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Field-scale crop water consumption
estimates reveal potential water savings in
California agriculture

Anna Boser 1 , Kelly Caylor 1,2, Ashley Larsen 1,
Madeleine Pascolini-Campbell 3, John T. Reager 3 & Tamma Carleton 1,4

Efficiently managing agricultural irrigation is vital for food security today and
into the future under climate change. Yet, evaluating agriculture’s hydrological
impacts and strategies to reduce them remains challenging due to a lack of
field-scale data on crop water consumption. Here, we develop a method to fill
this gap using remote sensing and machine learning, and leverage it to assess
water saving strategies in California’s Central Valley. We find that switching to
lower water intensity crops can reduce consumption by up to 93%, but this
requires adopting uncommon crop types. Northern counties have sub-
stantially lower irrigation efficiencies than southern counties, suggesting
another potential source of water savings. Other practices that do not alter
land cover can save up to 11% of water consumption. These results reveal
diverse approaches for achieving sustainable water use, emphasizing the
potential of sub-field scale crop water consumption maps to guide water
management in California and beyond.

Climate change, drought, and the overexploitation of water resources
have led to declines in freshwater storage in many vital agricultural
regions1, raising concerns surrounding the future of food and water
security2,3. Irrigation constitutes the largest use of freshwater
globally4,5, and many regions will need to decrease their agricultural
water use while maintaining high levels of production to ensure a
sustainable food andwater supply as the population grows6. Proposed
options for reducing water use include leaving lands fallow, switching
to less water-intensive crops, adopting water-saving farming practices
such as deficit irrigation, and improving irrigation efficiency7,8. How-
ever, any approach to reducing agricultural water use depends on the
challenging task of characterizing the amount of water crops
consume9.

While it is possible to monitor volumes of water withdrawn for
irrigation, this is a poor proxy for the amount of water crops consume
through evapotranspiration (ET)10. Only some irrigation water results
in ET: the rest remains in the system as runoff or recharge, though this
proportion can vary widely depending on topography, climate, soil

type, and farming practices11. Agricultural ET, or the increase in ET that
irrigated agriculture brings, is therefore a critical measure in that it
represents the amount of water that is actually “consumed” by agri-
culture. This water leaves the watershed entirely as it is evaporated
from the soil and transpired by crops4. Since agricultural ET represents
agricultural water consumption, it is key for gauging the potential of
fallowing, crop switching, or other farming practices to save water12.
When compared to total irrigation amounts, agricultural ET canalso be
used to highlight the fraction of irrigation withdrawals that do not
effectively result in consumptive use13. While this water stays in the
system and therefore may continue to provide beneficial uses14, it also
does not achieve its original purpose of contributing to crop growth.
Therefore, agricultural ET can help calculate irrigation efficiency and
identify unnecessary irrigation water withdrawals from surface or
groundwater reservoirs13.

Two methodological challenges prevent agricultural ET from
being monitored at scale. First, simply measuring total ET at scale is a
challenge. Second, even when measures of ET are available, it is
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difficult to separate agricultural ET from the total10,15. Tomeasure total
ET, eddy covariance flux towers are highly accurate for monitoring ET
at a single location16. However, they are expensive and thus sparse, and
they are designed tomeasure ET over uniform vegetation, which is not
reflective of complex agricultural landscapes17. In the absence of ET
measurements, theoretical water demand can be simulated based on
climate and crop type18,19. Although such tools are helpful for water
demand planning20, theoretical water demand represents the ET of a
crop whose water demands are fully met. Therefore, these are likely to
overestimate actual ET. Additionally, these simulated estimates
exclusively reflect variations in water demand influenced by factors
incorporated into the model, which are often limited to crop type and
climate21. Therefore, analyses based on these models are constrained
to examining these specific factors, neglecting other critical drivers of
ET such as farming practices. Given the scarcity of in situ data and the
inherent constraints of simulated estimates, accurately gauging total
ET at scale remains a significant challenge.

Addressing the second challenge, even when accurate ET mea-
surements are available, isolating agricultural ET from total ET is dif-
ficult. This step is key forwatermanagement, since the resultingmetric
represents the increase in ET attributable to agriculture. To do so, one
must estimate the naturally-occurring ET that would occur in the
absence of irrigated agriculture (for example, if the land were left
fallow). Most often, this naturally-occurring ET is assumed to be equal
to precipitation19,22. However, there may be temporal lags between
precipitation and resulting ET, some precipitationmay not result in ET
at all, and ET may also be supplemented by other sources of water,
such as near surface groundwater. Together, these challenges leave us
with limited measurements of ET and no empirical estimates of agri-
cultural ET at large scales, inhibiting our ability to formevidence-based
water management policies that accurately reflect crop water use and
potential water savings in agriculture.

Recent advances in the remote sensing of ET unlock new avenues
for research into agricultural water consumption. Numerous algo-
rithms for estimating ET using land surface temperature and other
remote sensing inputs have been validated specifically for use in
agricultural settings23,24. These advancements have allowed research-
ers to empirically study total ET in agricultural settings25,26. However,
despite high-resolution maps of ET in agricultural landscapes25,27, the
challenge of isolating agricultural ET from total ET has been limited to
studies in extremely arid regions where irrigation is the only source of
water available to plants28.

Here, we develop a framework for measuring agricultural ET at
sub-field scales. We use remote sensing to determine total ET and
combine it with machine learning to estimate naturally-occurring ET.
First, we retrieve satellite-based remotely sensed total ET estimates
from the 30m, monthly OpenET ensemble data24 available in the
western United States starting in 2016. Second, since we can use these
same OpenET estimates to directly observe naturally-occurring ET
over fallow lands, we train a gradient boosting algorithm to predict ET
over fallow lands. We use information on topography, soil quality,
climate, and spatial and temporal coordinates as predictors. We then
use the model to retrieve naturally-occurring ET over all active agri-
cultural fields, which we subtract from the remotely-sensed ET to
calculate agricultural ET.

We apply this methodology to calculate agricultural ET across
California’s Central Valley, one of the world’s most water-stressed and
agriculturally productive regions29. We use these maps of agricultural
ET to calculate the water consumption of different crop types, as well
as to calculate variability in agricultural ET within crop types. These
insights allow us to evaluate different strategies that have been pro-
posed to save water under the Sustainable Groundwater Management
Act (SGMA)7, whichmandates that all water basins in California reduce
groundwater pumping to sustainable levels by 204030. Specifically, we
compare the ability of fallowing, crop switching, and other farming

practices to save water by reducing agricultural ET. Additionally, we
calculate irrigation efficiency to assess the potential to reduce irriga-
tion withdrawals without decreasing agricultural ET. In the wake of
groundwater pumping cutbacks of 20–50% under SGMA7, this work
will guide water managers in enacting water savings and help predict
which land use changes are likely to ensue.

Results
Estimating agricultural ET
We calculate agricultural ET by retrieving the total ET observed over
agricultural areas and subtracting naturally-occurring ET (Fig. 1).While
total ET estimates are retrieved directly from OpenET, we simulate
naturally-occurring ET by training a gradient boosting regressor to
predict the ET observed by OpenET over fallow lands. Our model
simulating naturally-occurring ET achieves an R2 of .87 and a Mean
Absolute Error (MAE) of 35.5 mm per year (Supplementary Fig. 1). We
use a test set made up of 2 km2 held-out areas (about four times the
area of a large agricultural field in the Central Valley). We do not find
that error is structured across either space (Supplementary
Figs. 2 and 3) or time (Supplementary Fig. 4).

Variation in agricultural ET within and across crop types
We leverage the significant variability in agricultural ET observed
across the Central Valley (Fig. 1) to analyze the factors driving these
variations. Crop type, which is commonly cited as an important vari-
able explaining differences in agricultural ET19, explains 34% of the
variation in estimated agricultural ET (Eq. (4), Supplementary Fig. 5). In
Fig. 2, we show the water intensity of different crop groups (Supple-
mentary Note 7). Deciduous fruits and nuts are some of the highest
consumers at 625 mm per year (582–668 95% CI) (Fig. 2), particularly
almonds at 715 mm per year (651–778 95% CI) (Supplementary Fig. 5).
Conversely, grain and hay crops consume only 141 mm per year
(111–171 95% CI). These broad variations in the water consumption of
different crop types align with previous work estimating crop water
demands (Supplementary Note 1, Supplementary Fig. 6) and suggest
that substantial water savings may be possible with crop switching.

However, the majority of the variation remains unexplained by
crop type (Fig. 2, Supplementary Fig. 5). This within-crop variability is
not uniform for different crops: crops such as deciduous fruits and nuts
tend to have large variances, whereas rice has a very small variance. For
example, pistachios have the most variability with an interquartile
range (IQR) of 664 mm per year over the whole state. Conversely, rice
has an IQR of only 122 mm per year (Supplementary Fig. 5).

Part of the large variability in agricultural ET for deciduous fruits
and nuts can be explained by orchard age: young orchards consume
significantly less water thanmoremature ones (SupplementaryNote 2,
Supplementary Fig. 7). Climate, topography, and soil quality explain an
additional 6% of within-crop variation. However, substantial within-
crop variation remains, indicating that some of these differences may
be due to variations in farming practices. This would suggest that
reducing water consumption without switching cropsmay be feasible,
which we explore in the next section.

The water-saving potential of different management strategies
The variability of agricultural ET both within and between crops allows
us to evaluate the water saving-potential of different management
strategies. Here, we compare the effect of three scenarios on reducing
agricultural ET in groundwater sub-basins across the Central Valley:
1. Crop switching: Substitute high-ET crops for the median water-

consuming crop (Eq. (6)).
2. Farming practices: Keep the same spatial allocation of crops, but

reduce agricultural ET of high consumers to the median, crop-
specific, consumption level (Eq. (7)).

3. Fallowing: Fallow the 5% of lands with the highest estimated
agricultural ET (Eq. (8)).
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Fig. 2 | Variations in annual agricultural evapotranspiration (ET) across and
within cropgroups.Mean agricultural ETby crop group (blue fill and 95%CI) is the
average difference between total ET (black outline) and naturally-occurring ET
(cream fill). All measures are summed across the year, leading to naturally-

occurring and total ET estimates that includewater consumption occurring outside
of the growing season.While we find significant differences inmean agricultural ET
across crop groups, the gray box plots also show a broad spread in agricultural ET
within crop groups (box plots show 0.5, 0.25. 0.5, 0.75, and 0.95 quantiles).
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Fig. 1 | Estimates of annual agricultural evapotranspiration (ET) over active
agricultural lands in California’s Central Valley. a Total ET is remotely sensed
and is retrieved fromOpenET.bNaturally-occurring ET is an estimate of the ET that
would be present if the agricultural lands were fallow, and is predicted using
machine learning. c Agricultural ET is the difference between total and naturally-
occurring ET, and represents our estimate of the ET caused by agriculture, and

therefore the water that would be conserved if the land were fallow instead of
cropped. The variations in agricultural ET across the landscape suggest that dif-
ferent fields can have vastly different abilities to conserve water. OpenET provides
ET data at the scale of 30 m; all figure panels here show ET resampled to 70 m
resolution for computational efficiency and to better match average field size.
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Because it would not be realistic to prescribe farmers in different
contexts to consume similar amounts of water, we calculate crop-
specific agricultural ET and within-crop variation at the level of
groundwater sub-basins. We additionally control for differences in
climate, topography, and soil type before conducting the scenarios. To
account for the effects of orchard age, we remove orchards that have
been bearing fruit for 5 years or less or that are in their last year of
production (Supplementary Fig. 7).

We find that each of these scenarios return similar reductions in
overall water consumption of around 10% (Fig. 3). Since crops with
high agricultural ET are heavily favored in most sub-basins and
therefore the median crop usually has a high agricultural ET, crop
switching only results in a 9.9% reduction in agricultural ET. In order to
achieve greater water savings, crops would need to be switched to less
popular crops with lesser water demands: switching all crops to the
lowest consuming crop in a sub-basin results in a 93.8% reduction in
agricultural ET. While strategies that do not require a change in land
cover type are less commonly cited as a water management approach,
we find that reducing high consumers to their crops’s median con-
sumption level yields similar water savings of up to 11.3%. Fallowing
does, however, remain the most effective way to reduce agricultural
ET. We find that leaving a mere 5% of land fallow results in a 9.3%
consumption reduction, comparable to the savings afforded by crop
switching and within-crop scenarios which by definition affect up to
50% of lands.

Irrigation efficiency
While fallowing, crop switching, and other farming practices highlight
opportunities to decrease agricultural ET,we alsofindopportunities to
diminish runoff and deep percolation during conveyance, on-farm
management, or application (Fig. 4).On average, wefind that irrigation
in the Central Valley is 61.8% (54.0–69.7%) efficient, similar in magni-
tude to what theoretical estimates predict (Supplementary Note 3,
Supplementary Fig. 8). The large disparity in efficiency between
northern and southern counties is, however, more pronounced than
theoretical estimates (Supplementary Fig. 8). As a result, there may be
limited potential to decrease water withdrawn for irrigation in the

south which achieves efficiencies as high as 80%. The particularly low
efficiencies in the northern counties, however, suggest a large poten-
tial to decrease irrigation water withdrawals without affecting agri-
cultural ET.

Discussion
By empirically quantifying crop water consumption at sub-field scales,
we contribute to characterizing agriculture’s hydrological effects and
evaluate the ability of differentmanagement strategies tomitigate this
impact. To overcome the methodological challenges associated with
estimating agricultural ET, we leverage recent advances in remotely
sensed ET and use machine learning to generate a naturally-occurring
ET counterfactual. The fine scale variability in agricultural ET we
uncover allows us to analyze the drivers of these differences and
simulate the potential for different management practices to save
water, including under-explored ones like adjusting farming practices.
Additionally, when comparing agricultural ET to total water withdrawn
for irrigation, we find substantial opportunities for improvements in
irrigation efficiency in the northern counties of the Central Valley.
High-resolution maps of agricultural ET can therefore guide our
understanding of how agriculture and management can affect water
resources in California and other water stressed agricultural regions
globally.

Accurate agricultural ET measures are crucial to characterize
anthropogenic impacts on the hydrological cycle31 and enact effective
water management18,32. Previously, agricultural ET has been estimated
by (i) simulating crop water demand based on crop type and climate
and (ii) removing naturally available water by subtracting
precipitation19,22. However, both of these steps embed assumptions
that can lead to significant biases. For (i), simulated cropwater demand
may not adequately represent the field characteristics or farming
practices of a given location13. For example, water demands are not
necessarily always met, meaning water consumption may be
overestimated33–35. In line with this, while we generally find good
agreement with crop water demand simulated by the CalSIMETAW
model21, we do find that agricultural ET estimates are significantly
smaller (Supplementary Note 1, Supplementary Fig. 6). For (ii), using
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Fig. 3 | The percent reduction in agricultural evapotranspiration (ET) drivenby
various management scenarios. a Savings accrued by substituting high-ET crops
for the median water-consuming crop in a sub-basin. b Water savings without

changing land cover by reducing agricultural ET of high consumers to the median,
crop- and sub-basin-specific, consumption level. cWater savings from fallowing the
5% of lands with the highest estimated agricultural ET.
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precipitation to proxy for naturally-occurring ET fails to account for
precipitation being lost as runoff, temporal lags in when precipitation
is transpired, and alternative natural sources of water such as shallow
groundwater. We find that the bias between our estimates and CalSI-
METAW estimates increases when precipitation, rather than naturally-
occurring ET, is used to represent baseline amounts of available water.
This can be explained by the seasonalmismatch between precipitation
and naturally-occurring ET: although annually there is more pre-
cipitation than naturally-occurring ET, precipitation mainly occurs in
the winter when it is unavailable to most crops. Because using pre-
cipitation as a proxy for naturally-occurring ET does not account for
moisture that remains in the soil by the time the growing season
begins, this inflates simulated estimates of crop water demand. Our
use of remotely sensed ET estimates and our ability to estimate
naturally-occurring ET therefore allows us to more accurately char-
acterize agricultural ET.

High-resolution, empirical estimates of agricultural ET addition-
ally open up the possibility to investigate differences in agricultural ET
beyond what is attributable to crop type, which we find only accounts
for 34% of the variation. These within-crop variations can be sub-
stantial for many crops: the difference in agricultural ET of a pistachio
field from the 75th to the 25th percentile is the same as the water that
could be saved from fallowing an alfalfa field. Such broad variability is
consistent with findings from studies comparing total ET across crops
during the growing season25,26. Even after adjusting for variability
attributable to field characteristics, orchard age, and climate, we find
that these variations could translate to substantial water savings

without requiring a change in crop type. Unfortunately, a lack of high-
resolution data on field-scale farming practices and yields inhibits
further analysis of specific practices driving agricultural ET variation
and their economic implications. However, prior literature from
experimental plots or particular locations suggests that mulching36,
conservation tillage37, deficit irrigation33–35, and improved irrigation
scheduling and technologies38 all have potential to limit agricultural
ET. These practices may prove advantageous relative to costly strate-
gies like crop-switching or fallowing, though more detailed cost-
benefit analyses are necessary to determine the suitability of various
interventions in specific contexts39. Such water saving farming prac-
tices are notmentioned in the plans draftedby SGMAwatermanagers7.
This is possibly due to a lack of conclusive research on the potential of
such strategies to effectively decrease agricultural ET without sig-
nificant effects on yield or operation cost. Spatial data on the use of
these different practices would allow researchers to take full advan-
tage of our high-resolution agricultural ET estimates and study their
water-saving and economic benefits.

In situ assessments of crop-specific water consumption and other
variations in agricultural ET enable us tomodel potential water savings
across diverse management scenarios. In addition to previously men-
tioned scenarios based on farming practices, we also investigate more
traditionally studied strategies, such as crop switching and fallowing.
Consistent with prior studies relying on crop water demand simula-
tions, our research suggests that transitioning to crops with lower
water requirements is an effective conservation strategy. However,
accruing substantial water savings requires embracing less popular
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Fig. 4 | Irrigationefficiency across the counties of the CentralValley. a Irrigation
efficiency is calculated by dividing agricultural evapotranspiration (ET) (gridded
data) by USGS county-level reports of irrigation amounts (blue polygons). For the
calculation, agricultural ET is averaged to the county level tomatch the spatial scale
of the irrigation data. Additionally, irrigation is displayed in volumetric units

(teragrams), but is divided by county-level cropland area to be in units consistent
with agricultural ET prior to the calculation. We note that these irrigation amounts
are counted at the point of use, rather than the water’s point of origin. b The
resulting county-level irrigation efficiency estimates vary widely across the Central
Valley, with particularly low efficiencies in the northern counties.
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crops like grains and hay20. The feasibility of increasing production of
these crops in the Central Valley is uncertain due to high labor and
operational costs20. Furthermore, any form of crop switching entails
expenses related to the adoption of new knowledge, technologies, and
market adjustments40,41. Consequently, the viability of a significant
shift towards less water-demanding crops, and its alignment with
market expansion, remains uncertain20. Therefore, our findings sup-
port the notion that extensive fallowing or land retirement may be
essential to achieve substantial reduction targets in areas with severe
overdrafts42,43. Considering the risk of increased dust from unused
land, repurposing such areas for habitat restoration, flood water cap-
ture for groundwater replenishment44, solar energy production, or
sustainable industrial development45 could mitigate the economic
impacts of land retirement for both farmers and local communities.
Detailed agricultural ETmaps like theones generated for this study can
help determine the scale of land repurposing needed and identify
priority areas for such initiatives under different constraints, including
existing water rights46.

Finally, we find a significant opportunity to improve irrigation
efficiency, especially in the northern part of the Central Valley where
we find lower irrigation efficiency than previously expected (Supple-
mentary Note 2, Supplementary Fig. 7). This implies that farmers in
these areas could potentially reduce their irrigation water usage
without negatively impacting agricultural ET and, consequently, crop
growth. Although this finding is consistent with management strate-
gies that focus on boosting irrigation efficiency7, it is important to
recognize that such improvements may not automatically lead to
water savings at the watershed level14. This is because water not con-
sumed in irrigation processes does not always exit the watershed but
can instead be reabsorbed into groundwater reservoirs or surface
water bodies for later reuse. Conversely, water that is evapotranspired,
which constitutes the ‘efficient’ part of irrigation, is completely
removed from the watershed14. Hence, paradoxically, increasing irri-
gation efficiency could reduce water availability if it is not matched by
a decrease in the amount of water withdrawn for irrigation. To prevent
an unintended increase in water consumption, managers could use
agricultural ET maps to monitor and control water use as improve-
ments in irrigation efficiency are implemented.

This study has some important limitations. Most notably, due to a
lack of data on farming practices, it is difficult to ascertain whether the
variation in within-crop agricultural ET that we estimate is indeed due
to farming practices.When conducting ourmanagement scenarios,we
account for the effects of climate, soil quality, topography, and orch-
ard age. We additionally conduct the scenarios at the level of small
groundwater sub-basins rather than across the entire valley to account
for any additional regional environmental differences we are unable to
otherwise account for. However, variance stemming from error in our
agricultural ET estimates or from mislabeled crop types could con-
tribute to observed within-crop variation in agricultural ET. We mini-
mize error frommislabeled crop types by using themost accurate crop
data available in California which boasts an accuracy of 97.6%47.
Additionally, the OpenET ensemble model has been extensively
validated24,48, and our machine learning model has an R2 of .87. We
estimate that these sources of error are responsible for only 11% of the
variance in our yearly agricultural ET estimates (Supplementary
Note 4). Nevertheless, the water-saving potentials we calculate for
both the fallowing and farmers practice scenarios should be inter-
preted as upper bound estimates.

Another important limitation of this study stems from the limited
data available on water withdrawn for irrigation which is needed to
calculate irrigation efficiency. Since irrigation data are not available
over the same years as agricultural ET, we use the average of the two
most recent years, 2010 and 2015, a drought year and non-drought
year, to calculate irrigation efficiency. To ensure that our results are
robust to year-to-year variations in agricultural ET and irrigation use,

we calculate irrigation efficiency using all the possible combinations of
years (Supplementary Fig. 9). Though we do find significant variations
based on the irrigation year used in some counties, we consistently
find low irrigation efficiencies in the north and higher ones in the
south. Irrigation data with better spatial and temporal resolution
would improve estimates of irrigation efficiency calculated using this
method.

We have shown how highly resolved agricultural ET estimates can
improve our understanding of anthropogenic impacts on the hydro-
logic cycle and guide water management by quantifying the potential
of different water-saving strategies. In California, our findings suggest
that irrigated agriculture increases ET less than previously estimated,
and we find that managers may not need to rely as heavily on changes
in land cover as currently proposed to achieve significant water sav-
ings. Because our method for estimating agricultural ET is based
entirely on remote sensing and machine learning, it remains cost
effective and has the potential to be used globally, especially as global
ET datasets become increasingly available49. This work can help refine
our understanding of agriculture’s effect on water resources and help
managers achieve water-saving goals in water-stressed agricultural
landscapes across the globe.

Methods
Agricultural ET
We define agricultural ET as the difference between total ET over an
agricultural parcel and the ET that would have been, had that parcel
been fallow land instead (Eq. (1)). This definition recognizes that not all
ETover agricultural lands, during the growing seasonor otherwise, can
necessarily be attributed to agriculture. Sucha definition is particularly
useful from a management perspective, since it denotes the decrease
in ET, or water savings, that one might expect if agriculture were to
cease.

ETag = ETtot � ETnat ð1Þ

where ETag is agricultural ET, ETtot is the total ET over an agricultural
parcel, and ETnat is the counterfactual ET that would occur naturally,
were the same land fallow.

We note that another, theoretically distinct counterfactual could
be constructed to represent ETnat: ET if the land were undisturbed,
natural land rather than fallow. We elect to simulate ET over fallow
lands since it allows us to predict the potential water savings from
fallowing, which has a management relevant interpretation.

Total ET estimates. We construct ETtot from OpenET ensemble data,
available at amonthly time step from2016-2021. This data is calculated
as the average output of six different ET models estimated using
Landsat data24. The data have been corrected for biases in ET resulting
from data only being available during cloudless overpasses and have
been extensively evaluated over a broad variety of land covers48. While
they are published at a 30m scale, we resample to 70m to improve
computational efficiency since this is well below the average size of an
agricultural field in the Central Valley.

Calculation of a naturally-occurring ET counterfactual using
machine learning. We estimate naturally-occurring ET for all agri-
cultural pixels using a gradient boosting regressor trained on data
from fallow lands. We choose a gradient boosting regressor due to its
high flexibility in learning non-linear relationships and proven perfor-
mance on tabular datasets relative to other regressors50. We retrieve
the locations of fallow fields in the Central Valley from the Department
of Water Resources (DWR) statewide crop mapping dataset over
available years: 2016, 2018, and 2019. Pixels that are within the top 5%
ET during July-September are removed due to some implausibly high
numbers during these months that suggest mislabeling of an active
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agricultural pixel as fallow. While we believe that this data cleaning
step is important to ensure an unbiased training set, omitting this step
does not significantly change our main findings (Supplementary
Note 5, Supplementary Figs. 10–12). We additionally find that our
findings do not change when training our model on data that are
marked fallow by both the DWR dataset and the Cropland Data Layer
(CDL) (Supplementary Note 6, Supplementary Figs. 13–15).

We predict naturally-occurring ET based on latitude and long-
itude, themonth and year, as well as a broad set of additional variables
describing topography (elevation, aspect, slope, topographic wetness
index), soil quality (California Storie Index), and climate (Potential ET).
The latitude, longitude, andmonth and year indicators are included to
capture the spatial and temporal patterns in ET underlying the densely
distributed fallow fields in our dataset. However, the inclusion of an
indicator variable for each year in our model limits our analysis to
2016, 2018, and 2019, as these are the only years for which we have
available land cover data. Nevertheless, given that ‘year’ contributes a
mere 3% to our model’s predictive capability (see Supplementary
Fig. 17), it may be considered non-essential for future research in
this area.

Including additional predictors in our model presents two bene-
fits. First, they can improve themodel’s predictive power. For example,
we find that Potential ET contributes greatly to the model’s final pre-
dictions (Supplementary Fig. 17). Other variables are important to
include because they can help correct for systematic differences
between the fallow lands used to train our model and the active agri-
cultural landsweapply themodel to. Suchdifferences could arise from
farmers selecting lands to be fallowed due to their inherently lower
productivity, which would negatively bias our estimates of counter-
factual naturally-occurring ET in locations actively being cropped
today. To assemble these predictor variables, we retrieve topographic
information from the USGS National Elevations Database, soil quality
information from the California Storie Index in the the USDA’s
gSSURGO and STATSGO2 datasets, and Potential ET from the hPET
global dataset51.

To validate our naturally-occurring ETmodel,we split our dataset,
reserving 60% for training, 10% for validation, and 30% for testing. In
order to ensure that nearby and therefore very similar pixels are not
present across multiple splits, we group our splits by 2 km2 squares,
four times the size of a large agriculturalfield in the Central Valley. The
entire dataset is made up of over 16 million pixels populating 8180
distinct 2 km2 regions. We set aside 4908 of these 2 km2 clusters for
training, amounting to nearly 10 million pixels. The testing split is
composed of 2454 clusters. We tune hyperparameters using 100
iterations of a threefold randomized search cross-validation on an
unclustered subset of our dataset. Randomized search cross-validation
is similar to grid search cross-validation, but only reaches a random
subset of the possible hyperparameter combinations to improve
computational efficiency. We manually set the minimum number of
samples required to split a node to 200 and the minimum number of
samples required at each leaf node to 100 to account for the large size
and spatial clustering of the dataset. Becausewe carry out our analyses
using yearly estimates of agricultural ET, we validate our model on
yearly estimates of naturally-occurring ET. Only fallow lands from the
test data split are used in any subsequent analyses on fallow lands.

Analysis
After computing agricultural ET for all fields across the Central Valley
following Eq. (1), we report a variety of statistical summaries and
conduct scenarios manipulating the spatial distribution of
agricultural ET.

In order to ensure our analyses only capture variations across
space, we aggregate our observations of agricultural ET to a yearly
timestep and control for variation across years before beginning this
analysis. To do so, we calculate an “adjusted” agricultural ET for each

pixel by removing the difference between themean agricultural ET for
that year and the overall samplemean agricultural ET from the original
agricultural ET calculation, as follows:

AdjustedETp,y =ETp,y � ðETy � ETÞ ð2Þ

where AdjustedETp,y is the agricultural ET for pixel p in year ywith the
year-specific variation removed, ETp,y is theoriginal agricultural ET, ETy

is themean agricultural ET in year y across all pixels and ET is themean
agricultural ET across all pixels and years.

Regressions. To calculate point estimates and confidence intervals for
the overall mean agricultural ET (Eq. (3)), the mean agricultural ET by
crop group or crop type (Supplementary Note 7), or the mean agri-
cultural ET by county (used to calculate irrigation efficiency) (Eq. (4)),
we conduct a series of regressions with the following format:

AdjustedETp,y =α + ϵp,y ð3Þ

AdjustedETp,y =βp,y ×Groupp,y + ϵp,y ð4Þ

whereAdjustedETp,y represents agricultural ET forpixelp in yearywith
the year-specific variation removed, α is a coefficient indicating the
mean agricultural ET across all samples, Groupp,y represents a vector
of dummy variables indicating which crop (for crop comparisons
shown in Figs. 2 and S5) or county (for irrigation efficiency calculations
shown in Fig. 4; county does not vary by year) observation p, y falls
into, βp,y is a corresponding vector of coefficients indicating the
average agricultural ETs for each crop or county group, and ϵp,y is an
error term. Standard errors are calculated using 75 km clusters, as
determined by plotting a variogram of the spatial autocorrelation in
agricultural ET (Supplementary Fig. 16).

The aggregate crop group (Fig. 2) and detailed crop type (Sup-
plementary Fig. 5) are each assigned using the same DWR land cover
data used to determine fallow status.

In addition to using regression to calculate point estimates and
confidence intervals, regression allows us to calculate the proportion
of variation that is explained by a set of variables. This is because the R2

corresponds to the fraction of variation explained by the regression.
We use this to assess the % variation explained by crop type, using
Eq. (4), as well as that explained by climate, topography, and soil
quality:

AdjustedETp,y =α +βp,y ×Xp,y + ϵp,y ð5Þ

where α is the intercept, Xp,y is a vector of variables including PET,
elevation, aspect, slope, TWI, and soil quality, βp,y is a vector of coef-
ficients for each variable in Xp,y, and ϵp,y is an error term.

Management scenarios. We conduct three scenarios in which we
manipulate agricultural ET to mimic land management changes and
report the decrease in overall agricultural ET within groundwater sub-
basins across the Central Valley. Eq. (6) is a crop switching scenario (cs)
where pixels with agricultural ET values above those of the median
crop in a given sub-basin are replacedwith thatmedian crop. Eq. (7) is a
farming practice scenario (fp) where pixels with agricultural ET values
above crop and sub-basin-specific mean values are replaced with that
crop and sub-basin mean. Finally, Eq. (8) is a fallowing scenario (fal)
which replaces all pixels with agricultural ET values above the sub-
basin-specific 95th percentile with a value of zero agricultural ET.

Savingscs = 1�
Pn

i = 1 minðETc,b,MedianðETc,bÞbÞÞPn
i= 1 ETi

ð6Þ
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Savingsfp = 1�
Pn

i= 1 minðETi,ETc,bÞPn
i = 1 ETi

ð7Þ

Savingsfal = 1�

Pn
i = 1

ETi, if ETi ≤ ET:95,b

0, otherwise

�
Pn

i = 1 ETi

ð8Þ

where ETi is the adjusted agricultural ET for observation i, ETc,b is the
average agricultural ET for crop type c in groundwater sub-basin
b,MedianðETc,bÞb is the median ETc,b in sub-basin b, and ET.95,b is the
95th percentile of agricultural ET in sub-basin b.

To ensure that the water savings identified in our scenarios result
from factors that can be influenced by management interventions, we
account for orchard age, climate, and other physical characteristics of
the land. To account for orchard age, we remove young orchards that
are have been bearing fruit for 5 or less years, or old orchards that are
going to be removed within the next year (Supplementary Note 2).
Because we are only able to label orchard age in this way for all orch-
ards in year 2019 (the DWR crop type data we use are only available
starting 2014), we exclusively use 2019 for this part of the analysis.
Since we are only using one year, we do not adjust the water use
according to the year like we do for the other analyses. To account for
differences in climate and other characteristics inherent to the land,
we control for potential ET, soil quality, topographic wetness index,
elevation, aspect and slope using linear regression (Eq. (5)).

Irrigation efficiency. We define irrigation efficiency as the proportion
of irrigation water that results in agricultural ET, and is thus consumed
by agriculture (Eq. (9)). To determine amounts of water withdrawn for
irrigation, we retrieve county level irrigation water use data from the
USGS National Water Information System. We note that these irriga-
tion amounts are counted at the point of use, rather than the water’s
point of origin. These data are gathered every five years with the most
recently available data from 2015. Because there is no match for the
yearsof available irrigation data andour agricultural ET estimates from
2016, 2018, and2019,weuse the twomost recent years, 2010 and2015,
which represent a non-drought year and a drought year, respectively.

IRRIGATIONEFFICIENCY=
ETag

Irrigation
ð9Þ

where ETag is agricultural ET (Eq. (1)) and Irrigation is the water with-
drawn for irrigation. ETag and Irrigation must be in matching units,
either volumetric or depth. We calculate both in mm per year.

We assume all active agricultural lands in the Central Valley are
irrigated and calculate the average agricultural ET inmmper year over
active agricultural lands in each county. To also retrieve average irri-
gation amount across irrigated lands in a county in mm per year, we
divide the volume of irrigation water by the average area of irrigated
land in each county. Because some counties are not fully encompassed
within the Central Valley, we assume that irrigation in a given county is
evenly distributed over irrigated lands within and outside of the Cen-
tral Valley.

Data availability
The annual, 70m total, agricultural and naturally-occurring ET data
generated in this study have been deposited in the Annual, field-scale
crop water consumption estimates database under accession code
https://doi.org/10.6084/m9.figshare.24600240. The OpenET data
used in this study are available in the Google Earth Engine database
under accession code https://developers.google.com/earth-engine/
datasets/catalog/OpenET_ENSEMBLE_CONUS_GRIDMET_MONTHLY_
v2_0. The crop type data used in this study are available in the Sta-
tewide Crop Mapping database under accession code https://data.

cnra.ca.gov/dataset/statewide-crop-mapping. The Cropland Data
Layer (CDL) crop type data used in this study are available in the
United States Department of Agriculture National Agricultural Sta-
tistics Service database under accession code https://www.nass.usda.
gov/Research_and_Science/Cropland/Release/index.php. The poten-
tial evapotranspiration data used in this study are available in
the Hourly potential evapotranspiration (hPET) at 0.1degs grid
resolution for the global land surface from 1981-present
database under accession code https://data.bris.ac.uk/data/dataset/
qb8ujazzda0s2aykkv0oq0ctp. The topography data used in this
study are available in the Elevation in the Western United States (90
meter DEM) dataset under accession code https://www.sciencebase.
gov/catalog/item/542aebf9e4b057766eed286a. The county shapefile
data used in this study are available in the US Census TIGER
dataset under accession code https://www2.census.gov/geo/tiger/
GENZ2018/shp/cb_2018_us_county_500k.zip. The irrigation data used
in this study are available in the USGS Water Data for California
database under accession code https://waterdata.usgs.gov/ca/nwis/.
The CalSIMETAW data used in this study are available in the Cal-
SIMETAWUnit Values database under accession code https://data.ca.
gov/dataset/cal-simetaw-unit-values.

Code availability
All code necessary to replicate this study can be found at the https://
doi.org/10.5281/zenodo.10578652 and GitHub repository https://
github.com/anna-boser/ET_ag_OpenET.
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