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M. V. Diwan,5 T. Dohnal,18 J. Dove,19 M. Dvořák,18 D. A. Dwyer,20 M. Gonchar,15 G. H. Gong,9 H. Gong,9

W. Q. Gu,21, 5 J. Y. Guo,11 L. Guo,9 X. H. Guo,22 Y. H. Guo,23 Z. Guo,9 R. W. Hackenburg,5 S. Hans,5, ∗ M. He,1

K. M. Heeger,4 Y. K. Heng,1 A. Higuera,24 Y. B. Hsiung,6 B. Z. Hu,6 J. R. Hu,1 T. Hu,1 Z. J. Hu,11 H. X. Huang,25

X. T. Huang,13 Y. B. Huang,1 P. Huber,26 D. E. Jaffe,5 K. L. Jen,27 X. L. Ji,1 X. P. Ji,28, 9, 5 R. A. Johnson,29

D. Jones,30 L. Kang,31 S. H. Kettell,5 L. W. Koerner,24 S. Kohn,32 M. Kramer,20, 32 T. J. Langford,4 K. Lau,24

L. Lebanowski,9 J. Lee,20 J. H. C. Lee,33 R. T. Lei,31 R. Leitner,18 J. K. C. Leung,33 C. Li,13 F. Li,1 H. L. Li,13

Q. J. Li,1 S. Li,31 S. C. Li,26 S. J. Li,11 W. D. Li,1 X. N. Li,1 X. Q. Li,28 Y. F. Li,1 Z. B. Li,11 H. Liang,17 C. J. Lin,20

G. L. Lin,27 S. Lin,31 Y.-C. Lin,6 J. J. Ling,11 J. M. Link,26 L. Littenberg,5 B. R. Littlejohn,34 J. C. Liu,1

J. L. Liu,21 Y. Liu,13 Y. H. Liu,8 C. Lu,35 H. Q. Lu,1 J. S. Lu,1 K. B. Luk,32, 20 X. B. Ma,12 X. Y. Ma,1 Y. Q. Ma,1

Y. Malyshkin,36 C. Marshall,20 D. A. Martinez Caicedo,34 K. T. McDonald,35 R. D. McKeown,37, 38 I. Mitchell,24

L. Mora Lepin,36 J. Napolitano,30 D. Naumov,15 E. Naumova,15 J. P. Ochoa-Ricoux,36 A. Olshevskiy,15 H.-R. Pan,6

J. Park,26 S. Patton,20 V. Pec,18 J. C. Peng,19 L. Pinsky,24 C. S. J. Pun,33 F. Z. Qi,1 M. Qi,8 X. Qian,5

R. M. Qiu,12 N. Raper,11 J. Ren,25 R. Rosero,5 B. Roskovec,36 X. C. Ruan,25 H. Steiner,32, 20 J. L. Sun,39

W. Tang,5 K. Treskov,15 W.-H. Tse,14 C. E. Tull,20 N. Viaux,36 B. Viren,5 V. Vorobel,18 C. H. Wang,7 J. Wang,11

M. Wang,13 N. Y. Wang,22 R. G. Wang,1 W. Wang,38, 11 W. Wang,8 X. Wang,40 Y. F. Wang,1 Z. Wang,1 Z. Wang,9

Z. M. Wang,1 H. Y. Wei,5 L. H. Wei,1 L. J. Wen,1 K. Whisnant,41 C. G. White,34 T. Wise,4 H. L. H. Wong,32, 20

S. C. F. Wong,11 E. Worcester,5 Q. Wu,13 W. J. Wu,1 D. M. Xia,42 Z. Z. Xing,1 J. L. Xu,1 T. Xue,9 C. G. Yang,1

L. Yang,31 M. S. Yang,1 Y. Z. Yang,11 M. Ye,1 M. Yeh,5 B. L. Young,41 H. Z. Yu,11 Z. Y. Yu,1 B. B. Yue,11

S. Zeng,1 L. Zhan,1 C. Zhang,5 C. C. Zhang,1 F. Y. Zhang,21 H. H. Zhang,11 J. W. Zhang,1 Q. M. Zhang,23

R. Zhang,8 X. F. Zhang,1 X. T. Zhang,1 Y. M. Zhang,11 Y. M. Zhang,9 Y. X. Zhang,39 Y. Y. Zhang,21

Z. C. Zhang,9 Z. J. Zhang,31 Z. P. Zhang,17 Z. Y. Zhang,1 J. Zhao,1 L. Zhou,1 H. L. Zhuang,1 and J. H. Zou1

(The Daya Bay Collaboration)
1Institute of High Energy Physics, Beijing

2Institute of Modern Physics, East China University of Science and Technology, Shanghai
3University of Wisconsin, Madison, Wisconsin 53706

4Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
5Brookhaven National Laboratory, Upton, New York 11973

6Department of Physics, National Taiwan University, Taipei
7National United University, Miao-Li

8Nanjing University, Nanjing
9Department of Engineering Physics, Tsinghua University, Beijing

10Shenzhen University, Shenzhen
11Sun Yat-Sen (Zhongshan) University, Guangzhou
12North China Electric Power University, Beijing

13Shandong University, Jinan
14Chinese University of Hong Kong, Hong Kong

15Joint Institute for Nuclear Research, Dubna, Moscow Region
16Siena College, Loudonville, New York 12211

17University of Science and Technology of China, Hefei
18Charles University, Faculty of Mathematics and Physics, Prague

19Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
20Lawrence Berkeley National Laboratory, Berkeley, California 94720

21Department of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai Laboratory for Particle Physics and Cosmology, Shanghai

22Beijing Normal University, Beijing
23Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an

24Department of Physics, University of Houston, Houston, Texas 77204
25China Institute of Atomic Energy, Beijing

26Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
27Institute of Physics, National Chiao-Tung University, Hsinchu

28School of Physics, Nankai University, Tianjin
29Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

30Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122

ar
X

iv
:1

80
9.

04
66

0v
2 

 [
he

p-
ex

] 
 1

4 
Se

p 
20

18



2

31Dongguan University of Technology, Dongguan
32Department of Physics, University of California, Berkeley, California 94720

33Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
34Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
35Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

36Instituto de F́ısica, Pontificia Universidad Católica de Chile, Santiago
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A search for a time-varying ν̄e signal was performed with 621 days of data acquired by the Daya
Bay Reactor Neutrino Experiment over 704 calendar days. The time spectrum of the measured νe
flux normalized to its prediction was analyzed with a Lomb-Scargle periodogram, which yielded no
significant signal for periods ranging from two hours to nearly two years. The normalized time spec-
trum was also fit for a sidereal modulation under the Standard-Model Extension (SME) framework
to search for Lorentz and CPT violation (LV-CPTV). Limits were obtained for all six flavor pairs
ēµ̄, ēτ̄ , µ̄τ̄ , ēē, µ̄µ̄ and τ̄ τ̄ by fitting them one at a time, constituting the first experimental con-
straints on the latter three. Daya Bay’s high statistics and unique layout of multiple directions from
three pairs of reactors to three experimental halls allowed the simultaneous constraint of individual
SME LV-CPTV coefficients without assuming others contribute negligibly, a first for a neutrino
experiment.

I. INTRODUCTION

Some scenarios of physics beyond the Standard Model
(SM) predict a time-varying probability of neutrino os-
cillation. Among these are models in which ultra-light
scalar dark matter couples to neutrinos, inducing pe-
riodic variations in the mass splittings and mixing an-
gles [1, 2]. Other models involve Lorentz symmetry vio-
lation (LV), which is suggested as a signature of Planck
scale phenomenology [3–6] and which could be accompa-
nied by CPT violation (CPTV) [4, 7].

The Standard-Model Extension (SME) [8–10] was in-
troduced as an effective theory that maintains the usual
gauge structure and properties of the SM such as renor-
malizability, but adds all the possible terms constructed
with SM fields that introduce Lorentz symmetry break-
ing. By predicting a set of testable signatures in various
areas of physics, it provides a connection between exper-
imental research and more fundamental theories extend-
ing to the Planck scale.

In the neutrino sector, the violation of rotation-
symmetry in the SME causes deviations from standard
oscillation probabilities derived from the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [11] that depend
on propagation direction. This would produce a time-
varying neutrino oscillation probability associated with
the Earth’s orbital and rotational movement relative to
the fixed stars, and therefore a period of a sidereal day
(23 h 56 min 4.09 sec). Accordingly, a sidereal time de-
pendence has been sought in the oscillation probability of

∗ Now at Department of Chemistry and Chemical Technology,
Bronx Community College, Bronx, New York 10453

accelerator neutrinos [12–17], atmospheric neutrinos [18]
and reactor neutrinos [19]. The SME also predicts devi-
ations from the standard L/E oscillation behavior. The
oscillated neutrino energy spectrum of atmospheric neu-
trinos has been examined for such a distortion both in the
Super Kamiokande [20] and IceCube [21] experiments.
No positive LV or CPTV signal has yet been observed,
and neutrino oscillation experiments have set some of the
most stringent limits on the violation of these fundamen-
tal symmetries of nature, down to the level of 10−28 [21].

The Daya Bay reactor neutrino experiment [22] has
recently produced the most precise measurements of re-
actor electron antineutrino (νe) disappearance at short
baselines [23–28]. In neutrino oscillation experiments,
time-dependent LV-CPTV effects are amplified with dis-
tance, and Daya Bay’s baselines (< 2 km) are relatively
short compared to many other neutrino oscillation exper-
iments. However, Daya Bay has accumulated the largest
sample of reactor νe’s to date. Moreover, it has a unique
experimental layout comprising different well-known neu-
trino propagation directions. Both of these factors make
it an excellent experiment to search for a time-varying ν̄e
signal and LV-CPTV effects.

This letter first describes a generic search for an un-
predicted periodicity in the ν̄e rates measured at Daya
Bay using the Lomb-Scargle method [29]. This analysis,
which yields no positive results, has the potential to iden-
tify the presence of an unexpected time-variant source of
ν̄e’s. The letter then presents a targeted search for a side-
real time modulation in the context of the SME, produc-
ing limits on the individual coefficients that characterize
the theory.
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II. ANTINEUTRINO DATA SET

A. Experiment Description

200m
D2 D1
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L1
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L3

Ling Ao NPP

Ling Ao II NPP

Daya Bay NPP

AD1 AD2

AD2

AD1
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N
EH3
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EH1

FIG. 1. Layout of Daya Bay reactor cores (black dots) and
antineutrino detectors (colored cylinders). The six reactor
cores are located in three Nuclear Power Plants (NPPs). The
dashed lines and arrows show the multiple νe ‘beams’ from
the different reactors to the three experimental halls (EHs).
The solid black lines represent the underground tunnels.

The Daya Bay reactor complex consists of three nu-
clear power plants (Daya Bay, Ling Ao, Ling Ao II), each
with two reactors. The emitted νe flux is sampled in eight
identically designed antineutrino detectors (ADs) located
in three experimental halls (EHs), as shown in Fig. 1.
Each AD is filled with 20 tons of gadolinium-doped liq-
uid scintillator enclosed by 22 tons of undoped liquid
scintillator and 40 tons of mineral oil. Scintillation light
is detected by 192 photomultiplier tubes (PMTs). The
ADs are immersed in pure water pools that are instru-
mented with PMTs, providing shielding and serving as
cosmogenic muon detectors. Candidate events indepen-
dently trigger each detector and are read out by custom
front-end electronics. For the ADs, a readout window
of 1.2 µs of data is initiated when the number of PMTs
with an above-threshold signal is greater than 45 or the
synchronous analog sum of charge output by the PMTs is
larger than a value corresponding to ∼0.4 MeV [22]. The
clock for the readout electronics and trigger systems runs
at 40 MHz, and is synchronized to a global 10 MHz signal
generated by a rubidium oscillator further synchronized
to absolute Coordinated Universal Time (UTC) with a
Global Positioning System (GPS) receiver. Further in-
formation about the Daya Bay experiment can be found

in Ref. [22].

B. Antineutrino Signal and Backgrounds

The data set used in this study corresponds to a to-
tal exposure of 621 days distributed over 704 solar days
(705.5 sidereal days), from December 24, 2011 to Novem-
ber 27, 2013. Data-taking began with 6 ADs and contin-
ued for 217 days, pausing from July 28, 2012 to October
19, 2012 for the installation of the final two ADs, one in
EH2 and the other in EH3. Each physics run lasted as
long as 72 hours. A three-hour interruption of normal
data acquisition occurred almost every Friday for cali-
brating the detectors.

Electron antineutrinos were detected via the inverse
beta decay (IBD) reaction, νe + p → e+ + n, where the
energy loss of the e+ in the scintillator and its subse-
quent annihilation provided a prompt scintillation light
signal followed by a delayed light signal from the neutron
capture on gadolinium. IBD candidates were selected by
requiring prompt-delayed pairs to have specific energies
(0.7 < Eprompt < 12.0 MeV, 6.0 < Edelayed < 12.0 MeV)
and time separation (1 < ∆t < 200 µs). Selected events
were also required not to have been preceded by a muon
candidate. A multiplicity cut was applied to ensure that
only isolated prompt-delayed pairs were selected. Two
slightly different IBD selections based on these criteria
were used in two independent analyses, which also esti-
mated backgrounds differently. Distinct muon veto and
multiplicity cut efficiencies were accurately assessed from
muon and random background rates as a function of time,
and applied in the estimation of the IBD rates. The time-
dependence of these efficiencies was negligible.

The total background amounted to less than 3% of the
total IBD candidate samples and was dominated by acci-
dental coincidences. Both analyses precisely determined
this background hourly from the measured rates of uncor-
related signals and subtracted it from the IBD samples.
One analysis also considered the small variations in the
fast neutron and 9Li/8He correlated backgrounds, which
were determined for the full period and then estimated
hourly by scaling them with the measured muon rate.
The same was done for the background caused by neu-
trons from the 241Am-13C calibration sources, but scal-
ing with the hourly single neutron rate. The slight time-
dependence in these backgrounds was found to contribute
< 0.01% of the total variation in IBD rates, and thus had
a negligible impact on the results presented in this letter.

The νe oscillation probability was determined as the
ratio of the measured IBD rate to the predicted IBD
rate assuming no oscillation. The measured IBD rate
in each hall was determined hourly by dividing the num-
ber of background-subtracted IBD events by the data ac-
quisition livetime, correcting for the loss of time caused
by the muon veto and multiplicity cuts. This rate was
then divided by the hourly expectation determined as in
Ref. [31] but with a livetime-weighted linear interpola-
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FIG. 2. Measured residual survival probability as a function of real time in sidereal hour bins for each of the experimental
halls over 704 solar days of data acquisition. No error bars are plotted to avoid cluttering. Each subpanel includes a zoom to a
randomly selected period of 48 sidereal hours with statistical uncertainties only. The gaps correspond to breaks in physics data
acquisition, the largest of which occurred in 2012 between July 28 and October 19, due to the installation of two additional
ADs. Discrete steps along the vertical axis, which are most apparent in the first seven months of EH2, are due to the low
statistics acquired from a single detector in one sidereal hour, while the data from most other periods were averaged among
multiple detectors.

0 20000 40000 60000 80000
Sidereal Time [sec]

0.04−

0.02−

0

0.02

0.04

(0
)

P(
t)

-P

EH1

0 20000 40000 60000 80000
Sidereal Time [sec]

0.04−

0.02−

0

0.02

0.04

eν(0
)

(t
)-

P
eν

P

EH2

0 20000 40000 60000 80000
Sidereal Time [sec]

0.04−

0.02−

0

0.02

0.04

eν(0
)

(t
)-

P
eν

P

EH3

FIG. 3. Measured residual survival probability in 24 sidereal hour bins spanning 704 solar days. Statistical and systematic
uncertainties are considered for each bin.

tion of daily thermal power data, yielding the measured
survival probability P (t). The time average of P (t) was
normalized to the Lorentz-invariant three-neutrino sur-
vival probability P (0) measured by Daya Bay in Ref. [26]
with the same data set, and P (0) was subtracted to give
the residual survival probability R(t) ≡ P (t)−P (0). This
quantity is shown in Fig. 2 and Fig. 3, the former vs.

real time in hourly bins, and the latter accumulated in
24 sidereal hour bins [30]. The origin for the sidereal time
was set to local midnight on the 2018 Vernal equinox, a
convention typically used by experiments searching for
LV and CPTV in the sun-centered frame. An integer
number of sidereal days was subtracted to obtain the
closest foregoing time to the start of data-taking, yield-
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ing 2011/12/23 22:13:13.80705 UTC. This choice had no
impact on the limits reported in Sections III and IV.

C. Uncertainties

Given the nature of this search, only uncertainties of
quantities that varied over time were taken into account.
This included statistical, reactor-related, and event selec-
tion uncertainties. The statistical uncertainty dominated
the uncertainty in each EH, contributing at the level of
0.63%, 0.71%, and 1.26% of P (t) in each of the 24 time
bins of Fig. 3 for EH1, EH2 and EH3, respectively.

The efficiency uncertainty was dominantly due to the
delayed energy (Edelayed) cut, and was inferred using
the estimated stability of the energy scale. The energy
scale was calibrated during data collection using spal-
lation neutrons, and was found to vary within 0.2% in
all ADs [22]. Variations in the number of target protons,
amount of neutrons produced by IBD interactions outside
the target that diffused into the target, and neutron cap-
ture time were estimated with the relationship between
the density ρ and temperature T of the gadolinium-doped
liquid scintillator: ∆ρ = −9.05 × 10−4∆T [32]. The ex-
pected 0.045% change in ρ based on the observed 0.5◦C
variation in temperature was propagated to the uncer-
tainties of these parameters. Uncertainties of all other
selection efficiencies were less significant and conserva-
tively inherited from the oscillation analysis [26]. The
overall uncertainty of the selection efficiency in the three
halls was estimated to be 0.09% of the survival proba-
bility P (t) for each bin of Fig. 3. When combining the
data of individual ADs in the same hall, correlations were
considered.

All the uncorrelated reactor-related uncertainties in-
volved in the flux prediction, which included power,
energy/fission, fission fraction, spent fuel and non-
equilibrium corrections, totaled to 0.9% and were con-
servatively treated as time-dependent on a daily basis.
The relative size of the reactor systematic with respect
to the survival probability P (t) for each bin in Fig. 3
was 0.10%, 0.09%, and 0.08% for EH1, EH2, and EH3,
respectively. Correlations between the predicted fluxes
at the three halls had negligible impact to the analyses
presented.

As discussed previously, background variation with
time was found to be negligible.

III. ANALYSIS ON PERIODIC AMPLITUDES

A general search for a periodic signal within the mea-
sured residual survival probability was performed for
each of the three experimental halls using the Lomb-
Scargle (LS) periodogram [29], which is a widely used
technique for detecting periodic signals in unevenly-
sampled data. A periodogram was derived for each panel

Hall Frequency Period CL

EH1 0.15 hr−1 6.6 hr 69.8%

EH2 0.10 hr−1 10.4 hr 5.1%

EH3 0.11 hr−1 8.9 hr 33.9%

TABLE I. Frequency, period and confidence level (CL) of the
highest LS power in each hall. The frequency and the period
are reported using sidereal hours.

in Fig. 2, spanning a frequency range from 5.9×10−5 side-
real hour−1 to 0.5 sidereal hour−1. The normalized LS
power for a frequency f derived from N data points Xj

at specific times tj can be estimated as [29]

L(f) =
1

2σ2

{
[
∑N

j=1(Xj−X)cos(2πf(tj−τ))]2∑N
j=1 cos2(2πf(tj−τ))

+
[
∑N

j=1(Xj−X)sin(2πf(tj−τ))]2∑N
j=1 sin2

(2πf(tj−τ))

}
,

(1)

with X ≡
∑N
j=1Xj/N and τ defined by tan(4πfτ) =∑N

j=1 sin(4πftj)/
∑N
j=1 cos(4πftj). The normalization

is accomplished by dividing by the total variance, σ2 ≡∑N
j=1(Xj−X)2/(N−1). The obtained values of σ2 were

0.023, 0.032 and 0.112 for EH1, EH2 and EH3, respec-
tively. The bottom panels of Fig. 4 show the resulting
LS powers for each frequency in each hall.

It was noted in Ref. [33] that if the signal Xj is purely
white noise, then L(f) follows an exponential probabil-
ity distribution when normalized with σ2. Accordingly,
the significance of a given LS power can be determined
with a confidence level (CL) defined as (1 − e−L(f))M ,
where M is the number of independent frequencies that
are scanned. M is nearly equal to the number of data
pointsM ≈ N in the case of even sampling, but is a priori
unknown for unevenly distributed samples. To estimate
this number, 10,000 Monte Carlo data sets with statis-
tical fluctuations were analyzed. The highest LS power
z in each data set was selected to construct a probabil-
ity density function for each hall, which was then fit as
P (z) = M(1−e−z)M−1e−z [33, 34]. The extracted values
of M were 16588, 16245 and 16697 for EH1, EH2, and
EH3, respectively, while N = 16913. The variations were
caused by the different statistics of each hall as modeled
in the simulated data sets, and had little impact on the
CLs.

The resulting CL values for each frequency can be seen
on the top panels of Fig. 4. Table I gives information
about the highest LS power in each EH. It is noteworthy
that none of the highest powers are common among the
three halls. No significant evidence for a periodic signal
was found.

The periodicity search was also performed with the
Discrete Fourier Transform (DFT). Since this method
does not account for uneven sampling, the gaps in data
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FIG. 4. Lomb-Scargle powers (bottom) and confidence levels (top) for each experimental hall.

acquisition were handled by exploiting the linearity of
the transform. The DFT was applied to the data, with
the residual survival probability set to zero in all the gap
bins (see Fig. 2). Many simulated data sets with the
same gaps and no time-varying signal were also trans-
formed and averaged for each hall, and then the results
subtracted from the data. The impact of the subtraction
was very small, which is expected due to the small num-
ber of missed hourly samples (typically, a few per week)
relative to the total number of samples (ideally, 168 per
week). The resulting power spectra were consistent with
those obtained from the LS method.

IV. ANALYSIS ON LV-CPTV COEFFICIENTS

The data were also probed for an LV-CPTV signal un-
der the SME. In this framework, the survival probability
can be expressed as Pνe→νe

= P (0) + P (1) + P (2) + ....

The first term P (0) = |S(0)
ēē |2 is the mass-driven survival

probability for νe’s in the Lorentz-invariant case. P (1) is
calculated as [35]

P (1) = 2L · Im
[
S

(0)∗
ēē

∑
c̄,d̄=ē,µ̄,τ̄

(M(1)
ēē )c̄d̄ ·

[
(C)c̄d̄+

(As)c̄d̄ sinω⊕T⊕ + (Ac)c̄d̄ cosω⊕T⊕+

(Bs)c̄d̄ sin 2ω⊕T⊕ + (Bc)c̄d̄ cos 2ω⊕T⊕
]]
,

(2)

where L is the baseline, (M(1)
ēē )c̄d̄ are the so-called exper-

imental factors, T⊕ represents sidereal time and ω⊕ =
2π/(1 sidereal day). The subscript c̄d̄ runs over the ēē,
µ̄µ̄, τ̄ τ̄ , ēµ̄, ēτ̄ and µ̄τ̄ flavor pairs. (C)c̄d̄, (As)c̄d̄, (Ac)c̄d̄,
(Bs)c̄d̄ and (Bc)c̄d̄ are commonly referred to as the side-
real amplitudes, which are functions of a total of fourteen
SME coefficients for each flavor pair, as well as neutrino
energy and propagation direction. The complex relation-
ship between the sidereal amplitudes and the individual
coefficients, as well as other details concerning the SME,
can be found in the appendix.

The goal of this analysis is to constrain the individ-
ual SME coefficients contained in the sidereal ampli-
tudes. For Daya Bay’s baselines and energies, P (2) is
smaller than P (1) by a few orders of magnitude, and was
consequently ignored together with higher order terms.
The subtraction of P (0) in R(t) made the fit insensitive
to the isotropic amplitude (C)c̄d̄, whose coefficients can
be extracted by analyzing the time-independent energy
and baseline dependencies of the oscillation probability.
These effects have been constrained by atmospheric neu-
trino data [20, 21] well beyond the reach of Daya Bay.
Without (C)c̄d̄, a total of nine different coefficients are
contained in the amplitudes (As)c̄d̄, (Ac)c̄d̄, (Bs)c̄d̄ and
(Bc)c̄d̄, as shown in Eq. (A8). The sum in P (1) over
the six flavor pairs makes it unfeasible for a single ex-
periment to simultaneously constrain the 8× 6 = 48 pa-
rameters with one fit, given their degeneracies. Interplay
between the terms could be disentangled by comparing
results from experiments with different neutrino energies,
directions, and flavors. Without a positive signal how-
ever, it is impossible to determine whether there are any
correlations or cancellations among the terms within the
sum. Accordingly, the standard practice of fitting each
flavor pair at a time by setting the coefficients of the
other pairs to zero was employed.

Up to now neutrino experiments [12–19] have
reported limits on the four sidereal amplitudes
(As)c̄d̄, (Ac)c̄d̄, (Bs)c̄d̄ and (Bc)c̄d̄. Even when consid-
ering individual flavor pairs, the number of direction-
dependent parameters precluded these experiments from
setting limits on individual coefficients, except through
the method of fitting one coefficient at a time while arbi-
trarily setting all others to zero. With a unique configura-
tion of multiple directions from three experimental sites
to three pairs of nuclear reactors (see Fig. 1) and the sep-
aration into five energy bins described below, Daya Bay
was able to completely disentangle the energy and di-
rection dependencies in Eq. (A8) and to simultaneously
constrain eight LV-CPTV coefficients: (aR)X

c̄d̄
, (cR)TX

c̄d̄
,

(cR)XZ
c̄d̄

, (aR)Y
c̄d̄

, (cR)TY
c̄d̄

, (cR)Y Z
c̄d̄

, (cR)XX
c̄d̄
− (cR)Y Y

c̄d̄
and
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FIG. 5. Measured residual survival probability for the three Daya Bay experimental sites and for 5 different prompt energy
bins. The best-fit curves for the SME ēē flavor pair are shown in red.

(cR)XY
c̄d̄

.
The IBD sample was split into five prompt energy bins

(0.7, 2.0), (2.0, 3.0), (3.0, 4.0), (4.0, 5.0) and (5.0, 12.0)
[MeV], chosen so as to contain a similar amount of statis-
tics in each. This resulted in 15 independent data sets (3
EHs × 5 energy bins), whose residual survival probabili-

ties Rj(t) = Pj(t)−P (0)
j are shown in Fig. 5. Given that

each EH sees νe’s from the six reactor cores, these data
sets were simultaneously fit with

Rfit
j =

∑
i

fijP
(1)
ij , (3)

where fij is the expected fraction of events from the i-

th reactor core in data set j, and P
(1)
ij is the oscillation

probability of Eq. (2) for that particular ij combination.
The event fraction fij was calculated as

fij =
Fij∑
k Fkj

, (4)

where Fij is the i-th core’s time-integrated flux seen in
the hall corresponding to data set j, determined from
the reactor power and fission fraction information pro-
vided by the power plant [31] and including oscillation
and inverse-square law effects. Accordingly, the χ2 used
in the fit is expressed as

χ2 =

5∑
Ebin=1

3∑
EH=1

24∑
tbin=1

{
(R−Rfit)2

σ2
R

}
Ebin,EH,tbin

. (5)

Here R = P (t) − P (0) is the measured residual survival
probability of each data point, Rfit is the SME prediction
given by Eq. (3), and σ2

R is the total error as described
in Section II C. The energy spread in each of the five

bins was taken into account when calculating P
(1)
ij and

found to be unimportant. Prompt energy was converted
to νe energy using a response matrix [28]. The fit was
performed assuming the normal neutrino mass ordering,
a zero value for the CP -violating phase, and the values of
the oscillation parameters reported in Ref. [36]. The first
two choices, as well as the uncertainties of the oscillation
parameters, were found to have a negligible impact on
the results.

The two analyses obtained very similar best-fit values
and limits, which are shown in Table II. The 95% CL
limits were obtained by constructing an 8-dimensional
parameter space and finding the hyper-volume enclos-
ing the constant χ2 hyper-surface with minimum χ2

min

plus 15.79 (χ2 = χ2
min + 15.79). No significant deviations

from the Lorentz-conserving scenario were found. Fig-
ure 5 shows the best-fit curves in the case of the ēē pair
as an illustration. Given the higher values of the exper-

imental factors (M(1)
ēē )c̄d̄ for the ēµ̄ and ēτ̄ flavor pairs

in Daya Bay’s configuration, the corresponding limits are
stronger than for the other cases by about one order of
magnitude. These are the first experimental constraints
on the coefficients for the ēē, µ̄µ̄ and τ̄ τ̄ flavor pairs, and
are a result of considering the full sum over flavor pairs
in P (1) [Eq. (2)].
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TABLE II. Best-fit values ± 95% CL limits. NDF stands for the number of degrees of freedom, which corresponds to 3 sites×
24 bins × 5 energy bins − 8 parameters = 352. The χ2/NDF values are very similar because the fit formulas have the same

structure, albeit different values of experimental factors (M(1)
ēē )c̄d̄, resulting in different best-fit parameters and limits. The

associated correlation matrices are provided as Supplemental Material [30].

Coefficient ēē µ̄µ̄ τ̄ τ̄ ēµ̄ ēτ̄ µ̄τ̄

aXR /10−20 [GeV] −5± 25 9± 45 13± 58 −3.4± 5.5 −5.6± 8.0 10± 51

cTX
R /10−18 −15± 55 26± 99 34± 122 −4.5± 7.1 −6.9± 9.7 29± 109

cXZ
R /10−18 −20± 70 36± 128 43± 153 −2.1± 6.8 −2.7± 8.4 39± 139

aYR/10−20 [GeV] 5± 25 −9± 45 −10± 58 −0.3± 5.5 −0.9± 8.0 −9± 51

cTY
R /10−18 2± 55 −3± 99 −4± 122 −0.9± 7.1 −1.6± 9.7 −4± 109

cY Z
R /10−18 −10± 70 19± 128 22± 152 −1.4± 6.8 −1.9± 8.4 21± 139

(cXX
R − cY Y

R )/10−18 13± 46 −24± 84 −29± 103 1.0± 8.2 0.9± 10.5 −26± 92

cXY
R /10−18 6± 23 −11± 42 −14± 51 1.0± 4.1 1.3± 5.3 −12± 46

χ2/NDF 318.1/352 318.2/352 318.1/352 315.0/352 313.6/352 318.1/352

V. SUMMARY

As a probe of new physics, a model-independent search
for a time-variation of the reactor νe survival probability
was performed with 621 days of Daya Bay data over a
period of 704 calendar days. The Lomb-Scargle method
yielded no significant evidence for a periodicity in the
frequency range of 5.9×10−5 sidereal hour−1 to 0.5 side-
real hour−1. The survival probability measured at Daya
Bay was also examined for a sidereal time dependence
within the SME framework. Daya Bay’s high statistics
and multiple-baseline configuration allowed a complete
disentangling of the energy and direction dependencies
within the sidereal amplitudes, yielding the first simul-
taneous constraints of individual Lorentz-violating coef-
ficients for a neutrino experiment. Limits were provided
for the ēµ̄, ēτ̄ , µ̄τ̄ , ēē, µ̄µ̄ and τ̄ τ̄ flavor pairs, yielding
the first experimental constraints for the latter three.
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Appendix A: Background on the SME

This appendix summarizes the details involved in cal-
culating the SME prediction for the analysis presented
in Section IV and lays out the relationship between the
sidereal amplitudes and the individual coefficients. Sup-
plementary materials providing necessary values for the
reader to reproduce the results presented in this letter
are included online [30].

In the SME, the oscillation probability Pνe→νe is given
by [35]

Pνe→νe
= |S(0)

ēē + S
(1)
ēē + S

(2)
ēē + ...|2, (A1)

where the first three terms of the expansion are

P (0) = |S(0)
ēē |2,

P (1) = 2Re (S
(0)∗
ēē S

(1)
ēē ),

P (2) = 2Re (S
(0)∗
ēē S

(2)
ēē ) + |S(1)

ēē |2.

(A2)
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The transition amplitude S
(0)
ēē is expressed as

S
(0)
ēē =

∑
a

U∗aēUaēe
−iEaL, (A3)

where U is the PMNS [11] neutrino mixing matrix, Ea
is the neutrino energy [30], L is the baseline [30], and
the sum is over all mass eigenstates a = 1, 2, 3. P (0)

is the usual oscillation probability for massive neutrinos
in the Lorentz-invariant case. P (1) and P (2) include the
interference from common mass-driven mixing and LV
mixing. P (1) is calculated as [35]

P (1) = 2L · Im [S
(0)∗
ēē

∑
c̄,d̄=ē,µ̄,τ̄

(M(1)
ēē )c̄d̄ · δhc̄d̄], (A4)

where (M(1)
ēē )c̄d̄ are the experimental factors [30] and δhc̄d̄

is the LV Hamiltonian. The subscript c̄d̄ represents the
flavor pairs ēē, µ̄µ̄, τ̄ τ̄ , ēµ̄, ēτ̄ , µ̄τ̄ . The experimental fac-
tors are defined in terms of the conventional eigenvalues
and elements of the PMNS matrix:

(M(1)
ēē )c̄d̄ =

∑
ab

τ
(1)
ab U

∗
aēUac̄U

∗
bd̄Ubē, (A5)

where

τ
(1)
ab (E,L) =

{
e−iEbL, Ea = Eb
e−iEaL−e−iEbL

−i∆abL
, Ea 6= Eb,

(A6)

b runs over all mass eigenstates, and ∆ab = Ea − Eb are
the standard eigenenergy differences. For Earth-based
experiments, the neutrino direction changes with time
as both the source(s) and the detector(s) rotate with an
angular frequency ω⊕ = 2π/(1 sidereal day). The time-
dependence of the Hamiltonian δhc̄d̄ can be parameter-
ized in terms of this sidereal frequency as

δhc̄d̄ =(C)c̄d̄ + (As)c̄d̄ sinω⊕T⊕ + (Ac)c̄d̄ cosω⊕T⊕

+(Bs)c̄d̄ sin 2ω⊕T⊕ + (Bc)c̄d̄ cos 2ω⊕T⊕,
(A7)

where T⊕ represents sidereal time. The sidereal ampli-
tudes (C)c̄d̄, (As)c̄d̄ and (Ac)c̄d̄ include both CPTV and
LV-CPTV coefficients, while (Bs)c̄d̄ and (Bc)c̄d̄ only con-
tain LV-CPTV coefficients [35], and are determined as

(C)c̄d̄ = (aR)Tc̄d̄ − N̂
Z(aR)Zc̄d̄ + E{− 1

2 (3− N̂ZN̂Z)(cR)TT
c̄d̄

+ 2N̂Z(cR)TZ
c̄d̄

+ 1
2 (1− 3N̂ZN̂Z)(cR)ZZ

c̄d̄
}.

(As)c̄d̄ = N̂Y (aR)Xc̄d̄ − N̂
X(aR)Yc̄d̄ + E{−2N̂Y (cR)TXc̄d̄ + 2N̂X(cR)TYc̄d̄ + 2N̂Y N̂Z(cR)XZc̄d̄ − 2N̂XN̂Z(cR)Y Zc̄d̄ },

(Ac)c̄d̄ = −N̂X(aR)Xc̄d̄ − N̂
Y (aR)Yc̄d̄ + E{2N̂X(cR)TXc̄d̄ + 2N̂Y (cR)TYc̄d̄ − 2N̂XN̂Z(cR)XZc̄d̄ − 2N̂Y N̂Z(cR)Y Zc̄d̄ },

(Bs)c̄d̄ = E{N̂XN̂Y ((cR)XXc̄d̄ − (cR)Y Yc̄d̄ )− (N̂XN̂X − N̂Y N̂Y )(cR)XYc̄d̄ },
(Bc)c̄d̄ = E{− 1

2 (N̂XN̂X − N̂Y N̂Y )((cR)XX
c̄d̄
− (cR)Y Y

c̄d̄
)− 2N̂XN̂Y (cR)XY

c̄d̄
}.

(A8)

Here (T,X, Y, Z) denote the coordinates of the
sun-centered celestial-equatorial reference frame, and
N̂X , N̂Y , N̂Z are the directional factors, defined asN̂X

N̂Y

N̂Z

 =

 cosχ sin θ cosφ+ sinχ cos θ

sin θ sinφ

− sinχ sin θ cosφ+ cosχ cos θ

 , (A9)

where χ is the laboratory colatitude (the polar angle mea-
sured from the north), θ is the angle between the neutrino
beam and the local zenith, and φ is the angle between the

beam and east of south [30]. A total of fourteen SME
LV coefficients are contained in Eq. (A8) for each flavor
pair: (aR)T

c̄d̄
, (aR)Z

c̄d̄
, (cR)TT

c̄d̄
, (cR)TZ

c̄d̄
, (cR)ZZ

c̄d̄
, (aR)X

c̄d̄
,

(cR)TX
c̄d̄

, (cR)XZ
c̄d̄

, (aR)Y
c̄d̄

, (cR)TY
c̄d̄

, (cR)Y Z
c̄d̄

, (cR)XX
c̄d̄

,

(cR)Y Y
c̄d̄

and (cR)XY
c̄d̄

. The nine coefficients included
in the (As)c̄d̄, (Ac)c̄d̄, (Bs)c̄d̄ and (Bc)c̄d̄ amplitudes are
the ones constrained in the analysis of Section IV. It
should be noted that the coefficients for left-handed neu-
trinos are related to those for right-handed antineutri-

nos via (aR)α
c̄d̄

= −(aL)α∗cd and (cR)αβ
c̄d̄

= (cL)αβ∗cd , with

α, β = T, X, Y, Z [35].
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