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ABSTRACT OF THE DISSERTATION 
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Norcrassin A is a C16 tetranorditerpenoid characterized by a unique 5/5/5/6 

tetracyclic framework – a structural feature not previously reported in natural products. 

Further evaluation of norcrassin A also showed its exciting promise as an anti-

Alzheimer’s disease (AD) compound. Given its novel molecular structure and reported 

biological profile, a concise and convergent synthesis to this structurally and functionally 

important molecule was envisioned from cost-effective starting materials through 

straightforward chemical transformations. The salient features of the developed route 

include a multi-gram, eight-step synthesis of an advanced bicyclic lactone intermediate 

and a one-pot aldol/aldol/lactonization sequence to gain rapid entry to the tetracyclic 

skeleton. 
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Berbamine is a cyclic bisbenzylisoquinoline alkaloid (bisBIA) with a well-

documented history of usage in clinical practice for treating inflammation, cancer, and 

autoimmune diseases. Despite its exciting biology, only limited hit-to-lead optimizations 

are possible due to the lack of functional group handles for derivatizations and the 

absence of a total synthesis for modifications in the core scaffold. While current access 

relies on isolation from natural sources, commercial samples acquired by us and our 

collaborator Dr. Wendong Huang at City of Hope National Medical Center between 

2018–2021 revealed compromised authenticities by NMR analysis. Hence, a practical 

synthesis would provide indisputable access to berbamine and its diverse analogs. An 

array of scalable, multi-step synthetic strategies were designed and progressed en route to 

berbamine. The intention is to explore opportunities for derivatization, substrate- versus 

catalyst-controlled hydrogenation, as well as atropisomerism of the hindered diaryl ether 

linkage. 

The Friedel–Crafts alkylation provides an intuitive bond disconnection for 

C(sp2)–C(sp3) bond retrosynthesis. Prior investigations in the Kou laboratory reported 

conditions for setting quaternary carbon centers in site-selective Friedel–Crafts reactions 

using unactivated tertiary alcohols and catalytic combinations of FeX3/HX. Encouraged 

by this previous work, a new combination of catalytic ZnCl2 and catalytic 

camphorsulfonic acid (CSA) led to the first site-selective Friedel–Crafts alkylation of 

phenols with unactivated secondary alcohols, affording the desired products in up to 85% 

yield. This dual catalytic system favored ortho-selectivity in the absence of steric 



 vi 

influence while starting from minimally prefunctionalized reaction precursors, serving as 

a departure from conventional transition-metal-catalyzed cross-coupling methods. 
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1 Chapter One: Synthetic Efforts Toward Norcrassin A 

1.1 Introduction 

1.1.1 Classification of Terpenes and Diterpenes 

 

Figure 1. Structures of common terpenes as well as isoprene (5) 

Terpenes comprise the largest and most structurally diverse class of natural 

products.1 Currently numbering in the tens of thousands, this vast chemical library 

accounts for nearly one-third of all compounds currently characterized in the Dictionary 

of Natural Products.2 Isolated from marine and terrestrial organisms, including fungi, 

plants, marine sponges, and bacteria, these substances are some of the most well 

documented natural products and display an assortment of structural and functional 

roles.3–5 For example, steroids such as cholesterol (1) are fundamental for lipid membrane 

structure and cell signaling, gibberellins (2) are crucial in plant developmental processes, 

limonene (3) is a monoterpene that plays a role in the fragrance of citrus rinds, while 
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artemisinin (4) and its semisynthetic derivatives are used to treat parasitic worm and 

malarial infections (Figure 1).6,7  

The high variety of the described effects is a reflection of the significant and 

intriguing molecular diversity of these natural products. Yet, belying the structural 

complexity of the terpenome are rather modest biosynthetic origins: head-to-tail or tail-

to-head coupling reactions of a five-carbon unit called isoprene, or 2-methyl-butadiene 

(C5H8, 5, Figure 1).8,9 All terpenes are constructed from at least isoprene precursors, and 

the number of carbon atoms in their backbone determines its classification as hemi-, 

mono-, sesqui-, di-, sester-, tri-, sesquar-, and tetraterpenes.8 Monoterpenes, such as 

pinene and myrcene, are hydrocarbons with the chemical formula C10H16. Hemiterpenes 

(C5H8) contain half the number of carbons of a monoterpene, or only a single isoprene 

unit. Sesquiterpenes (C15H24) possess three isoprene units while diterpenes (C20H32) 

consist of four. Sester-, tri-, sesquar-, and tetraterpenes encompass twenty-five, thirty, 

thirty-five, and forty-carbon atoms, respectively. Based on these arrangements, a sizable 

number of underlying acyclic (linear) and cyclic sub-classes exist. Discrete structural 

types, including cembrane and amphilectane skeletons, as well as unusual isothiocyanate, 

nicotinoyl, halogenated, and methylbutanoyl functionalities broadly occur in these 

secondary metabolites.10 Such functional modifications of the original hydrocarbon 

framework via substitution, oxidation, or skeletal rearrangements are coined terpenoids or 

isoprenoids, which are used interchangeably with the term terpenes in the scientific 

literature. 
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Figure 2. Structures of phytol (6) and tagetones A (7) and B (8) 

Within the terpenome, diterpenes and diterpenoids, represent a group of over 

twenty-thousand natural compounds. Diterpenes are categorized in accordance with their 

biogenesis, resulting in approximately one-hundred thirty unique carbon scaffolds that are 

further discriminated by the number of rings and cyclization patterns present in their 

chemical structures.11 Among the least distributed in nature are linear and monocyclic 

skeletal types. Representative examples include the acyclic diterpene phytol (6), a 

constituent of chlorophyll A and vitamin K1, and monocyclic diterpenoids tagetones A (7) 

and B (8) from the flowers of Tagetes minuta (Figure 2). The most abundant are 

polycyclic diterpenes, classified as bicyclic (halimane, labdane, and clerodane), tricyclic 

(rosane, pimarane, cassane, chinane, vouacapane, abietane, and podocarpane), tetracyclic 

(gibberellane, scopadulane, kaurene, trachylobane, stemarane, atisane, stemodane, 

aphidicolane, and beyerene), and macrocyclic (jatrophane, daphnane, tigliane, cembrane, 

taxane, and ingenane) (Figure 3).12  
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Figure 3. Example diterpene skeletal types 
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1.1.2 Biosynthetic Roots of Diterpenes 

Originating from a single precursor molecule called geranylgeranyl diphosphate 

(GGPP, 9), diterpenes are composed of four isoprene units: one dimethylallyl 

diphosphate (DMAPP, 12) starter and three isopentenyl diphosphate (IPP, 13) elongation 

units (Scheme 1).13  

 

Scheme 1. Biosynthesis of GGPP (9) from DMAPP (12) and IPP (13) 

These biochemically active pyrophosphate ester building blocks are the products 

of two distinct biosynthetic routes: the mevalonate, or mevalonic acid (MVA), pathway 

and the mevalonate-independent pathway via methylerythritol phosphate/deoxyxylulose 

phosphate (MEP/DOXP).14,15 The former, the first discovered, has been established in 

fungi, bacteria, mammals, and in the cytosol of plants, proceeding with acetyl-coenzyme 

A (14, acetyl-CoA) as the sole carbon feedstock derived from carbohydrate and fatty acid 

catabolism (Scheme 2).16 The initial thiolase-catalyzed step of the mevalonate pathway 
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combines two acetyl-CoA molecules via a Claisen condensation to yield acetoacetyl-CoA 

(15). Following an aldol-type reaction with a third molecule of acetyl-CoA to form β-

hydroxy-β-methylglutaryl-coenzyme A (HMG-CoA, 16), an irreversible reduction 

affords (R)-mevalonic acid (17).17 Successive phosphorylation and decarboxylation of 

MVA provides a pool of IPP (13), which can be isomerized to DMAPP (12) by IPP 

isomerase.18  

 

Scheme 2. Mevalonate pathway via MVA (17) 

The mevalonate-independent pathway is initiated by the condensation of pyruvate 

(18) and glyceraldehyde-3-phosphate (19) to generate DOXP (20, Scheme 3).18,19 

Rearrangement and reduction of DOXP (20) to MEP (21) via a reductoisomerase prompts 
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diphosphate (FPP, 11) and eventually, the linear and achiral C20 geranylgeranyl 

diphosphate (9) with methyl branches along its unsaturated chain (Scheme 1).17 These 

isoprenoid diphosphates can cyclize via intricate carbocation-initiated rearrangement, 

elimination, and cyclization cascades to provide a myriad of products containing multiple 

stereocenters and mono- and polycyclic carbon skeletons.20,21  

 

Scheme 3. Mevalonate-independent pathway via MEP/DOXP 
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Scheme 4. Mechanisms of action for type I and type II diterpene synthases 
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and impetigo (Figure 4).27 The extract and oils sourced from Plectranthus 

madagascariensis contain abietane diterpenes that have been used in South African 

communities to treat respiratory and dermatological ailments, such as coughs, bronchitis, 

asthma, and cutaneous wounds.28 Shrubs from the Vitex genus contain an abundance of 

natural labdane-type diterpenoids and have a long history of use throughout Japan, 

Southeast Asia, and the Pacific Islands as treatments for reproductive disorders, 

inflammatory diseases, and gastrointestinal conditions.27,29 Many daphnane, tigliane, and 

lathyrane diterpenoids from the genus Daphne have also been exploited for their 

cholesterol-lowering effects as well as anti-inflammatory and analgesic characteristics.30  
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Figure 4. Representative diterpenoids with promising bioactivity 
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As such, these compounds have become the focus of natural product drug 

discovery and are continuously being investigated for their therapeutic potential. A 

number of existing herbal medicines and conventional drugs, such as andrographolide 

(26) and paclitaxel (27), are diterpenoids with potent pharmacological activities and 

unique structural skeletons (Figure 4).12 Within the past decade, the hydrophobic 

diterpene ester ingenol 3-angelate (PEP005, 28) attracted considerable interest as a 

treatment for actinic keratosis, a precancerous lesion that can progress to invasive 

squamous cell carcinoma.31 Approved by the Food and Drug Administration (FDA)  in 

2012, PEP005 is an agonist of classical and novel protein kinase C (PKC) isoenzymes, 

which can slow cell proliferation, trigger cell cycle arrest, and promote apoptosis in 

several malignant cell lines.32 Other promising diterpenes under clinical investigation 

include ginkgo diterpene lactone meglumine (GDLM), a formulation of mainly 

ginkgolides and bilobalide, as a neuroprotective treatment of ischemic stroke.33 The 

kaurene glycoside stevioside (29) is used as non-toxic zero calorie sweetener and has 

been shown to modulate diabetes-induced complications while retaining a minute effect 

on blood glucose levels.34 Resiniferatoxin (RTX, 30), a capsaicin analogue of the 

daphnane subtype, is an ultrapotent transient receptor potential vanilloid 1 (TRPV1) 

calcium channel agonist currently under clinical evaluation as an analgesic for advanced 

forms of cancer and osteoarthritis.35–37 

The immunomodulatory, neurite outgrowth-promoting, and antiviral properties of 

diterpene- and diterpenoid-rich species have also been examined.38,39 Kuo et al. identified 

two novel kaurane diterpenoids, crotonkinins A (31) and B (32), evaluating their anti-
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inflammatory potentials on nitric oxide (NO) and NADPH-oxidase (NOX)-dependent 

reactive oxygen species (ROS) production in microglial cells (Figure 4).40 17-

Hydroxyjolkinolide B (33) was found to be a strong inhibitor of the lipopolysaccharide-

induced production of pro-inflammatory mediators and cytokines, such as interleukin 6 

(IL-6) and tumor necrosis factor alpha (TNF-α).41 Comparably, the diterpene component 

of Euphorbia peplus, pepluanone (34), possessed a noteworthy in vivo anti-inflammatory 

effect in carrageenin-induced rat paw edema.42  

Sun et al. reported that nerve growth factor (NGF)-mediated neurite outgrowth 

was enhanced by clerodane diterpenoids crotonpenes A (35) and B (36) in PC12 cells at 

15 µM (Figure 4).43 At a concentration of 10 µM, crotoeurins B (37) and C (38)  

presented similar neurite outgrowth-stimulating activity on NGF-mediated PC12 cells.44 

Prostratin (39), a phorbol ester first isolated from Strathmore weed Pimelea prostrate, 

was shown to activate latent viral reservoirs of HIV-1 (human immunodeficiency virus 1) 

via activation of PKC-dependent nuclear factor-𝜅B (NF-𝜅B), protecting healthy CD4+ 

cells from further HIV-1 infection.45 The anti-viral influence of a series of formerly 

isolated jatrophane diterpenes were moreover probed by Bedoya et al.46,47 One of the 

molecules, SJ23B (40), wielded a potent antagonistic effect on HIV-1 latency and 

infection. Through the downregulation of HIV receptors such as CCR5, CXCR4, and 

CD4, this non-tumorigenic diterpene prevented viral infection in human primary T cells 

with an IC50 value of 2 nM. Moreover, SJ23B induced viral reactivation, behaving as an 

in vivo agent to purge dormant HIV-1 proviruses with a much higher efficacy than that of 

prostratin (39).  
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1.1.4 Synthetic Strategies Toward Diterpenes 

1.1.4.1 ent-Halimic Acid Precursor 

 

Figure 5. Structure of ent-halimic acid (42) and structurally related natural products 

ent-Halimic acid (42) is the primary component of Halimium viscosum and can be 

easily isolated (Figure 5).11 This compound is a bicyclic diterpene with an ent-halimane 
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sesterterpenolide analogues of dysidiolide (Scheme 5).48 The synthesis of 43 and 44 

commenced with oxidation of the methyl ester of ent-halimic acid with OsO4 and 

lead(IV) acetate to give ketone 46. An ensuing Na2CrO4 oxidation provided ⍺,β-

unsaturated ketone 47, which was subjected to Bayer−Villiger reaction using urea 

hydrogen peroxide and trifluoroacetic acid anhydride (TFAA) to generate 48 in 61% 

yield, eliminating the remaining two carbons of the side chain. Following protection of 

the carbonyl as a dioxolane (49), saponification with K2CO3 in MeOH and oxidation of 

the resultant alcohol gave aldehyde 50. Introduction of the furan ring fragment was 

accomplished by means of a furyl-lithium species generated from 3-bromofuran and n-

BuLi, furnishing hydroxyderivatives 51 and 52. Treatment of 51 and 52 with 

tetrapropylammonium perruthenate (TPAP) and N-methylmorpholine N-oxide (NMO) 

gave ketone 53, which was reacted with mCPBA and p-TsOH to yield chettaphanin I (43) 

as mixture with 54 and 55. Chettaphanin II (44) was assembled in 71% yield via reaction 

of intermediate 53 with p-TsOH (Scheme 5). ent-Halimic acid (42) was also applied by 

Marcos and co-workers in the construction of propellanes and a series of tetranor 

diterpenes from (+)-sclareolide (45).49–51  
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Scheme 5. Synthesis of chettaphanins I (43) and II (44) 
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Though the chemical functionality of ent-halimic acid (42) has proven useful in 

the synthesis of tetranor compounds, such approaches are heavily reliant on the need for 

ent-halimic acid which is routinely extracted from considerable amounts of Halimium 

viscosum (0.34% with respect to the dry plant weight).11,52 In this manner, syntheses that 

commence from this starting material may result in a broad reduction of the plant species. 

It should also be noted that of the known synthetic routes using ent-halimic acid or other 

known natural products, several were fairly inefficient and displayed only a modest level 

of scalability.53,54  

1.1.4.2 Polyene Cyclizations 

The carbon skeleton common to diterpenes and their derivatives is assembled 

biosynthetically from GGPP through a polyolefin cyclization pathway enabled by class II 

DTCs.23 Followed by a series of downstream biosynthetic modifications that lead to the 

introduction of additional functionality, it is estimated that a substantial number of 

polycyclic diterpenoids arise from this preliminary cyclization. Pioneered by van 

Tamelen, Johnson, and Goldsmith, a number of asymmetric biomimetic polyene 

cyclizations have been identified in the literature,55–58 many of which induced the 

cation-olefin polycyclization through organocatalysis or treatment with a variety of 

Lewis and protic acids. However, successful applications of these nonenzymatic 

processes in natural product synthesis are scarce, with only a handful of reports spanning 

the past two decades. Classic and/or recent successful examples are described below. 
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1.1.4.2.1 Lewis Acid-Mediated Cyclizations 

Ishihara et al. described a combined Lewis acid and chiral Brønsted acid (LBA) 

system that enabled the first enantioselective biomimetic cyclization of 2-

polyprenylphenols (Scheme 6).59 Prepared from SnCl4 and the monobenzoyl ester of (R)-

(+)-1,1’-binaphthalene-2,2’-diol (BINOL), these artificial farnesyl and geranyl cyclases 

(58) were implicated in the asymmetric preparation of (−)-ambrox (56), a commercial 

substitute for ambergris, via cyclization of homofarnesol. Several tricyclic compounds 

(59) and (−)-chromazonarol (60), a constituent of the Pacific seaweed Dictyopteris 

undulata, were also constructed from the corresponding geranyl and farnesyl substrates to 

evaluate the generality of the LBA-promoted strategy, although with modest yields and 

stereoselectivity.  

 

Scheme 6. Enantioselective Lewis acid/Brønsted acid cyclization of polyprenoids 
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Scheme 7. Enantioselective polyene cyclization of homo(polyprenyl)arenes) 

 

Scheme 8. New artificial cyclase for enantioselective total synthesis of 67 and 69 
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terpenoids bearing a chroman scaffold, such as (+)-8-epi-puupehedione (67) and (−)-11’-

deoxytaondiol methyl ether (69, Scheme 8).61  

An analogous report by Surendra and Corey delivered a range of chiral polycyclic 

molecules from achiral polyene precursors (Scheme 9).62 The polycyclization was 

initiated by a one-to-one complex of SbCl5 and o,o’-dichloro-BINOL (71), delivering 

excellent enantioselectivity of up to 92% enantiomeric excess (ee) and ~90% yield per 

ring formed. Serving as an extension of their prior indium(III) bromide or iodide-

mediated approach, the Lewis acid functioned as a proton equivalent, initiating the 

cation-olefin cyclization via selective activation of the terminal C-C double bond of the 

polyene to control the absolute configuration of the product.63  

 

Scheme 9. Synthesis of chiral tetracycle using SbCl5 and BINOL-derived complex 

1.1.4.2.2 Halogen Electrophile Triggered Polyene Cyclizations 

Sakakura and co-workers employed stoichiometric amounts of chiral 

phosphoramidites with N-halosuccinimide (NXS) to achieve the enantioselective 

halocyclization of simple polycyclic terpenoids (Scheme 10).64 The nucleophilic 

phosphoramidite (74), designed with two triphenylsilyl groups at the 3 and 3’ positions, 

provided access to polycyclic 3-haloterpenoids (75) more easily than conventional 

multistep syntheses. By placing the activated halogen atom of the N-halosuccinimide 

H

Me

Me
Me

Me

Me
Me 70 72

(92% ee)

LBA (71)

CH2Cl2
−78 ºC
(84%)

O

LBA (71)

Cl

Cl

O
H

H

SbCl5



 20 

closer to the chiral environment of the nucleophilic promoter, this reaction yielded the 

requisite products in up to 99% diastereomeric and enantiomeric excesses, serving as a 

direct contrast to the Lewis acid approach. 

 

Scheme 10. Enantioselective halocyclization with nucleophilic phosphoramidites 
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Scheme 11. Catalytic asymmetric bromocyclization of geranylbenzenes and 

geranylphenols 
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Scheme 12. Haliranium-mediated cyclizations using morpholine and HFIP 
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Scheme 14. Platinum-catalyzed formation of polycycles 
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Despite the excellent yields, only moderate enantioselectivities were observed.  

 

Scheme 15. Cationic gold(I) polyene cyclizations 
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Scheme 16. Total synthesis of 99 via iridium-catalyzed polyene cyclization 

Jeker et al. developed a synthetic entry into the labdane-type diterpenoids based 

on an pivotal iridium-catalyzed polyene cyclization cascade involving an allyl silane as 

the terminating group (Scheme 16).70 Showcased in the total synthesis of (+)-asperolide 

C (99), a tetranorlabdane diterpenoid, a π-allyl iridium complex (97) generated from a 
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carbobicyclic core (98). The synthesis continued with a series of stepwise oxidations and 

chemo- and diastereoselective alkylations to afford the final product. In the total 

synthesis of septedine (102) and 7-deoxyseptedine (103), an analogous polyene 

cyclization tactic was used to prepare the key abietatriene intermediate (101) from allylic 

alcohol 100 (Scheme 17).71 Employing [Ir(cod)Cl]2, a chiral phosphoramidite ligand (83), 

and Zn(OTf)2, the desired transformation was accomplished on decagram scale in 61% 

yield with an ee exceeding 99%.  
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Scheme 17. Iridium-induced polycyclization in the synthesis of 102 and 103 

1.1.4.2.4 Radical Polyene Cyclizations 
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Scheme 18. Radical asymmetric polyene cyclization via organo-SOMO catalysis 
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Scheme 19. Construction of 111 via HAT-based cyclization 

1.2 Norcrassin A 

1.2.1 Isolation and Structure 

The genus Croton, one of the largest genera in the family Euphorbiaceae, is a 

complex and diverse taxonomic group of plants. Many species of Croton are well 
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leaves of Croton zambesicus is used broadly by indigenous cultures of West Africa as an 

anti-microbial and anti-hypertensive.81  

 

Figure 6. Norcrassin A (112) and other related diterpenoids 
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The fused cyclic core is particularly noteworthy as it is a structural feature not previously 

reported in natural products (Figure 6).  

1.2.2 Biological Activity  

Upon further evaluation using a Caenorhabditis elegans Alzheimer’s disease 

(AD) pathological model, norcrassin A (112) also showed promise to act as an anti-AD 

compound candidate (Figure 6).87 In the isolation study, C. elegans was embedded with 

the human gene of amyloid beta (Aβ) downstream of the muscle promoter to exhibit AD-

like symptoms of paralysis. Norcrassin A was found to significantly delay worm paralysis 

at a 50 µM concentration compared to the negative control with 0.1% DMSO only. 

However, when compared to memantine, a known N-methyl-D-aspartate (NMDA) 

receptor antagonist, norcrassin A exerted relatively lower anti-AD activity, only delaying 

worm paralysis up to forty hours. While not as potent as the established positive control, 

memantine, norcrassin A revealed its potential as a candidate for further assessment 

toward combating neurodegenerative disorders. 

1.2.3 Biosynthetic Pathway of Norcrassin A 

While the specific details are not fully understood, the biogenetic pathway for 

norcrassin A (112) may originate from chettaphanin I (42) as presented in Scheme 20.87 

Following Baeyer−Villiger oxidation and selective ester hydrolysis to produce carboxylic 

acid 118, epoxidation of the ∆1 alkene would lead to the formation of epoxy ketone 119. 

The ensuing lactone (120) would be generated via an epoxide ring opening and 

intramolecular 1,4-addition reaction. Finally, an oxidative event would provide the 
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corresponding diketone (121), which would undergo a subsequent intramolecular anion 

assisted rearrangement to yield norcrassin A (112).  

 

Scheme 20. Possible biosynthetic route to norcrassin A (112) 
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insight into its potential mechanism of amyloid-b inhibition. Investigations toward the 

synthesis of 112 would also form part of an ongoing interest in the synthesis and 

medicinal chemistry of tetranor, clerodane, and ent-halimane derivatives such as crassin 

H (113) and norcrocrassinone (116, Figure 6).88 In particular, the 2-oxoglutarate (124) 

and fused bicyclic lactone (127) thus obtained from the proposed route below would be 

valuable intermediates in the synthesis of various tetranor diterpenoid derivatives with 

tetracyclic dilactone scaffolds (Scheme 21).  

The presence of six contiguous stereocenters and a rare fused tetracyclic 

framework render this natural product a veritable challenge in synthetic chemistry. The 

salient features of this route include a one-pot aldol/aldol/lactonization sequence to gain 

rapid entry to the tetracyclic framework. This strategy should allow for a short, 

convergent synthesis to this structurally and functionally important natural product and 

its analogues from cost-effective starting materials through straightforward chemical 

transformations. Herein, we describe a prospective total synthesis of this novel compound 

and summarize the research progress to date. 

1.3.1 Retrosynthetic Analysis of Norcrassin A 

Retrosynthetically, a two-bond disconnection at the bridged [2.2.1] bicyclic 

lactone moiety of norcrassin A effectively simplifies the tetracyclic natural product to 

bicyclic intermediate 123 (Scheme 21). In the forward sense, a tandem aldol/lactonization 

sequence would provide norcrassin A (112). Further simplification of 123 can be 

achieved by disconnecting the hindered C-C bond, which could be forged through an 
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aldol reaction between two relatively simple fragments: literature reported keto diester 

124 and fused bicyclic lactone 127.  

 

Scheme 21. Retrosynthesis of norcrassin A (112) 
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Scheme 22. Synthesis of orthoester 131 and allylic alcohol 134 

Johnson−Claisen rearrangement between the corresponding orthoester (125) and 

allylic alcohol (126) delivered dimethyl 2-ethylidene-4-alkylglutarate (133) in 82% yield 

(Scheme 23). Oxidative cleavage of the C−C double bond with sodium periodate (NaIO4) 

in the presence of catalytic ruthenium tetroxide (RuO4) yielded the desired keto diester 

(124) in 73% yield. 

 

Scheme 23. Completed synthesis of 2-oxoglutarate 136 
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prompting the ring to open, forming a discreet carbocation. Compared to the ⍺-carbon, 

the carbocation formed at the β-carbon would be tertiary. It would also not experience the 

destabilizing effects of being adjacent to an electron-withdrawing carbonyl. Taking 

advantage of the inherent electronics of the epoxide substrate (128), the KSA should 

attack the coordinated epoxyketone (128) and subsequently lactonize. 

 

Scheme 24. Proposed epoxide ring opening approach 

Hence, the construction of 2,3-epoxy-cis-3,4-dimethylcyclohexanone (128) 

commenced from cyclohexenone 135 (Scheme 25). Methylation of 135 afforded the 

modestly volatile 6-methyl-2-cyclohexen-1-one (136, 93% yield).91 Subsequent 

MeLi•LiBr-mediated methylation afforded 1,6-dimethyl-2-cyclohexen-1-ol (137) in 

quantitative yield as an inconsequential mixture of diastereomers (dr = 2:1),92 which is 

slightly higher than the 1:1 dr as reported by Jiang and co-workers when using MeLi 

instead of MeLi-LiBr.93 Treating tertiary allylic alcohol (137) with pyridinium 

chlorochromate (PCC) followed by aqueous workup provided 3,4-dimethyl-2-

cyclohexen-1-one (138) in 70% yield.92 
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Scheme 25. Synthesis of epoxycyclohexanones 128 

Further transformation of 3,4-dimethyl-2-cyclohexen-1-one (138) was carried out 

via a three-step sequence, as shown in Scheme 25.94 LiAlH4-mediated reduction of 138 

afforded 3,4-dimethyl-2-cyclohexen-1-ol (139, 98% yield) as a 2:3 mixture of 1,4-cis and 

1,4-trans isomers, which was used directly in the next step without purification. It should 

also be noted that additional means for diastereoselective reduction of enone 138 were 

assessed. Treatment of 138 with bis(2-methoxyethoxy)aluminum hydride (Red-Al, dr = 

3:2), L-Selectride (dr = 2:1) as well as a cerium (III) chloride assisted protocol (dr = 4:5) 

yielded allylic alcohol 139 in varying diastereomeric ratios (Table 1). A reversal of 

selectivity was also observed when using Red-Al and L-Selectride. Sodium 

triacetoxyborohydride (STAB) exhibited little reductive activity. 
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Table 1. Diastereoselective reduction of enone 138 

 
 

Reducing Agent Diastereomeric Ratio (dr)a 

Red-Al 3:2 
L-Selectride 2:1 
NaBH4, CeCl3•7H2O 4:5 
STAB N.R. 
aN.R. = no reactivity. 

 

Vanadium-catalyzed alkene epoxidation of allylic alcohol 139 yielded a yellowish 

oil (140, 86% crude yield), containing a 1:1 isomeric mixture of epoxy alcohols. 

Oxidation of the crude epoxy alcohol (140) with a CrO3−pyridine complex furnished a 

mixture of 2,3-epoxy-3,4-dimethylcyclohexanones (128). Isolation of the stereoisomers 

by gradient flash chromatography afforded the trans- (128a) and cis- (128b) dimethyl 

isomers in 23% and 12% yields, respectively, over two steps.91,92,94  
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Scheme 26. Other methods of diastereoselective epoxidation of enone 138 

With multi-gram quantities of 3,4-dimethyl-2-cyclohexen-1-one (138), we 

surveyed three other methods for diastereoselective epoxidation. Bromination of the 

endocyclic alkene of 138 could afford a substrate for a planned Corey−Itsuno reduction 

(Scheme 26a).95 1H NMR analysis of the crude mixture suggested the presence of three 

plausible compounds: ⍺-bromination at the aliphatic position and mono/dibromination of 

the alkene. Unfortunately, no brominated product corresponding to 141 was observed, 

presumably due to rapid decomposition of the crude product to the corresponding phenol. 

Further investigation into the aforementioned approaches were halted.  
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dimethylcyclohexanone (128b) in 73% yield (Scheme 26c).97 Repeating the above 

reaction using triple the phase-transfer catalyst loading and an additional equivalent of 

oxidant increased the yield to 80%, though accompanied with t-BuOH as a minor 

byproduct that is difficult to remove by purification.  

1.3.4 First Generation Attempts to Lactone 127 

With ample access to epoxy ketones 128, we began to analyze epoxide ring-

opening methods for generating lactone 127 (Scheme 24). Enolate-mediated conditions 

were probed, albeit with no significant outcome.98 To this extent, cis-dimethyl epoxy 

ketone 128b was exposed to Lewis-acidic Et2AlCl and the lithium enolate of tert-butyl 

acetate.11 1H NMR analysis of the crude mixture suggested formation of a new species. 

Yet, the endo-cyclic methylene protons could not be explicitly accounted for. To achieve 

regioselective ring-opening of the epoxide, 128b was subsequently treated with the 

LHMDS-generated enolate of tert-butyl acetate. Instead of Et2AlCl, ZnCl2 was used for 

chelation of the enolate and BF3-OEt2 for the activation of the epoxide. 1H NMR analysis 

of the crude material did not indicate formation of the anticipated product. 

To expand our current synthetic approach, we assessed reactions of ketene silyl 

acetals with epoxides in the presence of various Lewis acids (Table 2).99 Upon treatment 

of epoxy ketone 128b with trimethylsilyl (TMS)-protected KSA (146) in the presence of 

BF3-OEt2 in CH2Cl2 at -78°C, TLC analysis of the reaction mixtures implied the 

formation of two products (Table 2, Entry 7). Unfortunately, the hydroxy ester could not 

be clearly deduced from the 1H NMR spectrum of the crude reaction mixture due to 

decomposition.  
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Table 2. Ketene silyl acetal-mediated cis-epoxide ring-opening methods 

 

Entry KSA Lewis Acida Solvent Resultb 

1 

 

FeCl3 DCE Decomposition 

2 FeCl2 DCE Decomposition 

3 FeCl2 + FeCl3 DCE Decomposition 

4 AlCl3 DCE Decomposition + S.M. 

5 TiCl4c CH2Cl2 Enol + S.M. 

6 LiClO4c 
CH2Cl2 

Et2O 

S.M. 

S.M. 

7 BF3•OEt2 CH2Cl2 Decomposition 

8  ZnCl2 CH2Cl2 S.M. 

9 Et2AlCl CH2Cl2 Enol + S.M. 

10 Y(OTf)3 CH2Cl2 S.M. 

11 Yb(OTf)3 CH2Cl2 S.M. 

12 LiClO4c 
CH2Cl2 

Et2O 

S.M. 

S.M. 

13 TiCl4c CH2Cl2 Enol 

14 Ti(OiPr)4 CH2Cl2 Enol + S.M. 

15 Mg(ClO4)2 CH2Cl2 S.M. 

16 

 

Cu(OTf)2c Et2O S.M. 

17 Phenylboronic acid THF S.M. 

a1.0 equiv except for LiClO4, TiCl4, Yb(OTf)3, Cu(OTf)2, and phenylboronic acid. b S.M. 

= starting material. cPerformed on trans- and cis-diastereomers. 
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LiClO4 (in excess or catalytic amounts) has been used by Fontaine et al. as an 

effective Lewis acid to induce chelation-controlled group transfer Mukaiyama aldol 

reaction of epoxyaldehydes with ketene silyl acetals.100 Treatment of epoxy ketones 128 

with catalytic (5%), moderate (1.5 equiv) and excess (10 equiv) amounts of LiClO4 in 

varying concentrations using Et2O as well as CH2Cl2 as the solvents yielded moderate to 

significant quantities of unreacted starting material (Table 2, Entry 6 & 12). cis-Dimethyl 

epoxy ketone 128b was also subjected to an iron-catalyzed protocol developed by our 

group (Table 2, Entry 1-3) as well as AlCl3 (Table 2, Entry 4). Analysis of the 1H NMR 

spectra heavily alluded to substrate decomposition.  

 

Scheme 27. Formation of enol, or 2-hydroxy-3,4-dimethyl-2-cyclohexenone 149 
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position. However, deactivation of the nucleophile by the Lewis acid promoted a 

competing elimination reaction to ultimately furnish enol 149. This observation was 

supported by additional control experiments, in which TMS-protected KSA and epoxy 

ketones 128 were individually treated with TiCl4. 1H NMR analyses of the crude reaction 

mixtures indicated deprotection of the KSA to the corresponding tert-butyl acetate, 

rendering the nucleophile ineffective. Meanwhile, subjecting both epoxy ketones to TiCl4 

strictly afforded the enol product. Similarly, treatment of cis- and trans-epoxy ketones 

128 with Ti(OiPr)4, BF3-OEt2, ZnCl2, Mg(ClO4)2, Et2AlCl, Y(OTf)3, Yb(OTf)3, Cu(OTf)2, 

and phenylboronic acid afforded starting material, decomposition, or the enol side 

product (149).  

1.3.5 Second Generation Strategies to Lactone 127 

Other means of generating lactone 127 using fewer synthetic steps were also 

examined due to the inefficacy of the above Lewis acid-promoted epoxide ring opening 

reactions with KSAs. To this end, Rubottom oxidation following Mukaiyama conjugate 

addition to enone 138 was assessed using an assortment of KSA (129) and Lewis acid 

partners (Scheme 28).101 Treatment of enone 138 with LiClO4, SnCl4, ZnCl2, Et2AlCl, 

Y(OTf)3, and Yb(OTf)3 at 0.05 M, 0.1 M, 0.25 M, 0.4 M, 0.5 M, and 1.0 M 

concentrations resulted in predominantly unreacted starting materials. Moreover, attempts 

to activate the KSA nucleophile in situ using potassium fluoride (KF) and 

tetrabutylammonium fluoride (TBAF) furnished similar results, though the quality of the 

corresponding fluoride sources may have been questionable. At this point, it was 

hypothesized that the presence of the distal methyl group in enone 138 may have 
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impeded the reaction because the analogous reaction of 3-methylcyclohexenone (138) has 

been reported to undergo a similar Mukaiyama reaction.102  

 

Scheme 28. Mukaiyama−Michael addition and Rubottom oxidation strategy to lactone 

Softer nucleophilic and basic conditions were hence examined to induce the 
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Scheme 29. Use of softer nucleophiles en route to lactone 127 
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may abstract the halide to form the tertiary carbocation center. However, attempts to 

enable this one-pot process led to primarily decomposition of the starting material. 

 

Scheme 30. One-pot ZnCl2-mediated Reformatsky reaction toward lactone 127 

Instead, as precedented by Gros et al., silica-supported guanidinium chloride 

(PBGSiCl) was successfully prepared to promote the chemo- and regiospecific ring 

opening of the epoxide.106 Epoxyketone 128b was then subjected to the functionalized 

silica catalyst and bromoacetyl chloride (Scheme 30). Unfortunately, the b-chloro-a-

oxyester product (156) was not observed, seemingly due to significant product instability. 

Additional runs involved varying the temperature and treating the crude reaction mixture 

immediately with Zn(s). Yet, the desired transformation could not be achieved and only 

rapid decomposition of the substrate was observed.  
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Additionally, the Reformatsky-type reaction was attempted in a stepwise manner 

(Scheme 31). However, initial attempts into the acid-induced ring opening of the epoxide 

with HCl (i.e. aqueous, EtOH, MeOH), could not be effected. 1H NMR analysis of the 

crude reaction mixtures did not indicate formation of the anticipated vicinal chlorohydrin 

(157). Rather, formation of 2-hydroxy-3,4-dimethyl-2-cyclohexenone (149) was often 

seen. Yet, HCl solution in dioxane effectively produced the chlorohydrin (157), which 

was supported via 1H NMR analysis of the crude reaction mixture.107 A similar 

chlorohydrin product was also produced utilizing a DBU-TiCl4 mediated protocol.108 

Acylation of the crude material with 2-bromoacetyl chloride and NEt3 did not display any 

reactivity. Instead, reversion to epoxide 128 was frequently detected, which was 

indicative of a base-triggered re-epoxidation pathway. While subsitution of NEt3 with 

pyridine suggested otherwise, peaks corresponding to the anticipated bromoacetate (156) 

could not be discerned via 1H NMR analysis of the isolated fractions upon purification. 

This may have been due to instability of the material on silica gel. The crude mixture 

(157) was also immediately subjected to Zn(s). However, 1H NMR analysis of the crude 

material indicated decomposition of the starting material. 

1.3.6 Third Generation Attempts at Lactone 127 

Given the above discussed approaches did not pan out as expected, a different 

route was conceived in which a sigmatropic rearrangement would grant access to the 

desired bicyclic lactone (127) starting from a previously synthesized allylic alcohol 

intermediate (139, Scheme 32). 
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Scheme 32. Revised retrosynthesis of lactone (127) 
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considered on any remaining elimination product to obtain desired lactone 127 in future 

studies. 

 

Scheme 33. Synthesis of lactone 127 via Eschenmoser−Claisen rearrangement and 

Kornblum oxidation 
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was isolated as a single diastereomer with stereochemistry of the methyl groups assigned 

as syn via NOE. 

 

Scheme 34. Completion of lactone 127 

1.3.7 Aldol/Aldol/Lactonization Studies 

With effective access to both fragments (124 and 127), the novel 

aldol/aldol/lactonization sequence was probed. Deuterium oxide (D2O) studies indicated 

that deuterium was being incorporated at the desired alpha position of lactone 127, 

suggesting that deprotonation and enolate formation was occurring at the required site for 

the initial aldol reaction (Scheme 35).  

 

Scheme 35. Deuterium incorporation into lactone 
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to its relative acidity (Scheme 36). Introduction of oxoglutarate 124 would prompt an 

intermolecular attack by the enolate upon the ketone (marked in blue), which would be 

deemed as the more reactive carbonyl. The basic conditions of the initial addition should 

prompt an ensuing intramolecular aldol reaction via the ester enolate, which upon 

lactonization would provide norcrassin A (112), potentially in one cascading step. 

 

Scheme 36. Anticipated strategy of base-mediated aldol/aldol/lactonization 
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127 and keto diester 124 with varying equivalents (1.0, 1.5, and 2.0 equiv) of KOt-Bu, 

KHMDS, LiHMDS, and NaH using t-BuOH and THF as the solvents at −78 ºC, 0 ºC, rt, 

or under reflux did not yield the anticipated product. Neither did exposure to LDA (2 

equiv) in the presence of DMPU (5 equiv).113 In most cases, the keto diester component 

(124) seemed to have condensed onto itself once added into the reaction mixture. 

Degradation of the two starting materials was also detected. At this stage, it was surmised 

that a retro-aldol reaction may have occurred, fragmenting the β-hydroxy ketones back to 

their respective enolates (Scheme 37). This could have induced undesirable results, such 

as side reactivity or product decomposition, especially given the accessibility of other 

electrophilic centers on 124 and 127.   

 

Scheme 37. Possible retro-aldol reaction pathways 

Therefore, lactone 127 was treated with a simpler electrophile to confirm the 

appropriate reactivity. Enolization of 127 with LDA followed by addition of MeI as well 

as HMPA provided O-methylated product 166 (Scheme 38). The observed O-alkylation 

was anticipated as addition of HMPA decreases the prevalence of ion clustering, favoring 

a dissociated and often more reactive oxygen-centered enolate anion.114 However, 

O

O

H

Me

OMeMeO

O O

OMeO
Me

O

O

H

MeMeMeO

O O

OMeO MeO

+

a)

b)

O

O

H

Me

OMeMeO

O HO

OMeO
Me

O

O

H

Me

OMeMeO

O HO

OMeO
Me



 51 

compared to the outcome depicted in Scheme 35, the olefin seen in enol ether 166 

implied opposite selectivity for deprotonation, which readily transpired at the more 

sterically accessible ⍺-carbon despite the use of less than one equivalent of base. Future 

work will entail resubjecting 127 with KOt-Bu in THF, conditions featured in the 

preceding D2O experiment, to achieve the preferred deprotonation.  

 

Scheme 38. Formation of O-methylated lactone 

 

Scheme 39. Proposed silyl acetal variation of aldol/aldol/lactonization 

Likewise, an alternative coupling partner (167) to which lactone 127 reacts with 

was assessed. Compared to the original 2-oxoglutarate (124), the KSA variant (167) 

would follow the initial aldol sequence outlined in Scheme 39. However, rather than 

relying on a second in-situ deprotonation to activate the methyl ester, the silyl acetal 

would serve as a pre-activated enolate equivalent. Addition of a fluoride source would 

Me

O
O

O

Me

127

LDA, MeI
HMPA

THF
−78 ºC → 0 ºC

(11%) Me

OMe
O

O

Me

166

MeMe

O
O

O

OMe
O Me

MeO

O

B
H
pKa < 20

MeMe

O
O

O
O

O

H

Me

OMeMeO

HO

OMeO
Memost electrophilic 

carbonyl

SiR3

R3SiO

F O

O

H

Me

OMeMeO

HO

OMeO
Me

O
O

O

H

Me

MeMeO

O HO

OO
Me

O

O

HO

CO2Me

O

O

Me

Me
MeR3Si

127

167

168

112



 52 

cleave the silyl group, facilitating the second aldol reaction, which could then lactonize to 

afford the natural product (112).  

En route to silyl acetal 167, a H2SO4-mediated ketalization of diester 124 

provided dimethyl ketal 169 in 70% yield (Scheme 40). Subsequent formation of the 

TBS-protected KSA (170) proceeded in 84% yield as a mixture of cis- and trans-isomers 

through a similar method reported by Danishefsky et al.115 The concluding deprotection 

of 170 was then surveyed. In this regard, treatment of 170 with silica gel in MeCN as 

well as H2O and acetone at 80 °C and 60 °C afforded either starting material or dimethyl 

ketal 169.116 Alternatively, diester 124 was subjected to two successive deprotonations 

with NaH and n-BuLi in an attempt to selectively form the TMS-ether and TBS-KSA, 

albeit to no avail. Alternative means of ketal removal were also examined, including a 

purportedly chemoselective Er(OTf)3-catalyzed method in wet nitromethane (MeNO2) 

and standard hydrolyzing conditions using p-TsOH in either acetone or H2O.117,118 All of 

which selectively cleaved the TBS-protected KSA, rendering the dimethyl ketal 

untouched.  
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Scheme 40. Synthesis of silyl acetal derivative of keto-diester 

1.3.8 Additional Optimization Studies 

1.3.8.1 Conversion of Enol Side Product to Lactone 
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Scheme 41. Attempts to convert enol 149 to lactone 127 

1.3.8.2 1,3-Transpositions of Allyl Alcohols 

 

Scheme 42. Rhenium-catalyzed 1,3-transposition 
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Scheme 43. Vanadium- and enzyme-mediated 1,3-transposition 

Alternatively, as precedented by Akai and co-workers, the combination of 

vanadium-oxo reagents with a lipase produced a regio- and enantioconvergent 

transformation of racemic allyl alcohols into optically active allyl esters (Scheme 43).122 

To this extent, tertiary alcohol 137 was submitted to the above literature reported protocol 

using vinyl acetate and O=VPO4•2H2O or OV(OSiPh3)3 as the vanadium catalyst 

(Scheme 43). Purification of the crude products via preparatory TLC was performed. 1H 

NMR analysis of the isolated compounds did not show significant formation of the allyl 

alcohol 139 nor the acylated material (173). Additional conditions for the mentioned 

transformations will need to be surveyed.  
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acetal (177) with triisobutylaluminum (TIBA) or diisobutylaluminum hydride (DIBAL-

H) at low temperature followed by mild acid hydolysis would elicit a kinetic resolution, 

transforming 177 to the optically pure ketone (176). However, attempts to construct (–)-

(2R,4R)-2,4-pentanediol (175) from acetylacetone (174) could not be accomplished due 

to pressure irregularities with the hydrogenation vessel, resulting in reisolation of 

unreacted diketone.124   

 

Scheme 44. Kinetic resolution of 2-methylcyclohexanone (176) 
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162. Followed by an oxidation with mCPBA, the resultant epoxy ester underwent an 

acid-induced cyclization via an intermediary diol ester to generate hydroxy lactone 164, 

which was further oxidized to the lactone 127. This sequence provided access to 

substantial quantities of each respective intermediate with modest diastereoselectivities. 

Accordingly, cyclohexenone 135 will be advanced through these steps to produce lactone 

127 on scale, quantities of which will be required for successful completion of norcrassin 

A (112). 

 

Scheme 45. Developed production of lactone 127 
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Scheme 46. Formation of norcrassin A (112) 

Conditions will then need to be worked out to perform the novel 

aldol/aldol/lactonization sequence upon reaction of fused bicyclic lactone 127 with pre-
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useful foundation for further work toward the natural product family. Members of which 

demonstrate potent bioactivities and offer continuing inspiration for the development of 

new chemical methods. 
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1.5 Experimental Section 

1.5.1 General Experimental 

Commercial reagents were purchased from MilliporeSigma, Acros Organics, 

Chem-Impex, TCI, Oakwood, and Alfa Aesar, and used without additional purification. 

Solvents were purchased from Fisher Scientific, Acros Organics, Alfa Aesar, and Sigma 

Aldrich. Tetrahydrofuran (THF), diethyl ether (Et2O), acetonitrile (MeCN), 

dichloromethane (CH2Cl2), toluene (PhMe), 1,4-dioxane, and triethylamine (Et3N) were 

sparged with argon and dried by passing through alumina columns using argon in a Glass 

Contour (Pure Process Technology) solvent purification system. Benzene (PhH) was 

distilled over calcium hydride (CaH2) under a nitrogen (N2) atmosphere, degassed via 

freeze-pump-thaw (three cycles), and stored over 4 Å molecular sieves in a Schlenk flask 

under N2. Dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dichloroethane 

(DCE), and solutions of MeLi, n-BuLi, and LDA were purchased in Sure/Seal or 

AcroSeal bottling and dispensed under N2. Deuterated solvents were obtained from 

Cambridge Isotope Laboratories, Inc. or MilliporeSigma.  

Unless otherwise noted in the experimental procedures, reactions were carried out 

in flame or oven-dried glassware under a positive pressure of N2 in anhydrous solvents 

using standard Schlenk techniques. Reaction progresses were monitored using thin-layer 

chromatography (TLC) on EMD Silica Gel 60 F254 or Macherey–Nagel SIL HD (60 Å 

mean pore size, 0.75 mL/g specific pore volume, 5–17 μm particle size, with fluorescent 

indicator) silica gel plates. Visualization of the developed plates was performed under 

UV light (254 nm). Purification and isolation of products were performed via silica gel 
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chromatography (both column and preparative thin-layer chromatography). Organic 

solutions were concentrated under reduced pressure on IKA® temperature-controlled 

rotary evaporator equipped with an ethylene glycol/water condenser.  

Melting points were measured with the MEL-TEMP melting point apparatus. 

Proton nuclear magnetic resonance (1H NMR) spectra, carbon nuclear magnetic 

resonance (13C NMR) spectra and fluorine nuclear magnetic resonance (19F NMR) 

spectra were recorded on Bruker Avance NEO 400 (not 1H decoupled) or Bruker Avance 

600 MHz spectrometers (1H decoupled). Chemical shifts (δ) are reported in ppm relative 

to the residual solvent signal (δ 7.26 for 1H NMR, δ 77.16 for 13C NMR in CDCl3).1 Data 

for 1H NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of 

doublets, dt = doublet of triplets), coupling constant (Hz), integration. Data for 13C and 

19F NMR spectroscopy are reported in terms of chemical shift (δ ppm). IR spectroscopic 

data were recorded on a NICOLET 6700 FT-IR spectrophotometer using a diamond 

attenuated total reflectance (ATR) accessory. Samples are loaded onto the diamond 

surface either neat or as a solution in organic solvent and the data acquired after the 

solvent had evaporated. High resolution accurate mass (ESI) spectral data were obtained 

from the Analytical Chemistry Instrumentation Facility at the University of California, 

Riverside, on an Agilent 6545 Q-TOF LC/MS instrument (supported by NSF grant CHE-

1828782).  
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1.5.2 Experimental Procedures 

 
Dimethyl 2-methyl-3-oxosuccinate (136). To a solution of 133 (1.48 g, 7.39 mmol, 1 

equiv) in a mixture of CCl4 (17 mL, 172 mmol, 23 equiv) and MeCN (17 mL, 319 mmol, 

43 equiv) was added a solution of NaIO4 (6.33 g, 29.6 mmol, 4 equiv) in H2O (22 mL) 

and RuO2 (98 mg, 0.74 mmol, 0.1 equiv). The mixture was stirred at rt for 24 h, then 

filtered over a pad of Celite. The biphasic mixture was extracted with CH2Cl2 (2 x 10 

mL). The combined organic extract was washed with brine (10 mL), dried over MgSO4, 

filtered, and concentrated in vacuo to afford a pale-yellow oil. The crude product was 

purified by flash chromatography eluting with EtOAc/hexanes (1:5 v/v) to give 

compound 124 as colorless oil (930 mg, 73%).  Rf: 0.34 (1:5 EtOAc/hexane, UV, KMnO4 

stain). 1H NMR (400 MHz, CDCl3) δ 3.88 (s, 3H), 3.68 (s, 3H), 3.32 (dd, J = 18.6, 8.4 

Hz, 1H), 3.02 (dqd, J = 8.3, 7.2, 5.2 Hz, 1H), 2.88 (dd, J = 18.5, 5.3 Hz, 1H), 1.25 (d, J = 

7.2 Hz, 3H). All spectroscopic data are consistent with those previously reported.89 

 

6-Methyl-2-cyclohexen-1-one (136). To a 500 mL round-bottomed flask was added 2-

cyclohexenone (135, 4.00 g, 40 mmol, 1 equiv) and anhydrous THF (70 mL). The 

solution was cooled to -78 °C and a solution of LDA (2 M solution, 28 mL, 57 mmol, 

1.4 equiv) was added dropwise. The solution was stirred for 30 min followed by dropwise 
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addition of MeI (5.2 mL, 83 mmol, 2 equiv). After stirring for 30 min at -78 °C, HMPA 

(24 mL, 138 mmol) was added and the yellow mixture was stirred at -78 °C for 2 h. Et2O 

(80 mL) was added to the mixture at 0 °C and the organic extract was washed with sat. 

NH4Cl(aq) (5 x 20 mL) and brine (3 x 20 mL), dried over Na2SO4, and concentrated in 

vacuo. The crude product was purified by flash chromatography eluting with 

hexanes/Et2O (1:1 v/v) to give compound 136 as a volatile yellow liquid (3.70 g, 83%).  

Rf: 0.26 (1:10 EtOAc/hexane, UV). 1H NMR (400 MHz, CDCl3) δ 6.92 (m, 1H), 5.97 (dt, 

1H), 2.39 (m, 3H), 2.06 (m, 1H), 1.73 (m, 1H), 1.13 (d, 3H). All spectroscopic data are 

consistent with those previously reported.91 

 

1,6-Dimethyl-2-cyclohexen-1-ol (137). Enone 136 (3.20 g, 28.6 mmol, 1 equiv) was 

taken in anhydrous Et2O (53 mL) and cooled to -78 °C. A solution of MeLi×LiBr 

complex in Et2O (1.5 M, 20.6 mL, 30.9 mmol, 1.08 equiv) was added via syringe over 20 

min. The cooling bath was removed, and the mixture was stirred at rt for 3 h. After 3 h, 

the mixture was cooled to 0 °C and H2O (25 mL) was slowly added to the yellow 

solution. The biphasic mixture was extracted with Et2O (2 x 30 mL). The combined 

organic extract was washed with H2O (30 mL), dried over MgSO4, filtered, and 

concentrated in vacuo to afford cyclohexenol 137 (3.20 g, 89%, dr = 2:1) as a bright 

yellow oil which was used in the following step without further purification. Rf: 0.24 (1:4 

EtOAc/hexane, UV, vanillin stain). 1H NMR (400 MHz, CDCl3, both diastereomers) δ 

O
Me MeLi-LiBr
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HO Me
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5.71 (m, 2H), 2.05 (m, 2H), 1.74 (m, 1H), 1.56 (m, 1H), 1.42 (m, 1H), 1.16 (s, 3H), 1.03 

(d, 3H), 0.96 (d, 3H). All spectroscopic data are consistent with those previously 

reported.92 

 

3,4-Dimethyl-2-cyclohexen-1-one (138). To a 250 mL round-bottomed flask under N2 

was added PCC (10.95 g, 50.8 mmol, 2 equiv) and CH2Cl2 (50 mL). A solution of crude 

cyclohexenol 137 (3.20 g, 25.4 mmol, 1 equiv) in CH2Cl2 (16 mL) was transferred to the 

reaction mixture via cannula over 5 min, and the solution was stirred at rt for 3 h. The 

reaction mixture was diluted with Et2O (80 mL), decanted, and the remaining black resin 

was washed with Et2O (3 x 33 mL). The combined brown Et2O extract was washed with 

1.25 M NaOH(aq) (2 x 60 mL), 1.37 M HCl(aq) (60 mL) and sat. NaHCO3(aq) (2 x 33 mL), 

dried over MgSO4, filtered, and concentrated in vacuo to give the crude product (2.84 g) 

as a yellow oil. Purification by column chromatography (eluting with 1:6 Et2O/pentane, 

then 1:1 Et2O/pentane) yielded dimethyl enone 138 as a yellow oil (1.90 g, 63%). Rf: 

0.45 (1:2 EtOAc/hexane, UV, p-anisaldehyde stain); 1H NMR (400 MHz, CDCl3) δ 5.79 

(s, 1H), 2.42 (m, 2H), 2.29 (m, 1H), 2.09 (m, 1H), 1.93 (s, 3H), 1.73 (m, 1H), 1.17 (d, 

3H); 13C NMR (400 MHz, CDCl3) δ 199.6, 166.6, 126.3, 34.6, 34.4, 30.3, 22.7, 17.7. All 

spectroscopic data are consistent with those previously reported.92 
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3,4-Dimethyl-2-cyclohexen-1-ol (138). To a solution of LiAlH4 (153 mg, 4.03 mmol, 1 

equiv) in Et2O (6 mL) under N2 was slowly added a solution of enone 139 (500 mg, 4.03 

mmol, 1 equiv) in Et2O (40 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 3 h, 

quenched with H2O (5 mL) and sat. NH4Cl(aq) (10 mL) and extracted with Et2O (3 × 8 

mL).  The combined organic extract was dried over MgSO4, filtered, and concentrated in 

vacuo to afford allylic alcohol 139 (490 mg, 96%, dr = 2:3) as a pale-yellow oil, which 

was used in the following step without further purification. Rf: 0.57 (1:2 EtOAc/hexanes, 

UV, vanillin stain); 1H NMR (400 MHz, CDCl3, both diastereomers) δ 5.46 (m, 1H + 

1H), 4.14 (m, 1H + 1H), 2.04 (m, 2H), 1.87 (m, 2H), 1.73-1.61 (m, 3H), 1.69 (s, 3H + 

3H), 1.49 (m, 2H), 1.26 (m, 1H), 1.05 (d, 3H), 0.97 (d, 3H). All spectroscopic data are 

consistent with those previously reported.94  

 

3,4-Dimethyl-2-cyclohexen-1-ol (139). Enone 138 (450 mg, 3.6 mmol, 1 equiv) was 

taken in Et2O (36 mL) under N2 and cooled to 0 °C. A solution of DIBAL-H (1.2 M 

solution, 3.6 mL, 4.3 mmol, 1 equiv) was added and the mixture was stirred at 0°C for 2 

h. The reaction mixture was diluted with Et2O and slowly quenched with H2O (1 mL). 

Following addition of 15% NaOH(aq) (1 mL) and H2O (1 mL) at 0 °C, the mixture was 

stirred for 15 min at rt. Upon addition of MgSO4, the solution was stirred for an 
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additional 15 min, filtered, and concentrated in vacuo to yield allylic alcohol 139 (438 

mg, 96% yield, dr = 1:1) as a yellow oil which was used in the following step without 

further purification. Rf: 0.37 (1:4 EtOAc/hexanes, UV, KMnO4 stain). 1H NMR (400 

MHz, CDCl3, both diastereomers) δ 5.46 (m, 1H + 1H), 4.14 (m, 1H + 1H), 2.04 (m, 2H), 

1.87 (m, 2H), 1.73-1.61 (m, 3H), 1.69 (s, 3H + 3H), 1.49 (m, 2H), 1.26 (m, 1H), 1.05 (d, 

3H), 0.97 (d, 3H). All spectroscopic data are consistent with those previously reported.94 

 

2,3-Epoxy-3,4-dimethylcyclohexan-1-ol (140). Allylic alcohol 139 (490 mg, 3.8 mmol, 

1 equiv) was taken in anhydrous benzene (11 mL), along with VO(acac)2 (5.0 mg, 0.019 

mmol, 0.005 equiv). A solution of 70% t-BuOOH (0.75 mL, 4.2 mmol, 1.07 equiv) in 

anhydrous benzene (2 mL) was added and the mixture was stirred for 30 h at rt. The 

reaction mixture was quenched with sat. Na2SO3(aq) (8 mL), extracted with Et2O (3 x 8 

mL), and dried over MgSO4. Evaporation in vacuo afforded compound 140 (420 mg, 

86% crude yield, dr = 1:1) as a crude yellow oil. This material was clean by 1H NMR 

analysis and was therefore used in the following step without further purification. Rf: 

0.31 (1:2 EtOAc/hexanes, UV, p-anisaldehyde stain). 1H NMR (400 MHz, CDCl3, crude, 

both diastereomers) δ 4.02 (m, 1H), 3.16 (d, 1H, J = 3.7 Hz), 3.10 (d, 1H, J = 3.1 Hz), 

2.10-1.41 (m, 5H), 1.32 (s, 3H), 1.30 (s, 3H) 1.05 (d, 3H), 1.01 (d, 3H). All 

spectroscopic data are consistent with those previously reported.94 
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2,3-Epoxy-3,4-trans-dimethylcyclohexanone (128a/b). To a 0 °C solution of anhydrous 

pyridine (2 mL, 25 mmol, 10 equiv) in CH2Cl2 (21 mL) was added CrO3 (1.23 g, 12.3 

mmol, 5.0 equiv). After stirring for 15 min at 0 °C, a solution of crude epoxy alcohol 140 

(350 mg, 2.46 mmol, 1.0 equiv) in CH2Cl2 (1.5 mL) was slowly added to the oxidizing 

mixture and stirred additionally for 1 h at 0 °C. The liquid portion was decanted from the 

gummy residue and rinsed exhaustively with CH2Cl2. The combined organic extract was 

washed with sat. NaHCO3(aq) and brine, dried over MgSO4, and concentrated in vacuo. 

The crude product was purified by flash chromatography eluting with Et2O/hexanes (1:3 

v/v) to yield trans-(128a, 25.3 mg, 23%) and cis-(128b, 12.8 mg, 12%) isomers as 

volatile colorless liquids (25.3 mg, 23%). Rf: 0.27 (1:3 ether/hexane, UV, KMnO4 stain). 

1H NMR for 128a (500 MHz, CDCl3) δ 3.01 (s, 1H), 2.52−2.44 (ddd, 1H), 2.1−1.99 (m, 

2H), 1.75−1.56 (m, 2H), 1.39 (s, 3H), 1.16 (d, 3H). All spectroscopic data are consistent 

with those previously reported.94 

 

2,3-Epoxy-3,4-cis-dimethylcyclohexanone (128b). To a solution of cyclohexenone 138 

(200 mg, 1.6 mmol, 1 equiv) in anhydrous benzene (2 mL) was added 70% t-BuOOH 

(270 µL, 2.09 mmol, 1.3 equiv) followed by 40% Triton B in methanol (58 µL, 0.14 
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mmol, 0.086 equiv). The reaction mixture was stirred at rt for 48 h, quenched with H2O 

(2 mL) and extracted with Et2O (3 x 3 mL). The combined organic extract was washed 

with sat. Na2SO3(aq) (3 x 3 mL) and brine (3 x 3 mL), dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography eluting 

with EtOAc/hexanes (1:3 v/v) to yield compound 128b as a volatile colorless liquid (163 

mg, 73%). Rf: 0.62 (1:4 EtOAc/hexanes, UV, KMnO4 stain). 1H NMR (500 MHz, 

CDCl3) δ 3.10 (s, 1H), 2.40−2.17 (m, 5H), 1.44 (s, 3H), 1.07 (d, 3H, J = 7.1 Hz). All 

spectroscopic data are consistent with those previously reported.94 

 

1-tert-Butoxy-1-(trimethylsilyloxy) ethylene (146). To a 0-5 °C solution of anhydrous 

KHMDS (0.7 M solution, 22 mL, 15.5 mmol, 1.2 equiv) in t-BuOMe (10 mL) was added 

a solution of tert-butyl acetate (1.5 g, 13 mmol, 1.0 equiv) in t-BuOMe (3 mL) over 7 

min. After stirring for 30 min at 0-5 °C, TMSCl (2 mL, 16.8 mmol, 1.3 equiv) was added 

over 3 min and the solution was stirred at 0-5 °C for 30 min. The reaction mixture was 

warmed to rt and stirred for 2 h. The solution was poured into ice water (6 mL) and 

hexanes (6 mL). The biphasic mixture was extracted with hexanes (3 x 6 mL), washed 

with brine (6 mL), dried over Na2SO4, and concentrated in vacuo. The crude yellow oil 

was purified by vacuum distillation to give the desired ketene acetal as a colorless oil 

(1.78 g, 73%). bp 61-65°C/20 mTorr; 1H NMR (500 MHz, CDCl3): δ 0.23 (9H, s), 1.34 

(9H, s), 3.41 (1H, d, J = 1.4 Hz), 3.44 (1H, d, J = 1.4 Hz). All spectroscopic data are 

consistent with those previously reported.125 
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1-(tert-Butyldimethylsilyloxy)-1-tert-butoxyethylene (147). To a -78 °C solution of 

anhydrous LDA (2 M solution, 11.5 mL, 14.2 mmol, 1.1 equiv) was added tert-butyl 

acetate (1.5 g, 13 mmol, 1 equiv) over 10 min. The mixture was stirred for an additional 

15 min and then HMPA (2 mL) was added, followed by a solution of TBSCl (2.04 g, 

13.5 mmol, 1.05 equiv) in THF (4.5 mL). The solution was warmed to rt and the solvent 

was removed in vacuo. The residue was taken up in hexanes (70 mL), washed with H2O 

(3 x 30 mL) and brine (15 mL), dried over Na2SO4, and concentrated in vacuo to afford 

crude ketene acetal as a transparent, yellow liquid suitable for use without further 

purification (2.10 g, 71%). 1H NMR (400 MHz, CDCl3) δ 3.50 (d, J = 1.3 Hz, 1H), 3.48 

(d, J = 1.2 Hz, 1H), 1.37 (s, 9H), 0.96 (s, 9H), 0.21 (s, 6H). All spectroscopic data are 

consistent with those previously reported.115 

 

1-(tert-Butyldimethylsilyloxy)-1-methoxyethylene (148). To a -78 °C solution of 

anhydrous LDA (2.0 M solution, 8.3 mL, 16.5 mmol, 1.1 equiv) in THF (38 mL) was 

added methyl acetate (1.2 mL, 15 mmol, 1 equiv) over 10 min. After stirring for 30 min 

at -78 °C, DMPU (3 mL, 25 mmol, 1.7 equiv) was added dropwise, followed by a 

solution of TBSCl (2.71 g, 18.0 mmol, 1.2 equiv) in THF (5 mL). The mixture was 
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stirred at -78 °C for 30 min, then warmed to rt over 1 h. The solvent was removed in 

vacuo and the residue was taken up in pentane (100 mL), washed with H2O (50 mL), 

CuSO4 (50 mL), NaHCO3 (50 mL), and brine (15 mL), dried over Na2SO4, and 

concentrated in vacuo to afford crude ketene acetal as a clear, yellow liquid. The crude 

material was further purified via vacuum distillation to yield the desired product as a 

colorless oil (1.79 g, 64%). bp 72-74°C/20 mTorr; 1H NMR (400 MHz, CDCl3) δ 3.54 

(s, 3H), 3.23 (d, 1H, J  = 2.6 Hz), 3.10 (d, 1H, J  = 2.6 Hz), 0.93 (s, 9H), 0.17 (s, 6H). All 

spectroscopic data are consistent with those previously reported.115 

 

2-(1,6-dimethylcyclohex-2-en-1-yl)-N,N-dimethylacetamide (159). To a solution of 

alcohol 139 (300 mg, 2.37 mmol, 1 equiv) in anhydrous p-xylene (10 mL) was added N, 

N-dimethylacetamide dimethyl acetal (158, 3.46 mL, 23.7 mmol, 10 equiv). The solution 

was sparged with N2, sealed and heated for 14 h at 150 °C. The reaction mixture was 

allowed to cool to rt and concentrated in vacuo. The crude product was purified by 

column chromatography (50% EtOAc/hexanes) to afford amide 159 as pale-yellow oil 

(300 mg, 66%, d.r. = 1:1). 1H NMR (600 MHz, CDCl3) 5.60 (d, J = 1.8 Hz, 1H), 5.57 – 

5.44 (m, 1H), 2.94 (s, 6H), 2.47 (d, J = 13.2 Hz, 1H), 2.09 (dd, J = 13.3, 1.4 Hz, 1H), 2.03 

– 1.95 (m, 2H), 1.84 – 1.76 (m, 1H), 1.48 – 1.37 (m, 2H), 1.22 (s, 3H), 0.93 (d, 2.48H), 

0.91 (d, 2.30H). 13C NMR (600 MHz, CDCl3) δ171.8, 135.0, 126.6, 41.4, 39.9, 37.6, 

32.9, 26.3, 25.1, 23.6, 19.2, 14.3. IR (ATR): 3022, 2919, 1635, 1495, 1452, 1389, 1200, 
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1034 cm-1. HRMS (ESI+) m/z calculated for C12H22NO [M+H]+: 196.1696, found: 

196.1693; m/z calculated for NaC12H21NO [M+Na]+: 218.1515, found: 218.1507. 

 

7-iodo-3a,4-dimethylhexahydrobenzofuran-2(3H)-one (160). To a solution of amide 

159 (100 mg, 0.51 mmol, 1 equiv) in 50:50 THF/H2O was added iodine (194 mg, 1.53 

mmol, 3 equiv). The reaction mixture was heated for 4 h at 60 °C and cooled to rt. The 

solution was quenched with NaHSO4(aq) and extracted with Et2O (3 x 5 mL). The 

combined organic extracts were washed with brine (5 mL), dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by column chromatography (50% 

EtOAc/hexanes) to afford iodolactone 160 as yellow gummy solid (130 mg, 86%).1H 

NMR (600 MHz, CDCl3, mixture of diastereomers) δ 4.33 (d, J = 9.8 Hz, 1H), 3.79 (ddd, 

J = 13.8, 9.8, 4.4 Hz, 1H), 2.52 (dd, J = 17.0, 7.6 Hz, 2H), 2.30 (d, 1H), 2.05– 1.97 (m, 

3H), 1.93 (d, 1H), 1.71 – 1.60 (m, 2H), 1.55 – 1.43 (m, 3H), 1.36 (s, 3H), 1.24 (s, 3H), 

0.93 (ddd, J = 8.2, 6.7, 1.2 Hz, 6H). 13C NMR (600 MHz, CDCl3, mixture of 

diastereomers) δ 175.1, 174.4, 92.1, 87.9, 45.6, 44.0, 42.5, 37.7, 36.3, 34.5, 34.5, 32.5, 

31.4, 28.4, 26.5, 25.8, 23.2, 20.3, 17.0, 16.1. IR (ATR): 2927, 2859, 1778, 1674, 1596, 

1573, 1418, 1299, 1262, 1206, 1192, 1081, 1003, 931 cm-1. HRMS (ESI+) m/z calculated 

for C10H16IO2 [M+H]+: 295.0189, found: 295.0177. 
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Ethyl(1,6-dimethylcyclohex-2-en-1-yl)acetate (162). A mixture of cyclohexenol 139 

(500 mg, 3.96 mmol, 1 equiv), triethyl orthoacetate (TEOA, 5.5 mL, 30 mmol, 7.6 equiv) 

and propionic acid (2.2 µL, 0.03 mmol, 0.007 equiv) was heated to 140 °C for 23 h in a 

flask equipped with a distillation head. The excess triethyl orthoacetate was removed via 

simple distillation, and the yellow liquid was purified by column chromatography eluting 

with acetone/hexanes (1:19 v/v) to afford a diastereomeric mixture of ester 162 as a 

colorless oil (320 mg, 41%, dr = 1:1). Rf: 0.36 (5:95 EtOAc/hexanes, UV, KMnO4 stain). 

1H NMR (400 MHz, CDCl3) δ 5.61 (m, 1H), 5.51 (dt, J = 10.1, 2.1 Hz, 1H), 4.11 (q, 2H, 

J = 7.1 Hz), 2.31 (s, 1H), 2.22 (d, 1H), 2.00 (m, 1H), 1.69 (m, 1H), 1.56 (m, 1H), 1.40 (m, 

1H), 1.25 (t, 3H, J = 7.1 Hz), 1.16 (s, 3H), 0.92 (d, 1.24H), 0.90 (d, 1.16H). 13C NMR 

(400 MHz, CDCl3) δ 172.7, 60.1, 59.5, 54.9, 39.4, 36.3, 25.6, 24.2, 23.5, 21.2, 16.0, 14.3. 

IR (ATR): 3122, 2941, 2932, 1770, 1682, 1555, 1320, 1288, 1133, 1112, 1031, 1010 cm-1 

HRMS (ESI+) m/z calculated for C12H21O2 [M+H]+: 197.1545, found: 197.1552 

 

Ethyl(2,3-dimethyl-7-oxabicyclo [4.1.0]heptan-2-yl)acetate (163). To a solution of 

ester 162 (950 mg, 4.84 mmol, 1 equiv) in CH2Cl2 (11 mL) was added m-

chloroperbenzoic acid (2.00 g, 9.69 mmol, 2 equiv, 83.1% pure) portion-wise. After 

stirring for 8 h to 12 h at rt, the solution was quenched with H2O and Na2SO3(s) and 
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diluted with EtOAc (20 mL). The organic extract was washed with NaHCO3(aq) (3 x 10 

mL), dried over Na2SO4, concentrated in vacuo, and purified by column chromatography 

eluting with EtOAc/hexanes (1:4 v/v) to afford epoxy ester 163 as a volatile colorless oil 

(706 mg, 69%). 1H NMR (400 MHz, CDCl3) δ 4.15 (q, 2H), 3.26-3.06 (m, 2H), 2.48 (m, 

2H), 2.09 (m, 2H), 1.88 (m, 1H), 1.72 (m, 1H), 1.59 (m, 1H), 1.27 (t, 3H), 1.25 (s, 3H), 

1.23 (m, 1H), 0.80 (d, 3H). 13C NMR (400 MHz, CDCl3) δ 172.7, 60.1, 59.5, 54.9, 39.4, 

36.3, 25.6, 24.2, 23.5, 21.2, 16.0, 14.3. IR (ATR): 2962, 2857, 1764, 1579, 1342, 1289, 

1263, 1151 cm-1. HRMS (ESI+) m/z calculated for C20H21O3 [M+H]+: 213.1485, found: 

213.1489. 

 

1,6-Dimethyl-9-hydroxy-2-oxabicyclo[4.3.0]nonan-3-one (164). Epoxy ester 163 (506 

mg, 2.38 mmol, 1 equiv) was taken in a mixture of THF/H2O/HClO4 (10:5:0.5 v/v). After 

stirring for 20 h at rt, the solution was neutralized with 20% NaHCO3(aq) (1 mL) and 

extracted with Et2O (4 x 2 mL). The combined organic extract was dried over Na2SO4, 

concentrated in vacuo, and purified by column chromatography (40-45% 

EtOAc/hexanes) to afford hydroxy lactone 164 as colorless oil (220 mg, 50%). 1H NMR 

(600 MHz, CDCl3) δ 3.88 (d, J = 8.2 Hz, 1H), 3.52 (ddd, J = 12.6, 8.2, 4.7 Hz, 1H), 2.40 

(d, J = 17.0 Hz, 1H), 1.97 (d, J = 17.0 Hz, 1H), 1.92 (ddt, J = 13.0, 4.5, 3.1 Hz, 1H), 1.70 

– 1.64 (m, 1H), 1.54 (dtd, J = 13.7, 6.8, 4.3 Hz, 1H), 1.39 – 1.30 (m, 2H), 1.22 (s, 3H), 

0.93 (d, J = 6.8 Hz, 3H). 13C NMR (600 MHz, CDCl3) δ 176.3, 91.8, 73.1, 44.5, 38.0, 
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35.8, 29.9, 28.6, 26.5, 16.8. IR (ATR): 3431, 2936, 2874, 1772, 1487, 1262, 1101, 846 

cm-1. HRMS (ESI–) m/z calculated for C10H15O3 [M–H]–: 183.1027, found: 183.1030.  

 

1,6-Dimethyl-2,9-oxabicyclo[4.3.0]nonan-3-one (127). To a 0 °C solution of anhydrous 

pyridine (25 µL, 0.31 mmol, 6 equiv) in CH2Cl2 (260 µL) was added CrO3 (15.6 mg, 0.16 

mmol, 3 equiv). After stirring for 15 min at 0 °C, a solution of hydroxy lactone 164 (10 

mg, 0.05 mmol, 1 equiv) in CH2Cl2 (28 µL) was slowly added to the oxidizing mixture 

and stirred additionally for 20 h at 0 °C. The solution was decanted from the gummy 

residue and rinsed exhaustively with CH2Cl2. The combined organic extract was washed 

with sat. NaHCO3(aq) and brine, dried over MgSO4, and concentrated in vacuo to yield 

lactone 127 as a brown oil (6.3 mg, 71%). 1H NMR (600 MHz, CDCl3) δ 4.45 (s, 1H), 

2.60 – 2.39 (m, 2H), 2.25 (d, J = 16.9 Hz, 1H), 2.08 – 2.02 (m, 1H), 2.00 (dd, J = 16.8, 

0.9 Hz, 1H), 1.59 – 1.49 (m, 1H), 1.38 (d, J = 0.9 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H). 13C 

NMR (600 MHz, CDCl3) δ 204.0, 173.3, 86.1, 48.7, 38.2, 36.7, 33.1, 28.6, 25.3, 15.3. IR 

(ATR): 2959, 2937, 2874, 1777, 1573, 1455, 1419, 1299, 1207, 1179, 1133, 1102, 1081, 

1003, 958 cm-1. HRMS (ESI+) m/z calculated for C10H15O3 [M+H]+: 183.1016, found: 

183.1018.  
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Dimethyl-2,2-dimethoxy-4-methylpentanedioate (169). To a solution of keto-diester 

124 (139 mg, 0.73 mmol, 1 equiv) in anhydrous MeOH (0.3 mL) was added trimethyl 

orthoformate (0.20 mL, 1.80 mmol, 2.4 equiv) and H2SO4 (1 drops). The reaction mixture 

was heated for 24 h at 65 °C and cooled to rt. The solution was quenched with 

NaHCO3(aq) and extracted with EtOAc (3 x 3 mL).  The combined organic extract was 

dried over MgSO4 and concentrated in vacuo to afford crude acetal 169 as a transparent, 

yellow liquid suitable for use without further purification (120 mg, 70%). 1H NMR (500 

MHz, CDCl3) δ 3.79 (d, J = 1.1 Hz, 3H), 3.66 (d, J = 1.1 Hz, 3H), 3.25 (s, 6H), 2.53 (dq, 

J = 13.1, 7.1 Hz, 1H), 2.44 (dd, J = 14.5, 8.4 Hz, 1H), 1.88 (dd, J = 14.6, 4.5 Hz, 1H), 

1.17 (d, J = 7.0 Hz, 3H). 13C NMR (500 MHz, CDCl3) δ 160.3, 159.6, 108.4, 63.6, 52.5, 

50.0, 49.9, 37.1, 34.6, 18.5. IR (ATR): 2927, 2859, 1742, 1585, 1473, 1418, 1279, 1207, 

1182, 1052, 1010 cm-1. HRMS (ESI+) m/z calculated for C10H19O6 [M+H]+: 235.1176, 

found: 235.1176. 

 

Methyl-5-((tert-butyldimethylsilyl)oxy)-2,2,5-trimethoxy-4-methylpent-4-enoate 

(170). To a -78 °C solution of anhydrous LDA (2 M solution, 0.2 mL, 0.47 mmol, 1.1 

equiv) was added a solution of dimethyl acetal 169 (100 mg, 0.43 mmol, 1 equiv) in THF 

(1 mL) over 10 min. The mixture was stirred for an additional 15 min and then HMPA 
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(0.1 mL) was added, followed by a solution of TBSCl (68 mg, 0.45 mmol, 1.05 equiv) in 

THF (4.5 mL). The solution was warmed to rt and the solvent was removed in vacuo. The 

residue was taken up in hexanes (5 mL), washed with H2O (3 x 3 mL) and brine (3 mL), 

dried over Na2SO4, and concentrated in vacuo to afford crude ketene acetal 170 as a 

transparent, yellow liquid suitable for use without further purification (125 mg, 84%, 2:1 

mixture of E/Z isomers). 1H NMR for (E)-170 (500 MHz, CDCl3) δ 3.76 (s, 3H), 3.49 (s, 

3H), 3.28 (s, 6H), 2.59 (s, 2H), 1.56 (s, 3H), 0.95 (s, 9H), 0.14 (s, 6H). 1H NMR for (Z)-

170 (500 MHz, CDCl3) δ 3.78 (s, 3H), 3.45 (s, 3H), 3.28 (s, 6H), 2.63 (s, 2H), 1.55 (s, 

3H), 0.98 (s, 9H), 0.14 (s, 6H). 13C NMR for (E)-170 (500 MHz, CDCl3) δ 169.4, 152.7, 

128.1, 101.3, 57.7, 52.1, 49.8, 35.1, 31.0, 25.5, 17.9, 14.8, -4.8. 13C NMR for (Z)-170 

(500 MHz, CDCl3) δ 169.3, 151.9, 128.3, 102.7, 57.7, 52.5, 49.9, 37.1, 34.6, 25.6, 18.5, 

13.6, -4.7. IR (ATR): 3087, 2897, 2844, 1749, 1483, 1317, 1289, 1229, 1177, 1051, 982 

cm-1. HRMS (ESI+) m/z calculated for C16H33O6Si [M+H]+: 349.2041, found: 349.2054. 

 

2,3-Dimethyl-6-oxocyclohexeneyl acetate (171). To a 0 °C solution of enol 149 (10 mg, 

0.07 mmol, 1 equiv) in CH2Cl2 (160 µL) was added acetyl chloride (8 µL, 0.11 mmol, 

1.50 equiv) dropwise. After stirring for 2 h at 0 °C, the mixture was quenched with H2O 

(1 mL), extracted with CH2Cl2 (3 x 1 mL), dried over Na2SO4, and concentrated in vacuo. 

Purification by column chromatography (eluting with 30:70 EtOAc/hexanes) yielded 

acetate 171 as a pale-yellow oil (3.4 mg, 28%). Rf: 0.34 (1:3 EtOAc/hexanes, UV, KMO4 
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stain); 1H NMR (400 MHz, CDCl3) δ 2.62 (ddd, J = 17.1, 9.9, 5.7 Hz, 2H), 2.45 (ddd, J = 

17.1, 7.7, 4.9 Hz, 1H), 2.25 (s, 3H), 2.23 – 2.16 (m, 2H), 1.85 (s, 3H), 1.78 (ddt, J = 10.5, 

7.6, 5.3 Hz, 1H), 1.24 (s, 3H). All spectroscopic data are consistent with those previously 

reported.126 

 

N,N-dimethylacetamide dimethyl sulfate complex. To a 100 mL three-necked round 

bottom flask with thermometer and dry nitrogen inlet was added dimethyl sulfate (10.0 

mL, 105 mmol, 1 equiv) and dimethylacetamide (10.0 mL, 108 mmol, 1 equiv). The 

mixture was heated to 70-80 °C for 3 h. After cooling in an ice-water bath, the solution 

was washed with dry PhH (7 mL) and dry Et2O (2 x 6 mL). The washings were removed 

with a large syringe and the last traces of solvent were removed in vacuo to yield a 

colorless, viscous oil (21.32 g, 87%). 1H NMR (600 MHz, CDCl3) δ 4.30 (s, 3H), 3.71 (s, 

3H), 3.49 (s, 3H), 3.32 (s, 3H), 2.66 (s, 3H). All spectroscopic data are consistent with 

those previously reported.127 

 

[(N-butylamino) propyl] trimethoxysilane. n-Butylamine (16 mL, 164 mmol, 3 equiv) 

was heated to 80 °C and (3-chloropropyl)trimethoxysilane (10 mL, 54 mmol, 1 equiv) 

was added dropwise. The temperature was maintained for 8 h. Warm petroleum ether (40 

°C, 20 mL) was added at rt and the white precipitate was filtered at 0 °C. Evaporation of 

the solvent produced a tacky yellow slush that was passed through silica to afford the 
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appropriate product as a clear yellow liquid (11.9 g, 94%). 1H NMR (400 MHz, CDCl3) δ 

3.60 (s, 9H), 2.7 (q, 4H), 1.7−1.2 (m, 8H, 0.9−0.6 (m, 7H). All spectroscopic data are 

consistent with those previously reported.106 

 

Tetrabutylchloroformamidinium chloride salt (TBCA). To a 0 °C solution of 1,1,3,3-

tetrabutylurea (1 mL, 3.5 mmol, 1.0 equiv) in anhydrous PhMe (35 mL) was added oxalyl 

chloride (360 µL, 4.2 mmol, 1.2 equiv). The solution was stirred at rt for 2 h, then 

warmed to 60 °C for 20 h. The dark yellow mixture was cooled, filtered under reduced 

pressure, and concentrated in vacuo to yield a dark brown oil suitable for use without 

further purification (1.12 g, 94%). 1H NMR (500 MHz, CDCl3) δ 3.88 (t, 4H), 3.33 (t, 

4H), 1.76−1.59 (m, 8H), 1.51−1.34 (m, 8H), 0.89 (t, 6H), 0.83 (t, 6H). All spectroscopic 

data are consistent with those previously reported.128 

 

Pentabutylpropyltrimethoxysilane guanidinium chloride. [(N-butylamino) propyl] 

silane (820 µL, 3.27 mmol, 1.0 equiv) and NEt3 (660 µL, 4.71 mmol. 1.44 equiv) was 

taken in anhydrous PhMe (5 mL). A solution of tetrabutylchloroformamidinium chloride 

(TBCA) (1.12 g, 3.30 mmol, 1.01 equiv) in anhydrous PhMe (2 mL) was added. The 

temperature was raised to 70 °C and maintained for 4 h. Triethylammonium chloride was 

filtered by vacuum filtration and following removal of PhMe in vacuo, the guanidinium 

silane was obtained as a brown oil (1.78 g, quantitative). 1H NMR (500 MHz, CDCl3) δ 
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3.6 (s, 9H), 3.2−2.9 (m, 12H), 1.91−1.1 (m, 22H), 0.9−0.6 (m, 17H). All spectroscopic 

data are consistent with those previously reported.128 

 

Silica-supported pentabutyl propyl guanidinium chloride (PBGSiCl). Silica (8.4 g) 

dried at 70 °C/20 mTorr was suspended in anhydrous PhMe (22 mL). A solution of 

guanidinium silane (1.78 g, 3.31 mmol, 1.0 equiv) in PhMe (4.5 mL) was added and the 

mixture was heated at reflux for 8 h. After filtration, washing with PhMe, and drying (18 

h at 80 °C/20 mTorr), HMDS (860 µL, 4.10 mmol, 1.24 equiv) was added to the 

functionalized silica in PhMe (50 mL) and the suspension was refluxed for 4 h. The beads 

were filtered, washed with PhMe, and dried for 18 h at 80 °C/20 mTorr to yield the 

catalyst as tan silica beads (8.5 g). All data are consistent with those previously 

reported.128 

 

Triphenylsilanol. To a solution of silicon tetrachloride (2.5 mL, 21.8 mmol, 1 equiv) and 

Et2O (170 mL) at 0 °C was added a solution of phenyl lithium (1.9M solution, 34 mL, 

65.3 mmol, 3 equiv) in Et2O over 3 h. The mixture was stirred overnight at rt, hydrolyzed 

with H2O and sat. NH4Cl(aq) at 0 °C and extracted with Et2O (2 x 15 mL). The combined 

organic layers were dried over Na2SO4, decolorized by stirring with charcoal (3 g) for 5 

min, and concentrated in vacuo. The resulting residue was dissolved in boiling petroleum 

ether. Slow cooling to rt and refrigeration gave a white powder (3.23 g, 54%), which was 
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filtered off, washed with several portions of petroleum ether, and dried at 60 °C under 

vacuum. 1H NMR (500 MHz, CDCl3) δ 7.84 – 7.32 (m, 18H), 2.48 (s, 1H). All 

spectroscopic data are consistent with those previously reported.129 

 

Tris(triphenylsilyl)vanadate(V). Vanadium pentoxide (433 mg, 2.4 mmol, 1 equiv), 

triphenylsilanol (3.23g, 11.7 mmol, 4.9 equiv), butanol (1.0 mL, 11.7 mmol, 4.9 equiv), 

and xylene (14 mL) were refluxed, and the water formed was continuously removed 

using a Dean-Stark apparatus during 7 h. The black material was removed by filtration, 

washed with boiling xylenes (5 x 3 mL) and dried in vacuo. The combined filtrate was 

allowed to cool, and the pale gray solid (3.90 g) was isolated by filtration, washed with 

xylenes and hexanes, and dried over vacuum filtration. m.p. 222–225 °C. 1H NMR (600 

MHz, CDCl3) δ 7.54 – 7.46 (m, 18H), 7.45 – 7.36 (m, 9H), 7.22 (t, 18H). All data are 

consistent with those previously reported.129 

 

Vanadium phosphate. Vanadium pentoxide (1.0 g, 5.5 mmol, 1 equiv) was refluxed in a 

solution of H2O (24 mL, 1337 mmol, 243 equiv) and concentrated H3PO4 (13 mL, 109 

mmol, 19.8 equiv) for 16 h under air. A green, crystalline solid (1.33 g) was isolated by 

vacuum filtration. The product was washed with small volumes of H2O and then ethanol 

and dried by suction in air. IR: 3540 (br), 1050 (s), 910 (s) cm-1. All data are consistent 

with those previously reported.130 
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2-Bromoacetyl chloride. A stirred solution of bromoacetic acid (2.5 g, 18.0 mmol, 1 

equiv) in thionyl chloride (12.5 mL, 172 mmol, 9.6 equiv) was refluxed for 6 h. The 

reaction mixture was concentrated in vacuo to yield bromoacetyl chloride as a yellow 

liquid (2.52 g, 90%). 1H NMR (500 MHz, CDCl3) δ 4.35 (s, 2H). All spectroscopic data 

are consistent with those previously reported.131 
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1.7 Selected NMR Spectra 
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2 Chapter Two: Synthetic Efforts Toward Berbamine 

2.1 Introduction 

2.1.1 Classification of Bisbenzylisoquinoline Alkaloids (BisBIAs) 

The benzylisoquinoline alkaloids (BIAs) represent a family of over 2500 

plant natural products that have been used for centuries as analgesics and wound 

disinfectants.1 Some of the active and biosynthetically-related members, have been 

exploited in modern medicine, for example, morphine for pain, colchicine for gout, 

and noscapine for cough and cancer.2 In recent years, the pursuit of 

bisbenzylisoquinoline alkaloids (bisBIAs), molecules comprising two BIA motifs, 

is gaining traction. Isolated from the Berberidaceae, Ranunculaceae, Lauraceae 

and Menispermaceae plant families, these compounds can modulate diverse 

biological functions.3,4 With varied and rich pharmacology and chemistry, the 

majority of these alkaloids arise from the condensation of two coclaurine units (179 

or 180) while some can arise from the condensation of a coclaurine with reticuline 

(181, Scheme 47).5,6 Based on these distinctions, bisBIAs are often divided into 

three major classes: bisreticulines, coclaurine-reticulines, and biscoclaurines.7  

 

Scheme 47. Coclaurine (179 and 180) and/or reticuline (181) are the biosynthetic 

building blocks of the majority of bisBIAs 
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In all instances, the two benzylisoquinoline moieties are linked via 

biphenyl, diphenyl ether, or benzyl phenyl ether bonds.7 Aromatic rings with 

hydroxy, methoxy or methylenedioxy substituents and two chiral centers make up 

the key features of bisBIAs. Therefore, a high degree of variation is observed 

depending on the number of ether linkages, the sites on the two units at which the 

linkage originates, the nature of substitution of the nitrogen atoms, and the degree 

of unsaturation about the heterocycles.  

Currently, over five hundred bisBIAs are known and have since been the 

subject of several review articles detailing their botanical sources as well as 

spectral and physical data.1-8 This review highlights the biosynthesis and medicinal 

implications of bisBIAs. Further attention is given to the prevailing synthesis 

strategies for preparing these alkaloids. 

2.1.2 Biosynthesis 

BisBIAs are derived from a highly conserved biosynthetic pathway.8 

Catalyzed by tyrosine decarboxylase, the biosynthesis begins with the conversion 

of amino acid (S)-tyrosine (182) into 4-hydroxyphenylacetaldehyde (183) and 

dopamine (184, Scheme 48).8,9 A Pictet–Spengler transformation facilitated by the 

enzyme norcoclaurine synthase combines arylacetaldehyde 183 with dopamine 

(184) to generate (S)-norcoclaurine. After two successive enzymatic O- and N-

methylation steps, the core intermediate N-methylcoclaurine (180) is attained that 

ultimately gives rise to an array of BIAs.  
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Scheme 48. Current understanding of the bisBIA biosynthetic pathway 
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2.1.3 Biological Activity 

Bisbenzylisoquinoline alkaloids have drawn significant attention due to 

their potent anti-inflammatory, antiviral, antitumor, analgesic and anti-plasmodial 

properties.6,11,12 Formulations containing these alkaloids have been used for 

centuries as traditional medicines in India, China, sub-Saharan Africa and 

Southeast Asia.13 Some active members even have the ability to immobilize 

skeletal muscle, hence their pronounced use as arrow poisons in South America.14  

Over the past few decades, the quantity of publications concerning the bioactivities 

of bisBIAs has largely increased. Several extensive studies have examined the 

antimicrobial and anti-allergenic characteristics of bisBIAs. The antiparasitic 

influence of twenty unique bisBIAs against Trypanosoma brucei and Leishmania 

donovani was explored by Camacho and co-workers.15 Comparably, these 

alkaloids exhibited heightened synergistic effects with the antibiotic cefazolin on 

methicillin-resistant Staphylococcus aureus strains.16  

More recent findings have identified bisBIAs as inhibitors of calcium influx 

in glial cells and neurons, combatting neuroinflammation and neuroapoptosis.17 

Another example by Medeiros et al. reported that the alkaloid curine (188) induced 

vasorelaxation via direct inhibition of L-type voltage-gated calcium current in rat 

aorta smooth muscle cells, triggering an intracellular decrease in transient calcium 

stores (Figure 7).18  
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Figure 7. Selected bioactive bisBIAs 
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blocked viral S and N protein expression as well as human coronavirus OC43 (HCoV- 

OC43) replication in MRC-5 human lung cells.23 Likewise, the approved bisBIA drug 

cepharanthine (189) was shown to inhibit SARS-CoV-2 replication with minimal toxicity 

at a half maximal effective concentration (EC50) of 0.35 µM (Figure 7).24,25 While the 

mechanism of action of cepharanthine (189) is multifaceted, the antiviral activity not only 

relies on suppression of nuclear factor-κB (NF-κB) signaling pathways but also induction 

of plasma membrane rigidity to hamper entry of the pathogen into the cell.24 These 

activities highlight a new role for bisBIAs in the prevention and treatment of SARS-CoV-

2 infection. Though many bisBIAs have yet to be biologically evaluated, some 

demonstrate potential as drug candidates and merit special emphasis: tetrandrine (186), 

berbamine (187), neferine (190), and dauricine (191, Figure 7). 

2.1.3.1 Tetrandrine 

First isolated by Kondo and Tano in 1928, tetrandrine (186) is the major 

bisBIA found in the roots of Stephania tetrandra (Menispermaceae), a climbing 

plant used in traditional Chinese and Japanese medicine (Figure 7).26 Beyond its 

traditional use for remedying autoimmune disorders, hypertension and 

cardiovascular diseases, the pharmacological effects of tetrandrine (186) have been 

the focus of various studies since the late-1990s. Its immunologic and vasodilatory 

properties have been well evaluated, particularly as a latent therapeutic to treat 

drug-resistant autoimmune diseases and prevent excess fibrosis in patients with 

severe conjunctival inflammation.27,28  

The labs of Xu29 and Huang30 described the antiproliferative nature of 

tetrandrine (186) on human T and liver cancer cells, respectively, by inhibition of 
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NF-κB and calcium/calmodulin-dependent protein kinase II, both of which are 

critical regulators of not only innate immunity, but also cancer-related 

inflammation. It was even found to upregulate in vitro expression and activation of 

initiator and effector caspases in glucocorticoid-resistant Jurkat T-cells, 

contributing to the apoptosis-inducing effect in T cell acute lymphoblastic 

leukemia (T-ALL).27,31  

Recently, the alkaloid has been recognized as an antagonist of two-pore 

channels (TPC), or voltage-dependent calcium channels located on lysosomal 

membranes, which have been implicated in the pathogenesis of cancer and Ebola 

virus infection.32 Sakurai et al. determined that in vivo and in vitro Ebola virus 

entry can be hindered by disrupting TPC channels using submicromolar 

concentrations of tetrandrine (186).33 The alkaloid also reduced tumor metastasis 

through inhibition of TPC1 and TPC2 in vivo and in vitro.34  

An additional pharmacological target of tetrandrine (186) is P-glycoprotein 

(Pgp), a ubiquitous membrane transporter with the ability to efflux drug molecules 

out of cancer cells, which reduces the efficacy of chemotherapies.35 

Overexpression of Pgp in cancer cells is a crucial factor of multi-drug resistance in 

a variety of antitumor agents. Among a series of bisBIAs, tetrandrine (186) was 

identified as an effective modulator of Pgp activity.27,36 Named CBT-1, this 

alkaloid is being developed by CBA Research Inc. as an adjunctive therapy to 

chemotherapy in various cancer types with multiple drug resistance, including 

sarcoma, non-Hodgkin’s lymphoma, acute myelogenous leukemia, and multiple 

myeloma.37 Prior phase I trials with CBT-1 defined the tolerable dose range and 
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side effects when  administered with doxorubicin.38 The most recent clinical study 

is currently investigating the combination of doxorubicin and CBT-1 for the 

treatment of unresectable, metastatic sarcoma in patients who previously 

progressed with doxorubicin.39 A thorough discussion of the synergistic, apoptotic, 

and autophagic consequences of tetrandrine on multiple cancers, both in vitro and 

in vivo, appears in a comprehensive review by Luan et al.36 

From a toxicity perspective, oxidative metabolism involving the 12-O-

methoxy group of tetrandrine (186) leads to the generation of a highly reactive 

quinone methide intermediate suspected to be responsible for massive pulmonary 

edema and hemorrhage in mice models.40 Likewise, continuous administration of 

the alkaloid caused a marked pathological change in the liver tissues of dogs.41 

2.1.3.2 Berbamine 

Berbamine (187) is a cyclic bisBIA isolated from the traditional Chinese 

herbal medicine Berberis amurensis (Figure 7).5 There is a well-documented 

history of its usage in clinical practice for treating inflammation, cancer, and 

autoimmune diseases.6 A simple keyword search in scientific databases returns 

about five hundred publications on berbamine’s pharmaceutical assessment 

spanning from 1969 to present day. Numerous research findings have disclosed its 

inhibitory effects toward a variety of cancer cell lines, specifically advanced 

melanoma, ovarian cancer, and chronic myeloid leukemia.42,43  Its antiproliferative 

qualities are frequently associated with the inactivation of critical pro-tumorigenic 

pathways, such as p53, Fas signals, and Ca2+/calmodulin-dependent protein kinase 

II 𝛾.44  
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For example, c-Myc is a transcription factor that regulates cellular metabolism, 

cell growth, division, and apoptosis.45 Dysregulated and overexpressed in many cancers 

including B cell lymphomas and T cell lymphomas, c-Myc is considered an undruggable 

oncogene.46 Prof. Wendong Huang’s laboratory at City of Hope (COH) National Medical 

Center, with whom our lab has been actively collaborating with since 2020, first 

identified CaMKII as a key c-Myc regulator that can be targeted by the bisBIA 

berbamine (187).47 By inhibiting CaMKII, this natural product destabilizes c-Myc and 

reduces tumor volume with minimal toxicity in a mouse model, thus establishing 

berbamine as a CaMKIIγ/δ inhibitor and the c-Myc:CaMKII axis as a druggable 

therapeutic target for aggressive cancers.44,47–49 

Interestingly, recent studies also uncovered an unforeseen synergy of berbamine 

(187) with an assortment of targeted therapies. Zhao et al.50, Hu et al.51 and Jia et al.52 

demonstrated that berbamine improved the efficacy of sorafenib, gefitinib and paclitaxel, 

respectively, on advanced hepatocellular carcinoma (HCC), pancreatic cancer and glioma 

cells through suppression of the STAT3 signaling pathway and reactive oxygen species 

(ROS)-dependent phospho-Akt protein expression.   

2.1.3.3 Neferine and Dauricine 

Neferine (190) and dauricine (191) are the primary bioactive components 

obtained from the seed embryo of Nelumbo nucifera (lotus) and the roots of 

Menispermum dauricum (Asian moonseed), respectively (Figure 7).6,40 Both 

compounds display antiviral, antioxidant, antidepressant, antiarrhythmic and anti-

cancer actions.40  
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Neferine (190) has neuroprotective capabilities and can function as a ROS-

mediated autophagy inducer (Figure 7).53,54 Its anti-diabetic implications were 

disclosed by Li and co-workers.55 Their study revealed that compared to untreated 

diabetic mice, an evident reduction in the blood pressure, body weight, fasting 

blood sugar glucose, insulin, triglycerides and total cholesterol was seen in type II 

diabetic mice upon neferine treatment. Additionally, the alkaloid not only 

bolstered the anti-tumor effects of chemotherapeutic agents, but also reversed 

multiple drug resistance in both in vitro and in vivo models of cancer by decreasing 

epithelial-mesenchymal transition (EMT), a process associated with 

chemoresistance and tumor invasion.53,56,57 In a recent investigation, neferine (190) 

reduced the viability of human prostate cancer (PCa) cells and their stem cells in a 

time- and dose-dependent manner by upregulating cleaved poly-ADP ribose 

polymerase (PARP), apoptotic caspase-3, and downregulating the expression of 

anti-apoptotic protein Bcl-2. Intriguingly, neferine (190) also elevated the 

expression of several tumor suppressor genes and downregulated cyclin-dependent 

kinase 4 (CDK-4) expression, leading to cell cycle arrest at the G1 phase.58  

Dauricine (191) exerts similar pharmacological attributes with clinical 

potential. Its cardiovascular, anti-inflammatory, membrane modulating, anti-

platelet aggregation and neurological effects are well-documented (Figure 7).5,6  

Outlined by Wang et al., dauricine (191) significantly minimizes the in vitro 

secretion level of amyloid beta (Aβ) and Cu2+-induced ROS in human β-amyloid 

precursor protein (APPs) cells.59 Hence, it is suggested that the alkaloid could 

rescue neurons from oxidative stress-induced apoptosis and possibly relieve acute 
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oxidative damage in Alzheimer’s disease (AD) models. The therapeutic capacity of 

dauricine against lipopolysaccharide (LPS)-induced inflammatory bone loss is 

more recently demonstrated by Park and co-workers via its action on osteoclasts 

(OC).60 Yet, the adverse cytotoxicity of the alkaloid in liver, kidney and lung-

derived cell lines is often overlooked.61 

2.1.4 Total Syntheses of bisBIAs 

2.1.4.1 Synthesis of Coclaurine and its Derivatives 

 

Scheme 49. Total synthesis of (±)-coclaurine (179) 
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hydrolysis (Scheme 49).62 An Arndt–Eistert reaction between amine (193) and 4-

methylsulphonyloxydiazoketone has also been employed to synthesize amide 195 

en-route to coclaurine (179).63 The above sequence has since been adapted and 

modified in later syntheses of related tetrahydroisoquinolines. For example, N-

methylcoclaurine (180) was obtained through a LiAlH4-mediated reduction of the 

urethane derivative of dibenzylcoclaurine followed by hydrogenolysis.64 The 

Bischler–Napieralski reaction and Noyori reduction is another representative 

synthesis sequence often applied in the construction of these isoquinoline 

scaffolds. 

 

Scheme 50. Hiemstra’s strategy to access ten benzyltetrahydroisoquinolines (201) 
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arylethylamines (199) using (R)-TRIP as the chiral catalyst (Scheme 50).65 This method 

provided access to several 1-benzyl-1,2,3,4-tetrahydroisoquinolines with up to 92% 

enantiomeric excess. With this organocatalyzed Pictet–Spengler reaction, the Hiemstra 

group accomplished the synthesis of ten biologically relevant tetrahydroisoquinoline 

alkaloids, including (R)-coclaurine, (R)-reticuline, (R)-norprotosinomenine, and other 

variants. Illustrated in Scheme 50, the steps subsequent to the key (R)-TRIP-catalyzed 

Pictet–Spengler reaction are high yielding and straightforward. O-Methylation of the 

resulting tetrahydroisoquinolines (200) using MeI and K2CO3 followed by acid-mediated 

cleavage of the MOM, TBS, and Nps groups gave the alkaloids (201) as their 

hydrochloride salts in 71–89% overall yield with the ee’s being mostly preserved. The N-

methyl derivatives were fashioned from the unprotected alkaloids via reductive amination 

with NaCNBH3 and formaldehyde.   

2.1.4.2 Synthesis of Acyclic bisBIAs 

There exists two fundamental synthetic approaches to bisBIAs.8 One is to 

form diaryl ether bonds for tail-to-tail or head-to-tail connected bisBIAs, to which 

are subsequently elaborated to isoquinoline fragments (see Scheme 49). The 

second method is to prefunctionalize both benzylisoquinoline units and then merge 

them via diaryl ether bonds. Nearly all syntheses of acyclic and cyclic bisBIAs to-

date rely on the classical intra- and intermolecular copper-catalysed Ullmann 

reaction to generate mono- and (bis)ether linkages, respectively, despite its lack of 

efficiency: long reaction times, high temperatures, stoichiometric amount of 

copper salts, and low yields. Variations of the reaction utilizing nickel and 

palladium have relatively broadened the substrate scope and rendered the reaction 
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conditions milder. Namely, modern alternatives such as the Chan–Evans–Lam 

reaction66 and Buchwald–Hartwig coupling67 have been explored to assemble the 

diaryl ether linkages. However, yields remain inconsistent for C–O bond 

formation, especially in the context of bisBIAs. 

 

Scheme 51. Total synthesis of (±)-dauricine (191, no yields reported) 

One of the early pioneering efforts in the synthesis of the acyclic bisBIA 
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were obtained through reaction sequences analogous to Scheme 49, all of which 

integrated Ullmann couplings as the key step with yields ranging from 4–20%.70 A 

comparable tactic was chosen by Nishimura et al. for the synthesis of 

nelumboferine and three unnatural stereoisomers of neferine (190) and O-

methylneferine.71 Ullmann coupling of the tetrahydroisoquinoline units with 

copper(I) bromide and Cs2CO3 in pyridine gave the respective dimers in 34–45% 

yields.  



 129 

 

Scheme 52. Total synthesis of (+)-O-methylthalibrine (213). 

Modular strategies have been developed for the enantioselective synthesis 

of bisBIAs. Both benzylisoquinoline units in the total synthesis of (+)-O-

methylthalibrine (213) arose from 1,2,3,4-tetrahydroisoquinoline-1-carbonitrile 

NH

CN

MeO

MeO

KHMDS, THF, −78 ºC

Br R1

R2

N

MeO

MeO

NEt3, HCO2H

R2

R1

NH

MeO

MeO

Br

H

209a: R1 = H, R2 = Br
209b: R1 = OTIPS, R2 = OMe

NH

MeO

MeO

MeO

TIPSO

210a 
(39%, 95% ee)

210b
(90%, 96% ee)

NaBH4

CH2O
(97%)

N

MeO

MeO

208
(52-59%, over three 

steps)

Me

N

MeO

MeO

Br

Me

CuI, Cs2CO3, DMF
 

N,N-dimethyl-
glycine

160 ºC (51%)

O
OMe

N

N

OMe
OMe

MeO

MeO

Me

Me

(+)-O-methylthalibrine (213)

Ullmann reaction

211

then

and

(+)-laudanidine (212)

Ru
HN

Ts
N

Ph

Ph

ClMe

iPr

1) NaBH4, 
CH2O, MeOH

2) TBAF, THF 
(87%) MeO

OH

211

212

N

MeO

MeO

Br

Me

N

MeO

MeO Me

MeO
OH



 130 

(208), which was deprotonated with KHMDS and alkylated to provide 3,4-

dihydroisoquinolines 209a and 209b (Scheme 52).72 Noyori transfer 

hydrogenation, reductive N-methylation with NaBH4 and formaldehyde afforded 

bromobenzylisoquinoline 211 and (+)-laudanidine (212) as the precursors for the 

final Ullmann coupling, which delivered bisBIA 213 in 51% yield. This protocol 

was exploited for the asymmetric synthesis of bisbenzylisoquinoline derivative 

(+)-tetramethylmagnolamine as well as benzylisoquinolines (+)-laudanosine and 

(+)-armepavine.  

Although Ullmann cross-coupling reactions have been extensively applied 

in aryl ether syntheses, oxidative C–O bond forming reactions have been 

considered as green and cost-effective surrogates. The first preparation of a 

naturally occurring bisBIA using an electrolytic oxidation was described in 1971 

by Bobbitt and Hallcher.73 When the sodium salt of (±)-N-carbethoxy-N-

norarmepavine (214) was subjected to electrolysis using tetramethylammonium 

perchlorate as the electrolyte, a graphite anode together with a platinum cathode, a 

carbon–oxygen (215) linked dimer was obtained (Scheme 53a). Subsequent O-

benzylation, reduction, and catalytic debenzylation, furnished a racemic and 

diastereomeric mixture of dauricine (191).  
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Scheme 53. Electrochemical methods to synthesize a) (±)-dauricine (191) and b) (+)-O-

methylthalibrine (213) 
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 To install the diaryl ether moieties of bisBIAs at an early stage, Nishiyama 

and co-workers broadly surveyed electrolytic phenol couplings.74 Following an 

extensive screening of electrochemical constraints and reactants, the conditions for 

the anodic oxidation of phenol 216 and ensuing cathodic reduction of dimer 217 

were developed for the preparation of (+)-O-methylthalibrine (213) and its 

derivatives (Scheme 53b). O-methylation and dehalogenation of dimer 218 yielded 

diacid 219. The phenylacetic acid moieties were then coupled to phenylethylamine 

derivative 220 bearing a chiral auxiliary to achieve two simultaneous asymmetric 

Bischler–Napieralski reactions. Substitution of the chiral auxiliary groups with 

methyl groups afforded (+)-O-methylthalibrine (213) in an overall yield of 29% 

over ten steps.  
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Scheme 54. Huang and Lumb's synthesis of (S,S)-tetramethylmagnolamine (229).  

DBED = N,N’-di-tert-butylethylenediamine 
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A recent total synthesis of (S,S)-tetramethylmagnolamine (230) featured a 

unique instance of catalytic aerobic desymmetrization that took advantage of the 

alkaloid’s inherent pseudosymmetry (Scheme 54).75 The synthesis commenced 

with the preparation of Boc-protected tetrahydroisoquinoline 226 via amidation of 

homoveratrylamine (222) and 4-hydroxyphenylacetic acid (223). The Bischler–

Napieralski cyclization of the accompanying amide (224) permitted an asymmetric 

Noyori hydrogenation to deliver free amine 225 in 70% yield with 94% ee. Upon 

protection of the amine (225) with Boc2O, the strategic aerobic oxidative coupling 

was realized by treatment with O2 and a catalyst system comprised of CuPF6 and 

N,N’-di-tert-butylethylenediamine (DBED). Reductive workup then gave rise to 

the corresponding catechol derivative (229). Methylation of 229 and reduction of 

the N-Boc groups supplied the dimeric alkaloid (230) over seven steps in 21% 

overall yield. A prior synthesis of 230 by Blank and Opatz required sixteen steps in 

14% overall yield and employs a conventional Ullmann coupling to form the key 

diaryl ether.72  

2.1.4.3 Synthesis of Cyclic bisBIAs 

Cyclic bisbenzylisoquinoline alkaloids constitute the more prominent yet 

challenging class of this natural product family, especially in the context of 

establishing the appropriate diaryl ether linkages. In 2017, Opatz and co-workers 

accomplished the racemic synthesis of (±)-curine (188) and (±)-tubocurine (238) 

based on two sequential Ullmann-type condensations (Scheme 55).8,76  
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Scheme 55. Opatz’s synthesis of (±)-curine (188) and (±)-tubocurine (238) and formal 

total synthesis of (±)-tubocurarine (239) 
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Preparation of the dihalogenated building block (234) began with an amide 

coupling of phenylethylamine 230 and phenylacetic acid 231 (Scheme 55a). The 

Bischler–Napieralski reaction of amide 232 mediated by 2-chloropyridine and 

triflic anhydride generated an imine, which was subsequently reduced to amine 

233. N-methylation of the amine (233) provided the dihalide (234). Analogous to 

the protocol shown in Scheme 51, the second MOM-protected benzylisoquinoline 

moiety (236) was synthesized from aminonitrile 235 over three steps via an 

umpolung, alkylation-reduction sequence (Scheme 55b). The rather risky double 

C–O couplings of precursors 234 and 236 were performed under the reported 

Ullmann reaction conditions in Scheme 54b. Finally, removal of the benzyl groups 

delivered (±)-curine (188) and (±)-tubocurine (238) in a 2:1 diastereomeric ratio. 

The total synthesis of 238 also embodied the formal synthesis of (±)-tubocurarine 

(239).  
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Scheme 56. Bracher’s modular total synthesis of (±)-tetrandrine (186) and isotetrandrine 

(241). Conditions for Ullmann couplings: CuBr•SMe2, Cs2CO3, pyridine, 110 °C; Pictet–

Spengler reactions: TFA, CH2Cl2 
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aromatic ring systems (A–C or A’–C’) could be assembled at the outset. The final 

step of all four variants was an LiAlH4-reduction of both carbamates in macrocycle 

240 to obtain racemic mixtures of (R,R)/(S,S)-tetrandrine (186) and (S,R)/(R,S)-

isotetrandrine (241) in 3–19% overall yields. The authors computationally 

analyzed the observed diastereomeric outcome of the key Pictet–Spengler 

cyclizations, which revealed that the stereochemistry at the C-1 stereocenter of the 

macrocycle helps to control the formation of the second chiral center of tetrandrine 

(186). 

2.2 Berbamine 

Reviewed in Section 2.1.3, berbamine (187) is the major bioactive component 

isolated from traditional Chinese herbal medicines such as Berberis amurensis (Figure 7). 

The bioactivities of berbamine consist of anti-hypertensive, antiarrhythmic and anti-

inflammatory effects.40,78 Particularly, numerous findings have divulged its 

antiproliferative properties toward liver and breast cancers, chronic myeloid leukemia, 

and melanoma with low toxicity. Observations of berbamine acting synergistically with 

existing chemotherapeutics have also been documented. Despite its exciting biology, only 

limited hit-to-lead optimizations of berbamine (187) are possible. This is due to not only 

the lack of functional group handles for derivatizations, but also the absence of a total 

synthesis for deeper-seated alterations in the core scaffold.48,79 For example, chemical 

derivatives of berbamine produced to-date rely on semi-synthesis and traditional organic 

synthesis protocols to modify the only derivatizable phenolic site.  
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Hence, current access relies on isolation from natural sources, which are 

distributed by MilliporeSigma and Santa Cruz Biotechnology and supports numerous 

biomedical studies.80–82 Yet, commercial samples acquired by us and our collaborator Dr. 

Wendong Huang at COH National Medical Center between 2018–2021 revealed 

compromised authenticities of approximately 0−20% purities by NMR analysis, thus 

leading to invalid results when used directly. A practical synthesis would provide 

indisputable access to berbamine and its diverse analogs. Our desire to better understand 

and elucidate the molecular mechanisms of berbamine (187) and expand the diversity of 

prepared derivatives prompted us to embark on a total synthesis of the bisBIA. Herein, 

we describe a prospective total synthesis of this compound and the research progress to 

date. 
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2.3 Retrosynthetic Analysis of Berbamine 

 

Scheme 57. Retrosynthesis of berbamine (187) 
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2.4 Results and Discussion 

2.4.1 Synthesis of Amine Fragment 

The northern hemisphere of the molecule, bis(arylethyl)amine 244, was imagined 

as coming from commercially available 5-bromovanillin (245) and methyl vanillate (246, 

Scheme 57). To forge the preliminary, electron-rich diaryl ether of 250, the direct 

coupling between 245 and 246 was examined using different catalysts and solvents 

(Scheme 58). The first attempt in the presence of 25 mol% of copper(I) or copper(II) 

oxide catalyst and 1.0 or 2.0 equivalents of K2CO3 as the base additive did not effectively 

promote the C−O cross coupling reaction. Rather, 1H NMR analysis of the crude material 

revealed substantial quantities of starting material. Copper(I) thiophene-2-carboxylate 

(CuTC) and Cs2CO3 under the assistance of a bidentate 2,2’-bipyridine (BiPy) ligand in 

MeCN, PhMe, DMSO, DCE, and dioxane furnished methyl vanillate (246) and often 

veratraldehyde (253), resulting from dehalogenation of the original aryl bromide (245).77 

Low catalytic amounts of copper(I) iodide and Fe(acac)3 with 2.0 equivalents of K2CO3 

likewise did not provide the coupling product 250. Catalytic copper(I) bromide dimethyl 

sulfide (CuBr•SMe2), copper(I) iodide (CuI) as well as Cu(s) were screened with different 

additives, such as N-methoxybenzamide, picolinic acid, and K3PO4 were screened, 

although with no significant outcome. However, 5-bromovanillin (245) and methyl 

vanillate (246) were reacted in refluxing DMF with 5.0 equivalents of Cu(s), affording the 

expected dibenzylated diaryl ether 250 in 40% yield.83 It was noted that a predominant 

side product was veratraldehyde (253), once again due to dehalogenation of 245. 
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Scheme 58. Synthesis of arylethylamine 252 

Diaryl ether 250 possessed an aldehyde that was converted to nitrostyrene 251 in 

87% yield via a Henry reaction (Scheme 58).84 A minor modification of the Henry 
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Scheme 59. Synthetic route employing N-Boc-protected amine (254) 

Successive N-Boc-protection of the resulting amine (252) with Boc2O and NEt3 

produced protected amine 254 (76% yield), which was oxidized to the corresponding 

arylaldehyde 255 in 88% yield (Scheme 59).89 Reduction and amino alkylation of 
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Scheme 60. Synthetic route employing N-tosyl-protected amine (256) 

The use of sulfonamide protecting groups, such as p-toluenesulfonamide (Ts) and 
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investigated.91–93 Pyridine was replaced as the base and DCE substituted CH2Cl2 as the 

solvent. Temperatures were also varied from −20 ºC, 0 ºC, rt to 30−35 ºC. Yet, all were 

unfortunately low yielding, affording largely starting material, O-nosylation, or other 

unidentifiable products. Other conditions will need to be probed to improve the desired 

reactivity.  

 

Scheme 61. Synthesis of N-nosyl-protected bis(arylethyl)amine (263) 
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followed by aqueous work-up provided methyl 3-bromo-4-acetoxyphenylacetate (266) in 

95% yield.96  

 

Scheme 62. Attempted synthesis of phenylacetic acid (268)  

Coupling of methyl 3-bromo-4-acetoxyphenylacetate (266) and phenylacetic acid 

(249) initially proceeded through the standard Ullmann conditions of Cu(s) in refluxing 
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undesired side product, allegedly arising due to hydrodehalogenation of 266. While 

hydrodehalogenation side reactions of aryl halides have been previously reported in other 

copper-catalyzed reactions, the couplings of acetoxy phenylacetate 266 with the methyl 

and benzyl 4-hydroxyphenylacetate analogs of 249 were attempted to resolve such 

unsought reactivity.97–100 Unfortunately, neither yielded any fruitful result as starting 

material was largely reisolated. Yet, the lack of hydrodehalogenation product 267 in both 

instances suggested that the carboxylic acid proton to be the most likely hydrogen source 

in the hydrodehalogenation reaction. 

Should generation of 247 be successful, the convergent nature of the synthesis 

plan would then involve coupling diamine 244 to dicarboxylic acid 247 to generate seco 

acid ester 269 (Scheme 63). Deprotection and macrocyclization would lead to lactam 243 

from which a double Bischler–Napieralski cyclization would generate cyclic 

bisdihydroisoquinoline 242.101 Thus, setting the stage for asymmetric hydrogenation 

studies to hopefully yield heterochiral (R,S)-270, the precursor to berbamine (187), in a 

highly efficient manner.102 
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Scheme 63. Proposed completion of berbamine (187) via macrolactam (243) and double 

Bischler−Napieralski reaction strategy 
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2.4.3 Clockwise Approach  

 

Scheme 64. Retrosynthesis of 187 incorporating clockwise synthetic strategy 

With the prior strategy in mind, another pathway was proposed in which the right-

hand, then left-hand tetrahydroisoquinoline cores would be individually assembled 

starting from an earlier prepared intermediate, bis(arylethyl)amine 244 (Scheme 64). 

Thus, several variants of phenylacetic acid 274 were pursued as alternative coupling 

partners for bis(arylethyl)amine 244 as well as a means for any foreseeable protecting 

group incompatibilities further down the proposed route (Scheme 65). Starting from 4-
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and formation of acetyl ester 277 were easily carried out with allyl chloroformate and 

acetic anhydride in the presence of base in 32% (unoptimized) and 90% yield, 

respectively.104,105 The methoxymethyl (MOM) ether 278 was afforded in a two-step 

sequence involving a H2SO4-catalyzed Fischer esterification and subsequent 

saponification.106  

 

Scheme 65. Synthesis of O-protected phenylacetic acid analogs 
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Scheme 66. Synthesis of berbamine (187) through anticipated clockwise approach 
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Bischler−Napieralski cyclization and the other would involve reduction of the nitroalkene 

to the free ethylamine that would be taken further down the synthesis to berbamine (187) 

via a comparable route. 

 

Scheme 67. Counterclockwise strategy starting from free arylethylamine 252 

For this particular route, construction of an iodinated derivative of phenylacetic 

acid 249 was undertaken to encourage a more facile late-stage Ullmann reaction (Scheme 

68).76,106 4-Hydroxyphenylacetic acid (249) was subjected to an acid-mediated Fischer 

esterification leading to 4-hydroxyphenylacetate 264 in nearly quantitative yield. 

Electrophilic iodination under mildly acidic conditions preferentially gave 4-hydroxy-3-

iodophenylacetate (286) in 82% yield. Treatment of 286 with MOMCl and K2CO3 

followed by hydrolysis of the embedded methyl ester afforded the desired phenolic MOM 

ether (287). 

OMe
OMe

O
OMe

OHH2N

EDC•HCl
NMM

CH2Cl2, 0 ºC → rt

OH

O
RO

I

OMe
OMe

O
OMe

OHNH

O

OMOM
I

PCC

CH2Cl2
0 ºC → rt

OMe
OMe

O
OMe

NH

O

OMOM
I

O

H
MeNO2

NH4OAc

PhMe
120 ºC

OMe
OMe

O
OMe

NH

O

OMOM
I

NO2

POCl3

CH2Cl2
40 ºC

[R]

generate 
dihydroisoquinoline

generate primary 
amine (−NH2)

252

282

283

284 285



 153 

 

Scheme 68. Synthesis of iodophenylacetic acid 287 

2.4.5 Diaryl Ether Studies 

Fashioning the diaryl ether linkages in bisBIAs remain a challenge in modern 

organic synthesis and metal catalysis, with yields ranging from 4−40% using 

stoichiometric or superstoichiometric copper.107,108 Concerning the diaryl ether scaffold 

synthesis, we attempted to optimize the standard Ullmann coupling conditions (Cu(s) in 

refluxing DMF) applied to benzaldehyde 245 and phenol 246 (Table 3). A number of 

reaction conditions were surveyed. Altering the solvents to DMA and 4-picoline from 

DMF or incorporating a N-methoxybenzamide additive did not improve the yield of the 

desired diaryl ether (250, Entry 2-3). Lowering the initial equivalents of the phenol (246, 

Entry 4-5) also did not lead to improvements. Decreasing the quantity of Cu(s) from 5.0 

to 4.0 equivalents and prolonging the reaction time to 24 h seemed to have modestly 

improved the yield to 55% (Entry 7) yet was irreproducible. It was noted that the amounts 

of weighed Cu(s) may have been inconsistent due to irregularities in the glovebox balance.  

 

HO

OH

O

I−Cl, AcOH

CH2Cl2, rt
(82%)

HO

OMe

O

H2SO4

MeOH
(quant.)

HO

OMe

O

I

1) MOMCl, K2CO3

2) KOH, MeOH/H2O
(95% over two steps)

O

OH

O

I
O

any other “R” 
group possible 

here

Me

264249

286 287



 154 

Table 3. Optimization of Ullmann coupling between 5-bromovanillin (245) and methyl 

vanillate (246) 

 

Entry Ar-X (equiv) Phenol (equiv) Cu(s) (equiv) Solvent Yield (%) 

1 1.0 3.0 5.0 DMF 40 

2 1.0 3.0 5.0 DMA 30 

3 1.0 3.0 5.0 4-picoline − 

4 1.0 2.0 5.0 DMF 37 

5 1.0 1.0 5.0 DMF 35 

6 3.0 1.0 5.0 DMF 34 

7a 1.0 3.0 4.0 DMF 55 

8a 1.0 3.0 3.0 DMF 43 

9a 1.0 3.0 2.0 DMF 41 

10a 1.0 3.0 1.0 DMF 43 
a24 h reaction time. DMF = dimethylformamide, DMA = dimethylacetamide, 4-

picoline = 4-methylpyridine. 

 
An iodinated aryl halide derivative is also being entertained as a substitute for the 

original 5-bromovanillin (245) coupling partner (Scheme 69).85 Beginning with 

commercially available vanillin (288), treatment with iodine and iodic acid afforded 5-
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aryl iodide 290 in 46% yield, which was screened accordingly with methyl vanillate 

(246) to see if it may improve the diaryl ether bond formation. 

 

Scheme 69. Synthesis of 5-iodovanillin (290) 
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H

O
MeO

HO

I2
iodic acid

H2O, 35 ºC
(99%)

H

O
MeO

HO
I

MeI, TBAHS
NaOH

CH2Cl2, rt
(46%)

H

O
MeO

MeO
I

288 289 290



 156 

 

Scheme 70. Current synthesis toward diethylamine fragment 259 
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Henry-reaction–reduction sequence, the key diethylamine fragment (259) was completed, 

prompting extensive studies farther in the proposed sequences.  

 

Scheme 71. Potential remaining synthetic steps to berbamine (187) 
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cyclization of precursor 281 influences atropselectivity in diaryl ether formation (Scheme 

71a). Particularly, whether it can telescope diastereocontrol via the atropisomeric diaryl 

ether using an achiral catalyst in the eventual hydrogenation of 281 to 291. Work in this 

direction is currently underway in our lab by Berkley Lujan. 

2.6 Experimental Section 

2.6.1 General Experimental 

Commercial reagents were purchased from MilliporeSigma, Acros Organics, 

Chem-Impex, TCI, Oakwood, and Alfa Aesar, and used without additional purification. 

Solvents were purchased from Fisher Scientific, Acros Organics, Alfa Aesar, and Sigma 

Aldrich. Tetrahydrofuran (THF), diethyl ether (Et2O), acetonitrile (MeCN), 

dichloromethane (CH2Cl2), toluene (PhMe), 1,4-dioxane, and triethylamine (Et3N) were 

sparged with argon and dried by passing through alumina columns using argon in a Glass 

Contour (Pure Process Technology) solvent purification system. Benzene (PhH) was 

distilled over calcium hydride (CaH2) under a nitrogen (N2) atmosphere, degassed via 

freeze-pump-thaw (three cycles), and stored over 4 Å molecular sieves in a Strauss flask 

under N2. Dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dichloroethane 

(DCE), and solutions of MeLi, n-BuLi, and LDA were purchased in Sure/Seal or 

AcroSeal bottling and dispensed under N2. Deuterated solvents were obtained from 

Cambridge Isotope Laboratories, Inc. or MilliporeSigma.  

Unless otherwise noted in the experimental procedures, reactions were carried out 

in flame or oven-dried glassware under a positive pressure of N2 in anhydrous solvents 

using standard Schlenk techniques. Reaction progresses were monitored using thin-layer 
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chromatography (TLC) on EMD Silica Gel 60 F254 or Macherey–Nagel SIL HD (60 Å 

mean pore size, 0.75 mL/g specific pore volume, 5–17 μm particle size, with fluorescent 

indicator) silica gel plates. Visualization of the developed plates was performed under 

UV light (254 nm). Purification and isolation of products were performed via silica gel 

chromatography (both column and preparative thin-layer chromatography). Organic 

solutions were concentrated under reduced pressure on IKA® temperature-controlled 

rotary evaporator equipped with an ethylene glycol/water condenser.   

Melting points were measured with the MEL-TEMP melting point apparatus. 

Proton nuclear magnetic resonance (1H NMR) spectra, carbon nuclear magnetic 

resonance (13C NMR) spectra and fluorine nuclear magnetic resonance (19F NMR) 

spectra were recorded on Bruker Avance NEO 400 (not 1H decoupled) or Bruker Avance 

600 MHz spectrometers (1H decoupled). Chemical shifts (δ) are reported in ppm relative 

to the residual solvent signal (δ 7.26 for 1H NMR, δ 77.16 for 13C NMR in CDCl3).1 Data 

for 1H NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of 

doublets, dt = doublet of triplets), coupling constant (Hz), integration. Data for 13C and 

19F NMR spectroscopy are reported in terms of chemical shift (δ ppm). IR spectroscopic 

data were recorded on a NICOLET 6700 FT-IR spectrophotometer using a diamond 

attenuated total reflectance (ATR) accessory. Samples are loaded onto the diamond 

surface either neat or as a solution in organic solvent and the data acquired after the 

solvent had evaporated. High resolution accurate mass (ESI) spectral data were obtained 

from the Analytical Chemistry Instrumentation Facility at the University of California, 
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Riverside, on an Agilent 6545 Q-TOF LC/MS instrument (supported by NSF grant CHE-

1828782). 

2.6.2 Experimental Procedures 

 

Methyl-4-(5-formyl-2,3-dimethoxyphenoxy)-3-methoxybenzoate (250). A mixture of 

arylaldehyde 245 (25 mg, 0.10 mmol, 1 equiv), phenol 246 (55 mg, 0.30 mmol, 3 equiv) 

and copper powder (32 mg, 0.50 mmol, 5 equiv) in dry DMF (0.2 mL) was heated at 150 

°C for 16 h. The reaction mixture was cooled to rt, diluted with EtOAc, and filtered over 

a pad of Celite®, which was further rinsed with EtOAc. Water was added to the filtrate 

and the aqueous layer was extracted with EtOAc (3 x 2 mL). The combined organic 

extract was washed with brine (1 x 2 mL), dried over MgSO4, filtered, and concentrated 

in vacuo. The crude product was purified by preparative thin layer chromatography 

eluting with hexanes/Et2O (1:1 v/v) to give compound 250 as a colorless oil (11.3 mg, 

40%). Rf: 0.25 (1:1 hexanes/Et2O, UV). 1H NMR (600 MHz, CDCl3) δ 9.77 (s, 1H), 7.68 

(s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 7.03 (s, 1H), 6.85 (d, J = 8.3 Hz, 1H), 3.96 

(s, 3H), 3.95 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H). 13C NMR (400 MHz, CDCl3) δ 190.6, 

166.6, 154.4, 150.2, 149.7, 145.9, 131.8, 126.4, 123.3, 118.1, 115.7, 113.8, 107.3, 61.3, 

56.5, 56.3, 52.4, 29.8. IR (ATR): 3109, 3032, 2955, 2740, 1753, 1738, 1602, 1586, 1541, 
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1399, 1267, 1119, 1081 cm-1. HRMS (ESI+) m/z calculated for C18H19O7 [M+H]+: 

347.1126, found: 347.1125. 

 

(E)-Methyl-4-(2,3-dimethoxy-5-(2-nitrovinyl)phenoxy)-3-methoxybenzoate (251). 

Arylaldehyde 250 (11.8 g, 0.03 mmol, 1 equiv) was dissolved in AcOH (50 µL) and 

NH4OAc (9.2 mg, 0.12 mmol, 4 equiv) and anhydrous MeNO2 (13 µL, 0.24 mmol, 8 

equiv) were added successively under N2 atmosphere. The resulting mixture was heated 

to 90 °C for 19 h. After this time, the reaction mixture was cooled to rt, quenched with 

H2O (1 mL) and vacuum filtered. The filtrate was extracted with EtOAc (3 x 2 mL) and 

the combined organic extract was dried over MgSO4, filtered, and concentrated in vacuo 

to afford nitrostyrene 251 (11.6 g, 87%) as a dark yellow residue. Rf: 0.31 (1:1 

hexanes/Et2O, UV). 1H NMR (600 MHz, CDCl3) δ 7.84 (d, J = 13.6 Hz, 1H), 7.69 (s, 

1H), 7.62 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 13.6 Hz, 1H), 6.87 (s, 1H), 6.83 (d, J = 8.4 Hz, 

1H), 6.74 (s, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H). 13C NMR (600 

MHz, CDCl3) δ 166.6, 154.3, 150.0, 149.8, 149.6, 143.8, 138.6, 136.8, 126.3, 125.4, 

123.2, 117.9, 113.9, 113.7, 108.5, 61.3, 56.4, 56.2, 52.3. IR (ATR): 3123, 3048, 2979, 

1744, 1652, 1628, 1565, 1403, 1192, 822 cm-1. HRMS (ESI+) m/z calculated for 

C19H20NO8 [M+H]+: 390.1183, found: 390.1172.  
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Methyl-4-(5-(2-aminoethyl)-2,3-dimethoxyphenoxy)-3-methoxybenzoate. To a 

solution of BH3-THF (1.0M, 320 µL, 0.32 mmol, 4 equiv) under N2 atmosphere was 

slowly added a solution of nitrostyrene 251 (30 mg, 0.08 mmol, 1 equiv) in THF (0.2 

mL) at 0 °C. The ice-bath was removed and NaBH4 (8.0 mg, 0.21 mmol, 2.6 equiv) was 

added to the resulting mixture, which was then stirred at rt for 6 days. The reaction 

mixture was quenched with ice-water (5 mL), acidified with 10% HCl (2 mL) and then 

stirred at 60–65 °C for 2 h. After cooling to rt, the mixture was washed with Et2O (2 x 5 

mL) and the acidic layer was basified with 10% NaOH(aq). Following addition of 10% 

NaOH(aq) (5 mL) and NaCl(s) (100 mg), the mixture was extracted with Et2O (3 x 5 mL), 

dried over Na2SO4, filtered, and concentrated in vacuo to yield the methyl ester (6.7 mg, 

23%) as a white solid. 1H NMR (500 MHz, MeOD) δ 7.69 (s, 1H), 7.57 (d, J = 8.3 Hz, 

1H), 6.83 – 6.70 (m, 2H), 6.44 (d, J = 6.4 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 6H), 3.88 (s, 

3H), 3.03 (t, J = 7.5 Hz, 1H), 2.76 (t, J = 7.4 Hz, 1H). 13C NMR (600 MHz, MeOD) δ 

166.6, 154.3, 150.0, 149.8, 149.6, 143.8, 138.6, 136.8, 126.3, 125.4, 123.2, 117.9, 113.9, 

113.7, 108.5, 61.3, 56.4, 56.2, 52.3. IR (ATR): 3421, 3385, 3041, 2986, 2813, 1739, 

1594, 1562, 1401, 1388, 1155 cm-1. HRMS (ESI+) m/z calculated for C19H24NO6 

[M+H]+: 362.1598, found: 362.1585.  
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(4-(5-(2-Aminoethyl)-2,3-dimethoxyphenoxy)-3-methoxyphenyl)methanol (252). 

NaBH4 (14.4 mg, 0.38 mmol, 4.75 equiv), THF (0.5 mL), and BF3-Et2O (60 µL, 0.48 

mmol, 6 equiv) were added successively under N2 atmosphere at 0 °C. The ice-bath was 

removed, and the mixture was stirred at rt for 15 min followed by dropwise addition of a 

solution of nitrostyrene 251 (30 mg, 0.08 mmol, 1 equiv) in THF (0.5 mL). After stirring 

at 60–65 °C for 5.5 h, the mixture was cooled to rt, quenched by slow addition of H2O (2 

mL), acidified with 1 M HCl (2.5 mL), and heated at 80–85 °C for 2 h. After cooling to 

rt, the mixture was washed with Et2O (2 x 5 mL) and basified with 10% NaOH(aq) (5 mL). 

Following addition of NaCl(s) (100 mg), the aqueous layer was extracted with Et2O (3 x 5 

mL), dried over Na2SO4, filtered, and concentrated in vacuo to yield the benzylic alcohol 

252 as a pale-yellow oil (17.3 mg, 65%). 1H NMR (500 MHz, MeOD) δ 7.12 (d, J = 1.9 

Hz, 1H), 6.93 – 6.82 (m, 2H), 6.63 (d, J = 1.9 Hz, 1H), 6.20 (d, J = 1.9 Hz, 1H), 4.59 (s, 

2H), 3.87 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 2.81 (t, J = 7.3 Hz, 2H), 2.62 (t, J = 7.3 Hz, 

2H). 13C NMR (500 MHz, MeOD) δ 153.7, 150.9, 150.8, 144.2, 138.2, 137.4, 135.0, 

119.6, 119.0, 111.5, 110.1, 107.1, 63.4, 59.8, 55.1, 54.9, 42.2, 37.7. IR (ATR): 3550, 

3429, 3023, 2961, 2939, 1602, 1565, 1488, 1203, 1123, 906, 866 cm-1. HRMS (ESI+) 

m/z calculated for C18H23NO5 [M+H]+: 334.1649, found: 334.1651. 
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tert-Butyl (3-(4-(hydroxymethyl)-2-methoxyphenoxy)-4,5-dimethoxyphenethyl) 

carbamate (254). To a solution of amine 252 (35 mg, 0.10 mmol, 1 equiv) in dry THF 

(0.5 mL) containing NEt3 (17 µL, 0.12 mmol, 1.1 equiv) was added Boc2O (26.2 mg, 

0.12 mmol, 1.1 equiv) under N2 atmosphere at 0 °C. The solution was allowed to 

gradually warm to rt and was stirred overnight for 16 h. The mixture was diluted with 

CH2Cl2 (1 mL) and concentrated in vacuo. Purification by column chromatography 

(eluting with 1:2 acetone/hexanes) yielded Boc-protected amine 254 as a colorless oil 

(34.7 mg, 76%). 1H NMR (500 MHz, CDCl3) δ 7.02 (s, 1H), 6.83 (s, 2H), 6.48 (s, 1H), 

6.24 (s, 1H), 4.65 (s, 2H), 3.86 (s, 6H), 3.84 (s, 4H), 3.26 (q, J = 6.9 Hz, 2H), 2.62 (t, J = 

7.2 Hz, 2H), 1.40 (s, 10H). 13C NMR (101 MHz, CDCl3) δ 156.0, 153.8, 150.9, 150.7, 

145.2, 138.4, 137.2, 134.7, 119.5, 111.6, 111.5, 107.8, 79.4, 65.2, 61.1, 56.2, 56.1, 41.8, 

36.3, 28.5. IR (ATR): 3546, 3468, 3059, 2875, 1774, 1604, 1593, 1478, 1293, 1175, 1163 

cm-1. HRMS (ESI+) m/z calculated for C23H31NO7Na [M+Na]+: 456.1998, found: 

456.1985.  

 

tert-Butyl (3-(4-formyl-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)carbamate 

(255). Benzyl alcohol 254 (34.7 mg, 0.08 mmol, 1 equiv), CH2Cl2 (1 mL), and PCC (36.6 
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mg, 0.17 mmol, 2.1 equiv) were added successively under N2 atmosphere at 0 °C. The 

mixture was stirred overnight for 20 h at rt. The resulting solution was diluted with 

CH2Cl2 (3 mL), decanted, and the remaining black resin was washed exhaustively with 

CH2Cl2. The combined CH2Cl2 extract was washed with sat. NaHCO3(aq) (5 mL) and 

brine (2 x 5 mL), dried over MgSO4, filtered, and concentrated in vacuo to yield aldehyde 

255 as a yellow oil (30.7 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 9.86 (d, J = 1.3 Hz, 

1H), 7.50 (t, J = 1.4 Hz, 1H), 7.36 – 7.30 (m, 1H), 6.79 (dd, J = 8.2, 0.9 Hz, 1H), 6.61 (d, 

J = 1.9 Hz, 1H), 6.48 (t, J = 1.4 Hz, 1H), 5.29 (d, J = 1.1 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 

3H), 3.77 (s, 3H), 3.32 (t, J = 6.9 Hz, 2H), 2.71 (t, J = 7.1 Hz, 2H), 1.41 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 191.1, 155.9, 154.0, 152.7, 150.3, 148.3, 139.5, 135.3, 

131.9, 126.1, 116.3, 114.0, 110.5, 109.6, 79.5, 61.2, 56.3, 56.3, 41.8, 36.2, 28.5. IR 

(ATR): 3472, 3100, 2994, 2751, 1744, 1745 1595, 1415, 1165, 1056 cm-1. HRMS (ESI+) 

m/z calculated for C23H30NO7 [M+H]+: 432.2017, found: 432.2006. 

 

N-(3-(4-(Hydroxymethyl)-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-4-

methylbenzenesulfonamide (256). To a solution of ethylamine 252 (99.4 mg, 0.30 

mmol, 1 equiv) in pyridine (0.3 mL) was slowly added p-TsCl (74.4 mg, 0.40 mmol, 1.3 

equiv) over 10 min under N2 atmosphere at −20 °C. The cold bath was removed, and the 

mixture was stirred at rt for 18 h. After 18 h, the mixture was quenched with H2O (3 mL) 

and extracted with CH2Cl2 (3 x 5 mL). The combined organic extract was washed with 2 
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OMe

O
OMe
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(27%)
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M HCl(aq) (3 x 5 mL) and brine (5 mL), then dried over Na2SO4, filtered, and 

concentrated in vacuo. Purification by preparative-thin layer chromatography (eluting 

with 40% acetone/hexanes) yielded Ts-protected amine 256 as a colorless oil (38.2 mg, 

27%). 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 

7.04 (d, J = 1.6 Hz, 1H), 6.84 (t, J = 2.4 Hz, 1H), 6.35 (d, J = 1.9 Hz, 1H), 6.10 (t, J = 1.4 

Hz, 1H), 4.66 (s, 1H), 3.86 (d, J = 1.3 Hz, 2H), 3.83 (d, J = 1.7 Hz, 2H), 3.81 (d, J = 1.3 

Hz, 3H), 3.09 (qd, J = 6.7, 1.8 Hz, 1H), 2.65 – 2.49 (m, 1H), 2.40 (s, 2H). 13C NMR (101 

MHz, CDCl3) δ 153.9, 150.9, 144.8, 143.5, 138.3, 137.5, 136.9, 133.3, 129.8, 127.1, 

119.9, 119.5, 111.8, 111.0, 107.4, 65.1, 61.1, 56.2, 56.1, 44.1, 35.7, 21.6. IR (ATR): 

3557, 3450, 3092, 2971, 2843, 1606, 1595, 1469, 1401, 1333, 1284, 1002, 917, 798 cm-1. 

HRMS (ESI+) m/z calculated for NaC25H29NO7S [M+Na]+: 510.1562, found: 510.1541. 

 

N-(3-(4-Formyl-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-4-

methylbenzenesulfonamide (257). To a solution of benzyl alcohol 256 (39.3 mg, 0.08 

mmol, 1 equiv) in CH2Cl2 (0.3 mL) under N2 was added PCC (36.6 mg, 0.17 mmol, 2.1 

equiv) at 0 °C. The mixture was stirred overnight at rt. The solution was decanted, and 

the gummy residue was rinsed exhaustively with CH2Cl2 (5 x 3 mL). The combined 

organic extracts were washed with sat. NaHCO3(aq) (3 mL), brine (2 x 3 mL) then dried 

over MgSO4, filtered, and concentrated in vacuo to yield arylaldehyde 257 as a brown 

amorphous solid (39.1 mg, quantitative). In an alternative procedure, a solution of 
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benzylic alcohol 256 (8.0 mg, 0.016 mmol, 1 equiv) in CH2Cl2 (0.1 mL) under N2 was 

added a solution of  DMP (10.6 mg, 0.025 mmol, 1.5 equiv) in CH2Cl2 (0.1 mL). The 

mixture was stirred overnight at rt. The solution was quenched with Na2S2O3(aq) (1 mL) 

and extracted with CH2Cl2 (3 x 1 mL). The combined organic extract was washed with 

brine (1 mL), dried over Na2SO4, filtered, and concentrated in vacuo to yield 

arylaldehyde 257 as a brown oil (5.0 mg, 65%). 1H NMR (600 MHz, CDCl3) δ 9.87 (s, 

1H), 7.68 (d, J = 7.6 Hz, 2H), 7.51 (s, 1H), 7.39 – 7.29 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 

6.52 (s, 1H), 6.35 (s, 1H), 3.96 (d, J = 7.8 Hz, 4H), 3.84 (s, 2H), 3.77 (s, 3H), 3.16 (s, 

2H), 2.68 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 191.1, 154.2, 

152.4, 150.4, 148.5, 143.7, 139.7, 137.0, 133.9, 132.1, 129.9, 127.2, 126.0, 116.4, 113.7, 

110.6, 109.6, 61.2, 56.3, 56.3, 44.1, 35.9, 21.7. IR (ATR): 3381, 2927, 2853, 1682, 1579, 

1500, 1423, 1264, 1154, 1089 cm-1. HRMS (ESI+) m/z calculated for C25H28NO7S 

[M+H]+: 486.1581, found: 486.1577. 

 

(E)-N-(3,4-Dimethoxy-5-(2-methoxy-4-(2-nitrovinyl)phenoxy)phenethyl)-4-

methylbenzenesulfonamide (258). To an oven-dried vessel, 257 (37.8  mg, 0.08 mmol, 

1 equiv), NH4OAc (37.8  mg, 0.08 mmol, 1 equiv), PhMe (0.8 mL), and MeNO2 (0.35 

mL, 6.4 mmol, 80 equiv) were added successively. The mixture was stirred at 120 ºC for 

22 h. After 22 h, the mixture was cooled to rt, then quenched with H2O (3 mL) and 
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extracted with EtOAc (3 x 3 mL). The combined organic extracts was washed with brine 

(2 x 3 mL), then dried over Na2SO4, filtered, and concentrated in vacuo. Purification by 

column chromatography (eluting with 1:2 EtOAc/hexanes) yielded nitrostyrene 258 as a 

yellow oil (66.2 mg, 99%). 1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 13.6 Hz, 1H), 7.68 

(d, J = 1.8 Hz, 2H), 7.54 (d, J = 13.6 Hz, 1H), 7.27 (d, J = 9.7 Hz, 2H), 7.16 – 7.01 (m, 

2H), 6.74 (d, J = 8.3 Hz, 1H), 6.50 (d, J = 1.9 Hz, 1H), 6.32 (d, J = 1.9 Hz, 1H), 3.95 (s, 

3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.16 (q, J = 6.7 Hz, 2H), 2.67 (t, J = 6.9 Hz, 2H), 2.41 (s, 

3H). HRMS (ESI+) m/z calculated for C26H29N2O8S [M+H]+: 529.1639, found: 

529.1617. 

 

N-(3-(4-(2-Aminoethyl)-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-4-

methylbenzenesulfonamide (259). To a solution of LiAlH4 (4.6 mg, 0.12 mmol, 4 

equiv) in THF (0.25 mL) under N2 was slowly added a solution of 258 (16.1 mg, 0.03 

mmol, 1 equiv) in THF (0.3 mL) at 0 °C. The reaction mixture was stirred at 66 °C for 3 

h, quenched with H2O (5 µL), 15% NaOH(aq) (5 µL) and H2O (15 µL) and allowed to stir 

at rt for 15 min. The mixture was filtered over a pad of Celite and concentrated in vacuo 

to afford amine 259 as a pale-yellow oil (8.1 mg, 54%). 1H NMR (400 MHz, MeOD) δ 

7.74 – 7.46 (m, 2H), 7.34 – 7.27 (m, 2H), 7.04 (d, J = 1.7 Hz, 1H), 6.85 (dd, J = 2.8, 1.1 
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Hz, 2H), 6.53 (d, J = 1.9 Hz, 1H), 6.17 (d, J = 1.9 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 

3.78 (s, 2H), 3.22 (dd, J = 8.3, 6.9 Hz, 2H), 3.06 – 2.91 (m, 4H), 2.55 (t, J = 7.0 Hz, 2H).  

 

N-(3-(4-(Hydroxymethyl)-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-4-

nitrobenzenesulfonamide (260). To a solution of benzylic alcohol 252 (334.3 mg, 1 

mmol, 1 equiv) in CH2Cl2 (2 mL) was added NEt3 (0.21 mL, 1.5 mmol, 1.5 equiv) and p-

NsCl (244 mg, 1.10 mmol, 1.1 equiv) under N2 atmosphere. The mixture was stirred at rt 

for 20 h. After 20 h, the mixture was diluted with CH2Cl2 (10 mL), then quenched with 1 

M HCl(aq) (8 mL) and extracted with CH2Cl2 (3 x 8 mL). The combined organic extract 

was washed with brine (8 mL), then dried over Na2SO4, filtered, and concentrated in 

vacuo. Purification by column chromatography (eluting with 50% EtOAc/hexanes) 

yielded Ns-protected amine 260 as a colorless oil (176 mg, 34%). 1H NMR (400 MHz, 

CDCl3) δ 8.28 (d, J = 9.1 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.94 

– 6.79 (m, 2H), 6.37 (d, J = 2.0 Hz, 1H), 6.07 (d, J = 1.9 Hz, 1H), 4.68 (s, 2H), 3.86 (s, 

3H), 3.85 (s, 2H), 3.83 (s, 3H), 3.20 (q, J = 6.5 Hz, 2H), 2.59 (t, J = 6.7 Hz, 2H). 13C 

NMR (101 MHz, CDCl3) δ 154.0, 151.0, 150.9, 150.0, 145.9, 144.7, 138.5, 137.5, 132.6, 

128.2, 124.4, 119.8, 119.5, 111.8, 110.9, 107.4, 65.1, 61.0, 56.2, 56.1, 44.2, 35.7. IR 

(ATR): 3456, 3113, 2975, 2847, 2744, 1740, 1675, 1578, 1329, 1228, 1164, 1104, 821 

cm-1. HRMS (ESI+) m/z calculated for NaC23H26N2O9S [M+Na]+: 541.1257, found: 

541.1254. 
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N-(3-(4-Formyl-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-4-

nitrobenzenesulfonamide (261). To a solution of benzylic alcohol 260 (58.1 mg, 0.11 

mmol, 1 equiv) in CH2Cl2 (0.5 mL) under N2 was added PCC (52 mg, 0.24 mmol, 2.1 

equiv) at 0 °C. The mixture was stirred overnight at rt. The solution was decanted, and 

the gummy residue was rinsed exhaustively with CH2Cl2 (5 x 3 mL). The combined 

organic extract was washed with sat. NaHCO3(aq) (3 mL), brine (2 x 3 mL) then dried 

over MgSO4, filtered, and concentrated in vacuo to yield benzaldehyde 261 as a brown 

amorphous solid (50.9 mg, 89%). 1H NMR (500 MHz, CDCl3) δ 9.88 (s, 1H), 8.33 (d, J = 

7.9 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 7.52 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 6.77 (d, J = 

8.1 Hz, 1H), 6.54 (s, 1H), 6.36 (s, 1H), 3.98 (s, 3H), 3.86 (s, 3H), 3.78 (s, 3H), 3.25 (s, 

2H), 2.75 (s, 2H). IR (ATR): 3121, 3040, 2979, 2875, 1783, 1593, 1485, 1441, 1241, 

1165, 1110, 889, 869 cm-1. HRMS (ESI+) m/z calculated for C24H25N2O9S [M+H]+: 

517.5285, found: 517.5280. 

 

(E)-N-(3,4-Dimethoxy-5-(2-methoxy-4-(2-nitrovinyl)phenoxy)phenethyl)-4-

nitrobenzenesulfonamide (262). To an oven-dried vessel, 261 (61.3 mg, 0.12 mmol, 1 
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equiv), NH4OAc (37.8 mg, 0.13 mmol, 1.1 equiv), PhMe (1.5 mL), and MeNO2 (0.52 

mL, 9.6 mmol, 80 equiv) were added successively. The mixture was stirred at 120 ºC for 

22 h. After 22 h, the mixture was cooled to rt, then quenched with H2O (3 mL) and 

extracted with EtOAc (3 x 3 mL). The combined organic extract was washed brine (2 x 3 

mL), then dried over Na2SO4, filtered, and concentrated in vacuo. Purification by column 

chromatography (eluting with 1:2 EtOAc/hexanes) yielded nitrostyrene 262 as a yellow 

oil (66.9 mg, 93%). 1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 8.5 Hz, 2H), 8.28 – 7.69 

(m, 3H), 7.54 (d, J = 13.6 Hz, 1H), 7.15 – 6.96 (m, 2H), 6.73 (d, J = 8.4 Hz, 1H), 6.51 (d, 

J = 2.0 Hz, 1H), 6.32 (d, J = 2.0 Hz, 1H), 3.96 (s, 3H), 3.86 (s, 3H), 3.79 (s, 3H), 3.26 (q, 

J = 6.5 Hz, 2H), 2.73 (t, J = 6.7 Hz, 2H). IR (ATR): 3473, 3104, 3081, 2995, 2863, 1601, 

1587, 1423, 1401, 1273, 1245, 1022 cm-1. HRMS (ESI+) m/z calculated for 

NaC25H25N3O10S [M+Na]+: 582.1158, found: 582.1143. 

 

Methyl 4-hydroxyphenylacetate (264). To a solution of phenylacetic acid (249, 1.50 g, 

9.86 mmol, 1.00 equiv) in MeOH (50 mL) was added H2SO4 (1.4 mL, 25.8 mmol, 2.6 

equiv). The mixture was refluxed for 23 h at 70 ºC. The resulting solution was quenched 

with H2O (20 mL) and extracted with EtOAc (2 x 25 mL). The combined EtOAc extract 

was washed with sat. NaHCO3(aq) until pH = 7 and brine (2 x 25 mL), dried over Na2SO4, 

filtered, and concentrated in vacuo to afford product 264 as a yellow oil (1.54 g, 94%). 1H 

NMR (500 MHz, CDCl3) δ 7.14 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.5 Hz, 2H), 3.69 (s, 

3H), 3.56 (s, 2H). All spectroscopic data are consistent with those previously reported.94 
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Methyl 3-bromo-4-hydoxyphenylacetate (265). To a stirred solution of methyl 4-

hydroxyphenylacetate (264, 1.54 g, 9.27 mmol, 1 equiv) in AcOH (27 mL) was added 

Br2 (0.52 mL) 10.1 mmol, 1.1 equiv) in AcOH (20 mL) over 15 min under N2 

atmosphere. The reaction mixture was stirred for 30 min at rt. The solution was quenched 

with sat. Na2S2O3(aq) (20 mL) and extracted with CH2Cl2 (3 x 30 mL). The combined 

organic extracts were washed with sat. NaHCO3(aq) (5 mL), dried over Na2SO4, filtered, 

and concentrated in vacuo to afford the desired compound 265 as a yellow residue (2.43 

g, quantitative). 1H NMR (600 MHz, CDCl3) δ 7.40 (d, J = 2.1 Hz, 1H), 7.13 (dd, J = 8.4, 

2.1 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 5.49 (s, 1H), 3.70 (s, 3H), 3.54 (s, 2H). All 

spectroscopic data are consistent with those previously reported.95 

 

Methyl 3-bromo-4-acetoxyphenylacetate (265). Methyl 3-bromo-4-

hydoxyphenylacetate (265, 1.23 g, 5.02 mmol, 1 equiv), CH2Cl2 (13 mL), and NEt3 (1.1 

mL, 7.53 mmol, 1.5 equiv) were added successively followed by dropwise addition of 

acetyl chloride (0.45 mL, 6.28 mmol, 1.25 equiv) under N2 atmosphere at 0 °C. The ice-

bath was removed, and the mixture was stirred at rt for 23 h. After 23 h, the mixture was 

quenched with 5% HCl(aq) (5 mL).  The biphasic mixture was washed with H2O (10 mL) 
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and sat. NaHCO3(aq) (5 mL), then dried over Na2SO4, filtered, and concentrated in vacuo 

to afford the desired product 266 as a brown residue (1.37 g, 95%). 1H NMR (400 MHz, 

CDCl3) δ 7.55 (d, J = 2.0 Hz, 1H), 7.24 (d, J = 2.1 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 3.71 

(s, 3H), 3.59 (s, 2H), 2.35 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.3, 168.7, 147.5, 

134.2, 133.5, 129.6, 123.8, 116.3, 52.4, 40.3, 20.9. IR (ATR): 3105, 3099, 2991, 2981, 

1788, 1786, 1441, 1433, 1389, 1121, 1094, 997, 910, 890 cm-1. HRMS (ESI+) m/z 

calculated for C11H12BrO4 [M+H]+: 286.9913, found: 286.9906.  

 

2-(4-(Benzyloxy)phenyl)acetic acid (275). 4-Hydroxyphenylacetic acid (249, 300 mg, 

1.97 mmol, 1 equiv), BnCl (0.24 mL, 2.07 mmol, 1.05 equiv), NaI (6.0 mg, 0.04 mmol, 

0.02 equiv), and KOH (277 mg, 4.93 mmol, 2.5 equiv) were dissolved in EtOH (9 mL). 

The mixture was refluxed at 80 ºC for 23 h. After 23 h, the mixture was cooled to rt, then 

quenched with 2M HCl(aq) (9 mL). The resulting precipitate was filtered, washed with 

H2O, and dried under vacuum to afford benzyl acetic acid 275 as a white solid (750.5 mg, 

quantitative). 1H NMR (600 MHz, CDCl3) δ 7.47 – 7.29 (m, 5H), 7.20 (d, J = 8.5 Hz, 

2H), 7.01 – 6.91 (m, 2H), 5.05 (s, 2H), 3.59 (s, 2H). All spectroscopic data are consistent 

with those previously reported.109  

 

2-(4-(((Allyloxy)carbonyl)oxy)phenyl)acetic acid (276). To a solution of 4-

hydroxyphenylacetic acid (249, 250 mg, 1.64 mmol, 1 equiv) in THF (5 mL) under N2 

HO
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(quant)
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atmosphere was added pyridine (0.19 mL, 2.3 mmol, 1.4 equiv). The mixture was cooled 

to 0 ºC followed by dropwise addition of allyl chloroformate (0.21 mL, 1.97 mmol, 1.2 

equiv). After stirring overnight at rt, the mixture was quenched with H2O (10 mL) and 

extracted with EtOAc (3 x 10 mL). The combined organic extract was washed with 2M 

HCl(aq) (2 x 10 mL) and brine (10 mL), then dried over Na2SO4, filtered, and concentrated 

in vacuo. Purification by column chromatography (eluting with 33% EtOAc/hexanes) 

yielded desired product 276 as a yellow oil (125.8 mg, 32%). 1H NMR (400 MHz, 

CDCl3) δ 7.15 (d, J = 8.7 Hz, 1H), 6.78 (d, J = 8.6 Hz, 2H), 5.90 (ddt, J = 17.1, 10.4, 5.7 

Hz, 1H), 5.34 – 5.12 (m, 3H), 4.59 (dt, J = 5.7, 1.4 Hz, 3H), 3.58 (s, 3H). All 

spectroscopic data are consistent with those previously reported.104  

 

2-(4-Acetoxyphenyl)acetic acid. To a solution of 4-hydroxyphenylacetic acid (249, 200 

mg, 1.31 mmol, 1 equiv) in 1 M NaOH(aq) (4 mL) and CH2Cl2 (4 mL) was added Ac2O 

(0.3 mL, 3.15 mmol, 2.4 equiv). The mixture was stirred at rt for 1 h, then acidified with 

2M HCl(aq) (pH = 2). Following extraction with CH2Cl2 (2 x 10 mL) and EtOAc/MeOH 

(2 x 10 mL + 1 mL MeOH), the combined organic extract was dried over MgSO4, 

filtered, and concentrated in vacuo. Purification by column chromatography (eluting with 

5% MeOH/CH2Cl2) yielded desired product 277 as a white solid (319.2 mg, quantitative). 

1H NMR (400 MHz, CDCl3) δ 7.33 – 7.28 (m, 2H), 7.06 (d, J = 8.7 Hz, 2H), 3.65 (s, 2H), 

2.30 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 171.3, 168.7, 147.5, 134.2, 133.5, 129.6, 

HO

OH

O

249
OMe

O
OH

O

Ac2O, 1M NaOH(aq)
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123.8, 116.3, 52.4, 40.3, 20.9. All spectroscopic data are consistent with those previously 

reported. 110 

 

2-(4-(Methoxymethoxy)phenyl)acetic acid (278). A mixture of 4-hydroxyphenylacetic 

acid (249, 300 mg, 1.97 mmol, 1 equiv), concentrated H2SO4 (5.5 µL, 0.1 mmol, 0.05 

equiv) in MeOH (10 mL) was refluxed for 1 h. Following removal of solvent in vacuo, 

the residue was diluted with H2O (20 mL), extracted with EtOAc (3 x 15 mL), dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The residue was dissolved in 

acetone (10 mL) and MOMCl (0.3 mL, 3.94 mmol, 2 equiv) and K2CO3 (817 mg, 5.91 

mmol, 3 equiv) were added. The mixture was heated to 60 ºC for 48 h. After filtration of 

K2CO3 and removal of the solvent in vacuo, the crude material was passed through a 

short silica gel column (eluting with 1:15 EtOAc/hexanes). The obtained residue was 

dissolved in MeOH (11.7 mL) and H2O (1.3 mL) and KOH (1.11 g, 19.7 mmol, 10 equiv) 

was added. After stirring at rt for 30 min, the solvent was removed in vacuo and the 

residue was diluted with H2O (10 mL), acidified with 4 M HCl(aq) (10 mL), and extracted 

with EtOAc (3 x 10 mL). The combined organic extract was dried over Na2SO4, filtered, 

and concentrated under reduced pressure to provide compound 278 as a yellow oil (159.2 

mg, 42%). 1H NMR (500 MHz, CDCl3) δ 7.22 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 8.8 Hz, 

2H), 5.19 (d, J = 1.5 Hz, 2H), 3.62 (s, 2H), 3.50 (d, J = 1.5 Hz, 3H). All spectroscopic 

data are consistent with those previously reported.106 
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N-(3-(4-formyl-2-methoxyphenoxy)-4,5-dimethoxyphenethyl)-2-(3-iodo-4-

(methoxymethoxy)phenyl)acetamide (284). To a solution of benzyl alcohol 283 (29.7 

mg, 0.05 mmol, 1 equiv) in CH2Cl2 (0.2 mL) under N2 was added PCC (21.1 mg, 0.1 

mmol, 2.1 equiv) at 0 °C. The mixture was stirred overnight at rt. The solution was 

decanted, and the gummy residue was rinsed exhaustively with CH2Cl2 (5 x 1 mL). The 

combined organic extract was washed with sat. NaHCO3(aq) (1 mL), brine (2 x 1 mL) then 

dried over MgSO4, filtered, and concentrated in vacuo to yield benzaldehyde 284 as a 

brown oil (23.1 mg, 77%). 1H NMR (400 MHz, CDCl3) δ 9.87 (s, 1H), 7.63 (d, J = 2.0 

Hz, 1H), 7.51 (d, J = 1.7 Hz, 1H), 7.35 (dd, J = 8.2, 1.8 Hz, 1H), 7.13 – 7.06 (m, 1H), 

7.01 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 6.57 (d, J = 1.9 Hz, 1H), 6.44 (d, J = 

1.8 Hz, 1H), 5.22 (s, 2H), 3.98 (s, 3H), 3.86 (s, 3H), 3.78 (s, 3H), 3.50 (s, 3H), 3.42 (s, 

2H), 2.70 (t, J = 7.0 Hz, 2H). 13C NMR (151 MHz, CDCl3) δ 191.0, 170.6, 155.5, 154.0, 

152.6, 150.3, 148.2, 140.2, 139.5, 134.9, 131.9, 130.5, 130.1, 126.0, 116.1, 115.1, 113.8, 

110.5, 109.5, 95.1, 87.6, 61.2, 56.6, 56.3, 53.6, 42.4, 40.8, 35.6. IR (ATR): 3449, 3118, 

3094, 2983, 2895, 2857, 1750, 1609, 1583, 1393, 1281, 1210, 1143, 1012 cm-1. HRMS 

(ESI+) m/z calculated for C28H30INO8Na [M+Na]+: 660.1070, found: 660.1051.  
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Methyl 2-(4-hydroxy-3-iodophenyl)acetate (286). Methyl 4-hydroxyphenylacetate 

(264, 1.04 g, 6.3 mmol, 1 equiv) was dissolved in CH2Cl2 (19 mL) followed by addition 

of iodine monochloride (0.4 mL, 6.3 mmol, 1 equiv) and acetic acid (18 μL, 0.3 mmol, 

0.05 equiv). The reaction mixture was stirred at rt for 50 h, then quenched with H2O (10 

mL). The mixture was extracted with EtOAc (3 x 10 mL) and the combined organic 

extract was washed with sat. Na2S2O3(aq), then dried over Na2SO4. After filtration, the 

solvent was removed in vacuo to afford aryl iodide 286 as a dark red-yellow oil (1.54 g, 

82%). 1H NMR (400 MHz, CDCl3) δ 7.69 – 7.50 (m, 1H), 7.24 – 7.08 (m, 1H), 6.94 (d, J 

= 8.3 Hz, 1H), 3.70 (s, 3H), 3.52 (s, 2H). All spectroscopic data are consistent with those 

previously reported.111  

 

Methyl 2-(3-iodo-4-(methoxymethoxy)phenyl)acetate.  To a suspension of K2CO3 

(2.61 g, 19 mmol, 3 equiv) in acetone (18 mL) was added a solution of 286 (1.84 g, 6.3 

mmol, 1 equiv) in acetone (18 mL) and MOMCl (1 mL, 12.6 mmol, 2 equiv). The 

mixture was heated to 60 ºC for 19 h, then diluted with Et2O (20 mL) and H2O (10 mL). 

The biphasic solution was extracted with Et2O (3 x 10 mL) and the combined organic 

extract was washed with brine (10 mL), dried over MgSO4, filtered, and concentrated in 

vacuo to yield the desired product as a dark yellow oil (2.02 g, 95%). 1H NMR (400 
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MHz, CDCl3) δ 7.70 (d, J = 2.2 Hz, 1H), 7.25 – 7.14 (m, 1H), 7.02 (d, J = 8.4 Hz, 1H), 

5.22 (s, 2H), 3.69 (s, 3H), 3.53 (s, 2H), 3.50 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 

171.7, 155.3, 140.1, 130.4, 129.3, 114.8, 95.0, 87.2, 56.4, 52.2, 39.7. IR (ATR): 3121, 

3040, 2979, 2875, 1783, 1593, 1485, 1441, 1241, 1165, 1110, 889, 869 cm-1. HRMS 

(ESI+) m/z calculated for C11H17NIO4 [M+NH4]+: 354.0188, found: 354.0197.  

 

2-(3-Iodo-4-(methoxymethoxy)phenyl)acetic acid (287). To a solution of methyl 2-(3-

iodo-4-(methoxymethoxy)phenyl)acetate (2.02 g, 6 mmol, 1 equiv) in MeOH (36 mL) 

and H2O (4 mL) was added KOH (3.37 g, 60 mmol, 10 equiv). After stirring at rt for 3 h, 

the reaction mixture was diluted with H2O (10 mL), acidified with 2 M HCl(aq) (10 mL), 

and extracted with EtOAc (3 x 15 mL). The combined organic extract was dried over 

Na2SO4, filtered, and concentrated in vacuo to provide compound 287 as a cream colored 

solid (2.12 g, quantitative). 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 2.2 Hz, 1H), 7.29 

– 7.14 (m, 2H), 7.03 (d, J = 8.5 Hz, 1H), 5.22 (s, 2H), 3.56 (s, 2H), 3.50 (s, 3H). 

 

4-Hydroxy-3-iodo-5-methoxybenzaldehyde (289). To a suspension of vanillin (288, 5.0 

g, 32.9 mmol, 1 equiv) in EtOH (33 mL) added a solution of iodic acid (1.16 g, 6.6 

mmol, 0.2 equiv) in H2O (7 mL). The reaction mixture was warmed to 35 °C for 1.5 h. 

The mixture was filtered over vacuum and the solids were rinsed with sat. Na2S2O3(aq)  
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(50 mL) and H2O (50 mL) to afford the aryl iodide 289 as a cream-colored solid (10.12 g, 

quantitative). 1H NMR (500 MHz, CDCl3) δ 9.80 (s, 1H), 7.84 (d, J = 1.8 Hz, 1H), 7.40 

(d, J = 1.8 Hz, 1H), 6.68 (d, J = 1.5 Hz, 1H), 4.00 (d, J = 1.6 Hz, 4H). All spectroscopic 

data are consistent with those previously reported.85 

 

3-iodo-4,5-dimethoxybenzaldehyde (290). To a solution of 289 (1.0 g, 3.6 mmol, 1 

equiv) in CH2Cl2 (18 mL) was added an aqueous solution of 0.6M NaOH(aq) (18 mL) and 

phase transfer catalyst tetrabutylammonium hydrogen sulfate (TBAS, 1.22 g, 3.6 mmol, 1 

equiv). Once dissolved, MeI (2.7 mL, 43 mmol, 12 equiv) was added and the reaction 

mixture was allowed to stir at rt for 12 h. After stirring at rt for 12 h, the mixture was 

extracted with CH2Cl2 (3 x 10 mL). The combined organic extract was washed with brine 

(10 mL), H2O (10 mL), then dried over MgSO4, filtered, and concentrated in vacuo to 

afford the crude material as a yellow solid (2.08 g). Purification by column 

chromatography (eluting with 20% EtOAc/hexanes) gave aryl halide 290 as a white 

fluffy solid (481.4 mg, 46%). 1H NMR (500 MHz, CDCl3) δ 9.82 (s, 1H), 7.84 (d, J = 1.8 

Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 3.92 (d, J = 1.9 Hz, 7H).	All spectroscopic data are 

consistent with those previously reported.85	
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2.8  Selected NMR Spectra 
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3 Chapter Three: Dual Brønsted/Lewis Acid Catalysis for Site-Selective 

Friedel−Crafts Alkylation of Phenols 

3.1 Introduction 

3.1.1 Friedel−Crafts Alkylation  

The Friedel–Crafts alkylation provides an intuitive, powerful bond disconnection 

for C(sp2)–C(sp3) bond retrosynthesis, and have found importance in the pharmaceutical 

and fragrance industries.1–3 The ACS Green Chemistry Institute® Pharmaceutical 

Roundtable has recognized Friedel–Crafts reactions on unactivated substrates and the 

direct substitution of alcohols as selected synthetic priorities.4,5 Since then, greener 

catalytic Friedel–Crafts alkylations using benzylic, propargylic, and allylic alcohols have 

been advanced to replace some relatively hazardous alkyl halides.6–10 For example, Iovel 

et al. reported primary and secondary benzylic halides, acetates, and alcohols (293) 

coupling with arenes (292) under iron catalysis (Scheme 72).11  

 

Scheme 72. Iovel's Fe-catalyzed arylation of benzyl alcohols and benzyl carboxylates 

Advancing synthetic methodologies that employ non-benzylic, non-propargylic, 

and non-allylic alcohols in direct aromatic alkylations would complement modern cross-

coupling approaches in constructing C(sp2)–C(sp3) bonds while starting from minimally 

prefunctionalized reaction precursors. The Moran group demonstrated that the use of 

trifluoromethanesulfonic acid (TfOH) in hexafluoroisopropanol (HFIP) solvent promotes 
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a Brønsted acid-assisted Brønsted acid catalysis strategy for arylating a range of alcohols 

(296) and epoxides (297, Scheme 73a).12 Our lab recently reported conditions for setting 

quaternary carbon centers in para-selective Friedel–Crafts reactions using unactivated 

tertiary alcohols (301) catalyzed by combinations of FeX3/HX (Scheme 73b),13 as well as 

the synthesis of diarylmethane derivatives using methanol as the alkylating agent.14  

 

Scheme 73. Friedel–Crafts reactions via direct substitution of unactivated alcohols 

Aside from a few isolated examples with cycloalkanols,15–17 the Cook group 

found that a mixture of FeCl3/AgSbF6 was effective at arylating unactivated secondary 

alcohols (304), albeit lacking site-selectivity (Scheme 73c).18 The Newman group also 

recently reported a Suzuki–Miyaura approach to arylating unactivated tertiary alcohols.19 

Despite these advancements in directly transforming unactivated alcohols, many existing 
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methods still require excess reagents, costly precious metal additives, or the use of a 

fluorinated solvent.  

3.2 Results and Discussion 

In the pursuit of more sustainable carbon–carbon bond-forming reactions, we 

introduce a site-selective Friedel–Crafts alkylation of phenolic derivatives (306) with 

unactivated secondary alcohols (307) through dual ZnCl2 and camphorsulfonic acid 

(CSA) catalysis (Scheme 74). Previous research in our lab demonstrated the ability of 

Lewis acids to enhance the acidity of Brønsted acids.13 Building on this finding, we 

hypothesized that this co-catalysis approach could be applied to Friedel–Crafts 

alkylations using unactivated secondary alcohols. This method offered several advantages 

over existing approaches, including the use of cost-effective and readily accessible 

reagents: chlorobenzene instead of HFIP solvent9,12,20 and Zn/CSA instead of Fe/Ag as 

catalysts.18 Note that this work was performed alongside Aaron Pan with the assistance of 

two undergraduate researchers: Lorraine Rangel and Charlene Fan. My primary 

contributions involved reaction condition optimization, expansion of the substrate scope, 

and subsequent analysis of the ortho-selective alkylation. 

 

Scheme 74. Developed Brønsted/Lewis acid-catalyzed Friedel−Crafts alkylations  
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3.2.1 Optimization Studies 

3-tert-Butylphenol (309) and cyclohexanol (310) were selected to test for 

reactivity since they are readily available and conversion to product could be 

conveniently quantified by NMR analysis (Table 4). Catalytic amounts of Fe(III) salts 

(2.5 mol%) were initially examined with stoichiometric quantities of HCl (2 equiv) at 140 

°C. The desired alkylation product (311) was formed in 50–57% NMR yields (Entries 1–

2). Of all the Lewis acid catalysts tested, including Zn(OAc)2 and Fe(II) salts, ZnCl2 

performed the best, providing the product in 63% yield (Entry 3). Lowering the 

temperature from 140 °C to 120 °C was detrimental to yield (39%, Entry 4), and 

increasing the ZnCl2 loading to 5 mol% enhanced product formation (71%, Entry 5).  

However, further increasing the amount of Zn-catalyst to 30 mol% did not improve the 

reaction outcome (Entry 6). CSA was found to be effective at supporting this 

transformation, albeit providing a lower yield even when cyclohexanol (310) was 

employed as the solvent (39%, Entry 7). Solid CSA was desirable because it addresses 

the concern of volatile HCl escaping from the reaction vessels at high temperature. 

Reducing the amount of alkylating agent in the reaction mixture from solvent quantities 

to 5 equiv improved the yield to 68% (Entry 8). The reactivity was maintained by 

reducing the amount of CSA from 2 equiv to 0.75 equiv, which resulted in an isolated 

74% yield of 311 when using 3 equiv of alcohol 310. However, reducing the amount of 

acid to 50 mol% reduced the NMR yield to 52%. 
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Table 4. Survey of conditions for direct Friedel−Crafts alkylation of phenolic 309 with 

alcohol 310 

 

Entry MXn x HX y Solvent Temp (°C) % Yieldb 

1 FeCl3 2.5 HCl 200 PhCl 140 50 

2 FeBr3 2.5 HCl 200 PhCl 140 57 

3 ZnCl2 2.5 HCl 200 PhCl 140 63 

4 ZnCl2 2.5 HCl 200 PhCl 120 39 

5 ZnCl2 5 HCl 200 PhCl 140 71 

6 ZnCl2 30 HCl 200 PhCl 140 61 

7 ZnCl2 5 CSA 200 CyOH 140 39 

8 ZnCl2 5 CSA 200 PhCl 140 68  

9 ZnCl2 5 CSA 75 PhCl 140 (74)c,d 

10 ZnCl2 5 CSA 50 PhCl 140 52 

aConditions: reactions performed on 0.1 mmol scale, phenol 309 (1 equiv), alcohol 310 

(5 equiv), 18 h.  bDetermined by NMR analysis of the crude reaction mixture using 1,3,5-

trimethoxybenzene as internal standard. cWith 3 equiv 310. dIsolated yield. 
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3.2.2 Reaction Scope 

Cyclohexanol and cycloheptanol combined with 3-tert-butylphenol (309) to forge 

alkylated 311 and 312 in good yields (69–70%) (Figure 8). The secondary carbocation 

generated from tetrahydronaphthalen-2-ol (334) undergoes 1,2-hydride shift to the 

corresponding benzylic carbocation under the reaction conditions, which proceeded to 

diarylmethane derivative 313 in 81% yield. Acyclic secondary alcohols isopropanol, 2-

butanol, and 1-adamantyl-1-ethanol were converted to arylated products 314–316 in 54–

87% yields. On a larger 1 mmol scale, the reaction proceeded with nearly equimolar 

alkylating agent (i.e., 1.1 equiv of isopropanol), leading to isopropylated 314 in 70% 

yield. Strained alcohols such as norborneol and 2-adamantanol were found to be excellent 

alkylating agents for this catalysis: equimolar quantities of reactants lead to substitution 

at the ortho-position of 3-tert-butylphenol (309) in 82% (317) and 76% (318) yields, 

respectively. 3-Isopropylphenol reacted with cyclohexanol in 49% yield and 2-

adamantanol in 85% yield to arrive at alkylated arenes 319 and 320. Likewise, 3-

phenylphenol was alkylated with 1-adamantyl-1-ethanol in 38% yield (321) and with 2-

adamantanol in 64% yield (322). In general, reactions with strained secondary alcohols 

performed better. 
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Figure 8. Exploring scope of Friedel−Crafts alkylations with unactivated secondary 

alcohols. Conditions: phenolic 306 (0.2 mmol), alcohol 307 (0.6 mmol), ZnCl2 (0.01 

mmol), (R)-CSA (0.15 mmol), PhCl (0.2 mL, 1 M), 140 °C, 18 h. aWith 5 equiv alcohol 

307. bWith phenolic 306 (1 mmol), alcohol 307 (1.1 mmol), ZnCl2 (0.05 mmol), (R)-CSA 

(0.75 mmol), PhCl 1 mL, 1 M), 140 °C, 18 h. cWith 2 equiv alcohol 307. dWith 1.1 equiv 

alcohol 307. eWith 1 mol% ZnCl2. 
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Figure 9. Examples of para- and dialkyl-substituted phenols. Conditions: phenolic 306 

(0.2 mmol), alcohol 307 (0.6 mmol), ZnCl2 (0.01 mmol), (R)-CSA (0.15 mmol), PhCl 

(0.2 mL, 1 M), 140 °C, 18 h. aWith 2 equiv alcohol 307. bWith 1.1 equiv alcohol 307. 

cWith 1 mol% ZnCl2. 
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and 326 in 36% and 35% isolated yields, respectively, along with minor disubstitution 

side products. In these cases, the para-substituted isomers were not isolated nor observed 

by 1H NMR analysis of the crude reaction mixtures.  

para-Substituted, including halogenated phenolic precursors, were mono-

alkylated in modest 31–41% yields (327−330, Figure 9). Sterically encumbered thymol 

alkylated with cyclohexanol in 31% yield (47% brsm) predominantly at the most 

hindered ortho-position over the para-position (331, 10%). In contrast, with two 

available ortho-sites, the flavoring agent 3,4-xylenol underwent alkylation at the less 

hindered 6-position to furnish 2-adamantyl-4,5-dimethylphenol (332) in 52% yield. This 

selectivity was consistent with all the meta-substituted phenolic precursors containing 

two unsymmetrical ortho-sites. With both ortho-sites blocked, as in 2,6-xylenol, para-

alkylation resulted in 333 in 68% yield. 

This chemistry was also applied by Pan to the alkylation of more complex 

molecules like estrone (335, Scheme 54a). As examples, it’s treatment with isopropanol 

and cyclohexanol furnished a mixture of 336a/336b in 31% (1:1.5 C4/C2 selectivity) 

favoring alkylation at the more sterically encumbered ortho site and 337a/337b in 60% 

yield (2.3:1 C4/C2 selectivity) favoring alkylation at the less hindered ortho-site (Scheme 

2a). Pan further demonstrated derivatization of the alkylated phenolic compound (318) 

with 2-fluoropyridine (388) in a nucleophilic aromatic substitution to access pyridyl aryl 

ether 339 in 86% yield (Scheme 75b). 
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Scheme 75. Application to late-stage derivatizations 
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Scheme 76. Mechanistic studies 
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76c). This highlighted the role of sulfonic acid derivatives in promoting ortho-selectivity. 

We postulated that the Zn and CSA catalysts played roles in templating reactivity and 

that the phenolic group directed reactivity (through a zinc phenolate species). Upon 

subjecting anisole (347) to the catalysis conditions, only a small amount of the para-

alkylated product (p-348) was observed by NMR analysis (Scheme 76d). This 

observation emphasized the importance of the free phenolic group in directing both 

reactivity and selectivity.  

3.2.4 Mechanism of the Reaction 

To probe the substitution mechanism of the reaction, Pan prepared and subjected 

a non-racemic mixture of 1-adamantyl-1-ethanol (349) to Friedel–Crafts alkylation with 

3-tert-butylphenol (309) (Scheme 76e). The loss of enantiomeric excess in forming the 

chiral racemic product (316) strongly suggested involvement of an SN1 pathway under 

the dual ZnCl2/CSA catalysis conditions, which was distinct from the SN2 pathway 

promoted by TfOH in HFIP.13 

We turned to kinetics studies to derive a rate law for this transformation using 3-

tert-butylphenol (309) and 2-adamantanol (341) as the model system (Figure 10). 

Executed by Pan, initial rates of the alkylation reaction were measured by varying the 

concentrations of ZnCl2, CSA, phenolic 309, alcohol 341, ZnCl2, and CSA. These 

experiments revealed the rate to be largely independent of the concentration of ZnCl2, 

suggestive of saturation kinetics and sequestration by substrate. In the absence of ZnCl2, 

the initial rate deviated significantly (4.3-fold slower) from the trendline in Figure 9a and 

was indicative of background reactivity proceeding through a different ZnCl2-free 



 224 

mechanism. The initial rates followed a first-order dependence on the concentration of 

CSA, half-order dependence on the concentration of phenolic 309, and first-order 

dependence on the concentration of 2-adamantanol (341), giving the rate law: 

rate = kobs[ZnCl2]0[CSA]1[phenolic 309]0.5[alcohol 341]1 (1) 

 

Figure 10. Plots of initial rates 

(a) [ZnCl2] indicating pseudo-zero order dependence, [CSA] = 3.8 × 10-1 M, [phenol 

309] = 5.0 × 10-1 M, [alcohol 341] = 5.5 × 10-1 M; (b) [CSA] indicating first-order 

dependence, [ZnCl2] = 2.5 × 10-2 M, [phenol 309] = 5.0 × 10-1 M, [alcohol 341] = 5.5 × 

10-1 M; (c) [phenol 309] indicating half-order dependence, [ZnCl2] = 2.5 × 10-2 M, [CSA] 

= 3.8 × 10-1 M, [alcohol 341] = 5.5 × 10-1 M; (d) [alcohol 341] indicating first-order 

dependence, [ZnCl2] = 2.5 × 10-2 M, [CSA] = 3.8 × 10-1 M, [phenol 309] = 5.0 × 10-1 M 
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Based on the experimentally derived rate law, the zinc catalyst was believed to be 

saturated with phenol ligands in the form of complex A (Scheme 77). We therefore 

proposed it to be the resting state of the catalytic cycle. For the reaction to proceed, one 

of the phenolate ligands must dissociate from zinc in exchange for CSA to coordinate, 

leading to complex B; hence the half-order dependence on [phenol] and first-order 

dependence on [CSA]. Complexation of the Brønsted acid to zinc effectively enhances its 

acidity, enabling it to activate alcohol 310 toward Friedel–Crafts alkylation (see C). 

Ionization, as part of the SN1 pathway determined via stereochemical studies (Scheme 

3e), leads to loss of water and an ion-pair that can potentially proceed via transition state 

D. The relatively non-polar PhCl solvent favors formation of a tight ion-pair and ortho-

selectivity. Release of product in the presence of excess phenolic substrate turns over the 

zinc catalyst. 
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Scheme 77. Proposed mechanism 
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reactants for ortho-functionalization. The current catalysis conditions provided a good 

foundation for developing green and cost-effective conditions for catalytic Friedel–Crafts 

reactions using readily accessible alcohols as direct alkylating agents. This work also 

highlighted the efficacy of simple catalysts for achieving C(sp2)-C(sp3) bond synthesis, 

departing from conventional transition-metal-catalyzed cross-coupling methods. 

3.4 Experimental Section 

3.4.1 General Experimental 

Commercial reagents were purchased from MilliporeSigma, Acros Organics, 

Chem-Impex, TCI, Oakwood, and Alfa Aesar, and used without additional purification. 

Solvents were purchased from Fisher Scientific, Acros Organics, Alfa Aesar, and Sigma 

Aldrich. Tetrahydrofuran (THF), diethyl ether (Et2O), acetonitrile (MeCN), 

dichloromethane (CH2Cl2), benzene, 1,4-dioxane, and triethylamine (Et3N) were sparged 

with argon and dried by passing through alumina columns using argon in a Glass Contour 

(Pure Process Technology) solvent purification system. Dimethylformamide (DMF), 

dimethyl sulfoxide (DMSO), and dichloroethane (DCE) were purchased in Sure/Seal or 

AcroSeal bottling and dispensed under N2. Deuterated solvents were obtained from 

Cambridge Isotope Laboratories, Inc. or MilliporeSigma. 

In general, the catalytic reactions are not air- or moisture-sensitive; however, the 

iron and zinc salts are hygroscopic and quickly change color when being weighed and 

added to the reaction vessel. This influences how much metal catalyst is being added 

because their molecular weights increase on hydration. For consistency and rigor, the iron 

and zinc salts were weighed and added to vials inside a nitrogen-filled glovebox. All 
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other reagents, including the solvent, were added outside the glovebox under open air. 

Reaction progresses were monitored using thin-layer chromatography (TLC) on EMD 

Silica Gel 60 F254 or Macherey–Nagel SIL HD (60 Å mean pore size, 0.75 mL/g 

specific pore volume, 5–17 μm particle size, with fluorescent indicator) silica gel plates. 

Visualization of the developed plates was performed under UV light (254 nm). 

Purification and isolation of products were performed via silica gel chromatography (both 

column and preparative thin-layer chromatography). Organic solutions were concentrated 

under reduced pressure on IKA® temperature-controlled rotary evaporator equipped with 

an ethylene glycol/water condenser. 

Melting points were measured with the MEL-TEMP melting point apparatus. 

Proton nuclear magnetic resonance (1H NMR) spectra, carbon nuclear magnetic 

resonance (13C NMR) spectra and fluorine nuclear magnetic resonance (19F NMR) 

spectra were recorded on Bruker Avance NEO 400 (not 1H decoupled) or Bruker Avance 

600 MHz spectrometers (1H decoupled). Chemical shifts (δ) are reported in ppm relative 

to the residual solvent signal (δ 7.26 for 1H NMR, δ 77.16 for 13C NMR in CDCl3).1 Data 

for 1H NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = doublet of 

doublets, dt = doublet of triplets), coupling constant (Hz), integration. Data for 13C and 

19F NMR spectroscopy are reported in terms of chemical shift (δ ppm). IR spectroscopic 

data were recorded on a NICOLET 6700 FT-IR spectrophotometer using a diamond 

attenuated total reflectance (ATR) accessory. Samples are loaded onto the diamond 

surface either neat or as a solution in organic solvent and the data acquired after the 
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solvent had evaporated. High resolution accurate mass (ESI) spectral data were obtained 

from the Analytical Chemistry Instrumentation Facility at the University of California, 

Riverside, on an Agilent 6545 Q-TOF LC/MS instrument (supported by NSF grant CHE-

1828782).  

3.4.2 Experimental Procedures 

General Procedure A: Reductions of Ketones with LiAlH4. To a 50 mL RBF 

(flame-dried and equipped with a stirring bar) was added LiAlH4 (1 equiv) before 

purging with N2 and suspending in dry Et2O (to produce a 0.2 M suspension). The 

mixture was cooled to 0 °C before adding dropwise a solution of ketone (1 equiv) in dry 

Et2O (1 M). The resulting suspension was allowed to stir at 0 °C for 4 h. The reaction 

mixture was quenched via the Fieser–Fieser workup conditions: diluted with Et2O (30 

mL), then cooled to 0 °C and dropwise added distilled water (dH2O) (2 equiv), 15% (w/v) 

NaOH(aq) (2 equiv), and dH2O (3 equiv). The mixture was warmed to room temperature 

and stirred for 15 min, then added anhydrous MgSO4 was and stirred for an additional 15 

min. The solids were removed by filtration and the filtrate concentrated under reduced 

pressure to obtain the secondary alcohol product. The alcohols were subsequently used 

without further purification. 

General Procedure B: Alkylations with cyclohexanol. A one-dram vial equipped 

with a stirring bar was sequentially added ZnCl2 or FeCl3 (2–10 µmol, 1–5 mol%), arene 

derivative (0.2 mmol, 1 equiv), PhCl (0.2 mL, 1 M), cyclohexanol (62.5 µL, 0.6 mmol, 3 

equiv), and (R)-camphorsulfonic acid monohydrate (R-CSA•H2O) (37.6 mg, 0.15 mmol, 

75 mol%) or (S)-camphorsulfonic acid (S-CSA)  (35 mg, 0.15 mmol, 75 mol%). The 
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reaction mixture was heated at 140 °C for 18 h, at which time the solution was filtered 

through a 5” pipette plug of silica gel (approximately one-third filled) and eluted with 

hexanes/EtOAc (3:1). The solution was concentrated in vacuo and purified via silica gel 

chromatography to obtain the alkylation product. 

General Procedure C: Alkylations with 2-adamantanol. A one-dram vial equipped 

with a stirring bar was sequentially added ZnCl2 or FeCl3 (10 µmol, 5 mol%), arene 

derivative (0.2 mmol, 1 equiv), PhCl (0.2 mL, 1 M), 2-adamantanol (33.5 mg, 0.22 

mmol, 1.1 equiv), (R)-camphor sulfonic acid monohydrate (R-CSA•H2O) (37.6 mg, 0.15 

mmol, 75 mol%) or (S)-camphor sulfonic acid (S-CSA) (35 mg, 0.15 mmol, 75 mol%). 

The reaction mixture was heated at 140 °C for 18 h, at which time the solution was 

filtered through a silica gel plug (packed in a 5” glass pipette, approximately one-third 

filled) and eluted with hexanes/EtOAc (3:1). The solution was concentrated in vacuo and 

purified via silica gel chromatography to obtain the alkylation product. 

General Procedure D: Alkylations with other secondary alcohols. A one-dram vial 

equipped with a stirring bar was sequentially added ZnCl2 (0.01 mmol, 5 mol%), 3-tert-

butylphenol (0.2 mmol, 1 equiv), PhCl (0.2 mL, 1 M), secondary alcohol (0.22–1.0 

mmol, 1.1–5 equiv), and (R)-camphor sulfonic acid monohydrate (R-CSA•H2O) (37.6 

mg, 0.15 mmol, 75 mol%). The reaction mixture was heated at 140 °C for 18 h, at which 

time the solution was filtered through a silica gel plug (packed in a 5” glass pipette, 

approximately one-third filled) and eluted with hexanes/EtOAc (9:1) or EtOAc. The 

solution was concentrated in vacuo and purified via silica gel chromatography to obtain 

the alkylation product. 
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5-(tert-Butyl)-2-cyclohexylphenol (311)  

Prepared using General Procedure B with 3-tert-butylphenol (30.2 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.055 mmol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), cyclohexanol (62.5 µL, 0.6 mmol, 3 equiv), 

and CSA•H2O (37.6 mg, 0.150 mmol, 0.75 equiv). Purification by preparative TLC 

(eluting with 9:1 hexanes/EtOAc) afforded 311 (34.5 mg, 74%) as a yellow-orange oil. 

Rf: 0.33 (19:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.12 (d, J = 8.1 Hz, 1H), 

6.95 (dd, J = 8.1, 2.0 Hz, 1H), 6.81 (d, J = 2.2 Hz, 1H), 4.74 (s, 1H), 2.77 (qt, J = 6.3, 2.5 

Hz, 1H), 1.94–1.83 (m, 5H), 1.82–1.74 (m, 1H), 1.51–1.38 (m, 4H), 1.31 (s, 9H); 13C 

NMR (151 MHz, CDCl3) δ 152.4, 150.2, 130.5, 126.5, 118.0, 112.7, 37.2, 34.4, 33.3, 

31.4, 27.2, 26.4; IR (ATR): 3342, 2925, 2852, 1414, 738 cm-1; HRMS (ESI+): m/z 

[M+H]+ calculated for C16H25O: 233.1900; found: 233.1902. 

5-(tert-Butyl)-2-cycloheptylphenol (312)  

Prepared using General Procedure D with 3-tert-butylphenol (30.2 

mg, 0.201 mmol, 1 equiv), ZnCl2 (1.7 mg, 0.012 mmol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), cycloheptanol (69.6 mg, 0.609 mmol, 3 

equiv), and CSA•H2O (37.8 mg, 0.151 mmol, 0.75 equiv). Purification by preparative 

TLC (eluting with 19:1 hexanes/EtOAc × 2) afforded 312 (34.0 mg, 69%) as an orange 

oil. 1H NMR (500 MHz, CDCl3) δ 7.09 (d, J = 8.0 Hz, 1H), 6.91 (dd, J = 8.1, 1.5 Hz, 

1H), 6.78 (d, J = 2.0 Hz, 1H), 2.95–2.83 (m, 1H), 1.96–1.87 (m, 2H), 1.85–1.77 (m, 2H), 

1.72–1.52 (m, 8H), 1.28 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 151.8, 150.0, 132.4, 
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126.8, 118.0, 112.7, 39.3, 35.5, 34.4, 31.5, 28.1, 27.6; IR (ATR): 3380, 2923, 2855, 1617, 

1577, 1504, 1460, 1415, 1362, 1292, 1264, 1233, 1203, 1168, 1128, 1089, 931, 863, 814, 

738, 705, 651, 576, 554, 485, 458, 451, 440, 404 cm-1; HRMS (ESI+): m/z [M+H]+ 

calculated for C17H27O: 247.2056; found: 247.2061. 

5-(tert-Butyl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)phenol (313) 

Prepared using General Procedure D with 3-tert-butylphenol (30.2 

mg, 0.201 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.011 mmol, 0.05 

equiv), PhCl (0.2 mL, 1.0 M), 2-tetralol (2c) (53.5 µL, 0.399 

mmol, 2 equiv), and CSA•H2O (37.5 mg, 0.150 mmol, 0.75 equiv). Purification by 

preparative TLC (eluting with 19:1 hexanes/EtOAc) afforded 313 (45.4 mg, 81%) as an 

orange oil. Rf: 0.27 (19:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) δ 7.18–7.12 (m, 

2H), 7.10–7.04 (m, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.89–6.84 (m, 2H), 6.81 (d, J = 1.8 Hz, 

1H), 4.48 (s, 1H), 4.28 (dd, J = 8.8, 5.7 Hz, 1H), 2.97–2.80 (m, 2H), 2.17–2.08 (m, 1H), 

1.99–1.90 (m, 2H), 1.82–1.73 (m, 1H), 1.29 (s, 9H); 13C NMR (151 MHz, CDCl3) δ 

152.9, 151.0, 138.3, 137.9, 130.5, 129.6, 129.5, 129.5, 126.5, 126.3, 117.9, 113.6, 40.9, 

34.5, 31.5, 30.9, 29.9, 21.7; IR (ATR): 3312, 2971, 1379, 1087, 1045, 879, 653 cm-1; 

HRMS (ESI–): m/z [M–H]– calculated for C20H23O: 279.1754; found 279.1765. 

5-(tert-Butyl)-2-isopropylphenol (314)  

Prepared using General Procedure D with 3-tert-butylphenol (30.1 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.011 mol, 0.05 equiv), PhCl 

(0.2 mL, 1.0 M), sec-butanol (76.5 µL, 1.0 mmol, 5 equiv), and 

CSA•H2O (37.5 mg, 0.15 mmol, 0.75 equiv). Purification by preparative TLC (eluting 
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with 19:1 hexanes/EtOAc) afforded 314 (26.7 mg, 70%) as a light-yellow-white solid. 

M.p. 53–56 °C; Rf: 0.34 (19:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.15 (d, J 

= 8.0 Hz, 1H), 6.97 (dd, J = 8.0, 2.0 Hz, 1H), 6.81 (d, J = 1.9 Hz, 1H), 4.69 (s, 1H), 3.18 

(h, J = 6.9 Hz, 1H), 1.32 (s, 9H), 1.28 (d, J = 6.9 Hz, 6H); 13C NMR (151 MHz, CDCl3) δ 

152.4, 150.3, 131.3, 126.0, 118.0, 112.7, 34.4, 31.5, 26.9, 22.8; IR (ATR): 3349, 2960, 

2869, 1415, 1156, 1082, 932, 817, 739 cm-1; HRMS (ESI+): m/z [M+H]+ calculated for 

C13H21O: 193.1587; found: 193.1583. 

2-(sec-butyl)-5-(tert-butyl)phenol (315)  

Prepared using General Procedure D with 3-tert-butylphenol (30.1 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.011 mol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), sec-butanol (920 µL, 1 mmol, 5 equiv), and 

CSA•H2O (37.5 mg, 0.15 mmol, 0.75 equiv). Purification by preparative TLC (eluting 

with 19:1 hexanes/EtOAc) afforded 315 (22.1 mg, 54%) as a colorless oil; 1H NMR (600 

MHz, CDCl3) δ 7.07 (d, J = 8.0 Hz, 1H), 6.92 (dt, J = 8.0, 1.5 Hz, 1H), 6.78 (t, J = 1.5 

Hz, 1H), 4.57 (s, 1H), 2.89 (sextet, J = 7.0 Hz, 1H), 1.70–1.63 (m, 1H), 1.58 (dq, J = 

13.9, 6.9 Hz, 2H), 1.29 (s, 9H), 1.23 (dd, J = 6.9, 1.1 Hz, 3H), 0.88 (td, J = 7.4, 1.1 Hz, 

3H); 13C NMR (151 MHz, CDCl3) δ 157.2, 152.7, 150.2, 126.7, 118.0, 112.7, 34.4, 33.9, 

31.5, 30.0, 20.5, 12.4; IR (ATR): 3311, 2968, 1417, 1087, 1045, 879, 655 cm-1; HRMS 

(ESI–): m/z [M–H]– calculated for C14H23O: 205.1598; found: 205.1601. 

2-(1-Adamant-1-yl)ethyl)-5-(tert-butyl)phenol (316) 

Prepared using General Procedure D with 3-tert-butylphenol (30.0 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), 
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PhCl (0.2 mL, 1.0 M), 1-(adamant-1-yl)ethanol (349) or (R)-1-(adamant-1-yl)ethanol 

((R)-349)  (72.2 mg, 0.40 mmol, 2 equiv), and CSA•H2O (37.5 mg, 0.15 mmol, 0.75 

equiv). Purification by preparative TLC (eluting with 19:1 hexanes/EtOAc) or flash 

chromatography (eluting with 0–10% EtOAc in hexanes) afforded 316 (46.5–54.7 mg, 

74–87%) as an orange oil. Rf: 0.37 (19:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) δ 

7.02 (d, J = 8.1 Hz, 1H), 6.92–6.87 (m, 1H), 6.78 (d, J = 2.1 Hz, 1H), 4.60 (s, 1H), 2.74 

(q, J = 7.3 Hz, 1H), 1.93 (s, 3H), 1.67–1.62 (m, 5H), 1.57 (d, J = 12.6 Hz, 4H), 1.50–1.45 

(m, 3H), 1.29 (s, 9H), 1.18 (d, J = 7.2 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 153.0, 

150.0, 129.0, 127.0, 117.3, 112.4, 41.0, 39.7, 37.3, 36.3, 34.4, 31.5, 28.9, 14.4; IR (ATR): 

3314, 2971, 1379, 1087, 1045, 879, 657 cm-1; HRMS (ESI–): m/z [M–H]– calculated for 

C22H31O: 311.2380; found 311.2395.  

2-(norborn-2-yl)-5-(tert-butyl)phenol (317)  

Prepared using General Procedure D with 3-tert-butylphenol (30 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.055 mmol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), norbornan-2-ol (24.7 mg, 0.22 mmol, 1.1 

equiv), and CSA•H2O (37.6 mg, 0.15 mmol, 0.75 equiv). Purification by preparative TLC 

(eluting with 9:1 hexanes/EtOAc) afforded 317 (40.2 mg, 82%) as a yellow-orange oil. 

1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 8.1 Hz, 1H), 6.93 (dd, J = 8.1, 2.0 Hz, 1H), 

6.84 (d, J = 2.0 Hz, 1H), 4.73 (s, 1H), 2.82 (dd, J = 9.1, 5.3 Hz, 1H), 2.45–2.24 (m, 2H), 

1.81 (ddd, J = 11.7, 8.8, 2.3 Hz, 1H), 1.75–1.51 (m, 4H), 1.47–1.35 (m, 2H), 1.31 (s, 9H), 

1.24 (ddd, J = 9.7, 2.3, 1.5 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 153.1, 150.2, 129.9, 

125.7, 117.4, 112.7, 41.1, 40.4, 38.2, 37.0, 36.3, 34.4, 31.5, 30.4, 29.2; IR (ATR): 3341, 
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2949, 2867, 1573, 1413, 1295, 1234, 1092, 932, 814 cm-1; HRMS (ESI+): m/z [M+H]+ 

calculated for C17H25O: 245.1900; found: 245.1901. 

2-(adamantan-2-yl)-5-(tert-butyl)phenol (318) 

Prepared using General Procedure C with 3-tert-butylphenol (30.1 

mg, 0.2 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.011 mol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), adamantan-2-ol (33.9 mg, 0.2 mmol, 1.1 

equiv), and CSA•H2O (37.48 mg, 0.15 mmol, 0.75 equiv). Purification by preparative 

TLC (eluting with 9:1 hexanes/EtOAc) afforded 318 (43 mg, 76%) as a pale-yellow-

white solid. M.p. 135–139 °C; Rf: 0.35 (19:1 hexanes/EtOAc); 1H NMR (500 MHz, 

CDCl3) δ 7.37 (d, J = 8.1 Hz, 1H), 6.94 (dd, J = 8.1, 2.0 Hz, 1H), 6.78 (d, J = 2.0 Hz, 1H), 

4.67 (s, 1H), 3.15 (s, 1H), 2.38–2.33 (m, 2H), 2.05 (dd, J = 12.8, 2.9 Hz, 2H), 2.02–1.92 

(m, 5H), 1.88 (p, J = 3.2 Hz, 1H), 1.82–1.77 (m, 2H), 1.68–1.63 (m, 2H), 1.30 (s, 9H); 

13C NMR (151 MHz, CDCl3) δ 153.6, 150.2, 128.5, 127.9, 117.3, 113.0, 43.9, 40.1, 38.1, 

34.3, 33.0, 31.4, 31.2, 28.3, 27.9; IR (ATR): 3301, 2899, 2849, 1615, 1450, 1411, 1192, 

1092, 935, 859, 827, 731, 650 cm-1; HRMS (ESI+): m/z [M+H]+ calculated for C20H29O: 

285.2213; found 285.2223. 

2-cyclohexyl-5-isopropylphenol (319) 

Prepared using General Procedure B with 3-isopropylphenol (27.5 

µL, 0.2 mmol, 1 equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), cyclohexanol (62.5 µL, 0.6 mmol, 3 equiv), 

and CSA•H2O (37.4 mg, 0.15 mmol, 0.75 equiv). Purification by preparative TLC 

(eluting with 9:1 hexanes/EtOAc) afforded 319 (21.5 mg, 49%) as an orange oil. Rf: 0.27 
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(9:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.10 (d, J = 7.9 Hz, 1H), 6.79 (dd, J 

= 7.9, 1.8 Hz, 1H), 6.64 (t, J = 2.0 Hz, 1H), 4.74 (s, 1H), 2.84 (h, J = 6.9 Hz, 1H), 2.79–

2.70 (m, 1H), 1.93–1.81 (m, 4H), 1.81–1.72 (m, 1H), 1.49–1.35 (m, 4H), 1.34–1.24 (m, 

1H), 1.23 (d, J = 6.9 Hz, 6H); 13C NMR (151 MHz, CDCl3) δ 152.7, 147.8, 130.9, 126.8, 

119.1, 113.5, 37.2, 33.7, 33.3, 27.2, 26.5, 24.1; IR (ATR): 3390, 2923, 2850, 1579, 1423, 

738 cm-1; HRMS (ESI+): m/z [M+H]+ calculated for C15H23O: 219.1743; found: 

219.1744. 

2-(Adamant-2-yl)-5-isopropylphenol (320) 

Prepared using General Procedure C with 3-isopropylphenol (27.5 

µL, 0.2 mmol, 1 equiv), ZnCl2 (1.7 mg, 0.012 mmol, 0.05 equiv), 

PhCl (0.2 mL, 1.0 M), adamantan-2-ol (33.6 mg, 0.22 mmol, 1.1 

equiv), and CSA•H2O (37.6 mg, 0.15 mmol, 0.75 equiv). Purification by preparative TLC 

(eluting with 9:1 hexanes/EtOAc) afforded 320 (46.0 mg, 85%) as a yellow-white solid. 

M.p. 115–118 °C; Rf: 0.41 (9:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.34 (d, J 

= 7.9 Hz, 1H), 6.78 (dd, J = 7.8, 1.2 Hz, 1H), 6.62 (d, J = 1.4 Hz, 1H), 4.59 (s, 1H), 3.13 

(s, 1H), 2.83 (dt, J = 13.4, 6.3 Hz, 1H), 2.33 (s, 2H), 2.03 (d, J = 12.4 Hz, 2H), 1.96 (d, J 

= 5.4 Hz, 5H), 1.78 (s, 2H), 1.64 (d, J = 12.7 Hz, 2H), 1.23 (d, J = 6.9 Hz, 6H); 13C NMR 

(151 MHz, CDCl3) δ 153.9, 147.9, 128.9, 128.1, 118.5, 113.7, 44.0, 40.2, 38.2, 33.6, 

33.0, 31.3, 28.3, 27.9, 24.1; IR (ATR): 3411, 2901, 2844, 1619, 1420, 1210, 1094, 1056, 

947, 854, 830, 729, 645 cm-1; HRMS (ESI–): m/z [M–H]– calculated for C19H25O: 

269.1911; found 269.1922. 
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2-(1-Adamant-1-yl)ethyl)-5-phenylphenol (321) 

Prepared using General Procedure B with 3-phenylphenol (90% 

technical grade, 38.1 mg, 0.201 mmol, 1 equiv), ZnCl2 (1.5 mg, 

0.011 mmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), 1-(adamant-1-yl)ethanol (2f) (72.4 mg, 

0.401 mmol, 2 equiv), and CSA•H2O (37.7 mg, 0.151 mmol, 0.75 equiv). Purification by 

two cycles of preparatory TLC (eluting with 19:1 hexanes/EtOAc) afforded 321 (25.1 

mg, 38%) as an orange-white solid. M.p. 160–162 °C; Rf: 0.19 (19:1 hexanes/EtOAc); 1H 

NMR (500 MHz, CDCl3) δ 7.61–7.52 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.4 

Hz, 1H), 7.20–7.11 (m, 2H), 7.02 (d, J = 1.9 Hz, 1H), 4.73 (s, 1H), 2.84 (q, J = 7.3 Hz, 

1H), 1.95 (s, 4H), 1.71–1.48 (m, 11H), 1.22 (d, J = 7.2 Hz, 3H); 13C NMR (151 MHz, 

CDCl3) δ 153.8, 140.7, 139.7, 129.9, 129.6, 128.8, 127.3, 127.0, 119.1, 113.8, 41.1, 39.8, 

37.3, 36.4, 28.9, 14.4; IR (ATR): 3556, 2903, 2885, 2845, 1484, 1447, 1407, 1310, 1220, 

1184, 1176, 1115, 1106, 1029, 901, 855, 932, 760, 745, 712, 697, 673, 647, 623, 509 cm-

1; HRMS (ESI+): m/z [M+H]+ calculated for C24H28O: 333.2213; found 333.2200. 

2-(Adamant-2-yl)-5-phenylphenol (322) 

Prepared using General Procedure C with 3-phenylphenol (90% 

technical grade, 37.9 mg, 0.200 mmol, 1 equiv), ZnCl2 (1.3 mg, 9.5 

µmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), adamantan-2-ol (33.6 mg, 

0.221 mmol, 1.1 equiv), and CSA•H2O (37.8 mg, 0.151 mmol, 0.75 equiv). Purification 

by flash chromatography (eluting with 0–20% EtOAc in hexanes) afforded 322 (43.0 mg, 

64%) as a light orange-white solid. M.p. 104–107 °C; Rf: 0.34 (9:1 hexanes/EtOAc); 1H 

NMR (500 MHz, CDCl3) δ 7.60–7.55 (m, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 7.6 
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Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.16 (dd, J = 8.8, 1.1 Hz, 1H), 6.99 (d, J = 1.9 Hz, 1H), 

4.77 (s, 1H), 3.22 (s, 1H), 2.39 (s, 2H), 2.07 (d, J = 12.8 Hz, 2H), 2.01–1.98 (m, 4H), 

1.90 (s, 1H), 1.80 (s, 2H), 1.68 (d, J = 12.5 Hz, 2H), 1.25 (s, 1H); 13C NMR (151 MHz, 

CDCl3) δ 154.3, 140.7, 139.9, 130.8, 128.8, 128.7, 127.3, 127.0, 119.2, 114.3, 44.1, 40.1, 

38.1, 33.0, 31.3, 28.3, 27.9; IR (ATR): 3510, 2897, 2845, 1563, 1485, 1448, 1406, 1172, 

1108, 857, 758, 694 cm-1; HRMS (ESI–): m/z [M–H]– calculated for C22H23O: 303.1765; 

found 303.1765. 

 

The reaction was performed using General Procedure B with 2-ethylphenol (23.5 µL, 

0.20 mmol, 1 equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), 

cyclohexanol (62.5 µL, 0.6 mmol, 3 equiv), and CSA (35 mg, 0.15 mmol, 0.75 equiv). 

Purification by preparative TLC (eluting with 19:1 hexanes/EtOAc) afforded an 

inseparable 3:1 mixture of 323 (8.7 mg, 21%, 25% brsm) and dialkylated S-o/p-323 (3.7 

mg, 6%, 8% brsm) with compound 323 being the major product. The mono-para-

substituted S-p-323 (7%, 9% brsm) was observed as a minor product.  

2-Cyclohexyl-6-ethylphenol (323): 1H NMR (600 MHz, CDCl3) δ 7.06 (dd, J = 7.7, 1.7 

Hz, 1H), 7.00 (dd, J = 7.4, 1.7 Hz, 1H), 6.87 (t, J = 7.7 Hz, 1H), 4.71 (s, 1H), 2.77 (qd, J 

= 7.2, 3.2 Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.07–1.91 (m, 4H), 1.84–1.70 (m, 2H), 1.49–

1.35 (m, 4H), 1.26 (t, J = 7.6 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 150.7, 133.1, 

129.2, 126.4, 124.5, 120.7, 37.7, 33.4, 27.2, 26.4, 23.3, 14.0. IR (ATR): 3574, 3038, 
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2963, 1448, 1187, 774 cm–1; HRMS (ESI+): m/z [M+H]+ calculated for C14H21O: 

205.1587; found: 205.1579. 

2,4-Dicyclohexyl-6-ethylphenol (S-o/p-323): 1H NMR (600 MHz, CDCl3) δ 6.89 (d, J = 

2.2 Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 4.56 (s, 1H), 2.80 (qd, J = 7.2, 3.2 Hz, 2H), 2.77 

(qd, J = 7.2, 3.2 Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.07–1.91 (m, 4H), 1.84–1.70 (m, 2H), 

1.49–1.35 (m, 4H), 1.26 (t, J = 7.6 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 148.7, 140.3, 

132.8, 128.8, 124.7, 122.8, 44.3, 37.8, 35.0, 33.4, 27.3, 27.2, 26.5, 26.4, 23.5, 14.1. IR 

(ATR): 3574, 3038, 2963, 1448, 1187, 774 cm–1; HRMS (ESI+): m/z [M+H]+ calculated 

for C20H31O: 287.2369; found: 287.2359. 

4-Cyclohexyl-2-ethylphenol4-cyclohexyl-2-ethylphenol (S-p-323): Isolated as an 

inseparable 2:1 mixture of 343/S-p-323 with compound 343 being the major product. The 

1H NMR data can be extracted from the NMR spectrum of the mixture (600 MHz, 

CDCl3) δ 6.98 (d, J = 2.2 Hz, 1H), 6.92 (dd, J = 8.1, 2.2 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 

4.53 (s, 1H), 2.63 (q, J = 7.6 Hz, 2H) 2.41 (d, J = 10.9 Hz, 1H), 1.88–1.79 (m, 2H), 1.73 

(d, J = 13.3 Hz, 2H), 1.62 (d, J = 25.8 Hz, 2H), 1.49–1.35 (m, 4H), 1.26 (t, J = 7.6 Hz, 

3H). 

 

The reaction was performed using General Procedure C with 2-ethylphenol (23.5 µL, 

0.20 mmol, 1 equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), 2-

adamantanol (33.5 mg, 0.22 mmol, 1.1 equiv), and CSA (35 mg, 0.15 mmol, 0.75 equiv). 
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Purification by preparative TLC (eluting with 19:1 hexanes/EtOAc) afforded an 

inseparable 2:1 mixture of 324 (16.9 mg, 33%) and dialkylated S-o/p-324 (13.2 mg, 17%) 

with compound 324 being the major product. The mono-para-substituted S-p-324 (<6%) 

was observed as a minor product. 

2-(Adamantan-2-yl)-6-ethylphenol (324): 1H NMR (500 MHz, CDCl3) δ 7.32 (d, J = 

7.8 Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 4.70 (s, 1H), 3.17 (s, 1H), 

2.62 (q, J = 7.6 Hz, 2H), 2.34 (s, 2H), 2.08–1.93 (m, 7H), 1.92–1.84 (m, 2H), 1.79 (s, 

2H), 1.67 (d, J = 12.6 Hz, 2H) 1.25 (t, J = 7.5 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 

150.7, 131.1, 129.2, 126.5, 125.8, 120.0, 44.4, 40.3, 38.2, 33.0, 31.4, 28.3, 27.9, 23.2, 

14.0. IR (ATR): 3600, 3046, 2901, 1450, 1187, 735 cm–1; HRMS (ESI+): m/z [M+H]+ 

calculated for C18H25O: 257.1900; found: 257.1892. 

2,4-(Diadamantan-2-yl)-6-ethylphenol (S-o/p-324): 1H NMR (500 MHz, CDCl3) δ 7.29 

(d, J = 2.2 Hz, 1H), 6.98 (d, J = 2.2 Hz, 1H), 4.55 (s, 1H), 3.17 (s, 1H), 2.96 (s, 1H), 2.62 

(q, J = 7.6 Hz, 2H), 2.34 (s, 4H), 2.08–1.93 (m, 16H), 1.79 (s, 4H), 1.67 (d, J = 12.6 Hz, 

4H) 1.25 (t, J = 7.5 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 149.2, 135.4, 130.5, 128.6, 

124.9, 124.2, 46.5, 44.5, 40.3, 39.4, 38.2, 33.2, 33.0, 32.1, 31.5, 31.4, 28.4, 28.3, 28.0, 

27.9, 23.7, 14.3. IR (ATR): 3600, 3046, 2901, 1450, 1187, 735 cm–1; HRMS (ESI+): m/z 

[M+H]+ calculated for C28H39O: 391.2995; found: 391.2985. 

4-(Adamantan-2-yl)-2-ethylphenol (S-p-324): Isolated as an inseparable 1:1 mixture of 

an unidentifiable product and S-p-324. The 1H NMR data can be extracted from the NMR 

spectrum of the mixture (500 MHz, CDCl3) δ 7.10 (d, J = 2.4 Hz, 1H), 7.05 (dd, J = 8.5, 

2.2 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 4.51 (s, 1H), 2.93 (s, 1H), 2.63 (q, J = 7.6 Hz, 2H), 
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2.41 (s, 2H), 2.18 – 1.90 (m, 11H), 1.76 (s, 4H), 1.54 (d, J = 12.8 Hz, 4H), 1.24 (t, J = 7.6 

Hz, 3H). 

 

2-(Adamantan-2-yl)-6-benzylphenol (o-325)  

 Prepared using General Procedure C with 2-benzylphenol (36.8 mg, 0.20 mmol, 1 

equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), 2-adamantanol 

(33.5 mg, 0.22 mmol, 1.1 equiv), and CSA (35 mg, 0.15 mmol, 0.75 equiv). Purification 

by preparative TLC (eluting with 19:1 hexanes/Et2O) afforded an inseparable 2:1 mixture 

(54% overall yield, 38.7 mg) of o-325 (22.6 mg, 36%, 46% brsm) and dialkylated S-o/p-

325 (16.1 mg, 18%, 23% brsm) with compound o-325 being the major product. The 

para-substituted product was not observed by NMR analysis of the crude reaction 

mixture nor isolated. 1H NMR of o-325 (400 MHz, CDCl3) δ 7.38 (dd, J = 7.6, 1.4 Hz, 

1H), 7.33–7.27 (m, 2H), 7.24–7.18 (m, 3H), 7.01 (dd, J = 7.4, 1.7 Hz, 1H), 6.89 (t, J = 7.6 

Hz, 1H), 4.65 (s, 1H), 4.00 (s, 2H), 3.14 (s, 1H), 2.30 (q, J = 2.9 Hz, 2H), 2.14–1.92 (m, 

7H), 1.88 (dt, J = 6.5, 3.2 Hz, 1H), 1.78 (d, J = 3.3 Hz, 2H), 1.65 (dtt, J = 12.7, 2.5, 1.2 

Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 152.4, 139.7, 132.0, 128.9, 128.7, 128.5, 126.7, 

126.6, 126.4, 120.1, 44.3, 40.2, 38.1, 37.2, 33.0, 31.4, 28.3, 27.8. IR (ATR): 3544, 2898, 

1449, 1187, 730 cm–1; HRMS (ESI+): m/z [M+H]+ calculated for C23H27O: 319.2056; 

found: 319.2055. 
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2,4-Diadamantan-2-yl-6-benzylphenol (S-o/p-325)  

The 1H NMR data can be extracted from the NMR spectrum of the mixture (500 MHz, 

CDCl3) δ 7.36 (s, 1H), 7.33–7.27 (m, 2H), 7.24–7.18 (m, 3H), 7.04 (s, 1H), 4.67 (s, 1H), 

4.00 (s, 2H), 3.14 (s, 2H), 2.30 (q, J = 2.9 Hz, 4H), 2.08–1.92 (m, 14H), 1.90 (dt, J = 6.5, 

3.2 Hz, 2H), 1.78 (d, J = 3.3 Hz, 4H), 1.65 (dtt, J = 12.7, 2.5, 1.2 Hz, 4H). 

 

2-(Adamantan-2-yl)-6-phenylphenol (o-326)  

Prepared using General Procedure C with 2-phenylphenol (34 mg, 0.20 mmol, 1 equiv), 

ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), PhCl (0.2 mL, 1.0 M), 2-adamantanol (33.5 mg, 

0.22 mmol, 1.1 equiv), and CSA (35 mg, 0.15 mmol, 0.75 equiv). Purification by 

preparative TLC (eluting with 19:1 hexanes/Et2O) afforded an inseparable 5:2 mixture 

(49% overall yield, 33.9 mg) of o-326 (21.5 mg, 35%) and dialkylated S-o/p-326 (12.4 

mg, 14%) with compound o-326 being the major product. The para-substituted product 

was not observed by NMR analysis of the crude reaction mixture. 1H NMR of o-326 (400 

MHz, CDCl3) δ 7.53–7.43 (m, 5H), 7.40 (t, J = 7.0 Hz, 1H), 7.09 (dd, J = 7.5, 1.7 Hz, 

1H), 6.97 (t, J = 7.6 Hz, 1H), 5.32 (s, 1H), 3.31 (s, 1H), 2.30 (q, J = 2.9 Hz, 2H), 2.14–

1.92 (m, 7H), 1.88 (dt, J = 6.5, 3.2 Hz, 3H), 1.78 (d, J = 3.3 Hz, 1H), 1.65 (dtt, J = 12.7, 

2.5, 1.2 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 150.7, 137.6, 132.4, 129.5, 128.0, 127.9, 

127.5, 126.3, 125.8, 119.9, 44.4, 40.2, 38.2, 33.2, 31.3, 28.4, 28.0. IR (ATR): 3547, 2900, 
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2847, 1467, 1196, 907, 733 cm–1; HRMS (ESI+): m/z [M+H]+ calculated for C22H25O: 

305.1900; found: 319.1900. 

2,4-Diadamantan-2-yl-6-phenylphenol (S-o/p-326) 

The 1H NMR data can be extracted from the NMR spectrum of the mixture (400 MHz, 

CDCl3) δ 7.53–7.43 (m, 5H), 7.37 (s, 1H), 7.05 (s, 1H), 5.18 (s, 1H), 3.30 (s, 2H), 2.40 

(q, J = 2.9 Hz, 4H), 2.11–2.05 (m, 14H), 2.01–1.88 (dt, J = 6.5, 3.2 Hz, 6H), 1.80 (d, J = 

5.0 Hz, 2H), 1.68 (dtd, J = 12.8, 2.9, 1.4 Hz, 2H).    

2-Cyclohexyl-4-ethylphenol (327) 

Prepared using General Procedure B with 4-ethylphenol (25.3 mg, 0.2022 

mmol, 1 equiv), ZnCl2 (0.3 mg, 2.2 µmol, 0.01 equiv), PhCl (0.2 mL, 1.0 

M), cyclohexanol (62.5 µL, 0.6 mmol, 3 equiv), and CSA•H2O (37.6 mg, 

0.150 mmol, 0.75 equiv). Purification by preparative TLC (eluting with 19:1 

hexanes/EtOAc) afforded 327 (16.9 mg, 41%) as a yellow oil. Rf: 0.26 (19:1 

hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.03 (d, J = 2.2 Hz, 1H), 6.91 (dd, J = 

8.1, 2.2 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 4.75 (s, 1H), 2.81 (tt, J = 11.5, 3.0 Hz, 1H), 

2.59 (q, J = 7.6 Hz, 2H), 1.93–1.84 (m, 4H), 1.82–1.76 (m, 1H), 1.52–1.39 (m, 4H), 

1.35–1.26 (m, 1H), 1.23 (t, J = 7.6 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 150.7, 136.7, 

133.5, 126.5, 125.8, 115.3, 37.5, 33.3, 28.4, 27.2, 26.5, 16.1; IR (ATR): 3341, 2923, 

2850, 1504, 1447, 813 cm-1; HRMS (ESI+): m/z [M+H]+ calculated for C14H21O: 

205.1587; found: 205.1581. 

 



 244 

2-(Adamant-2-yl)-4-fluorophenol (328) 

Prepared using General Procedure C with 3-phenylphenol (22.5 mg, 

0.200 mmol, 1 equiv), ZnCl2 (1.7 mg, 0.012 mmol, 0.05 equiv), PhCl 

(0.2 mL, 1.0 M), adamantan-2-ol (33.7 mg, 0.221 mmol, 1.1 equiv), and 

CSA•H2O (37.4 mg, 0.150 mmol, 0.75 equiv). Purification by preparatory TLC (eluting 

with 9:1 hexanes/EtOAc) afforded 328 (15.2 mg, 31%) as a yellow solid. M.p. 90–93 °C; 

Rf: 0.32 (9:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.15 (dd, J = 10.6, 3.0 Hz, 

1H), 6.76 (td, J = 8.2, 3.1 Hz, 1H), 6.66 (dd, J = 8.7, 5.0 Hz, 1H), 4.60 (s, 1H), 3.14 (s, 

1H), 2.32 (s, 2H), 2.09 (d, J = 11.6 Hz, 1H), 2.00–1.95 (m, 6H), 1.88 (s, 1H), 1.78 (s, 

2H), 1.65 (d, J = 12.8 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 157.4 (d, J = 236.7 Hz), 

149.9, 133.6, 115.9 (d, J = 8.3 Hz), 115.3 (d, J = 23.8 Hz), 112.5 (d, J = 23.2 Hz), 44.3, 

40.0, 38.0, 32.8, 31.1, 28.2, 27.7; 19F NMR (564 MHz, CDCl3) δ –124.0; IR (ATR): 

3406, 2900, 2847, 1698, 1502, 1427, 1341, 1252, 1178, 1165, 1115, 983, 956, 871, 821, 

803, 746, 570, 473 cm-1; HRMS (ESI–): m/z [M–H]– calculated for C16H18FO: 245.1347; 

found 245.1359. 

2-(Adamant-2-yl)-4-chlorophenol (329) 

Prepared using General Procedure C with 4-chlorophenol (26.1 mg, 

0.203 mmol, 1 equiv), ZnCl2 (1.4 mg, 0.10 mmol, 0.05 equiv), 

chlorobenzene (0.2 mL, 1.0 M), adamantan-2-ol (33.6 mg, 0.221 mmol, 

1.1 equiv), and CSA•H2O (37.8 mg, 0.151 mmol, 0.75 equiv). Purification by flash 

chromatography (eluting with 0–20% EtOAc in hexanes) afforded 329 (21.4 mg, 41%) as 

a yellow. Rf: 0.30 (9:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.37 (d, J = 2.5 
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Hz, 1H), 7.04 (dd, J = 8.5, 2.5 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 4.70 (s, 1H), 3.13 (s, 

1H), 2.32 (s, 2H), 2.01–1.94 (m, 7H), 1.89 (s, 1H), 1.78 (s, 2H), 1.65 (d, J = 12.8 Hz, 

2H); 13C NMR (151 MHz, CDCl3) δ 153.3, 134.0, 128.3, 126.1, 124.8, 116.4, 44.1, 40.0, 

38.1, 32.9, 30.9, 28.2, 27.8; IR (ATR): 3411, 2898, 2847, 1697, 1491, 1409, 1341, 1212, 

1166, 1111, 919, 972, 806, 721, 676, 657, 472 cm-1; HRMS (ESI–): m/z [M–H]– 

calculated for C16H18ClO: 261.1052; found 261.1063. 

2-(Adamant-2-yl)-4-bromophenol (330) 

Prepared using General Procedure C with 4-bromophenol (34.7 mg, 

0.200 mmol, 1 equiv), ZnCl2 (1.5 mg, 0.11 mmol, 0.05 equiv), 

chlorobenzene (0.2 mL, 1.0 M), adamantan-2-ol (33.7 mg, 0.221 mmol, 

1.1 equiv), and CSA•H2O (37.4 mg, 0.150 mmol, 0.75 equiv). Purification by preparatory 

TLC (eluting with 9:1 hexanes/EtOAc) afforded 330 (18.6 mg, 35%) as an orange-brown 

oil. Rf: 0.38 (9:1 hexanes/EtOAc); 1H NMR (600 MHz, CDCl3) δ 7.50 (d, J = 2.5 Hz, 

1H), 7.20–7.15 (m, 1H), 6.62 (dd, J = 8.6, 1.6 Hz, 1H), 4.68 (s, 1H), 3.14 (s, 1H), 2.32 (s, 

2H), 2.02–1.92 (m, 7H), 1.89 (s, 1H), 1.78 (s, 2H), 1.65 (d, J = 12.7 Hz, 2H); 13C NMR 

(151 MHz, CDCl3) δ 153.2, 134.2, 131.3, 129.4, 117.2, 113.0, 44.2, 40.0, 38.0, 32.8, 

31.0, 28.1, 27.7; IR (ATR): 3299, 2900, 1411, 1087, 1045, 879, 627 cm-1; HRMS (ESI–): 

m/z [M–H]– calculated for C16H18BrO: 305.0547; found 305.0551. 

2-Cyclohexyl-6-isopropyl-3-methylphenol (331)  

Prepared using General Procedure B with thymol (30 mg, 0.20 mmol, 

1 equiv), ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), chlorobenzene (0.2 

mL, 1.0 M), cyclohexanol (62.5 µL, 0.6 mmol, 3.0 equiv), and CSA (35 mg, 0.15 mmol, 
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0.75 equiv). Purification by preparative TLC (eluting with 19:1 hexanes/EtOAc) afforded 

331 (14.5 mg, 31%, 47% brsm) as a colorless oil. The mono-para-substituted product S-

p-331 was observed as a minor product (10%, 16% brsm). 1H NMR (500 MHz, CDCl3) δ 

6.94 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 4.84 (s, 1H), 3.05 (p, J = 6.8 Hz, 1H), 

2.90 (s, 1H), 2.32 (s, 3H), 2.04 (q, J = 9.9 Hz, 2H), 1.86 (d, J = 12.5 Hz, 2H), 1.74 (dd, J 

= 24.5, 12.1 Hz, 3H), 1.38 (q, J = 12.5 Hz, 3H), 1.26 (d, J = 6.8 Hz, 6H); 13C NMR (151 

MHz, CDCl3) δ 152.0, 134.7, 132.2, 130.9, 123.1, 120.6, 39.9, 34.4, 30.3, 27.0, 26.5, 

22.9, 21.0. IR (ATR): 3620, 2922, 1574, 1486, 767 cm–1; HRMS (ESI+): m/z [M+H]+ 

calculated for C16H25O: 233.1900; found: 233.1908. 

4-(Cyclohexyl)-2-isopropyl-5-methylphenol (S-p-331)                  

Isolated as an inseparable 3:1 mixture of thymol and S-p-331 with 

thymol being the major product. The 1H NMR data can be extracted 

from the NMR spectrum of the mixture (600 MHz, CDCl3) 7.03 (s, 

1H), 6.55 (s, 1H), 4.57 (s, 1H), 3.05 (p, J = 6.8 Hz, 1H), 2.90 (s, 1H), 2.62 (m, 1H), 2.25 

(s, 3H), 1.85 (m, 1H), 1.78 (m, 2H), 1.66 (dd, J = 24.5, 12.1 Hz, 3H), 1.38 (q, J = 12.5 

Hz, 3H), 1.26 (d, J = 6.8 Hz, 6H). 

2-(Adamant-2-yl)-4,5-dimethylphenol (332) 

Prepared using General Procedure C with 3,4-xylenol (24.5 mg, 

0.200 mmol, 1 equiv), ZnCl2 (1.3 mg, 9.5 µmol, 0.05 equiv), 

chlorobenzene (0.2 mL, 1.0 M), adamantan-2-ol (33.6 mg, 0.221 mmol, 1.1 equiv), and 

CSA•H2O (37.5 mg, 0.150 mmol, 0.75 equiv). Purification by preparatory TLC (eluting 

with 9:1 hexanes/EtOAc) afforded 332 (26.9 mg, 52%) as a light brown-white solid. M.p. 
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105–107 °C; Rf: 0.38 (19:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.17 (s, 1H), 

6.55 (s, 1H), 4.42 (s, 1H), 3.13 (s, 1H), 2.34–2.30 (m, 2H), 2.20 (s, 3H), 2.18 (s, 3H), 

2.07–2.01 (m, 2H), 1.99–1.94 (m, 5H), 1.88–1.86 (m, 1H), 1.78 (s, 2H), 1.64 (d, J = 12.6 

Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 151.8, 134.7, 129.5, 128.7, 128.0, 117.0, 43.9, 

40.2, 38.2, 33.0, 31.3, 28.3, 27.9, 19.4, 19.3; IR (ATR): 3313, 2898, 2847, 1617, 1449, 

1407, 1275, 1198, 1084, 1044, 878, 576, 474 cm-1; HRMS (ESI+): m/z [M+H]+ 

calculated for C18H25O: 257.1900; found 257.1898. 

4-(Adamant-2-yl)-2,6-dimethylphenol (333) 

Prepared using General Procedure C with 2,6-xylenol (24.6 mg, 0.201 

mmol, 1 equiv), ZnCl2 (1.3 mg, 9.5 µmol, 0.05 equiv), chlorobenzene 

(0.2 mL, 1.0 M), adamantan-2-ol (33.6 mg, 0.221 mmol, 1.1 equiv), and CSA•H2O (37.7 

mg, 0.151 mmol, 0.75 equiv). Purification by flash chromatography (eluting with 0–20% 

EtOAc in hexanes) afforded 3mh (34.2 mg, 68%) as a white solid. M.p. 135–139 °C; Rf: 

0.44 (9:1 hexanes/EtOAc); 1H NMR (500 MHz, CDCl3) δ 6.95 (s, 2H), 4.45 (s, 1H), 2.89 

(s, 1H), 2.40 (s, 2H), 2.25 (s, 6H), 2.16 (d, J = 7.9 Hz, 1H), 1.98 (d, J = 13.0 Hz, 3H), 

1.88 (dd, J = 22.6, 12.6 Hz, 4H), 1.76 (d, J = 7.8 Hz, 3H), 1.52 (s, 1H); 13C NMR (151 

MHz, CDCl3) δ 149.8, 136.1, 127.1, 122.6, 46.2, 39.3, 38.1, 32.1, 31.2, 28.2, 28.0, 16.3; 

IR (ATR): 3379, 2897, 2844, 1486, 1447, 1200, 1144, 869, 765, 699, 631 cm-1; HRMS 

(ESI–): m/z [M–H]– calculated for C18H23O: 255.1754; found 255.1764. 
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The reaction was performed using General Procedure C with phenol (19.1 mg, 0.203 

mmol, 1 equiv), ZnCl2 (1.4 mg, 0.10 mmol, 0.05 equiv), chlorobenzene (0.2 mL, 1.0 M), 

adamantan-2-ol (33.7 mg, 0.221 mmol, 1.1 equiv), and CSA•H2O (37.7 mg, 0.151 mmol, 

0.75 equiv). Purification by preparatory TLC (eluting with 9:1 hexanes/EtOAc) afforded 

47% overall yield of three products with o-242 (12.8 mg, 25%) as an orange oil, o/o-242 

(10.1 mg, 14%) as a yellow-white solid, and p-242 (4.3 mg, 8%) as a light tan solid.  

2-(Adamant-2-yl)phenol (o-242): 1H NMR (500 MHz, CDCl3) δ 7.44 (d, J = 7.7 Hz, 

1H), 7.11–7.06 (m, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.75–6.72 (m, 1H), 4.69 (s, 1H), 3.18 (s, 

1H), 2.35 (s, 2H), 2.05–1.93 (m, 8H), 1.87 (s, 1H), 1.79 (s, 2H), 1.65 (d, J = 12.6 Hz, 

2H). 13C NMR (151 MHz, CDCl3) δ 154.0, 131.7, 128.4, 126.8, 120.5, 115.6, 44.1, 40.1, 

38.1, 33.0, 31.2, 28.3, 27.9. The spectral data recorded are consistent with those 

previously reported.21 

2,6-Bis(adamant-2-yl)phenol (o/o-242): 1H NMR (500 MHz, CDCl3) δ 7.33 (d, J = 7.7 

Hz, 2H), 6.90 (t, J = 7.7 Hz, 1H), 4.76 (s, 1H), 3.13 (s, 2H), 2.33–2.29 (m, 4H), 2.05 (d, J 

= 12.9 Hz, 4H), 2.01–1.95 (m, 10H), 1.90–1.86 (m, 2H), 1.78 (s, 4H), 1.65 (d, J = 12.7 

Hz, 4H); 13C NMR (151 MHz, CDCl3) δ 152.3, 131.0, 125.5, 119.5, 44.5, 40.3, 38.1, 

33.0, 31.5, 28.3, 27.8; IR (ATR): 3589, 2899, 2847, 1732, 1467, 1451, 1437, 1359, 1340, 

1316, 1249, 1217, 1183, 1165, 1116, 1095, 1086, 1061, 1048, 995, 953, 934, 877, 840, 

826, 802, 767, 752, 735, 698, 638, 627, 559, 539 cm-1; HRMS (ESI+): m/z [M+H]+ 

calculated for C26H35O: 363.2682; found 363.2672. 

4-(Adamant-2-yl)phenol (p-242): 1H NMR (500 MHz, CDCl3) δ 7.21 (d, J = 8.3 Hz, 

2H), 6.80 (d, J = 8.3 Hz, 2H), 4.63 (s, 1H), 2.93 (s, 1H), 2.40 (s, 2H), 2.02–1.88 (m, 8H), 
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1.83 (d, J = 12.8 Hz, 2H), 1.76 (s, 2H). The spectral data recorded are consistent with 

those previously reported.21 

1-(Cyclohexyl)-4-methoxybenzene (p-348) 

Prepared using General Procedure B with anisole (22 µL, 0.20 mmol, 1 equiv), 

ZnCl2 (1.4 mg, 0.01 mmol, 0.05 equiv), chlorobenzene (0.2 mL, 1.0 M), 

cyclohexanol (62.5 µL, 0.6 mmol, 3.0 equiv), and CSA (35 mg, 0.15 mmol, 0.75 

equiv). Purification by flash chromatography (eluting with 0–20% EtOAc in 

hexanes) afforded 348 (2.0 mg, 5%) as a colorless oil. 1H NMR (500 MHz, Chloroform-

d) δ 7.15 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 2.47 (t, 1H), 1.86 (dd, 

J = 11.5, 7.6 Hz, 4H), 1.76 (d, J = 13.1 Hz, 1H), 1.48–1.35 (m, 4H), 0.92–0.83 (m, 2H). 

The spectral data recorded are consistent with those previously reported.22 
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