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Total and Peak Energy 
Consumption Minimization 
of Building HVAC 
Systems Using Model 
Predictive Control
Mehdi Maasoumy and

Alberto Sangiovanni-Vincentelli

University of California

h ADVANCED CONTROL ALGORITHMS are consid-

ered critical enablers to achieve low energy con-

sumption in commercial buildings. Entire sections

of the ASHRAE 90.1 standard [1] are dedicated to

the specification of control requirements. Although

the optimal control of an HVAC system is a

complex multi-variable problem, it is standard

practice to rely on simple control strategies that

include PID and bang-bang controllers with hyster-

esis. In most cases, standard sequences of opera-

tions for typical installations are used by control

contractors. Each sequence controls the HVAC

equipment during an operation phase

such as optimal start, safety shutdown

and normal operation. After installation

and tuning, the building is inspected by

a commissioning agent that verifies that

the building satisfies the owner’s ex-

pectations. The commissioning agent

does not only verify the expected

performance right after installation,

but also after the building has started

his operations.

This short summary of design and validation

practices in the building industry shows the

importance of a model-based design flow for

building controls. To attain energy efficiency,

control algorithms need to be tailored to the

physical properties of the building at hand rather

than being an adaptation of a standard sequence

designed for a ‘‘typical’’ building. To design an

optimal controller that balances comfort and

energy usage, a thermal model of the building is

needed. To achieve building-level energy-optimality,

the model should be able to capture the interaction

between physically connected spaces in the build-

ing, occupancy schedules, and state and input

constraints.

A variety of approaches can be found in the

literature. The authors of [2] proposed a nonlinear

Editors’ notes:
This article addresses the challenge of realizing the building automation and
control system using a distributed network of embedded computers. A
specification methodology and design space exploration framework are
proposed to raise the level of abstraction at which building control systems
are designed, to reduce design effort, and to lower implementation cost.
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model of the overall cooling system including

chillers, cooling towers and thermal storage tanks,

and developed an MPC scheme for minimizing

energy consumption. In [3] and [4], the authors

use a model of the building which is bilinear in

inputs, states and weather parameters. The ap-

proach is a form of Sequential Quadratic Program-

ming (SQP) for solving nonlinear problems in

which they iteratively linearize the non-convex

constraints around the current solution, solve the

optimization problem and repeat until a conver-

gence condition is met. In [5], the authors

proposed a building thermal model based on an

RC-network, with a large number of coupled linear

differential equations and reduce the order of the

model via aggregation of states. In [6], the authors

proposed a simple model where the model inputs

are divided into manipulated variables and distur-

bance inputs.

The idea of modeling building thermal behavior

using RC networks was introduced in [7]. The mod-

el was validated against historical data and a track-

ing LQR was proposed as controller in cases where

tight temperature tracking is required (e.g., data

centers). In this paper, we introduce controllers also

for commercial buildings where there is a wider

acceptable range of temperature especially during

unoccupied hours that allow for more relaxed

temperature boundaries.

This paper, building upon the results described

above, achieves two major contributions.

h Estimating the ‘‘unmodeled dynamics of the

system.’’ In most climates the unmodeled dynam-

ics account for a significant contribution in the

thermal dynamics of buildings. The authors of

[8] propose a method for estimating the un-

modeled dynamics of a linear building thermal

model. However, the building thermal models

proposed in the literature are mostly nonlinear

models with a bilinear term, for example, the

multiplication of the state and input. We propose

a method for estimating the unmodeled dynam-

ics of the nonlinear system which comprises the

effect of the external heat loads from solar

radiation and outside air temperature as well as

the internal heat gains from occupants using a

parameterization of the unmodeled dynamics

with two quantities being the outside temperature

and CO2 sensor data.

h The implementation of two controllers, different

from the original controller of the real building,

on the building model. After extensive compari-

son, we demonstrated significant achievements

in reducing the total and peak energy consump-

tions for the HVAC system.

The paper is organized as follows. Section I

presents the proposed high-level thermal model

for buildings. The parameterizations of the exter-

nal and internal loads are laid out in this section

as well. We present the identification results in

the second sections. We explain the linearization

and the division of inputs into manipulated

variables and disturbance inputs in the third

section. The fourth section describes the two

controllers designed for the system. Finally, the

fifth section presents results obtained from simu-

lation of controllers and a comparison of their

performance.

Modeling and validation
The detail of building thermal modeling is pre-

sented in [7]. Here we focus on the model manipu-

lation and the estimation of parameters and

unmodeled dynamics using historical data.

Mathematical model of the building
We model the thermal dynamics of the building

climate by first analyzing the corresponding thermal

network. Each room or wall is represented by a node

in the thermal network. The nodes are connected

via resistors and capacitors to the neighboring

nodes and to the ground, respectively. The capaci-

tors model thermal capacitance of walls and rooms,

and resistances model thermal resistances between

the nodes. We have approximated the temperature

of each wall with the temperature of its centerline Tw

and the temperature of each room is assumed to be

the average temperature of the room, Ti . Each Tw is

connected with two series resistors with resistances

Rwall=2 and Rint to the neighboring node which is a

room temperature or for peripheral walls with two

series resistances Rwall=2 and Rout to the outside air

temperature. Windows are modeled as a parallel

resistance with the rest of the wall, with lower

thermal resistance.

We derive a mathematical model of the thermal

behavior of buildings that can be effectively used in

control design. The model is for rooms on the same
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floor and for the sake of simplicity are considered

isolated from rooms on adjacent floors. We use a

lumped model where the air in a room has one

temperature across its volume, and the temperature

of a wall across its volume is assumed to be equal to

its centerline temperature. We assume that all rooms

are at the same pressure which is equal to the pres-

sure used in the heating and cooling ducts. Air ex-

change between a room and a vent is then isobaric,

so the air mass in the room will not change in the

process. We denote the air mass in the room by m,

the rate of air mass entering the room and also

leaving the room by mr, and the temperature of the

conditioned air entering room i by Tsi. The tem-

perature of the air leaving the room equals the

current temperature of the room. We ignore the

capacitance of windows since their mass is negligi-

ble compared to the mass of walls (i.e., windows are

modeled as pure resistances in the thermal circuit).

The radiative heating for each building face is

regarded as a disturbance to the plant model. Our

network consists of two types of nodes: walls and

rooms. There are in total n nodes, m of which repre-

sent rooms and the remaining n�m nodes represent

walls.

The temperature of the ith wall is governed by

the following equation:

Cwi

dTwi

dt
¼
X
j2N wi

Tj � Twi

R0ij
þ ri�iAiq

00
radi

where Twi
, Cwi

, �i , and Ai are the temperature, heat

capacity, absorption coefficient, and area of wall i,

respectively. R0ij is the total resistance between wall i

and node j. q00radi is the radiative heat flux density on

wall i. N wi
is the set of all of neighboring nodes to

nodewi. ri is equal to 0 for internal walls, and to 1 for

peripheral walls.

The temperature of the ith room is governed by

the following equation:

Cri

dTri
dt
¼
X
j2N ri

Tj � Tri
R0ij

þ _mri caðTsi � Tri Þ þwi�winiAwini q
00
radi
þ _qint

where Tri , Cri , and _mri are the temperature, heat ca-

pacity, and air mass flow into the room i, respec-

tively. ca is the specific heat capacity of air, Awini is

the total area of window on walls surrounding

room i, �wini is the transmissivity of glass of window

i, q00radi is the radiative heat flux density radiated to

the area of node i and _qint is the internal heat

generation in thermal zone i. N ri is the set of all of

the neighboring nodes to room i and, wi is equal

to 0 if none of the walls surrounding room i

has window, and is equal to 1 if at least one of

them has.

We use the historical data of zone 8 in the UC

Berkeley Bancroft library, a conference room, to

estimate these loads and identify the parameters of

the model. This thermal zone is on the corner of

the building surrounded from the West by thermal

zone 10 and from the South by thermal zone 7 and

from North and East to the outside environment.

The walls on the Northern and Eastern sides have

windows allowing external radiation to penetrate

into the room.

By writing the heat transfer equation for every

wall and room in the building and representing the

equations in a state space form we get the following

form of equation:

_xt ¼Axt þ f ðxt ; ut ; dtÞ (1)

yt ¼Cxt (2)

where xt 2n�1 is the state vector representing the

temperature of the nodes in the thermal network,

ut 2ðr�mÞ�1 is the input vector which in this case is

the mass flow rate and discharge air temperature of

conditioned air into each thermal zone, and yt 2m�1
is the output vector of the system which represents

the temperature of the thermal zones. A is a square

n� n matrix and C 2m�n determines which states

are used as the output of the system. Vector

f ðxt ; ut ; dtÞ 2n�1 is composed of the states, inputs,

and disturbance to the system.

Estimating external loads. Heat flux is radiated

from the sun to the exposed walls and to the

peripheral rooms through windows. This heat flux is

a hard-to-estimate function of several variables

including the altitude and azimuth angle of the

location of the building on the Earth, orientation of

the considered wall or window, day of the year, time

of the day, outside weather, and sky condition.

However, to be able to estimate the heat flux at each

time, we approximate it by assuming that this
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quantity is an affine function of the outside air

temperature1 given by

q00radi ðtÞ ¼ �ToutðtÞ þ � (3)

where � and � will be obtained by the parameter

estimation algorithm detailed later. Hence, we pa-

rameterize q00radi ðtÞ and then identify all of the param-

eters using nonlinear regression. Note that this

method does not cover all the uncertainties associ-

ated with external loads to the building, however it

leads to a decent estimation as shown later in the

second section.

Estimating internal loads. Internal loads in the

building are usually related to occupants and elec-

trical devices. The heat emitted from electrical de-

vices is easy to identify based on the electrical

characteristics of the device with high precision; the

main uncertainty in identifying the internal loads is

due to the load associated to the building occu-

pants. We propose a parameterization of the internal

loads by occupants using the CO2 sensor data (cur-

rent CO2 concentration in the room) which yields

_qintðtÞ ¼ ��ðtÞ þ � (4)

where �ðtÞ is the CO2 concentration in the room in

(ppm). � and � are constants to be obtained from

the identification process.

Parameters and unmodeled
dynamics identification

We use historical data to identify the parameters

of the system along with the unmodeled dynamics

described in the first section. The identification

process is done through an optimization problem

over the parameters given in (5)

min
C½:�;R½:�;�;�;�;�

kYm � Y sk22

s.t.
xstþ1 ¼ Axst þ f xst ; u

m
t ; d

m
t

� �
t ¼ 0; . . . ;N � 1

yst ¼ Cxst t ¼ 0; . . . ;N

(

(5)

where the subscript t refers to time and the

superscriptm and s refer to measured and simulated

data, respectively. The vector Y 2N�1 stores the

values of yt for t ¼ 1; . . . ;N.

Parameter identification
For identifying the parameters of the model we

have used the data of zone temperature of a specific

zone at Bancroft library of UC Berkeley campus

along with airflow, discharge air temperature (DAT)

and outside air temperature (OAT) data to simulate

the thermal behavior of that specific zone and then

compare the simulation results with the measured

temperature of the zone. We have used the

WebCTRL of Automated Logic Corporation (ALC)

to download the temperature data. The results of

model validation is shown in Figure 1. We store the

unmodeled dynamics in a time-varying vector

called disturbance dt. From now on we use the

terms ‘‘disturbance’’ and ‘‘unmodeled dynamics’’

interchangeably.

Note that there are two peaks in the unmodeled

dynamics values, one around 9 a.m. and another

around 3 p.m. which are due to occupants and

outside radiation. The interesting observation is that

the first peak of disturbance load does not cause as

much temperature increase in the room as opposed

to the second disturbance peak. The reason is that in

the morning the walls which represent the slow-

dynamic masses in the system are cold due to low

temperature at night. Therefore, part of the heating

load, earlier in the day, goes toward warming up the

slow-dynamic thermal masses in the building (e.g.,

walls and furniture). However, in the afternoon the

slow-dynamic thermal masses absorb heat at a

slower rate and therefore, cause faster increase to

the temperature of the fast-dynamic thermal mass of

the system which is the air in the room. Also a

decrease in the values of the unmodeled dynamics is

observedwhich can be due to the people leaving the

room around noon for lunch and/or cloudy sky. The

optimal parameters of the model are reported in [7].

Parameter validation
In order to validate the parameters of the model,

we have simulated the temperature of the same

thermal zone using the data of next weekend. The

results of the simulation are presented in [7].

Linearization
We linearize the system dynamics around the

nearest equilibrium point to the specified operating

1Note that other quantities such as global horizontal
irradiance (GHI) data either from the California Irrigation
Management Information System (CIMIS) [9] or METAR data
[10] from nearby airports archived in the National Climatic
Data Center, can be used for the purpose of this parameteriza-
tion as well.
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point of the system (details in [11]). The algorithm

to find the equilibrium point of the system starts

from an initial point and searches, using a sequential

quadratic programming algorithm, until it finds the

nearest equilibrium point. First we linearize the

model considering all the inputs to the model. Once

the linearization is done, we divide the inputs into

manipulated variables and disturbance variables.

Discretizing the state space realization leads to

xkþ1 ¼ Axk þ Buk þ Edk where dk stores the distur-

bance at time k and the original B obtained from

linearization process is split into two parts. The new

B keeps the columns corresponding to the manipu-

lated variables and E stores the columns of the ori-

ginal B corresponding to the disturbance variables.

In this study we have kept the air flow as a mani-

pulated variable and we regard the rest of the inputs

as the disturbance input on which we don’t have

control. Note that since the range of the variations of

inputs as shown in Figure 2 during day (on-mode)

and also the thermal zone temperature that the sys-

tem experiences in the course of a day is not so wide

(usually 20 �C–22 �C), linearizing about the equilib-

rium point does not introduce significant error as

shown in Figure 3. On the other hand dealing with a

linear system dramatically decreases the computa-

tional efforts. The results of the linearization is

shown in Figure 3.

Controller design
We presented the results of an optimal controller

for the tracking case and compared the results with

a PID controller in [7]. The introduced tracking

LQR in [7] fits best to cases where a tight

temperature tracking is required, for example,

data centers. However, the wider acceptable range

of temperature for commercial buildings, especially

during unoccupied hours, allows for more relaxed

temperature boundaries. Accordingly, we have

introduced new controllers to make the best use

of this flexibility and achieve more savings. In this

paper we study the performance of two different

controllers on the temperature regulation problem.

Here we have implemented two different control-

lers on the system and compared their performance

with the original controller on the existing building.

The way the original controller works is that the

controller opens the valves of conditioned air flow

to the thermal zones at 5:00 am and keeps it fully

opened till 5:00 pm. The discharge air temperature

is also kept constant at 47 �C during that time

period.

Figure 1. Simulated temperature and measured temperature of zone 8 of Bancroft library
(Oct. 24, 2010) and unmodeled dynamics.
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We implement two controllers: an on-off control-

ler and a Model Predictive Controller. For controller

implementation, we assume that we can only mani-

pulate the air flow valve while the discharge air

temperature remains the same as before. Note that

due to the weather condition at Berkeley, where the

considered building is located, the HVAC system

only needs to provide heating (according to

Figure 3. Temperature of room from measured data, nonlinear model and the linearized
model.

Figure 2. Measured data of air flow and discharge air temperature.
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Figure 4), and cooling is done naturally by turning

off the heating mode of the HVAC system and by

running the ventilation system. Note that even if no

cooling is needed the rooms have to be ventilated

for air quality reasons. For the two following con-

trollers we consider a time-varying lower bound and

upper bound for temperature which define the

comfort zone to be between 20 �C and 22 �C during

day and between 19 �C and 23 �C at night as shown

in Figure 4.

On-off controller
For the on-off controller, we assume that the

valves can have three states: fully opened, minimally

opened (not fully closed due to air quality reasons)

during occupied hours, or fully closed at night, and

the duration of each state of the valve cannot be less

than 1 hour, for example, when the valve is set to

open it has to remain open for at least 1 hour before

it can close. The controller turns on the heating

mode when the room temperature falls below the

lower limit and turns it to either minimally open or

fully closed (depending on whether it is occupied or

unoccupied hours of the day) when the temperature

is within the comfort zone. The performance of this

controller is depicted in Figure 4.

Model predictive controller
A model predictive control problem is formulat-

ed with the objective of minimizing a linear

combination of the total energy consumption and

the peak airflow. An MPC with similar cost function

is also used in [12] with a simple linear model.

However, here we have modified the controller in

order to reflect the constraints of the considered

system, the system dynamics and etc. Also we have

implemented the control inputs obtained from the

MPC which utilizes the linearized system dynamics

of the model on the original nonlinear model.

Note that the fan energy consumption is propor-

tional to the cubic of the airflow. Hence minimizing

the peak airflow would dramatically reduce fan

energy consumption. We have considered a cost

function for the MPC which comprises linear com-

bination of the total heating power consumption

(l � 1 norm of input) and the peak of airflow (l �1
norm of input). Also in order to guarantee feasibi-

lity (constraint satisfaction) at all times we have

Figure 4. Measured data and the result of on-off controller and MPC.
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implemented soft constraints. The predictive con-

troller solves at each time step the following

problem:

min
Ut ;��;�

jUt j1 þ 	jUt j1 þ 
 j�t j1 þ j�t j1
� �� �

¼ (6a)

min
Ut ;�";"

XN�1
k¼0
jutþkjtj þ 	max jutjt j; . . . ; jutþN�1jtj

� �(

þ 

XN
k¼1
j"tþkjtj þ j"tþkjt j
� �)

(6b)

s.t. xtþkþ1jt ¼ Axtþkjt þ Butþkjt þ Edtþkjt ;

k ¼ 0; . . . ;N � 1 (6c)

ytþkjt ¼ Cxtþkjt; k ¼ 1; . . . ;N (6d)

U tþkjt � utþkjt � U; k ¼ 0; . . . ;N � 1 (6e)

T tþkjt � "tþkjt � ytþkjt � T tþkjt þ "tþkjt ;
k ¼ 1; . . . ;N (6f)

"tþkjt ; "tþkjt � 0; k ¼ 1; . . . ;N (6g)

where Ut ¼ ½utjt ; utþ1jt ; . . . ; utþN�1jt� is the vector of

control inputs, � ¼ ½"tþ1jt ; . . . ; "tþN jt � is the tempera-

ture violations from the lower bound, � is the tem-

perature violation from the upper bound, ytþkjt is the

thermal zone temperature vector, dtþkjt is the distur-

bance load prediction, and T tþkjt and T tþkjt for

k ¼ 1; . . . ;N are the lower and upper bounds on

the zone temperature, respectively. U tþkjt and U
are the lower and upper limit on the airflow input

by the VAV damper, respectively. Note that based on

ASHRAE requirements for Air Change per Hour

(ACH) of rooms, there has to be a minimum non-

zero airflow during occupied hours for ventilation

purposes. 
 is the penalty on the comfort constraint

violations, and 	 is the penalty on peak power

consumption.

Remark 1. Note that for predicting the disturbance

load, we use the optimal solution ð��; ��; ��; ��Þ to
the optimization problem (5) along with the

predictions of ToutðtÞ and �ðtÞ for future times. The

predictive values for these two

quantities can be obtained from

weather forecasts and from the

occupancy schedules of each

thermal zone of the building,

respectively. Although here we

are assuming a perfect forecast

for these quantities in this for-

mulation, imperfect weather

and occupancy predictions

can potentially deteriorate the performance of

MPC. The results of our recent study on the

performance and effectiveness of MPC in the

presence of forecast errors can be found in [13].

At each time step only the first entry of Ut is im-

plemented on the plant. At the next time step the

prediction horizon N is shifted leading to a new

optimization problem. The prediction horizon is

N ¼ 24, and at each time step only the first entry of

the input vector Ut is implemented on the model.

This process is repeated over and over until the total

time span of interest is covered. We use YALMIP [14]

to set up the MPC problem in MATLAB.

We implement the hierarchical control algorithm

proposed in [7]. At the lower level, each thermal

zone is controlled by a PID controller while a model-

based optimal control is used at the higher level for

a group of thermal zones.

Simulation results

Original controller. The air flow valve is turned on

from 5:00 am until 5:00 pm and remains off for the

rest of the day. This approach results in a total airflow

input of 45360 ½ft3� per day and a maximum air flow

rate of 63 ½ft3=min�.

On-off controller. The airflow valve is turned on

only for 4 hours in that specific day as shown in

Figure 4. This reduces the total airflow input to

17,520 ½ft3� per day, which is 61.4% less than the

original case and the maximum airflow rate remains

at 63 ½ft3=min�.

MPC. The air flow valve is not just an on-off switch;

rather any intermediate values can be set for the air

flow into the room. The performance of the

controller is shown in Figure 4. Implementation of

MPC results in a total airflow input of 14870 ½ft3� per
day, which is 67.2% less than the original case and a

Table 1 Comparison of performance for three different controllers. The inputs are heating air

flow to the room.
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maximum airflow rate of 42 ½ft3=min� that is 33.3%

less than the original case.

Remark 2. Note that the peak airflow required for a

building is an important design parameter for sizing

the HVAC system components at the design stage. A

smaller Air Handling Unit (AHU) package (and

hence a smaller fan) would, on top of the energy

savings due to advanced control algorithms intro-

duced here, lead to more electric power consump-

tion reductions.

To compare the overall energy performance of

the controllers we calculate the total energy con-

sumption for each controller. The total energy con-

sumption is given by

Etot ¼
Z24
t¼0

PcðtÞ þ PhðtÞ þ Pf ðtÞ½ � dt (7)

in which, the cooling power Pc, the heating power Ph

and the fan power Pf are defined by

PcðtÞ ¼ _mcðtÞcp ToutðtÞ � TcðtÞ½ � (8)

PhðtÞ ¼ _mhðtÞcp ThðtÞ � ToutðtÞ½ � (9)

Pf ðtÞ ¼� _m3ðtÞ (10)

where cp ¼ 1:012 ½kJ/kg:�C� is the specific heat

capacity of air and � ¼ 0:5 ½kW.s3=kg3� is the fan

power constant. Using the above equations and

constants results in fan power values in [kW].

The comparisons of results are summarized in

Table 1.

We presented a model based hierarchical

control strategy that balances comfort and energy

consumption. The building is modeled by a thermal

network that captures the relevant dynamics of the

temperature for each room taking into account the

interactions between rooms, external loads, and

building occupants. The parameters of the model

and the unmodeled dynamics are identified using

historical data of the thermal zone. We implemented

an on-off controller and a Model Predictive Control-

ler with time-varying thermal comfort zone during

day and compared their performances. The on-off

controller achieves 61.4% reduction in total air flow

into the thermal zone but does not reduce the

maximum airflow rate, however the MPC is shown to

reduce the total airflow into the thermal zone by

67.2% and the maximum air flow by 33.3%. The MPC

also reduces the total energy consumption of the

HVAC system by 73.2% with respect to the

current control algorithm of the building. The sim-

ulation times for on-off controller and for MPC are

1.8 seconds and 102.4 seconds, respectively.
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