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Abstract

This paper presents a model of the use of ex-
pert knowledge to improve accuracy of analog re-
trieval. This model, match refinement by structural
difference links (MRSDL), is based upon the as-
sumption that expertise in domains requiring ana-
logical reasoning consists in part of knowledge of
the structural similarities and differences between
some pairs of the source analogs. In an empiri-
cal evaluation on four data sets, MRSDL consis-
tently retrieved the most similar or nearly most
similar source analog. Achieving comparable ac-
curacy on these data sets with a two-stage retrieval
technique such as MAC/FAC would require exhaus-
tive matching with more than half of the source
analogs. The evaluation also showed that parallel
competitive matching is often substantially faster
than exhaustive matching or MRSDL.

Similarity in Analogical Reasoning

The terms “reasoning by analogy” and “case-based
reasoning” subsume a variety of different problem-
solving and learning activities. Common to all
these activities, however, is attributing conclusions
to a new situation based on its relevant similarity
to some previous situation to which the same con-
clusions applied.

There is a consensus among researchers in ana-
logical reasoning that structural consistency is a
central component of similarity for the purposes
of analogical reasoning (Winston, 1980; Gentner,
1983; Falkenhainer et al., 1989; Holyoak and Tha-
gard, 1989). Two analogs are structurally consis-
tent if objects in the two analogs can be placed into
correspondence so that relations also correspond.
This correspondence is generally modeled as a map-
ping from the objects in one analog (the source) to
those in another (the target).

A number of factors have been identified that
may influence the process of constructing a map-
ping from a source to a target analog. Holyoak
et al. (Holyoak and Thagard, 1989) have stressed
the role of semantic similarity, preference for map-
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pings that put semantically similar objects and re-
lations into correspondence, and pragmatic central-
ity, preference for mappings that are directly re-
lated to problem solving goals, in constraining the
mapping process. Genter has emphasized system-
aticity, preference for mappings between “higher-
order” relations, 1.e., those that take propositions
as arguments, over first-order relations, t.e., those
that take objects as arguments. Other research,
e.g., (Faries and Reiser, 1990) and (Branting and
Porter, 1991), has studied the effect of elaboration
of the target analog, that is, inferring facts not ex-
plicit in the target analog. Finally, (Branting, 1991)
and (Branting and Porter, 1991) illustrated use of
general domain theory to reformulate a problem in
a manner that can lead to improved structural con-
sistency with its most similar analog. Following
(Holyoak and Thagard, 1989), semantic similarity,
pragmatic centrality, systematicity, target elabora-
tion, and problem reformulation will be collectively
referred to as constraints on the mapping process.

Methods for Analog Retrieval

The task of analog retrieval is to determine the po-
tential source analog in memory that shares the
greatest structural consistency with a target ana-
log, or probe, under a given set of mapping con-
straints. The simplest approach to analog retrieval
is exhaustive matching between a target analog and
all potential source analogs in memory. However,
exhaustive matching is psychologically implausible
and computationally intractable for large knowl-
edge bases.

Implemented alternatives to exhaustive match-
ing include ARCS (analog retrieval by constraint
satisfaction) (Thagard et al., 1990) and MAC/FAC
(many are called but few are chosen) (Gentner
and Forbus, 1991). Given a target probe, ARCS
first finds a set of candidate source analogs that
“in some degree” share semantic similarities with
the probe. For each candidate analog, ARCS con-
structs a constraint network. A connectionist re-
laxation algorithm is then used to settle into a
state that indicates the relative correspondence of
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the various stored structures to the probe under
the given constraints. MAC/FAC is also two-stage
model. A computationally inexpensive measure of
surface similarity is used to retrieve an initial set
of candidates. Exhaustive matching is then used to
determine which of the candidates is structurally
most similar to the probe.

ARCS and MAC/FAC both successfully account
for the widely observed phenomenon that surface
(i.e., semantic) similarity is a stronger predictor of
memory access in novices than structural consis-
tency (Ross, 1989; Gentner, 1989) (although struc-
tural consistency is also a predictor of retrieval
(Wharton et al., 1991)). There is reason to ques-
tion, however, whether these approaches to re-
trieval are equally successful at modeling analog re-
trieval by experts. There is empirical evidence that
experts are better than novices at using structurally
similar analogs and are less prone to use analogs
with misleading surface similarities (Novick, 1988).
The hallmark of expertise in many fields is the abil-
ity to find the structurally most similar analog ir-
respective of surface differences. In legal reasoning,
for example, the legal precedent most relevant to
a given case may have very different facts. Skillful
attorneys are adept at finding such precedents.

Modeling analogical retrieval in experts there-
fore requires showing how the most similar (or
nearly most similar) source analog can be found
without exhaustive search of memory. The diffi-
culty of two-stage retrieval methods such as ARCS
and MAC/FAC is in determining the size of the set
of initial candidates. If the initial candidate set is
too small, then the most similar analog may not be
found. If the initial candidate set is too large, then
exhaustive search of the candidate set will not be
significantly less expensive than searching the en-
tire library of analogs. When surface similarity is
unreliable, a sufficiently poor choice of candidate
set size can conceivably lead to the worst of both
worlds: exhaustive search of a significant portion of
the analog library that nevertheless fails to retrieve
the most relevant analog. Improving upon the two-
stage retrieval models requires showing how expert
knowledge can improve retrieval accuracy.

One form of knowledge that experts can be ex-
pected to have and novices lack is knowledge of
the structural similarities and differences between
at least some pairs of the analogs in memory. Sup-
pose, for example, that a law student is asked to
analyze a hypothetical HI1, and the student recalls
a superficially similar precedent P1. Suppose that
the student is then told that the controlling prece-
dent is instead P2 because of the greater structural
similarities between HI1 and P2. To profit from
this lesson, the student must understand the struc-
tural differences both between HI and PI and be-
tween H1 and P2 in order to appreciate that the
former are greater than the latter. Perforce, the
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student must also understand the structural differ-
ences between P1 and P2 that led to the differences
in their degree of structural similarity to HI. If on
a later occasion the student encounters hypotheti-
cal H2 that is superficially similar but structurally
dissimilar to PI, the student can use knowledge of
the structural differences between P1 and P2 to re-
cover from the spurious match to PI and find the
structurally most similar precedent P2.

The next section describes an algorithm that
uses preexisting knowledge of structural differences
among source analogs to recover from spurious
matches.

Match Refinement by Structural
Difference Links

In match refinement by structural difference links
(MRSDL), an initial candidate is selected on the
basis of surface semantic similarity. Precomputed
information on the structural relations among
analogs is then used to refine the match. Specif-
ically, if the structural differences between an ana-
log Acur and a probe P have been determined, dif-
ference links containing precomputed information
about the structural differences between A.ur and
alternative analogs A; ... A, can be used to es-
timate inexpensively the similarity between P and
each A;. The idea behind this approach is that
A; is a better match to P than Ay, to the extent
that A.,, differs from A; and P in the same way.
However, to the extent that A; has additional dif-
ferences from P, the match between A; and P is
worse. The most promising A; is the case for which
the differences with A.,, shared by A; and P are
greatest and the additional differences between A;
and P are least.

Consider a simple example involving the follow-
ing brief narratives, represented in figure 1:

e Probe. John gave flowers to Mary because he
likes her.

e Analog-1. Jimmy likes Billy because Billy gave
him a snake.

e Analog-2. Bob gave flowers to Sally because he
likes Sally’s mother, Jane.

The highest degree of surface semantic similarity
is between the probe and Analog-1: the probe and
Analog-1 have identical relations, whereas Analog-2
has a relation, mother, not found in the probe. An
initial retrieval based on surface semantic similarity
would therefore favor Analog-1. However, Analog-
1 differs structurally from the probe. The mapping
that maximizes the structural congruence between
the probe and Analog-1, Analog-1=-Probe, is the
following:

Billy—John

Jimmy—Mary

like2—likel



PROBE:
likel
liker thing-liked
John AU5€ " Mary
givel
obj
\
flowers
ANALOG-1:
like2
thing-like b Nliker
Billy AUSE Jimmy
dc;k /ci'p
give2
obj
Y
snake
ANALOG-2:

Jane

thing-ﬁke;i/’
like

mother

3

Bob

cause

Sally

donor
gived

obj

candy

Figure 1: A probe and two analogs.
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give2—givel
snake—flowers

Under this mapping, the following propositions in
Analog-1 have no corresponding propositions in the
probe:

(thing-liked like2 Billy)
(liker like2 Jimmy)
(cause give2 like2)

These unmatched propositions constitute a differ-
ence denoted Analog-1 — Dom(Analog-1=>Probe)
(where Dom(Analog-1=>Probe) is the set of propo-
sitions having an image under Analog-1=>Probe).

Assume that the following structural informa-
tion concerning Analog-1 and Analog-2 has been
precomputed:

e Analog-1=>Analog-2, the mapping that maxi-
mizes the structural congruence between Analog-
1 and Analog-2, and Dom(Analog-1=>Analog-2),
the Analog-1 propositions that have an image in
Analog-2 under Analog-1=>Analog-2.

e Analog-2=>Analog-1, the mapping that maxi-
mizes the structural congruence between Analog-
2 and Analog-1, and Dom(Analog-2=>Analog-1),
the Analog-2 propositions that have an image in
Analog-1 under Analog-2=Analog-1.

Using this information, the number of propo-
sitions of Analog-2 that would have no image in
the probe under the best mapping from Analog-
2 to the probe can be estimated by the sum of
the number of Analog-1 propositions having an
image in Analog-2 but no image in the probe,
i.e., |Dom(Analog-1=>Analog-2) — Dom(Analog-
1=>Probe)|, which in this case is zero, and the
number of Analog-2 propositions that have no
image in P under the composition of Analog-
2=>Analog-1 and Analog-1=>Probe (i.c., |Analog-2
— Dom(Analog-2=>Analog-1 o Analog-1=>Probe)|.
In this case, Analog-2 — Dom(Analog-2=>Analog-1
o Analog-1 = Probe) is the following:

(thing-liked like3 Jane)
(mother Sally Jane)

This is fewer than the three propositions in Analog-
1 — Dom(Analog-1=>Probe), so Analog-2 is a closer
match to the probe than Analog-1.

The full algorithm for match refinement is as
follows:

Given:
e P, aprobe (i.e., target analog)

e A.yr, the source analog that is currently the best
match to P

e Acur — Dom(A.ur=P), the propositions of A.ur
that have no image in P under A.ur=>P, the best
mapping from Acur to P



e Precomputed difference links between Acur and
cases A; ... A, containing the following informa-
tion for each A;:

Acur=A;, the best mapping from Acur to
A;, and Dom(A.,,=A;), the propositions
of A.ur that have an image in A; under
A:ur:Ai

Ai= A.ur, the best mapping from A; to
A.yr, and Dom(A;=> A,y ), the propositions
of A; that have an image in A.,, under
Aiz:’Acur

Do:

1. Select the A; for which |A; — Dom(A;=>P)|/|A:],
the proportion of propositions unmatched under
the best mapping from A; to P, is estimated to
be least, where |A; — Dom(A;=>P)| is estimated
by the cardinality of the following set:

Dom({Asic54;) ~ Dom{Aeu=P) U 4 ~
Dom(A;=Acyr © Acur= P)

2. Calculate the actual value of A; — Dom(A;=>P)

3.If |Acur — Dom(Acur=>P)|/|Acur| < |Ai =
Dom(A;=>P)|/|A;l, then P matches A, better
than any of the A;’s, so return A.,,. Otherwise,
call the procedure again with A; as the current
best match.

As illustrated in (Branting, 1991), the compo-
sition of two best-mappings may fail to be itself a
best mapping. Under these circumstances the al-
gorithm may either over- or underestimate the true
degree of structural difference between an analog A;
and a probe. As a result, difference-link refinement
is a heuristic procedure.!

Comparison of MRSDL with Other
Retrieval Techniques

To determine whether MRSDL represents an effec-
tive model of the use of expert knowledge in analog
retrieval, a comparative evaluation was performed
in which MRSDL was compared to three other re-
trieval techniques. The first alternative retrieval
technique was exhaustive matching. The sec-
ond technique was Best-First Incremental Match-
ing (BFIM) (Branting, 1991). BFIM consists of
best-first search of the space of partial mappings
between each analog in memory and the probe.

1To compensate for the possible inaccuracy of the es-
timate of the degree of structural difference between an
analog A; and a probe, the implementation of MRSDL
described below modifies step 1 of the algorithm by
selecting not only the analog A; for which the esti-
mated structural difference is least, but also all other
analogs A;...A; whose estimated structural differences
are within .05 of those of A;. The actual closest struc-
tural match to the probe among A;, A,...A; is then de-
termined in step 2.
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BFIM resembles ARCS in that it is a form of paral-
lel matching involving competition among analogs
(although in BFIM this competition doesn’t consist
of inhibition between competing match hypotheses,
but merely of directing computational resources to
the most promising match). The third technique
was surface semantic retrieval. Degree of surface
match was determined by the proportion of rela-
tions occurring in an analog that also occurred in
the probe.?

These techniques were compared on four sets of
analogs. The first two consisted of 100 fables and
26 plays (25 Shakespearean plays and West Side
Story), generously provided by Paul Thagard, con-
sisting of approximately 21 propositions per play
and 55 propositions per play. The remaining two
sets of analogs, taken from the worker’s compen-
sation law knowledge base of GREBE (Branting,
1991), consisted of 11 precedents of employment
activities (averaging 29 propositions per case) and
10 precedents of near-miss noninstances of em-
ployment activities (averaging 30 propositions per
case).

In each retrieval trial, the fables and plays were
randomly divided into 5 or 3 (respectively) approx-
imately equal partitions. Each analog of each par-
tition was then used as a probe with the cases of
the remaining partitions as analogs. Thus, each re-
trieval of each fable was tested using 80 other fables
as analogs, and retrieval of each play was tested
using 17 or 18 other plays as analogs. A set of 21
worker’s compensation hypotheticals (averaging 89
propositions per case) were used to test retrieval of
the instance and noninstance precedents of employ-
ment activities.

Before MRSDL could be run on each collection
of analogs, some set of difference links had to be
installed among them. The behavior of MRSDL
depends heavily upon the configuration of differ-
ence links among analogs (Branting, 1991). For
example, if there is no sequence of difference links
connecting an initial surface match with the closest
analog, then clearly no series of match refinements
can retrieve the closest analog.

In this experiment, no effort was made to achieve
an optimal configuration. Instead, a configuration
of analogs connected by difference links was incre-
mentally built up in a manner consistent with the
scenario presented at the end of section 2: Each
configuration was initialized with a single randomly
selected analog. The remaining analogs were added
in random order. For each new analog A, a dif-
ference link was installed between A and the su-
perficially most similar analog, SS(A). Exhaustive
search was then used to determine the analog struc-
turally most similar analog, Ez(A). If Ex(A) and

2Weighting the relations by their relative abundance
in analogs was not found to increase retrieval accuracy.
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Data Set MRSDL
% exact | 7% close | compar-
isons
fables (80) 51.0 81.3 9.0
plays (17-18) 73.1 94.2 5.3
EA+ (11) 76.2 | 18.6 3.1
EA—- (10) 18.6 92.9 2.5

Table 1: The proportion of MRSDL retrievals that
were identical to the best match as determined
by exhaustive match, the proportion of retrievals
that returned an analog whose degree of match was
within 5% of the closest analog, and the average
number of structural comparisons required in each
of the data sets. “EA+" and “EA—" represent in-
stances and near-miss noninstances of employment
activities, respectively.

SS(A) were distinct, then difference links were in-
stalled between Ez(A) and SS(A), and between
A and Ez(A). This approach was chosen because
the number of difference links required is linear in
the number of analogs and because the approach
is consistent with a plausible scenario for acquiring
knowledge of structural relations among analogs.
A distinct configuration of difference links was con-
structed for each set of partitions used as source
analogs.

In each of the retrieval approaches (except sur-
face semantic retrieval) structure matching was
performed by the best-first algorithm described in
(Branting, 1991) running in greedy mode. To iso-
late the task of finding the structurally most sim-
ilar analog from the contribution of various map-
ping constraints and to expedite the trials, the al-
gorithm was run with information concerning se-
mantic similarity among relations and case elabo-
ration rules removed. Degree of structural similar-
ity was measured by the proportion of propositions
in the source analog that have an image in the tar-
get under the mapping that maximizes structural
congruence.

Table one sets forth the performance of MRSDL
averaged across four trials. The first column sets
forth the proportion of MRSDL retrievals for each
data set that were identical to the best match as
determined by exhaustive search.® There are often
several analogs having an almost identical degree
of match with a probe. The second column sets
forth the proportion of MRSDL retrievals that re-
turned an analog whose degree of match was within
5% of that of the closest analog found by exhaus-
tive search. The third column contains the average
number of structural comparisons required for each

3 A separate comparison with BFIM was unnecessary
because BFIM always finds the same match as exhaus-
tive search
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Data Surface
Set Similarity
AVp(Pro&u MAxpcPrabu MAxpr Probes
Min-exact, | Min-exacty Min-dl,
fables 14.9 71.3 68.0
plays a3 12.5 85
EA+ 3.3 9.0 9.0
EA—- 3.1 6.0 6.0

Table 2: Min-exact, is the minimum number of
candidates that must be retrieved by surface simil-
iarity to insure that the analog closest to probe pis
in the candidate set. Min-dl, is the smallest candi-
date set size guaranteed to contain an analog whose
degree of match is at least as great as the degree of
match of the analog returned by MRSDL.

MRSDL retrieval.

The first two columns of table two contain infor-
mation concerning Min-exact,, the minimum num-
ber of candidates that must be retrieved by surface
similarity to insure that the analog closest to probe
p is in the candidate set.* The first column sets
forth the average of Min-exact, for all probes p in
each data set. This represents the average number
of candidates that would be necessary for two-stage
retrieval if one somehow knew Min-exact, for every
probe p. The second column sets forth the maxi-
mum of Min-exact, for all probes p. This represents
the smallest candidate set size that would guar-
antee for all probes that the candidate set would
contain the best analog. The last column repre-
sents the maximum of Min-dl,,° the smallest can-
didate set size guaranteed for all probes p to contain
an analog whose degree of match at least as great
as the degree of match of the analog returned by
MRSDL.

Table three sets forth the average retrieval time
in seconds of user CPU time for exhaustive search,
BFIM, and MRSDL.

Discussion

Table one shows that MRSDL performs reasonably
well, although not infallibly. In the fable and em-
ployment activity noninstance data sets MRSDL
was over 90% accurate in retrieving analogs that
were within 5% of the optimal match. Table two
illustrates the shortcomings of two-stage retrieval.
Although the average value of Min-exact, was com-
parable to the average number of structural com-
parisons performed by MRSDL, each data set con-

‘If Ez(p) is the analog found by exhaustive search
of a given analog set with probe p and S5(p,n) is the
set of n closest surface matches to p, then Min-exact,
= min{n|Ez(p) ¢ SS(p,n)}.

SIf DI(p) is the analog found by MRSDL, Min-dl,
= min{n| SS(p,n) contains some analog that matches
p at least as well as Di(p)}.



Data Set | Exh. | BFIM | MRSDL
fables 10.7 2.9 5.0
plays 5.8 47 6.3
EA+ 4.1 26 i B
EA- 2.9 1.4 1.1

Table 3: Average retrieval times (in seconds of
user CPU time) for exhaustive search, BFIM, and

MRSDL.

tains some probe p for which Min-exact, is at least
half the size of the data set. Thus, on these data
sets at least, no two-stage retrieval scheme can si-
multaneous insure correctness and search less than
half of the analogs in memory. The last column of
table two illustrates that the smallest initial can-
didate set size guaranteed to equal the accuracy of
MRSDL is at least half the size of the analog li-
brary.

Table three illustrates that MRSDL is usually
substantially faster than exhaustive matching. The
surprising exception was in the plays data set
where MRSDL was actually slower than exhaus-
tive matching. BFIM was consistently faster than
exhaustive matching, more than three times as fast
in the fable data set. Surprisingly, BFIM was also
faster than MRSDL in two of the data sets. Par-
allel competitive matching has been criticized on
grounds of psychological implausibility (Gentner
and Forbus, 1991), but these data suggest that this
retrieval technique can be relatively efficient.

Conclusion

This paper has presented a model of the use of ex-
pert knowledge to improve the accuracy of ana-
log retrieval. This model, match refinement by
structural difference links (MRSDL), is based upon
the assumption that expertise in domains requir-
ing analogical reasoning consists in part of knowl-
edge of the structural similarities and differences
between some pairs of the source analogs. In an em-
pirical evaluation on four data sets, MRSDL gen-
erally found the most similar or nearly most simi-
lar source analog. Achieving comparable accuracy
on these data sets with a two-stage retrieval tech-
nique such as MAC/FAC would require exhaustive
matching with more than half of the source analogs.
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