic spinal cord
compression is prevalent in about 24% of the healthy population and about 35% in people over the
age of 60 [10]. Progression of osteoarthritis of the cervical spine to DCM was reported in 8 to 13%
of individuals between the ages of 60 to 79 with a higher rate of progression in males compared to
females [11]. Additionally, cervical myelopathy is more prevalent in males than females with a
reported incidence ratio as high as 2.7-to-1 [12]. With the overall aging of the global population,
we can anticipate an increase in DCM prevalence, related healthcare costs, and strain on respective

healthcare systems.



1.3 Pathology

Primary and progressive pathophysiological alterations within the cervical spine contribute to
spinal stenosis and chronic spinal cord compression. Thus, initiating a cascade of secondary
pathobiological events and neural injury within the spinal cord and white matter tracks resulting

in neurological symptoms [5].

1.3.1 Pathophysiology

The pathoaetiology of DCM is initiated by degenerative alterations of the osseocartilaginous
structures of the spine. Such contributing alterations are categorized as either static or dynamic
factors [13]. Static factors are characterized as structural abnormalities that result in degeneration
of the spinal column and canal narrowing [13]. Canal narrowing can occur from age-related
alterations and/or congenital pathologies. In most cases, age-related intervertebral disc
degeneration initiates redistribution of the axial load on the spinal column and causes canal
narrowing [3]. Intervertebral discs are composed of the annulus fibrosus, a collagen-rich outer
layer, and the nucleus pulposus, a gelatinous inner layer that provides structural integrity to the
intervertebral disc [8]. With advancing age, the nucleus pulposus becomes less turgid and less
effective at bearing vertical load resulting in reduced disc height and disc bulging [5]. Due to the
imbalanced pressure forces and increased stress on cartilage endplates produced by disc bulging
and/or herniation, formation of osteophytic spur can occur and further contribute to canal stenosis
[8]. Additionally, spinal canal ligaments can experience ossification, calcification, and/or
hypertrophy, specifically along the posterior longitudinal ligament (PLL) and the ligament flavum

(LF). Abnormal spine biomechanics can lead to ossification of the PLL, thickening of the LF, and



laxity of the facet joints [8]. Static pathophysiological alterations characteristic of DCM are
illustrated in Figure 1.1.

Inadditionto mechanical compression, dynamic factors may further compress and damage the
spinal cord. Physiological cervical motion, such as flexion or extension, may result in additional,
but transient cord compression [13]. For example, hyperextension of the neck causes buckling of
the LF and narrowing of the canal, also known as the “pincer effect” [14]. Neck flexion and
extension contribute to axial cord stretch and strain which may induce further cellular damage to
the cord [14]. Overall, static and dynamic mechanical pathologies narrow the spinal canal and

result in chronic, progressive spinal cord compression.
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Figure 1.1: Pathophysiological alterations occurring in the cervical spine in DCM.
(A) Sagittal diagram of the healthy cervical spine. (B) Sagittal diagram of the compressed cervical spine in
degenerative cervical myelopathy. C. Axial diagram of the healthy cervical spine at an intervertebral cross-

section. D. Axial diagram of the compressed cervical spine in degenerative cervical myelopathy.



1.3.2 Pathobiology

Primary mechanical alterations resulting in cervical canal narrowing and chronic spinal
cord compression are accompanied by secondary pathobiological changes and neural injury.
Extrinsic compression on the spinal cord causes impaired spinal cord perfusion and local blood
vessel deformation, subsequently reducing regional intraparenchymal spinal cord blood flow and
ischemia [13]. Chronic ischemic conditions result in a dysfunction and reduction of endothelial
cells, the cells lining the interior surface of the blood vessels and essential for proper blood
circulation [15]. Endothelial cell dysfunctionand hypoxic cell death prompt disruption of the blood
spinal cord barrier (BSCB) and trigger a unique neuroinflammatory response [3]. Chronic
compression induced BSCB damage precipitates spinal cord parenchyma edema formation, while
increased BSCB permeability alters the spinal cord microenvironment by permitting entrance of
peripheral inflammatory cell types within the spinal cord parenchyma [15]. Unlike in acute spinal
cord injury, the BSCB remains compromised under chronic compressive forces in DCM [15].
Malperfusion and disrupted blood flow impact axonal pathways, particularly the corticospinal
tracts, and affect the lower cervical spinal cord, a cervical region with the most vulnerable blood
supply and most commonly affect by compression in DCM [14]. Ischemic injury to the
corticospinal tracts is consistent with the clinical presentation of DCM [5].

Conformational remodeling of the spinal cord and BSCB permeability potentiate
neuroinflammatory activation of microglia and recruitment of macrophages near the sites of
compression [15]. Inflammatory cells release pro-inflammatory cytokines within the spinal cord
which facilitate neuronal loss and axonal demyelination [8]. Furthermore, fluctuations in neuronal
activity and metabolism prompt glutamatergic excitotoxicity and contribute to neuronal and

oligodendrocyte apoptosis [14]. Due to under expression of glutamate receptors and calcium



binding proteins, motor neurons are particularly susceptible to glutamate and calcium mediated
toxicity and neurodegeneration [14]. Chronic ischemia and inflammatory activate pro-apoptotic
pathways prompting neuronal and oligodendrocyte death within the spinal cord [14]. Axonal
degeneration and subsequent oligodendrocyte apoptosis are implicated in demyelination of
corticospinal tracts and other white matter tracts outside the site of compression [15]. Such cellular
degeneration and death contribute to the progressive nature of DCM symptoms. In DCM, chronic
spinal cord compression induced ischemia triggers a cascade of biochemical reactions responsible
for neural injury and symptom presentation. An overview of pathophysiological and

pathobiological processes contributing to DCM are illustrated in Figure 1.2.
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Figure 1.2: Mechanical and Cellular Pathological Alterations in Degenerative Cervical Myelopathy.

1.4 Natural History
1.4.1 Assessment and Diagnosis

Diagnosis of DCM requires both a clinical and radiographical patient assessment.
Generally, patients present to clinic with symptoms including neck pain and/or stiffness,
paresthesia and/or weakness in the upper and/or lower limbs, loss of fine motor skills and/or
dexterity, gait imbalances, and/or urge incontinence [5]. Symptom onset is usually between the

ages of 40 and 70 years [2]. Following a clinical assessment, patients will undergo anatomical MR



imaging of the cervical spine to confirm the diagnosis and determine the location and extent of
stenosis [2]. In some cases, cervical compression and DCM are detected when patients undergo
spinal imaging for other reasons, for example in the case of a motor-vehicle accident. Additionally,
evidence demonstrates a genetic heritability and susceptibility for the development of DCM, as
well as an effect on pathological severity and treatment response [16-18]. Thus, in some instances
patients may present with a family history of cervical myelopathy. Additional risk factors
associated with DCM development include a congenitally narrow spinal canal [8,19], sex with a
higher incidence in males [20], and ethnic background with higher disease frequency in Asian
populations [8].

Symptom severity and neurological impairment in DCM are assessed with clinician-
administered scales including the modified Japanese Orthopedic Association (mJOA) score, the
Neck Disability Index (NDI), and the Nurick grading scale [21-23]. The mJOA scoring system is
widely administered in this patient population and utilized to measure both motor and sensory
impairments associated with DCM. As depicted in Table 1.1, the mJOA questionnaire is
comprised of an 18-point scale that addresses upper extremity motor function (5 points), lower
extremity motor function (7 points), sensation (3 points), and micturition (3 points) [21]. An mJOA
score of 18 reflects no neurological deficit or asymptomatic spinal cord compression, while a score
of 17 to 15 reflects mild myelopathy. An mJOA score of 14 to 12 represents moderate myelopathy
and a score of 11to O is categorized as severe myelopathy [21]. Such scoring systems are important
in evaluating neurological deficits, monitoring patient progression, and determining treatment
strategies.

Itis important to notethat a subset of patients present with cervical stenosis and spinal cord

compression but do not exhibit symptoms associated with DCM, this subset is referred to as



patients with asymptomatic spinal cord compression (ASCC). It is estimated the prevalence of
symptomatic DCM to be about 2% of the population, while ASCC is prevalent in about 24% in
the healthy population and about 35% in people over the age of 60 [24]. However, it is important
to monitor ASCC patients because an estimated 10% to 22.6% with develop symptoms of
myelopathy [25]. Additionally, ASCC patients are at an elevated risk of developing acute spinal

cord injury and further complications following a fall or head/neck injury [26].

odified Japanese Orthopaedic Association (m core
Modified Jap Orthopaedic A t JOA) S
Category | Score IDescription
5 No dysfunction in upper extremities
Motor 4 Able to button shirt with slight difficulty
Dysfunction of L .
Upper 3 Able to button shirt with great difficulty
Extremities 2 Inability to button shirt, but able to eat with a spoon
(/5) 1 Inability to eat with a spoon, but able to move hands
0 Inability to move hands
7 No dysfunction in lower extremities
6 Mild lack of stability, but ability to walk with unaided, smooth reciprocation
Motor 5 Moderate to severe lack of stability, but able to walk up/down stairs without hand rail
Dysfunction of . . .
Lower 4 Able to walk up/down stairs with hand rail
Extremities 3 Able to walk on flat surface with a walking aid
) 2 Able to move legs, but unable to walk
1 Inability to move legs, but sensory preservation in lower extremities
0 Complete loss of motor and sensory functionin lower extremities
3 No sensory loss
Sensory .
. 2 Mild sensory loss
Dysfunction .
(13) 1 Severe sensory loss or pain
0 Complete loss of hand sensation
. 3 Normal micturition
Sphincter i o i i .
Dysfunction 2 Mild to moderate difficulty with micturition
(3) 1 Severe difficulty with micturition
0 Inability to micturate voluntarily
Asymptomatic mJOA Score of 18
Mild Myelopathy mJOA Score of 17 to 15
Moderate Myelopathy [mJOA Score of 14 to 12
Severe Myelopathy  |[mJOA Score of 11 to 0

Table 1.1: The modified Japanese Orthopedic Association (mJOA) score scale.
The modified Japanese Orthopedic Association (mJOA) score scale. mJOA scale is used to evaluate

neurological dysfunction in patients with DCM. Table adapted from Fehlings et al. (2018).
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1.42 Management and Treatment

The disease course of DCM is highly variable among patients. Some patients exhibit years
of stable neurological status while others experience progressive neurological decline [27]. Studies
have reported that 20% to 62% of patients with DCM will deteriorate neurologically over 3 to 6
years after initial assessment [3]. Prediction of which patients will experience disease progression
and identification of prognostic imaging biomarkers remains an active area of research. Non-
operative  management of DCM include physical therapy, cervical traction,
bracing/immobilization neck collars, and analgesics [5,7]. However, few studies support the
efficacy of such non-operative treatments [5]. Itis estimated that between 23% and 54% of patients
who initially receive non-surgical treatments will eventually require surgical intervention [5].
Therefore, surgical intervention is increasingly recommended for patients with DCM, especially
for patients with moderate to severe neurological symptoms [28]. Surgical treatments for DCM
aim to decompress the spinal cord and stabilize the cervical spine. Surgical strategies, including
cervical laminoplasty, arthroplasty, discectomy, corpectomy, and fusion, vary among patients
depending on anatomical and pathophysiological factors [28,29]. In most cases, operative
treatment effectively impedes neurological decline and improves functional and disability-related
symptoms of DCM one year following treatment [6]. DCM diagnosis and treatment courses are
summarized in Figure 1.3.

In addition, adjuvant therapies are currently under 