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We describe a new coordination activity and initial results for  

a global synthesis of eddy covariance CH4 flux measurements.

FLUXNET-CH4 SYNTHESIS 
ACTIVITY

Objectives, Observations, and Future Directions

Sara H. Knox, robert b. JacKSon, benJamin Poulter, Gavin mcnicol, 
etienne Fluet-cHouinard, ZHen ZHanG, GuStaF HuGeliuS, PHiliPPe bouSquet, JoSeP G. canadell, 

marielle SaunoiS, dario PaPale, HouSen cHu, trevor F. Keenan, denniS baldoccHi, 
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david i. camPbell, aleSSandro ceScatti, Samuel cHamberlain, Jiquan cHen, Weinan cHen, 
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Atmospheric methane (CH4) is the second-most 
important anthropogenic greenhouse gas fol-
lowing carbon dioxide (CO2) (Myhre et al. 2013). 

The concentration of CH4 in the atmosphere today 
is about 2.5 times higher than in 1750 (Saunois et al. 
2016a). The increase in atmospheric CH4 has arisen 
from human activities in agriculture, energy produc-
tion, and waste disposal, and from changes in natural 
CH4 sources and sinks (Saunois et al. 2016a,b, 2017; 
Turner et al. 2019). Based on top-down atmospheric 
inversions, global CH4 emissions for the decade of 
2003–12 were an estimated ~420 Tg C yr–1 (range 
405–426 Tg C yr–1) (Saunois et al. 2016a). However, 
some analyses suggest that uncertainties in global 
CH4 sources and sinks are higher than those for CO2, 

and uncertainties from natural sources exceed those 
from anthropogenic emissions (Saunois et al. 2016a). 
In particular, the largest source of uncertainty in 
the global CH4 budget is related to emissions from 
wetlands and inland waters (Saunois et al. 2016a; 
Melton et al. 2013; Bastviken et al. 2011). Wetland CH4 
emissions may contribute as much as 25%–40% of the 
global total and are a leading source of interannual 
variability in total atmospheric CH4 concentrations 
(Bousquet et al. 2006; Chen and Prinn 2006; Saunois 
et al. 2016a).

Direct, ground-based measurements of in situ 
CH4 f luxes with high measurement frequency are 
important for understanding the responses of CH4 
f luxes to environmental factors including climate, 
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for providing validation datasets for the land surface 
models used to infer global CH4 budgets, and for 
constraining CH4 budgets. Eddy covariance (EC) 
flux towers measure real-time exchange of gases such 
as CO2, CH4, water vapor, and energy between the 
land surface and the atmosphere. The EC technique 
has emerged as a widespread means of measuring 
trace gas exchange because it provides direct and 
near-continuous ecosystem-scale flux measurements 
without disturbing the soil or vegetation (Baldocchi 
2003; Aubinet et al. 2012). There are more than 900 
reported active and historical flux tower sites globally 
and approximately 7,000 site years of data collected 
(Chu et al. 2017). While most of these sites measure 
CO2, water vapor, and energy exchange, the develop-
ment of new and robust CH4 sensors has resulted in 
a rapidly growing number of CH4 EC measurements 
(Baldocchi 2014; Morin 2018), primarily in natural 
and agricultural wetlands (Petrescu et al. 2015).

Since the late 1990s, with a growing number of 
long-term, near-continuous EC measurements, the 
EC community has been well coordinated for inte-
grating and synthesizing CO2, water vapor and energy 
fluxes. This cross-site coordination resulted in the 
development of regional f lux networks for Europe 
[EuroFlux, CarboEurope, and Integrated Carbon 
Observing System (ICOS)], Australia (OzFlux), North 
and South America (AmeriFlux, Large Biosphere 
Amazon, Fluxnet-Canada/Canadian Carbon Pro-
gram, and MexFlux), Asia [AsiaFlux, ChinaFlux, Ko-
Flux, and U.S.–China Carbon Consortium (USCCC)], 
and globally, FLUXNET (Papale et al. 2012; Baldoc-
chi 2014). The resulting FLUXNET database (http://
fluxnet.fluxdata.org/) has been used extensively to 
evaluate satellite measurements, inform Earth system 
models, generate data-driven CO2 flux products, and 
provide answers to a broad range of questions about 
atmospheric f luxes related to ecosystems, land use 
and climate (Pastorello et al. 2017). FLUXNET has 
grown steadily over the past 25 years, enhancing our 
understanding of carbon, water and energy cycles in 
terrestrial ecosystems (Chu et al. 2017).

Similar community efforts and syntheses for CH4 
remain limited in part because EC measurements for 
CH4 fluxes were rarer until recently. Whereas the ear-
liest EC measurements of CO2 fluxes date back to the 
late 1970s and early 1980s (Desjardins 1974; Anderson 
et al. 1984), the first EC CH4 flux measurements only 
began in the 1990s (Verma et al. 1992; Shurpali and 
Verma 1998; Fan et al. 1992; Kim et al. 1999), with 
reliable, easy-to-deploy field sensors only becom-
ing available in the past decade or so. EC CH4 flux 
measurements became more feasible with advances 

in sensor development, such as tunable diode laser 
absorption spectrometers, that allowed researchers 
to measure previously undetectable trace gas fluxes 
with higher signal to noise ratios (Rinne et al. 2007; 
McDermitt et al. 2011). After these new sensors were 
commercialized, and low-power, low-maintenance 
open-path sensors were developed that could be 
operated by solar panels in remote locations, the 
number of CH4 flux tower measurements increased 
substantially (Baldocchi 2014; Morin 2018). The 
rapidly growing number of EC CH4 flux measure-
ments presents new opportunities for FLUXNET-type 
analyses and syntheses of ecosystem-scale CH4 flux 
observations.

This manuscript describes initial results from a 
new coordination activity for flux tower CH4 mea-
surements organized by the Global Carbon Project 
(GCP) in collaboration with regional flux networks 
and FLUXNET. The goal of the activity is to develop 
a global database for EC CH4 observations to answer 
regional and global questions related to CH4 cycling. 
Here, we describe the objectives of the FLUXNET-
CH4 activity, provide an overview of the current 
geographic and temporal coverage of CH4 flux mea-
surements globally, present initial analyses exploring 
time scales of variability, uncertainty, trends, and 
drivers of CH4 f luxes across 60 sites, and discuss 
future research opportunities for examining controls 
on CH4 emissions and reducing uncertainties in the 
role of wetlands in the global CH4 cycle.

FLUXNET-CH4 SYNTHESIS OBJECTIVES 
AND TASKS. This activity is part of a larger GCP 
effort to establish and better constrain the global 
methane budget (www.globalcarbonproject.org 
/methanebudget/index.htm), and is designed to 
develop a CH4 database component in FLUXNET 
for a global synthesis of CH4 f lux tower data. To this 
end, we are surveying, assembling, and synthesiz-
ing data from the EC community, in coordination 
with regional networks, including AmeriFlux’s 2019 
“Year of Methane” (http://ameriflux.lbl.gov/year-of 
-methane/year-of-methane/), FLUXNET initiatives, 
and other complementary activities. In particular, 
this work is being carried out in parallel with the 
EU’s Readiness of ICOS for Necessities of Integrated 
Global Observations (RINGO) project, which is 
working to standardize protocols for f lux calcula-
tions, quality control and gap-filling for CH4 f luxes 
(Nemitz et al. 2018). Methane-specific protocols are 
needed because of the added complexities and high 
variability of CH4 flux measurements and dynamics 
(Nemitz et al. 2018).
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Our approach is to include all currently available 
and future CH4 flux tower observations in a global 
CH4 database, including freshwater, coastal, natural, 
and managed ecosystems, as well as upland ecosys-
tems that may be measuring CH4 uptake by soils. The 
initiative is open to all members of the EC community. 
Database compilation began in 2017 and is ongoing. 
Data from sites in the Americas can be submitted 
to AmeriFlux (http://ameriflux.lbl.gov/data/how 
-to-uploaddownload-data/); otherwise, data can be 
submitted to the European Fluxes Database Cluster 
(www.europe-fluxdata.eu/home/sites-list).

In addition to many applications, an ultimate goal 
of the FLUXNET-CH4 activity is to generate a publicly 
available, open-access, data-driven global CH4 emis-
sions product using similar machine-learning-based 
approaches used for CO2 f luxes (Jung et al. 2009; 
Tramontana et al. 2016). The product will be based 
on mechanistic factors associated with CH4 emissions 
and new spatiotemporal information on wetland area 
and dynamics for constraining CH4-producing areas. 
This gridded product will provide an independent 
bottom-up estimate of global wetland CH4 emissions 
to compare with estimates of global CH4 emissions 
from land surface models and atmospheric inversions. 
Recent work has shown the potential to upscale EC 
CH4 flux observations across northern wetlands, with 
predictive performance comparable to previous stud-
ies upscaling net CO2 exchange (Peltola et al. 2019); 
however, our focus is on a globally gridded product.

The near-continuous, high-frequency nature of 
EC measurements also offers significant promise for 
improving our understanding of ecosystem-scale CH4 
flux dynamics. As such, this synthesis also aims to 
investigate the dominant controls on net ecosystem-
scale CH4 f luxes from hourly to interannual time 
scales across wetlands globally, and to characterize 
scale-emergent, nonlinear, and lagged processes of 
CH4 exchange.

Methane is produced during decomposition 
under anaerobic or reducing conditions and is 
transported to the atmosphere via plant-mediated 
transport, ebullition, and diffusion (Bridgham et al. 
2013). During transport, CH4 can pass through un-
saturated soil layers and be consumed or oxidized 
by aerobic bacteria (Wahlen 1993). Process-based 
biogeochemical models developed and applied at 
site, regional, and global scales simulate these indi-
vidual processes with varying degrees of complexity 
(Bridgham et al. 2013; Melton et al. 2013; Poulter 
et al. 2017; Castro-Morales et al. 2018; Grant and 
Roulet 2002). The large range in predicted wetland 
CH4 emissions rates suggests that there is both 

substantial parameter and structural uncertainty 
in large-scale CH4 flux models, even after account-
ing for uncertainties in wetland areas (Poulter et al. 
2017; Saunois et al. 2016a; Melton et al. 2013; Riley 
et al. 2011). A global EC CH4 database and associ-
ated environmental variables can help constrain the 
parameterization of process-based biogeochemistry 
models (Saunois et al. 2016a; Bridgham et al. 2013; 
Oikawa et al. 2017). Furthermore, a key challenge 
is evaluating globally applicable process-based CH4 
models at a spatial scale comparable to model grid 
cells (Melton et al. 2013; Riley et al. 2011). A globally 
gridded wetland CH4 emissions product upscaled 
from EC fluxes can help resolve this issue by provid-
ing a scale-appropriate model evaluation dataset. As 
such, the global CH4 database and gridded product 
will also be used to parameterize and benchmark 
the performance of land surface models of global 
CH4 emissions, providing a unique opportunity for 
informing and validating biogeochemical models.

METHODS. Based on a survey of the EC com-
munity (announced via the f luxnet-community 
@george.lbl.gov and AmeriFlux-Community@lbl.gov 
listservs), information available in regional networks 
and FLUXNET, and the scientific literature, we es-
timate that at least 200 sites worldwide are currently 
applying the EC method for CH4 flux measurements 
(Fig. 1). Here we focus on findings from across 60 of 
the ~110 sites currently committed to participating in 
our FLUXNET-CH4 activity [Table A1 in the appen-
dix and Table ES1 in the online supplemental material 
(https://doi.org/10.1175/BAMS-D-18-0268.2)]. Data 
from this initial set of sites were selected because they 
were publicly available or were contributed directly by 
site principal investigators (PIs). We will continue to 
engage the EC community more broadly and expand 
the database in the future.

Data standardization, gap-filling, and partitioning. We 
used similar data processing procedures as FLUXNET 
to standardize and gap-fill measurements, and in the 
case of net CO2 exchange, partition f luxes across 
sites (http://fluxnet.fluxdata.org/data/aboutdata/data 
-processing-101-pipeline-and-procedures/). Standard 
quality assurance and quality control of the data were 
first performed by site PIs. In nearly all cases, data 
collected by the local tower teams were first submit-
ted to the data archives hosted by the regional flux 
networks, where data are prescreened and formatted 
based on the regional network data protocols. Data 
from the regional networks then entered our f lux 
processing procedure.
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Within our processing procedure, data were first 
checked for obvious problems including unit errors, 
spikes, and out-of-range values based on visualiza-
tion of the data and statistical metrics. Next, the data 
were filtered, gap-filled, and partitioned. Friction 
velocity (u*) filtering, based on relating nighttime 
CO2 f luxes to u*, was implemented using the REd-
dyProc package (Wutzler et al. 2018) for R statistical 
software (R Core Team 2018, version 3.5.0), although 
in a few cases u* filtering was performed by the site 
PIs. Gaps in meteorological variables including air 
temperature (TA), incoming shortwave (SWIN) and 
longwave (LWIN) radiation, vapor pressure deficit 
(VPD), pressure (PA), precipitation (P), and wind 
speed (WS) were filled with ERA-Interim (ERA-I) 
reanalysis data (Vuichard and Papale 2015). Gaps in 
CO2 and latent and sensible heat f luxes were filled 
using the marginal distribution sampling method 
(Reichstein et al. 2005) using the REddyProc pack-
age (Wutzler et al. 2018). Net CO2 f luxes were par-
titioned into gross primary production (GPP) and 
ecosystem respiration (ER) using both the nighttime 
(Reichstein et al. 2005) and daytime (Lasslop et al. 
2010) approaches also implemented in REddyProc 
(Wutzler et al. 2018).

There are as yet no standards for gap-filling CH4 
flux measurements and this is an active and ongoing 
area of research (Nemitz et al. 2018). Gaps in CH4 
f luxes were filled using artificial neural networks 
(ANNs), as they have shown good performance for 
gap-filling CH4 flux data (Dengel et al. 2013; Knox 
et al. 2015; Morin et al. 2014a; Nemitz et al. 2018; 
Goodrich et al. 2015). Details of the ANN routine 
are provided in Knox et al. (2016) and are summa-
rized here briefly. The ANN routine was optimized 
for both generalizability and representativeness. To 
facilitate representativeness, explanatory data were 
divided into a maximum of 15 data clusters using the 
k-means algorithm. To avoid biasing toward condi-
tions with better f lux data coverage (e.g., summer 
and daytime), data used to train, test, and validate 
the ANN were proportionately sampled from these 
clusters. Several neural network architectures of in-
creasing complexity were tested, ranging from one 
hidden layer with the number of nodes equal to the 
number of explanatory data variables (N) to two hid-
den layers with 1.5N and 0.75N nodes, respectively. 
The architecture of each neural network was initial-
ized 10 times with random starting weights, and the 
initialization resulting in the lowest mean sampling 

Fig. 1. Location of the 200 tower sites that report eddy covariance CH4 flux measurements worldwide. Triangles 
indicate sites from which data are included in this manuscript, with circles indicating additional flux towers 
measuring CH4 emissions. The colors of the markers represent the vegetation type based on the International 
Geosphere-Biosphere Programme (IGBP) definition. See Table ES1 for a list of sites, their characteristics, and 
years of operation. Sites are overlaid over a map of the differences between the average CH4 emissions over 
2000–10 between top-down and bottom-up wetland CH4 estimates. Top-down estimates are represented by 
the natural fluxes inventoried in NOAA’s CarbonTracker (www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/). 
Bottom-up emissions were produced from an ensemble of 11 Earth system model simulations (Poulter et al. 2017).
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error was selected. The simplest architecture, whereby 
additional increases in complexity resulted in <5% 
reduction in mean squared error, was chosen and the 
prediction saved. This procedure was repeated with 
20 resamplings of the data, and missing half hours 
were filled using the median prediction. A standard 
set of variables available across all sites were used to 
gap-fill CH4 f luxes (Dengel et al. 2013), including 
TA, SWIN, WS, PA, and sine and cosine functions to 
represent seasonality. These meteorological variables 
were selected since they are relevant to CH4 exchange 
and were gap-filled using the ERA-I reanalysis data. 
Other variables related to CH4 exchange such as water 
table depth (WTD) or soil temperature (TS) were not 
included as explanatory variables as they were not 
available across all sites or had large gaps that could 
not be filled using the ERA-I reanalysis data. These 
missing data for variables highlight some of the key 
challenges in standardizing CH4 gap-filling methods 
across sites and emphasize the need for standardized 
protocols of auxiliary measurements across sites 
(cf. “Future research directions and needs” section) 
(Nemitz et al. 2018; Dengel et al. 2013). ANN gap-
filling was performed using MATLAB (MathWorks 
2018, version 9.4.0).

Annual CH4 budgets represent gap-filled, half-
hourly fluxes integrated over an entire year or grow-
ing season. If fluxes were only measured during the 
growing season, we assumed that fluxes outside of 
this period were negligible, although we acknowl-
edge that cold season fluxes can account for as much 
as ~13%–50% of the annual CH4 emissions in some 
locations (Zona et al. 2016; Treat et al. 2018b; Helbig 
et al. 2017a; Kittler et al. 2017).

Uncertainty estimation. ANNs were also used to es-
timate annual gap-filled and random uncertainty 
in CH4 flux measurements (Richardson et al. 2008; 
Moffat et al. 2007; Anderson et al. 2016; Knox et al. 
2018). Here, we focus on assessing the random er-
ror, but a full assessment of total flux measurement 
error also requires quantifying systematic error 
or bias (Baldocchi 2003). Systematic errors, due to 
incomplete spectral response, lack of nocturnal mix-
ing, submesoscale circulations, and other factors are 
discussed elsewhere (Baldocchi 2003; Peltola et al. 
2015) and are the focus of other ongoing initiatives.

Random errors in EC f luxes follow a double 
exponential (Laplace) distribution with a standard 
deviation varying with flux magnitude (Richardson 
et al. 2012, 2006). Model residuals of gap-filling 
algorithms such as ANNs provide a reliable, and 
conservative “upper limit,” estimate of the random 

f lux uncertainty (Moffat et al. 2007; Richardson 
et al. 2008). For half-hourly CH4 flux measurements, 
random error was estimated using the residuals 
of the median ANN predictions. At each site, the 
probability density function (PDF) of the random 
f lux measurement error more closely followed a 
double-exponential (Laplace) rather than normal 
(Gaussian) distribution, with the root-mean-square 
error (RMSE) for the Laplace distribution fitted to 
the PDF of random errors consistently lower than 
the normal distributed error. From half-hourly flux 
measurements, random error can also be estimated 
using the daily differencing approach (Richard-
son et al. 2012). Random error estimates [σ(δ)], as 
expressed as the standard deviation of the double-
exponential distribution with scaling parameter 
β, where σ(δ) = √

–
2β (Richardson et al. 2006), were 

found to be nearly identical using the two approaches 
[σ(δ)model_residual = 1.0 × σ(δ)daily_differencing + 1.21; r2 = 0.97, 
p < 0.001], supporting the use of the model residual 
approach for estimating random error. As discussed 
below, σ(δ) scaled linearly with the magnitude of CH4 
fluxes at nearly all sites. To quantify random uncer-
tainty of cumulative fluxes, we used a Monte Carlo 
simulation that randomly draws 1,000 random errors 
for every original measurement using σ(δ) binned 
by flux magnitude, and then computed the variance 
of the cumulative sums (Anderson et al. 2016). For 
gap-filled values, the combined gap-filling and ran-
dom uncertainty was calculated from the variance 
of the cumulative sums of the 20 ANN predictions 
(Anderson et al. 2016; Oikawa et al. 2017; Knox et al. 
2015). The annual cumulative uncertainty at 95% 
confidence was estimated by adding the cumulative 
gap-filling and random measurement uncertain-
ties in quadrature (Richardson and Hollinger 2007; 
Anderson et al. 2016). Note that when reporting mean 
or median annual CH4 fluxes across sites, error bars 
represent the standard error.

Wavelet-based time-scale decomposition. Methane 
fluxes are highly dynamic and vary across a range 
of time scales (Sturtevant et al. 2016; Koebsch et al. 
2015). For example, in wetlands with permanent in-
undation, the seasonal variation of CH4 exchange is 
predominantly controlled by temperature and plant 
phenology (Chu et al. 2014; Sturtevant et al. 2016). 
Ecosystem CH4 exchange also varies considerably at 
both longer (e.g., interannual; Knox et al. 2016; Rinne 
et al. 2018) and shorter (e.g., weeks, days, or hours; 
Koebsch et al. 2015; Hatala et al. 2012; Schaller et al. 
2018) time scales. Wavelet decomposition is a particu-
larly useful tool for investigating scale in geophysical 
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and ecological analysis (Cazelles et al. 2008; Torrence 
and Compo 1998), because it can characterize both 
the time scale and location of patterns and pertur-
bations in the data. Partitioning variability across 
temporal scales can help to isolate and characterize 
important processes (Schaller et al. 2018).

The maximal overlap discrete wavelet transform 
(MODWT) was used to decompose the time scales of 
variability in gap-filled CH4 flux measurements, as 
described in Sturtevant et al. (2016). The MODWT al-
lows the time series to be decomposed into the detail 
added from progressively coarser to finer scales and 
either summed or treated individually to investigate 
patterns across scales. We reconstructed the detail in 
the fluxes for dyadic scales 1 (21 measurements = 1 h) 
to 14 (214 measurements = 341 days). Since patterns 
generated by ecological processes tend to occur over 
a scale range rather than at one individual scale, the 
detail over adjacent scales were summed to analyze 
four general time scales of variation (Sturtevant et al. 
2016). These time scales included the “hourly” scale 
(1–2 h) representing perturbations such the passage 
of clouds overhead and turbulent scales up to the 
spectral gap, the “diel” scale (4 h to 1.3 days) encom-
passing the diel cycles in sunlight and temperature, 
the “multiday” scale (2.7 to 21.3 days) ref lecting 
synoptic weather variability or fluctuations in water 
levels, and the “seasonal” scale (42.7 to 341 days) 
representing the annual solar cycle and phenology. 
Data were wavelet decomposed into the hourly, diel, 
and multiday scales using the Wavelet Methods for 
Time Series Analysis (WMTSA) Wavelet Toolkit in 
MATLAB.

Statistical analysis. We tested for significant relation-
ships between log-transformed annual CH4 emissions 
and a number of covariates using linear mixed-effects 
models as described in Treat et al. (2018b). The pre-
dictor variables of CH4 flux we evaluated included: 
biome or ecosystem type (categorical variables), and 
continuous biophysical variables including mean 
seasonal WTD, mean annual soil and air temperature 
(TMST and TMAT, respectively), net ecosystem exchange 
(NEE), GPP, and ER. When considering continuous 
variables, we focused on freshwater wetlands for 
comparison with previous CH4 synthesis activities. 
Soil temperature was measured between 2 and 25 cm 
below the surface in different studies. The results 
below are presented for GPP and ER covariates that 
are partitioned using the nighttime flux partitioning 
algorithm (Wutzler et al. 2018; Reichstein et al. 2005), 
although similar findings were obtained using daytime 
partitioned estimates. Additionally, individual sites or 

site years were excluded when gaps in measurements 
exceeded two consecutive months, which explains the 
differences in the number of sites and site years in the 
“Environmental controls on annual CH4 emissions 
across freshwater wetland sites” section below.

Mixed-effects modeling was used because of the 
potential bias of having measurements over several 
years, with site included as a random effect in the 
analysis (Treat et al. 2018b). The significance of in-
dividual predictor variables was evaluated using a χ2 
test against a null model using only site as a random 
variable (Bates et al. 2015), with both models fit 
without reduced maximum likelihood. For multiple 
linear regression models, we used the model selection 
process outlined in Zuur et al. (2009). To incorporate 
annual cumulative uncertainty when assessing the 
significance of trends and differences in annual CH4 
fluxes across biomes and ecosystem types, we used a 
Monte Carlo simulation that randomly draws 1,000 
annual cumulative uncertainties for each estimate of 
annual CH4 flux. For each random draw the signifi-
cance of the categorical variable was tested using a 
χ2 test against the null model with only site as a ran-
dom variable. We report the marginal r2 (r2

m), which 
describes the proportion of variance explained by the 
fixed factors alone (Nakagawa and Schielzeth 2013). 
The mixed-effects modeling was implemented using 
the lmer command from the lme4 package (Bates 
et al. 2015) for R statistical software.

RESULTS AND DISCUSSION. Geographic and 
temporal coverage of eddy covariance CH4 flux measure-
ments. We identified 200 sites worldwide that are 
applying the EC method for CH4 (Fig. 1; Table ES1); 
wetlands (including natural, managed, and restored 
wetlands) comprise the majority of sites (59%), with 
rice agriculture (10%) as the second-most represented 
vegetation type. The predominance of wetland and 
rice paddy sites in the database is unsurprising be-
cause many studies are designed to target ecosystems 
expected to have relatively large CH4 emissions. 
However, there are also sites in ecosystems that 
are typically smaller sources or even sinks of CH4 
such as upland forests (13%) and grasslands (8%). 
Additionally, six sites (~3%) are urban, with another 
five sites measuring CH4 f luxes from open water 
bodies. Although identified sites span all continents 
except Antarctica, the majority are concentrated in 
North America and Europe, with a growing number 
of sites in Asia (Fig. 1; Table ES1).

Measurements of CH4 fluxes cover a broad range 
of climates and a large fraction of wetland habitats 
(Fig. 2), with the tropics and tropical wetlands notably 
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underrepresented. As discussed below (see “Future 
research directions and needs” section), one impor-
tant goal of FLUXNET and the regional networks is 
to increase site representativeness and extend mea-
surements in undersampled regions. Increasing the 
number of tropical sites is particularly important for 
CH4 because more than half of global CH4 emissions 
are thought to come from this region (Saunois et al. 
2016a; Dean et al. 2018). Furthermore, compared to 
northern wetlands, their biogeochemistry remains 
relatively poorly understood (Mitsch et al. 2009; Pan-
gala et al. 2017). We expect the number of CH4 flux 
sites and their geographic and temporal coverage to 
continue to increase, as has occurred through time 
for CO2, water vapor, and energy flux measurements 
in FLUXNET (Pastorello et al. 2017; Chu et al. 2017).

Long-term CH4 flux time series are key to under-
standing the causes of year-to-year variability and 

trends in fluxes (Chu et al. 2017; Euskirchen et al. 2017; 
Pugh et al. 2018). The longest continuous record of 
CH4 flux measurements, from a fen in Finland (Rinne 
et al. 2018), is now ~14 years and ongoing (Table ES1). 
Three other sites have measurements exceeding 10 
years; however, the median length is 5 years, with 
most sites established from 2013 onward (Table ES1). 
Longer time series are also important for both explor-
ing the short- and long-term effects of extreme events 
on f luxes and tracking the response of disturbed 
or restored ecosystems over time (Pastorello et al. 
2017). Furthermore, they can help address new and 
emerging science questions, such as quantifying CH4 
feedbacks to climate with rising temperatures and as-
sociated changes in ecosystem composition, structure 
and function (Helbig et al. 2017a,b; Dean et al. 2018), 
and the role of wetland emissions in atmospheric CH4 
variability (McNorton et al. 2016; Poulter et al. 2017).

CH4 fluxes and trends across biomes and ecosystem 
types. Half-hourly and annual net CH4 f luxes for 
the 60 sites currently included in the database ex-
hibited strong variability across sites (Figs. 3 and 
4). Across the dataset, the mean half-hourly CH4 
f lux was greater than the median f lux, indicating 
a positively skewed distribution with infrequent, 
large emissions (Fig. 3a), similar to findings from 
chamber-based syntheses (Olefeldt et al. 2013; 
Turetsky et al. 2014). Mean and median CH4 f luxes 
were smaller at higher latitudes and larger at lower 
latitudes (Fig. 3b), comparable again to trends in CH4 
f luxes observed in predominantly chamber-based 
syntheses (Bartlett and Harriss 1993; Turetsky et al. 
2014; Treat et al. 2018b).

The continuous nature of EC flux measurements 
is well suited for quantifying annual ecosystem-scale 
CH4 budgets, along with accumulated uncertainty (cf. 
“Gap-filling performance and uncertainty quantifica-
tion” section). Annual estimates of net CH4 flux for 
each of the 60 sites in the flux tower database ranged 
from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site 
to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater 
marsh (Rey-Sanchez et al. 2018), with fluxes exceeding 
40 g C m–2 yr–1 at multiple sites (Fig. 4b). These emis-
sions are of a considerably broader range and have 
much higher annual values than in an earlier synthesis 
by Baldocchi (2014), which included published values 
from 13 sites (Fig. 4a); median annual CH4 f luxes 
(±SE) in that study were 6.4 ± 1.9 g C m–2 yr–1, com-
pared with 10.0 ± 1.6 g C m–2 yr–1 for our expanded 
database. Annual CH4 sums in our database were 
positively skewed, with skewness increasing with ad-
ditional observations due largely to the inclusion of 

Fig. 2. Distribution of sites by mean annual air temper-
ature and precipitation. Tower locations are shown as 
circles or triangles (see Fig. 1), with vegetation type in 
color based on the IGBP definitions (CRO = croplands; 
DBF = deciduous broadleaf forests; EBF = evergreen 
broadleaf forests; ENF = evergreen needleleaf forests; 
GRA = grasslands; MF = mixed forests; URB = urban 
and built-up lands; WAT = water bodies; WET = per-
manent wetlands). Gray dots represent annual mean 
temperature and total precipitation from the CRU TS 
3.10 gridded climate dataset over the entire landmass 
(Harris et al. 2014), whereas blue dots represent grid 
cells with >25% wetland fraction as estimated using 
the Global Lakes and Wetlands Database (Lehner and 
Döll 2004). Temperature and precipitation grid cells 
included in this figure were averaged from 1981 to 2011, 
at 0.5° resolution.
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high CH4-emitting freshwater 
marsh sites (Fig. 4).

As suggested from Fig. 3b, 
annual wetland CH4 emissions 
differed significantly among 
biomes, even when consider-
ing accumulated uncertainty 
[average Monte Carlo χ2 = 13.4 
(12.1–14.7, 95% confidence 
interval), degrees of freedom 
(df) = 3, p < 0.05] (Table 1). 
Median CH4 emissions were 
significantly lower for tundra 
wetlands (2.9 ± 1.3 g C m–2 yr–1) 
than temperate wetlands (27.4 
± 3.4 g C m–2 yr–1). Higher CH4 
emissions were observed from 
subtropical/tropical wetlands 
(43.2 ± 11.2 g C m–2 yr–1), based 
on only three site years of data; 
however, emphasizing the need 
for additional flux tower mea-
surements in the tropics.

Whereas annual boreal/taiga wetland CH4 emis-
sions were comparable to values reported in a recent 
synthesis of predominantly chamber-based CH4 flux 
measurements (Treat et al. 2018b), our tower-based 
measurements are ~50% lower and over 6 times 
higher for tundra and temperate wetlands, respec-
tively (Table 1). The inconsistencies highlighted in 
Table 1 not only reflect the differences in the number 
and location of sites between datasets, but also the 
discrepancies resulting from different measurement 

techniques. Several studies have noted consider-
able differences in CH4 emissions measured using 
EC and chamber techniques, with estimates from 
chambers often higher than those from the EC mea-
surements (Schrier-Uijl et al. 2010; Hendriks et al. 
2010; Meijide et al. 2011; Krauss et al. 2016). This 
distinction highlights the need for additional studies 
investigating the systematic differences caused by the 
different spatial and temporal sampling footprints of 
these methods (Krauss et al. 2016; Morin et al. 2017; 

Windham-Myers et al. 2018; 
Xu et al. 2017). Characterizing 
discrepancies between mea-
surement techniques may also 
help constrain bottom-up 
estimates of CH4 emissions 
and reduce the disagreement 
of ~15 Tg C yr–1 between bot-
tom-up (139 Tg CH4 yr–1) and 
top-down (125 Tg CH4 yr–1) es-
timates of CH4 emissions from 
natural wetlands (Saunois 
et al. 2016a).

Annual CH4 emissions also 
differed significantly across 
ecosystems [average Monte 
Carlo χ2 = 45.5 (39.3–50.1), 
df = 9, p < 0.001; Fig. 5], with 
median f luxes highest for 
freshwater marshes (43.2 ± 

Fig. 3. (a) Probability density function, and (b) cumulative frequency distri-
bution of half-hourly CH4 flux (FCH4) data for sites currently included in the 
database (60 sites) aggregated by biome. Thin lines represent individual 
sites, whereas thicker lines present sites aggregated by biome. All cases 
are approximated by kernel density estimation. Note that whereas the x 
axis is scaled between −50 and 900 nmol m–2 s–1 for visualization purposes, 
some CH4 fluxes exceed this range.

Fig. 4. (a) Histogram of annual CH4 fluxes (FCH4; g C m–2 yr–1) measured 
with eddy covariance and published in the synthesis by Baldocchi (2014), 
and (b) histogram of our annual CH4 fluxes including additional site years 
of data estimated from the 60 sites listed in Table A1.
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4.2 g C m–2 yr–1) and lowest for upland ecosystems (1.3 
± 0.7 g C m–2 yr–1). Treat et al. (2018b) also observed 
the highest annual emissions in marshes and re-
ported a similar median value for temperate marshes 
(49.6 g C m–2 yr–1). Wet tundra and bogs had signifi-
cantly lower annual emissions than marshes (Fig. 5), 
which in part reflects their presence in colder boreal 
and tundra systems, as well as differences in vegetation 
type, nutrient status, and hydrological regime (Treat 
et al. 2018b). Low median CH4 emission was observed 
from salt marshes in our dataset (0.8 ± 2.9 g C m–2 yr–1), 
because high sulfate concentrations inhibit methano-
genesis (Poffenbarger et al. 2011; Holm et al. 2016). Even 
drained wetlands converted to agricultural land can be 
large sources of CH4 associated with seasonal flooding 
(Fig. 5). Median annual CH4 flux from rice was 12.6 ± 
1.6 g C m–2 yr–1, which is slightly lower than the IPCC 
default value of 15 g C m–2 yr–1 (Sass 2003).

Environmental controls on annual CH4 emissions across 
freshwater wetland sites. Using an integrated CH4 
flux database, we can begin to investigate the factors 
associated with varying CH4 emissions across sites. 
We explored the effects of WTD, TMST or TMAT, NEE, 
GPP, and ER on annual CH4 f lux. At global scales, 

Table 1. Number of site years and characteristics of CH4 fluxes (g C m–2 yr–1) currently included in the data-
base. Fluxes are compared with measurements reported in a recent synthesis of predominantly chamber-
based CH4 flux measurements. Biome type was extracted from Olson et al. (2001) using site coordinates 
and includes tundra, boreal/taiga, temperate, and tropical/subtropical. Wetland CH4 emissions differed 
significantly across biomes, with letters indicating significant differences (α = 0.05) among biomes. Note that 
similar to our tower only dataset, values from Treat et al. (2018b) represent measured annual fluxes derived 
from a smaller dataset where measurements were made in the growing season and nongrowing season.

Biome
No. of 

site years
Median annual 

CH4 flux
25th 

percentile
75th 

percentile References

Tundra

10 2.9 1.8 4.2 This study—All sites

10 2.9a 1.8 4.2 This study—Wetlands

31 5.6 1.0 11.4 Treat et al. (2018b)—All sites

26 6.3 3.0 16.4 Treat et al. (2018b)—Wetlands

Boreal and taiga

35 8.3 4.1 10.9 This study—All sites

30 9.5ab 6.0 11.3 This study—Wetlands

68 13.1 3.5 23.7 Treat et al. (2018b)—All sites

67 13.2 3.6 23.7 Treat et al. (2018b)—Wetlands

Temperate

72 16.4 7.9 35.9 This study—All sites

47 27.4b 10.0 47.3 This study—Wetlands

27 4.3 0.3 41.7 Treat et al. (2018b)—All sites

25 5.3 0.8 42.2 Treat et al. (2018b)—Wetlands

Tropical and 
subtropical

3 43.2 20.0 46.8 This study—All sites

3 43.2ab 20.0 46.8 This study—Wetlands

— — — — Treat et al. (2018b)—All sites

— — — — Treat et al. (2018b)—Wetlands

Fig. 5. Annual CH4 fluxes (FCH4; g C m–2 yr–1) among 
ecosystem types for the 60 sites currently included in 
the database (Table A1). Letters indicate significant 
differences (α = 0.05) among ecosystem types. Median 
value, first quartile, and third quartile are presented 
in the boxes, and dots represent outliers, which are 
defined as observations more than 1.5 times the inter-
quartile range away from the top or bottom of the box.
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TMAT and TMST were the most 
important predictors of an-
nual CH4 f lux across wetland 
sites (p < 0.001 for each), with 
the fixed factor of TMAT or TMST 
explaining ~65% of the varia-
tion in log transformed annu-
al CH4 emission (Figs. 6a,b). 
Previous synthesis studies 
also observed a significant, 
but weaker, relationship be-
tween soil temperature and 
average CH4 emissions across 
sites, explaining <15% of the 
variation in CH4 flux in those 
studies (Olefeldt et al. 2013; 
Yvon-Durocher et al. 2014). 
However, our f indings are 
consistent with numerous 
site-level studies that report 
a strong correlation between 
wetland CH4 emissions and 
temperature, with nearly 95% 
of all EC studies reporting a 
significant relationship be-
tween temperature and CH4 
f lux (Morin 2018). Across 
sites, Peltola et a l . (2019) 
found that the most impor-
tant predictor in a random forest model used to 
upscale EC CH4 emissions across northern latitudes 
was temperature, again highlighting the importance 
of temperature in regulating CH4 emissions within 
and across sites.

Water table depth has also commonly been iden-
tified as a key control on CH4 emissions (Turetsky 
et al. 2014; Bubier et al. 2005), because higher water 
levels often inhibit oxygen availability and lower the 
soil reduction potential, making methanogenesis 
more thermodynamically favorable. Although pre-
dominantly chamber-based wetland CH4 syntheses 
have found a positive relationship between WTD 
and average or annual CH4 emissions across sites 
(Olefeldt et al. 2013; Turetsky et al. 2014; Treat et al. 
2018b), we observed no significant relationship be-
tween mean WTD and annual CH4 f lux across all 
sites (χ2 = 0.2, df = 1, p = 0.66, Nsites = 20, Nsite_yr = 46), 
even when considering WTD2 or WTD3 (Olefeldt et al. 
2013). However, if we consider only sites where WTD 
was below the soil surface for part or all of the year 
(Fig. 6c, solid circles), we did observe a significant 
relationship with WTD (p < 0.05). Conversely, CH4 
emissions for permanently inundated sites showed no 

significant relationship with WTD (Fig. 6c, open cir-
cles) (χ2 = 0.5, df = 1, p = 0.50, Nsites = 13, Nsite_yr = 19). 
This result supports the finding that wetlands that are 
permanently inundated or exhibit little variation in 
WTD tend to show weak to no correlation between 
WTD and CH4 emissions (Chu et al. 2014; Jackowicz-
Korczyński et al. 2010; Rinne et al. 2007; Christensen 
et al. 2003); in contrast, wetlands with lower and more 
variable water levels often have a significant relation-
ship between WTD and CH4 emissions (Bubier et al. 
2005; Treat et al. 2007). However, only half of the 
sites currently included in the database report water 
table position, and given the importance of WTD in 
regulating CH4 exchange, it is critical to ensure that 
WTD is measured across all sites.

Gross primary production and ER were both 
significant positive predictors of annual CH4 f lux 
(χ2 = 21.3, df = 1, p < 0.001, r2

m = 0.29 and χ2 = 17.1, 
df = 1, p < 0.001, r2

m = 0.25, respectively, Nsites = 26, 
Nsite_yr = 64), although there was no significant rela-
tionship between NEE and annual CH4 flux (χ2 = 0.9, 
df = 1, p = 0.33, Nsites = 2, Nsite_yr = 64). However, when 
considering GPP or ER in a multiple linear regression 
model with TMST, including interaction terms (Chu 

Fig. 6. Relationship between annual CH4 flux (FCH4) and (a) mean annual air 
temperature (TMAT) (χ2 = 36.7, df = 1, p < 0.001), (b) mean annual soil tem-
perature (TMST) (χ2 = 32.3, df = 1, p < 0.001) for freshwater wetlands, and (c) 
mean water table depth (WTD). While there was no significant relationship 
between mean annual WTD and annual CH4 flux across all sites, there was a 
significant relationship if we consider only sites where WTD was below the 
soil surface for part or all of the year (solid circles) (χ2 = 5.6, df = 1, p < 0.05). 
Open circles in (c) indicate CH4 emissions for permanently inundated sites. 
(d) Temperature dependence of the annual CH4:ER ratio (χ2 = 12.0, df = 1, 
p < 0.001). Lines represent the fitted values for the population.
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et al. 2014), neither GPP nor ER were significant, 
suggesting that the observed relationship with GPP 
or ER was due to covariation with soil temperature 
and, possibly, other environmental drivers.

The strong temperature dependence of ecosystem-
scale CH4 emissions we observed across wetland sites 
is in line with the high temperature sensitivity of 
CH4 emissions found across microbial to ecosystem 
scales (Yvon-Durocher et al. 2014). CH4 emissions 
also have a higher temperature dependence than ER, 
such that the ratio of CH4 to CO2 emissions was found 
to increase markedly with seasonal increases in tem-
perature (Yvon-Durocher et al. 2014). Similarly, we 
observed a significant increase in the ratio of annual 
CH4 to ER along geographic temperature gradients, 
ranging from 0.4% to 7.9%, with a median value of 
2.8% across the dataset (Fig. 6d). This relationship 
suggests that warming may result in a greater relative 
contribution of CH4 to total carbon emissions from 
wetland ecosystems. With a growing FLUXNET 
CH4 database, it will be possible to further explore 
the dominant controls on CH4 f luxes within and 
across ecosystem types, as well as further investigate 
the temperature dependence of ecosystem-scale CH4 
exchange (Schipper et al. 2014; Arcus et al. 2016; 
Yvon-Durocher et al. 2014).

Time scales of variability. Methane f luxes exhibited 
strong variability over a range of time scales, with the 

variation across time scales differing between wetland 
types (Fig. 7). As observed previously (Sturtevant et al. 
2016), the seasonal time scale dominated CH4 flux vari-
ability across wetland types, but was most pronounced 
in rice paddies, which have a distinct growing season, 
and least pronounced in bogs (Fig. 7). Across ecosystem 
types, variation was lowest at the multiday scale, al-
though multiday CH4 flux variation was slightly greater 
in rice paddies and wet tundra, potentially indicating 
greater water table fluctuations (Sturtevant et al. 2016), 
particularly at rice paddy sites, which are subject to 
seasonal drainage (Knox et al. 2016; Runkle et al. 2019). 
Whereas some studies report a strong diel pattern in 
CH4 emissions from wetlands and rice paddies (Knox 
et al. 2016; Chu et al. 2014; Morin et al. 2014b; Kim 
et al. 1999), others have found little or no diel variation 
(Rinne et al. 2018; Jackowicz-Korczyński et al. 2010; 
Yagi and Minami 1990; Nadeau et al. 2013). Across 
wetland types, diel variation was greatest in freshwater 
marshes (Fig. 7), which is consistent with the observa-
tions that the vegetation at sites with a strong diel cycle 
of CH4 emissions is typically dominated by species with 
convective gas flow such as Phragmites australis or 
Typha spp. (Brix et al. 1992; Chanton et al. 1993). Bogs, 
fens, and wet tundra showed the greatest variation at 
the hourly scale (Fig. 7). This is likely in part due to 
typically lower fluxes at these sites as hourly pertur-
bations of turbulent time series are largely dominated 
by noise (Hollinger and Richardson 2005), as well as 
the fact that near-surface turbulence and short-term 
pressure fluctuations can strongly influence CH4 ex-
change in these peat dominated ecosystems (Nadeau 
et al. 2013; Sachs et al. 2008).

Gap-filling performance and uncertainty quantif ication. 
The performance of the neural networks varied 
strongly across sites (Fig. 8). Model r2, calculated 
from the median ANN prediction and observed 
f luxes at each site, ranged from ~0 to 0.92 across 
sites, with a median value of 0.41. Across sites, ANN 
performance was strongly linked to the percentage 
of total variance at diel and seasonal scales (r2 = 0.69, 
p < 0.001), indicating that across the wide range of 
observed flux magnitudes, sites with a more distinct 
seasonal and diel pattern tended to be more predict-
able (Fig. 8). There was also a significant negative 
relationship between model r2 and the percentage of 
total variance at the hourly scale across sites (r2 = 0.72, 
p < 0.001), because, as noted previously, hourly per-
turbations are largely dominated by noise (Hollinger 
and Richardson 2005).

Knowledge of the random errors in half-hourly 
f lux measurements is not only important for 

Fig. 7. Variance of CH4 flux (FCH4) wavelet coefficients 
across time scales, as a percentage of the total variance, 
averaged by wetland type. Error bars represent the 
standard error. Note that only ecosystem types with 
at least 6 sites are shown here, including bogs, fens, 
freshwater (FW) marshes, rice paddies, and wet tundra.
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evaluating the uncertainty in cumulative fluxes (e.g., 
daily, monthly, or annual) and comparing f luxes 
across tower sites, but it also needed to incorporate 
information about random flux errors in model-data 
synthesis activities (Richardson et al. 2006). As noted 
above, random flux error more closely followed a 
Laplace rather than Gaussian distribution. Within 
sites, σ(δ) was not constant, but rather nearly always 
scaled with the magnitude of CH4 fluxes (Fig. 9a), as 
predicted from theory (Richardson et al. 2006). As 
observed for other fluxes (Richardson et al. 2006), 
both the slope and intercept of this relationship varied 
among sites, and depending on the sign of the flux 
(Fig. 9a). Across sites, random flux error therefore 
scaled linearly with the magnitude of mean CH4 
flux (r2 = 0.86, p < 0.001), even when excluding the 
two highest CH4-emitting sites (r2 = 0.46, p < 0.001) 
(Fig. 9b). Whereas closed-path CH4 analyzers have 
been found to have lower random errors and instru-
ment noise compared with open-path sensors (Peltola 
et al. 2014), there was no clear evidence of a systematic 
effect of the influence of closed- versus open-path 
sensors on random errors across sites (Fig. 9).

The total annual cumulative uncertainty in CH4 
fluxes, including both random and gap-filling errors, 
ranged from ±0.01 to ±13.4 g C m–2 yr–1, with a me-
dian value of ±1.0 g C m–2 yr–1 
at 95% confidence (Fig. 10a). 
Relative error decreased expo-
nentially with flux magnitude, 
ranging from 1.5% to 60% in 
most cases (Fig. 10b), although 
a few sites where annual CH4 
sums were near zero had rela-
tive errors exceeding 200% 
(data not shown). The high-
est relative errors therefore 
tended to be associated with 
low CH4-emitting sites, such 
as upland sites and bogs, and 
the lowest relative errors were 
generally associated with high 
CH4-emitting sites such as 
freshwater marshes (Fig. 10b).

FUTURE RESEARCH 
D I R E C T I O N S  A N D 
NEEDS. Better quantifica-
tion of CH4 sources and sinks 
will improve estimates of re-
gional and global CH4 budgets 
and reduce uncertainties in 
the CH4 cycle. In this general 

Fig. 8. Relationship between the correlation coefficient 
(r2) calculated from the median ANN prediction and 
observed CH4 fluxes at each site and the percentage 
of total variance at diel and seasonal scales (r2 = 0.69, 
p < 0.001). Each site is color coded by ecosystem type. 
Sizes of the dots are proportional to the magnitude of 
mean CH4 flux, where flux magnitude was aggregated 
into 10 bins for plotting.

Fig. 9. (a) Scaling of FCH4 random flux measurement error [σ(δ)] with 
flux magnitude for all sites with a significant linear relationship between 
random error and flux magnitude (95% of all sites). Data at each site 
were placed into 10 bins (Oikawa et al. 2017). (b) Scaling of FCH4 random 
flux measurement error, characterized by the standard deviation of the 
double-exponential distribution [σ(δ)], with mean flux magnitude across 
sites. There was a significant linear relationship between σ(δ) and the 
magnitude of mean CH4 flux [σ(δ) = 0.5 × FCH4 + 5.9, r2 = 0.86, p < 0.001], 
even when excluding the two highest CH4-emitting sites [σ(δ) = 0.4 × FCH4 + 
11.3, r2 = 0.46, p < 0.001]. Note that circles represent sites with open-path 
CH4 analyzers while asterisks represent sites with closed-path sensors.
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context, high-frequency ob-
servations of ecosystem-scale 
CH4 emissions should help 
constrain bottom-up CH4 
budgets, improve our under-
standing of the environmental 
factors controlling CH4 fluxes, 
and inform and validate land 
surface models used to esti-
mate global CH4 f luxes. Un-
like well-established efforts 
synthesizing CO2, water vapor, 
and energy observations, no 
such global data synthesis or 
initiative previously existed 
for CH4. The database pre-
sented here addresses this gap 
with the EC community by 
organizing the collection and 
aggregation of a global EC CH4 
database through FLUXNET.

EC flux data quality assessment. 
Much of what has been learned 
within FLUXNET for CO2, water vapor, and energy 
measurements is informing, and should continue to 
inform, new efforts for CH4. Reliable EC measure-
ments of CO2 and water vapor f luxes have been 
conducted at hundreds of sites across broad regional 
networks (Papale et al. 2012), and substantial efforts 
have focused on developing best practices and har-
monizing approaches across sites to ensure consistent, 
high-quality flux measurements (Aubinet et al. 1999; 
Reichstein et al. 2005; Moffat et al. 2007). CH4 fluxes 
are often characterized by small fluxes with episodic 
spikes, and additional research is needed to ensure 
reliable measurements (Peltola et al. 2014, 2013), and 
refine and standardize methods and routines for data 
processing and quality checking (Nemitz et al. 2018; 
Schaller et al. 2018). Recent efforts provided guidance 
on instrument selection, setup and maintenance, 
and data processing for EC CH4 flux measurements 
(Nemitz et al. 2018). However, with respect to instru-
ment setup and data processing, more research is 
needed in best practices for storage flux quantifica-
tion, despiking, and u* filtering (Nemitz et al. 2018).

Gap-f illing. Whereas neural networks have shown 
strong performance for gap-filling CH4 fluxes (Den-
gel et al. 2013; Knox et al. 2016), our results reveal 
some of the challenges of gap-filling CH4 fluxes at 
sites with low fluxes and/or a lack of seasonal and diel 
variation (Fig. 8). More research is therefore needed 

for best practices for gap-filling to estimate annual 
CH4 budgets (Nemitz et al. 2018). For example, there 
has yet to be a comprehensive analysis comparing a 
wide range of gap-filling approaches for CH4 fluxes 
similar to the study by Moffat et al. (2007) for CO2 
exchange. While ANNs are one gap-filling method 
(Dengel et al. 2013; Shoemaker et al. 2014; Morin et al. 
2014a), numerous other gap-filling approaches exist, 
including nonlinear regression techniques, mean 
diurnal variation, lookup tables, marginal distribu-
tion sampling, and the multiple imputation method 
(Moffat et al. 2007; Vitale et al. 2019). Future efforts 
should focus on systematically investigating these 
approaches across a range of sites to provide best 
practices for gap-filling CH4 exchange.

Ancillary measurements. Along with research that 
addresses the challenges of measuring and process-
ing EC CH4 f luxes, key ancillary variables to help 
gap-fill, predict, and scale CH4 f luxes should also 
be measured more comprehensively across sites. 
For instance, although WTD is known to strongly 
influence CH4 emissions (Turetsky et al. 2014; Treat 
et al. 2018b), as noted above, only half of the sites 
currently included in the database report water 
table position. Generally, EC CH4 measurements 
are implemented at sites also collecting CO2 f luxes 
and common meteorological measurements used in 
the f lux community; however, guidelines are only 

Fig. 10. (a) Histogram of total random error (g C m–2 yr–1) in annual CH4 
flux at 95% confidence, where count refers to the number of site years 
of measurements. The cumulative gap-filling and random measurement 
uncertainties of gap-filled and original values were added in quadrature to 
estimate the total random uncertainty at each site. (b) Relationship be-
tween annual CH4 flux (g C m–2 yr–1) and relative error (i.e., total random 
error divided by flux magnitude; %).
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beginning to emerge for which additional support-
ing variables should be collected at sites measuring 
CH4 f luxes (Nemitz et al. 2018).

Measurements of variables beyond those relevant 
for CO2 are needed to better understand and pre-
dict the complex and interacting processes of CH4 
production, consumption, and transport, the latter 
of which includes diffusion, ebullition, and plant-
mediated transport. Guidance on the description of 
some basic variables affecting these processes is avail-
able through new protocols in the flux community 
detailing soil meteorological measurements, ancillary 
vegetation measurements, and site description, man-
agement and disturbance (Saunders et al. 2018; Op De 
Beeck et al. 2018; Gielen et al. 2018). These protocols 
provide guidance on variables such as soil tempera-
ture and soil moisture profiles, water table depth and 
snow depth, soil pH and soil type, bulk density, and 
livestock density. However, although WTD is an eas-
ily measured proxy for anaerobic conditions, direct 
and continuous measurement of redox potential 
and oxygen content in particular would be valu-
able additional measurements (Nemitz et al. 2018). 
Similarly, measuring variables such as conductivity, 
below-ground CH4 concentrations, dissolved organic 
carbon concentrations, and the presence of alternative 
electron acceptors such as nitrate, iron, sulfate, and 
humic substances in the water and soil column would 
provide useful information for the interpretation of 
CH4 emissions. Stable isotope analyses of CH4 are 
also valuable as they provide important information 
on mechanisms of CH4 production, transport, and 
oxidation (Chanton et al. 1997; Marushchak et al. 
2016). Detailed information on soil microbial com-
munities driving CH4 production and consumption 
could also be helpful (Kwon et al. 2017). Vegetation 
biomass, species composition, and phenology are also 
important variables to consider, because plants are a 
primary source of carbon substrates for methano-
genic metabolism, and they mediate CH4 transport 
through aerenchymous tissue (Kwon et al. 2017; 
Joabsson et al. 1999; Carmichael et al. 2014). New 
guidance is now available for such measurements at 
flux tower locations (Gielen et al. 2018; Hufkens et al. 
2018). Continuing to develop a consensus on best 
practices for ancillary measurements is important 
for interpreting, gap-filling, and upscaling CH4 flux 
measurements.

Characterizing spatial variability. CH4 f luxes exhibit 
finescale spatial variability that can span orders of 
magnitude within a landscape (Peltola et al. 2015; 
Marushchak et al. 2016; Desai et al. 2015; Treat et al. 

2018a; Iwata et al. 2018), attributable to heterogeneous 
soil properties and moisture conditions, vegetation 
composition, and land use (Davidson et al. 2016; 
Parmentier et al. 2011; Chamberlain et al. 2018). 
Furthermore, there is evidence that traditionally 
unmeasured surfaces (i.e., tree stems) are important 
sources of CH4 to the atmosphere and could explain 
spatial heterogeneity within ecosystems (Barba et al. 
2019). Accurately representing spatial heterogeneity 
and the relative fraction of uplands and wetlands 
is imperative for interpreting and predicting CH4 
emissions within many ecosystems, and for upscal-
ing f lux measurements regionally and globally as 
wetlands are hot spots for carbon cycling (Treat 
et al. 2018a; Tuovinen et al. 2019; Rößger et al. 2019). 
Flux footprint analysis characterizing the fractional 
coverage of the dominant surface types, particu-
larly the fraction of open water and aerenchymatous 
plants, is important for interpreting EC CH4 f lux 
measurements and quantifying annual CH4 budgets 
at spatially heterogeneous sites (Franz et al. 2016; 
Helbig et al. 2017a; Jammet et al. 2017) (Fig. 11). This 
integration can be achieved by combining CH4 mea-
surements, flux footprint analysis, and near-surface 

Fig. 11. Footprint climatology for a eutrophic shallow 
lake on a formerly drained fen in Germany (Zarnekow; 
DE-Zrk) illustrating the importance of footprint analy-
sis for the interpretation of EC measurements of CH4. 
Here we used two footprint models, including the 
model of Kormann and Meixner (2001) (yellow) and 
Kljun et al. (2015) (white). The footprint climatology 
was calculated by aggregating all half-hour footprints 
within a year. The dashed lines enclose the areas aggre-
gating to 80% of source areas, while solid lines enclose 
the 50% of source areas.
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Table A1. The ecosystem type is based on the classification of Olefeldt et al. (2013) and Treat et al. (2018b). 
Biome was based on the classification of Olson et al. (2001) and extracted using site coordinates. Vegetation 
type was based on the International Geosphere-Biosphere Programme (IGBP) definition. Salinity regime 
includes freshwater (FW) or saltwater (SW) wetlands. Disturbance is based on the classification of Turetsky 
et al. (2014). Data from all sites are publicly available, primarily through AmeriFlux and the European Database 
Cluster, and in a few cases, through other databases/repositories. Site DOIs are specified where applicable.

Site ID Site name Country
Lat 
(°N)

Lon 
(°E) Biome IGBP Ecosystem type Salinity

Wetland 
disturbance Site PI Data DOI/location

US-ICs Wet sedge tundra U.S. 68.606 −149.311 Tundra WET Wet tundra FW Undisturbed Eugenie Euskirchen DOI:10.17190/AMF/1246130
SE-St1 Stordalen grassland (mire) Sweden 68.350 19.050 Tundra WET Fen FW Undisturbed Thomas Friborg European Fluxes Database Cluster
SE-Sto Stordalen Palsa bog Sweden 68.356 19.050 Tundra WET Bog FW Undisturbed Thomas Friborg European Fluxes Database Cluster
RU-Vrk Seida/Vorkuta Russia 67.055 62.940 Tundra WET Wet tundra FW Undisturbed Thomas Friborg European Fluxes Database Cluster
RU-Ch2 Chersky reference Russia 68.617 161.351 Tundra WET Wet tundra FW Undisturbed Mathias Goeckede European Fluxes Database Cluster
RU-Che Chersky Russia 68.613 161.341 Tundra WET Wet tundra FW Drying Mathias Goeckede European Fluxes Database Cluster
RU-SAM Samoylov Russia 72.374 126.496 Tundra WET Wet tundra FW Undisturbed Torsten Sachs European Fluxes Database Cluster
US-NGB NGEE Barrow U.S. 71.280 −156.609 Tundra WET Wet tundra FW Undisturbed Margaret Torn DOI:10.17190/AMF/1436326
US-Beo Barrow U.S. 71.281 −156.612 Tundra WET Wet tundra FW Undisturbed Donatella Zona AmeriFlux
US-Bes Barrow U.S. 71.281 −156.596 Tundra WET Wet tundra FW Undisturbed Donatella Zona AmeriFlux
US-Atq Atqasuk U.S. 70.470 −157.409 Tundra WET Wet tundra FW Undisturbed Donatella Zona DOI:10.17190/AMF/1246029
US-Ivo Ivotuk U.S. 68.486 −155.750 Tundra WET Wet tundra FW Undisturbed Donatella Zona DOI:10.17190/AMF/1246067

— Black spruce forest U.S. 64.700 −148.320 Boreal forests/taiga ENF Upland — — Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708
— Rich fen U.S. 64.704 −148.313 Boreal forests/taiga WET Fen FW Undisturbed Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708
— Thermokarst collapse scar bog U.S. 64.700 −148.320 Boreal forests/taiga WET Bog FW Undisturbed Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708

FI-Lom Lompolojankka Finland 67.997 24.209 Boreal forests/taiga WET Fen FW Undisturbed Annalea Lohila European Fluxes Database Cluster
SE-Deg Degero Sweden 64.182 19.557 Boreal forests/taiga WET Fen FW Undisturbed Matthias Peichl, Mats Nilsson European Fluxes Database Cluster
CA-SCC Scotty Creek—Peat plateau/collapse scar Canada 61.308 −121.299 Boreal forests/taiga ENF Peat plateau FW — Oliver Sonnentag DOI:10.17190/AMF/1480303
CA-SCB Scotty Creek bog Canada 61.309 −121.299 Boreal forests/taiga WET Bog FW Undisturbed Oliver Sonnentag AmeriFlux
US-NGC NGEE Arctic Council U.S. 64.861 −163.701 Boreal forests/taiga WET Wet tundra FW Undisturbed Margaret Torn AmeriFlux
US-Uaf University of Alaska Fairbanks U.S. 64.866 −147.856 Boreal forests/taiga WET Bog FW Undisturbed Masahito Ueyama DOI:10.17190/AMF/1480322
FI-Sii Siikaneva I (FI-Sii) Finland 61.833 24.193 Boreal forests/taiga WET Fen FW Undisturbed Timo Vesala, Ivan Mammarella European Fluxes Database Cluster
FI-Si2 Siikaneva II Finland 61.837 24.170 Boreal forests/taiga WET Bog FW Undisturbed Timo Vesala, Ivan Mammarella European Fluxes Database Cluster
US-Myb Mayberry wetland U.S. 38.050 −121.765 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246139
US-Sne Sherman Island restored wetland U.S. 38.037 −121.755 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1418684
US-Tw1 Twitchell west pond wetland U.S. 38.107 −121.647 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246147
US-Tw4 Twitchell east end wetland U.S. 38.103 −121.641 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246148
US-Twt Twitchell rice U.S. 38.109 −121.653 Temperate CRO - Rice Rice FW — Dennis Baldocchi DOI:10.17190/AMF/1246151
US-Bi2 Bouldin Island corn U.S. 38.109 −121.535 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1419513
US-Bi1 Bouldin Island alfalfa U.S. 38.102 −121.504 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1480317
US-Snd Sherman Island U.S. 38.037 −121.754 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1246094
US-OWC Old Woman Creek U.S. 41.380 −82.512 Temperate WET Marsh FW Undisturbed Gil Bohrer DOI:10.17190/AMF/1246094
US-Orv Olentangy River Wetland Research Park U.S. 40.020 −83.018 Temperate WET Marsh FW Undisturbed Gil Bohrer DOI:10.17190/AMF/1246135
NZ-Kop Kopuatai New Zealand −37.388 175.554 Temperate WET Bog FW Undisturbed Dave Campbell https://researchcommons.waikato.ac.nz/handle/10289/11393
IT-Cas Castellaro Italy 45.070 8.718 Temperate CRO - Rice Rice FW — Alessandro Cescatti European Fluxes Database Cluster
US-WPT Winous Point north marsh U.S. 41.465 −82.996 Temperate WET Marsh FW Wetting Jiquan Chen, Housen Chu DOI:10.17190/AMF/1246155
US-CRT Curtice Walter-Berger cropland U.S. 41.628 −83.347 Temperate CRO - Other Upland — — Jiquan Chen, Housen Chu DOI:10.17190/AMF/1246156
US-Los Lost Creek U.S. 46.083 −89.979 Temperate WET Fen FW Undisturbed Ankur Desai DOI:10.17190/AMF/1246071
JP-Mse Mase paddy flux site (MSE) Japan 36.054 140.027 Temperate CRO - Rice Rice FW — Akira Miyata European Fluxes Database Cluster
JP-Swl Suwa Lake site Japan 36.047 138.108 Temperate WAT Waterbody FW Undisturbed Hiroki Iwata European Fluxes Database Cluster
IT-BCi Borgo Cioffi Italy 40.524 14.957 Temperate CRO - Other Upland — — Vincenzo Magliulo European Fluxes Database Cluster

— Hongyuan China 32.800 102.550 Temperate GRA Upland — — Shuli Niu European Fluxes Database Cluster
US-NC4 NC Alligator River U.S. 35.788 −75.904 Temperate WET Swamp FW Undisturbed Asko Noormets DOI:10.17190/AMF/1480314
DE-SfN Schechenfilz Nord Germany 47.806 11.328 Temperate WET Bog FW Undisturbed Hans Peter Schmid European Fluxes Database Cluster
US-Ho1 Howland Forest (main tower) U.S. 45.204 −68.740 Temperate ENF Upland — — Andrew Richardson DOI:10.17190/AMF/1246061
US-HRA Humnoke farm rice field AWD, United States U.S. 34.585 −91.752 Temperate CRO - Rice Rice FW — Benjamin Runkle AmeriFlux
US-HRC Humnoke farm rice field conventional, United States U.S. 34.589 −91.752 Temperate CRO - Rice Rice FW — Benjamin Runkle AmeriFlux
KR-CRK Cheorwon rice paddy South Korea 38.201 127.251 Temperate CRO - Rice Rice FW — Youngryel Ryu,  Minseok Kang European Fluxes Database Cluster
DE-Zrk Zarnekow Germany 53.876 12.889 Temperate WET Fen FW Wetting Torsten Sachs European Fluxes Database Cluster
DE-Dgw Dagowsee Germany 53.151 13.054 Temperate WAT Waterbody FW Undisturbed Torsten Sachs European Fluxes Database Cluster
US-MRM Marsh Resource Meadowlands Mitigation Bank U.S. 40.816 −74.044 Temperate WET Salt marsh SW Wetting Karina Schäfer AmeriFlux

— Bog Lake peatland U.S. 47.530 −93.470 Temperate WET Fen FW Undisturbed Shahi Verma AmeriFlux
— MacArthur Agro-Ecology Research Center U.S. 27.163 −81.187 Temperate CRO - Other Drained/agricultural wetland FW Drying Jed Sparks, Samuel Chamberlain AmeriFlux

JP-BBY Bibai bog Japan 43.323 141.811 Temperate WET Bog FW Undisturbed Masahito Ueyama European Fluxes Database Cluster
US-StJ St. Jones Reserve U.S. 39.088 −75.437 Temperate WET Salt marsh SW Undisturbed Rodrigo Vargas DOI:10.17190/AMF/1480316
US-Srr Suisun marsh—Rush Ranch U.S. 38.201 −122.026 Temperate WET Salt marsh SW Undisturbed Lisamarie Windham-Myers DOI:10.17190/AMF/1418685
AT-Neu Neustift Austria 47.117 11.318 Temperate GRA Upland — — Georg Wohlfahrt European Fluxes Database Cluster
US-LA2 Salvador WMA freshwater marsh U.S. 29.859 −90.287 Tropical and subtropical WET Marsh FW Undisturbed Ken Krauss AmeriFlux
US-LA1 Pointe-aux-Chenes brackish marsh U.S. 29.501 −90.445 Tropical and subtropical WET Salt marsh SW Undisturbed Ken Krauss AmeriFlux
MY-MLM Maludam Malaysia 1.454 111.149 Tropical and subtropical WET Swamp FW Undisturbed Angela Tang DOI:10.5281/zenodo.1161966
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Table A1. The ecosystem type is based on the classification of Olefeldt et al. (2013) and Treat et al. (2018b). 
Biome was based on the classification of Olson et al. (2001) and extracted using site coordinates. Vegetation 
type was based on the International Geosphere-Biosphere Programme (IGBP) definition. Salinity regime 
includes freshwater (FW) or saltwater (SW) wetlands. Disturbance is based on the classification of Turetsky 
et al. (2014). Data from all sites are publicly available, primarily through AmeriFlux and the European Database 
Cluster, and in a few cases, through other databases/repositories. Site DOIs are specified where applicable.

Site ID Site name Country
Lat 
(°N)

Lon 
(°E) Biome IGBP Ecosystem type Salinity

Wetland 
disturbance Site PI Data DOI/location

US-ICs Wet sedge tundra U.S. 68.606 −149.311 Tundra WET Wet tundra FW Undisturbed Eugenie Euskirchen DOI:10.17190/AMF/1246130
SE-St1 Stordalen grassland (mire) Sweden 68.350 19.050 Tundra WET Fen FW Undisturbed Thomas Friborg European Fluxes Database Cluster
SE-Sto Stordalen Palsa bog Sweden 68.356 19.050 Tundra WET Bog FW Undisturbed Thomas Friborg European Fluxes Database Cluster
RU-Vrk Seida/Vorkuta Russia 67.055 62.940 Tundra WET Wet tundra FW Undisturbed Thomas Friborg European Fluxes Database Cluster
RU-Ch2 Chersky reference Russia 68.617 161.351 Tundra WET Wet tundra FW Undisturbed Mathias Goeckede European Fluxes Database Cluster
RU-Che Chersky Russia 68.613 161.341 Tundra WET Wet tundra FW Drying Mathias Goeckede European Fluxes Database Cluster
RU-SAM Samoylov Russia 72.374 126.496 Tundra WET Wet tundra FW Undisturbed Torsten Sachs European Fluxes Database Cluster
US-NGB NGEE Barrow U.S. 71.280 −156.609 Tundra WET Wet tundra FW Undisturbed Margaret Torn DOI:10.17190/AMF/1436326
US-Beo Barrow U.S. 71.281 −156.612 Tundra WET Wet tundra FW Undisturbed Donatella Zona AmeriFlux
US-Bes Barrow U.S. 71.281 −156.596 Tundra WET Wet tundra FW Undisturbed Donatella Zona AmeriFlux
US-Atq Atqasuk U.S. 70.470 −157.409 Tundra WET Wet tundra FW Undisturbed Donatella Zona DOI:10.17190/AMF/1246029
US-Ivo Ivotuk U.S. 68.486 −155.750 Tundra WET Wet tundra FW Undisturbed Donatella Zona DOI:10.17190/AMF/1246067

— Black spruce forest U.S. 64.700 −148.320 Boreal forests/taiga ENF Upland — — Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708
— Rich fen U.S. 64.704 −148.313 Boreal forests/taiga WET Fen FW Undisturbed Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708
— Thermokarst collapse scar bog U.S. 64.700 −148.320 Boreal forests/taiga WET Bog FW Undisturbed Eugenie Euskirchen www.lter.uaf.edu/data/data-detail/id/708

FI-Lom Lompolojankka Finland 67.997 24.209 Boreal forests/taiga WET Fen FW Undisturbed Annalea Lohila European Fluxes Database Cluster
SE-Deg Degero Sweden 64.182 19.557 Boreal forests/taiga WET Fen FW Undisturbed Matthias Peichl, Mats Nilsson European Fluxes Database Cluster
CA-SCC Scotty Creek—Peat plateau/collapse scar Canada 61.308 −121.299 Boreal forests/taiga ENF Peat plateau FW — Oliver Sonnentag DOI:10.17190/AMF/1480303
CA-SCB Scotty Creek bog Canada 61.309 −121.299 Boreal forests/taiga WET Bog FW Undisturbed Oliver Sonnentag AmeriFlux
US-NGC NGEE Arctic Council U.S. 64.861 −163.701 Boreal forests/taiga WET Wet tundra FW Undisturbed Margaret Torn AmeriFlux
US-Uaf University of Alaska Fairbanks U.S. 64.866 −147.856 Boreal forests/taiga WET Bog FW Undisturbed Masahito Ueyama DOI:10.17190/AMF/1480322
FI-Sii Siikaneva I (FI-Sii) Finland 61.833 24.193 Boreal forests/taiga WET Fen FW Undisturbed Timo Vesala, Ivan Mammarella European Fluxes Database Cluster
FI-Si2 Siikaneva II Finland 61.837 24.170 Boreal forests/taiga WET Bog FW Undisturbed Timo Vesala, Ivan Mammarella European Fluxes Database Cluster
US-Myb Mayberry wetland U.S. 38.050 −121.765 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246139
US-Sne Sherman Island restored wetland U.S. 38.037 −121.755 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1418684
US-Tw1 Twitchell west pond wetland U.S. 38.107 −121.647 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246147
US-Tw4 Twitchell east end wetland U.S. 38.103 −121.641 Temperate WET Marsh FW Wetting Dennis Baldocchi DOI:10.17190/AMF/1246148
US-Twt Twitchell rice U.S. 38.109 −121.653 Temperate CRO - Rice Rice FW — Dennis Baldocchi DOI:10.17190/AMF/1246151
US-Bi2 Bouldin Island corn U.S. 38.109 −121.535 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1419513
US-Bi1 Bouldin Island alfalfa U.S. 38.102 −121.504 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1480317
US-Snd Sherman Island U.S. 38.037 −121.754 Temperate CRO - Other Drained/agricultural wetland FW Drying Dennis Baldocchi DOI:10.17190/AMF/1246094
US-OWC Old Woman Creek U.S. 41.380 −82.512 Temperate WET Marsh FW Undisturbed Gil Bohrer DOI:10.17190/AMF/1246094
US-Orv Olentangy River Wetland Research Park U.S. 40.020 −83.018 Temperate WET Marsh FW Undisturbed Gil Bohrer DOI:10.17190/AMF/1246135
NZ-Kop Kopuatai New Zealand −37.388 175.554 Temperate WET Bog FW Undisturbed Dave Campbell https://researchcommons.waikato.ac.nz/handle/10289/11393
IT-Cas Castellaro Italy 45.070 8.718 Temperate CRO - Rice Rice FW — Alessandro Cescatti European Fluxes Database Cluster
US-WPT Winous Point north marsh U.S. 41.465 −82.996 Temperate WET Marsh FW Wetting Jiquan Chen, Housen Chu DOI:10.17190/AMF/1246155
US-CRT Curtice Walter-Berger cropland U.S. 41.628 −83.347 Temperate CRO - Other Upland — — Jiquan Chen, Housen Chu DOI:10.17190/AMF/1246156
US-Los Lost Creek U.S. 46.083 −89.979 Temperate WET Fen FW Undisturbed Ankur Desai DOI:10.17190/AMF/1246071
JP-Mse Mase paddy flux site (MSE) Japan 36.054 140.027 Temperate CRO - Rice Rice FW — Akira Miyata European Fluxes Database Cluster
JP-Swl Suwa Lake site Japan 36.047 138.108 Temperate WAT Waterbody FW Undisturbed Hiroki Iwata European Fluxes Database Cluster
IT-BCi Borgo Cioffi Italy 40.524 14.957 Temperate CRO - Other Upland — — Vincenzo Magliulo European Fluxes Database Cluster

— Hongyuan China 32.800 102.550 Temperate GRA Upland — — Shuli Niu European Fluxes Database Cluster
US-NC4 NC Alligator River U.S. 35.788 −75.904 Temperate WET Swamp FW Undisturbed Asko Noormets DOI:10.17190/AMF/1480314
DE-SfN Schechenfilz Nord Germany 47.806 11.328 Temperate WET Bog FW Undisturbed Hans Peter Schmid European Fluxes Database Cluster
US-Ho1 Howland Forest (main tower) U.S. 45.204 −68.740 Temperate ENF Upland — — Andrew Richardson DOI:10.17190/AMF/1246061
US-HRA Humnoke farm rice field AWD, United States U.S. 34.585 −91.752 Temperate CRO - Rice Rice FW — Benjamin Runkle AmeriFlux
US-HRC Humnoke farm rice field conventional, United States U.S. 34.589 −91.752 Temperate CRO - Rice Rice FW — Benjamin Runkle AmeriFlux
KR-CRK Cheorwon rice paddy South Korea 38.201 127.251 Temperate CRO - Rice Rice FW — Youngryel Ryu,  Minseok Kang European Fluxes Database Cluster
DE-Zrk Zarnekow Germany 53.876 12.889 Temperate WET Fen FW Wetting Torsten Sachs European Fluxes Database Cluster
DE-Dgw Dagowsee Germany 53.151 13.054 Temperate WAT Waterbody FW Undisturbed Torsten Sachs European Fluxes Database Cluster
US-MRM Marsh Resource Meadowlands Mitigation Bank U.S. 40.816 −74.044 Temperate WET Salt marsh SW Wetting Karina Schäfer AmeriFlux

— Bog Lake peatland U.S. 47.530 −93.470 Temperate WET Fen FW Undisturbed Shahi Verma AmeriFlux
— MacArthur Agro-Ecology Research Center U.S. 27.163 −81.187 Temperate CRO - Other Drained/agricultural wetland FW Drying Jed Sparks, Samuel Chamberlain AmeriFlux

JP-BBY Bibai bog Japan 43.323 141.811 Temperate WET Bog FW Undisturbed Masahito Ueyama European Fluxes Database Cluster
US-StJ St. Jones Reserve U.S. 39.088 −75.437 Temperate WET Salt marsh SW Undisturbed Rodrigo Vargas DOI:10.17190/AMF/1480316
US-Srr Suisun marsh—Rush Ranch U.S. 38.201 −122.026 Temperate WET Salt marsh SW Undisturbed Lisamarie Windham-Myers DOI:10.17190/AMF/1418685
AT-Neu Neustift Austria 47.117 11.318 Temperate GRA Upland — — Georg Wohlfahrt European Fluxes Database Cluster
US-LA2 Salvador WMA freshwater marsh U.S. 29.859 −90.287 Tropical and subtropical WET Marsh FW Undisturbed Ken Krauss AmeriFlux
US-LA1 Pointe-aux-Chenes brackish marsh U.S. 29.501 −90.445 Tropical and subtropical WET Salt marsh SW Undisturbed Ken Krauss AmeriFlux
MY-MLM Maludam Malaysia 1.454 111.149 Tropical and subtropical WET Swamp FW Undisturbed Angela Tang DOI:10.5281/zenodo.1161966
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(e.g., phenocams) and/or high-resolution drone or 
satellite remote sensing data, and should be common 
practice for all sites measuring CH4 fluxes.

Spatial variability in ecosystem-scale CH4 f lux 
can further be examined by combining chamber 
and EC measurements, including manual and au-
tochambers, multitower approaches, and airborne 
f lux measurements (Peltola et al. 2015; Zona et al. 
2016; Helbig et al. 2017a; Wolfe et al. 2018; Kohnert 
et al. 2018; Lai et al. 2014; McNicol et al. 2017). Inte-
grating additional observations such as information 
on microbial communities, isotopic measurements, 
and laboratory incubation observations along with 
chamber and EC CH4 f lux measurements can fur-
ther help explain CH4 dynamics across scales (Angle 
et al. 2017; Chamberlain et al. 2018; Yang et al. 2017). 
However, as discussed above, additional research is 
needed to reconcile differences in f luxes measured 
across scales (Gioli et al. 2004; Holm et al. 2016; 
Meijide et al. 2011). Explicitly considering source 
area composition and spatial heterogeneity will 
provide enhanced processed-based understanding 
of CH4 f luxes and improve upscaled regional and 
global estimates of CH4 emissions, which can help 
reconcile the discrepancy between bottom-up and 
top-down budgets (Saunois et al. 2016a; Morin et al. 
2017; Davidson et al. 2016).

More sites in key regions. We expect the number of flux 
towers measuring CH4 fluxes will continue to grow 
(Chu et al. 2017; Pastorello et al. 2017; Morin 2018), 
but our compilation of EC CH4 flux sites highlights 
key underrepresented regions where future flux tow-
ers are needed or where more efforts are needed for 
existing but nonreporting towers to contribute to 
FLUXNET (Fig. 1). As noted previously, notable gaps 
include both tropical and subtropical regions, as well 
as eastern Canada, and the boreal forests of Russia. 
Figure 1 also provides guidance on where new towers 
could be strategically located to help reconcile differ-
ences between top-down and bottom-up estimates 
of wetland CH4 emissions. In particular, substantial 
disagreements between top-down and bottom-up esti-
mates are found over the Congo basin, the Inner Niger 
delta, the Orinoco River delta, the Maranon–Ucayali 
palm swamps, the Pantanal, the Ganges–Brahmaputra 
delta, Sumatra, the western Siberian lowlands, and the 
Hudson Bay lowlands (Fig. 1). However, the placement 
of new towers is a strong function of the scientific ques-
tion being asked and research funding priorities, and 
therefore the optimal tower network could be different 
for different applications (Mahecha et al. 2017; Papale 
et al. 2015; Villarreal et al. 2018).

Better understanding and representing processes. One 
of the biggest challenges for understanding ecosystem 
functioning is resolving overlapping, asynchronous 
(i.e., lagged) and nonlinear processes (Sturtevant et al. 
2016). This challenge is particularly relevant for inter-
preting continuous, ecosystem-scale measurements 
of CH4 exchange where scale-specific, nonlinear, and 
lagged processes may dominate (Franz et al. 2016; 
Sturtevant et al. 2016; Knox et al. 2018). For instance, 
CH4 emission responses to water table f luctuation 
can be nonlinear and lagged on the order of days 
to months (Goodrich et al. 2015; Sturtevant et al. 
2016). CH4 flux has also been observed to lag GPP by 
hours to days (Rinne et al. 2018; Hatala et al. 2012). 
Adequately representing these dynamics in process 
models is important, and further research is needed 
to better characterize the complex and nonlinear 
processes influencing ecosystem-scale CH4 exchange 
across time scales.

The complex nature of CH4 flux dynamics requires 
moving beyond traditional linear correlation and 
regression, and using methods such as wavelets, infor-
mation theory, and Granger causality that are more 
tailored to address scale, nonlinearity, and lags di-
rectly (Stoy et al. 2005; Vargas et al. 2011; Schäfer et al. 
2014; Knox et al. 2016; Detto et al. 2012). Through a 
USGS Powell Center working group activity, we will 
continue to investigate controls on CH4 emissions 
within and across wetland types. To further explore 
interactions between ecosystem-scale CH4 exchange 
and drivers across time scales, wavelet analysis will 
be combined with information theory to explore bio-
sphere–atmosphere interactions regardless of form or 
asynchrony (Sturtevant et al. 2016; Knox et al. 2018; 
Chamberlain et al. 2018). By coupling wavelet decom-
position with information theory, future research will 
investigate key controls on CH4 fluxes across time 
scales, as well as the importance of nonlinearities 
and lags in predicting CH4 f lux dynamics. Future 
research will also use the global CH4 database to pa-
rameterize and benchmark the performance of land 
surface models of global CH4 emissions, providing 
a unique opportunity for informing and validating 
biogeochemical models.

Coordinating, organizing and improving the 
integration of CH4 fluxes in regional networks and 
ultimately FLUXNET will bring us one step closer 
to achieving the goal of providing flux information 
“everywhere and all of the time” (Baldocchi 2008). 
In the long term, we hope to integrate the global 
eddy covariance CH4 database with other methods 
for measuring CH4 fluxes, such as chamber, aircraft, 
and satellite measurements. By integrating CH4 flux 
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measurements, remote sensing, and modeling, we aim 
to better characterize CH4 emissions from terrestrial 
ecosystems and ultimately reduce uncertainties in the 
global CH4 cycle.
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