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ARTICLE

Permissive microbiome characterizes human
subjects with a neurovascular disease
cavernous angioma
Sean P. Polster 1,9, Anukriti Sharma2,3,9, Ceylan Tanes4, Alan T. Tang5, Patricia Mericko5, Ying Cao1,

Julián Carrión-Penagos 1, Romuald Girard 1, Janne Koskimäki 1, Dongdong Zhang1, Agnieszka Stadnik1,

Sharbel G. Romanos1, Seán B. Lyne 1, Robert Shenkar 1, Kimberly Yan 6, Cornelia Lee 7, Amy Akers7,

Leslie Morrison 8, Myranda Robinson 8, Atif Zafar 8, Kyle Bittinger 4, Helen Kim 6, Jack A. Gilbert2,3,

Mark L. Kahn5, Le Shen 1,2,10✉ & Issam A. Awad 1,10✉

Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based

on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have

been implicated in CA pathogenesis, and pilot study had suggested potential microbiome

differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We

here assess microbiome differences in a larger cohort of human subjects with and without

CA, and among subjects with different clinical features, and conduct more definitive microbial

analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial

species in CA patients is shown, consistent with postulated permissive microbiome driving

CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome

differences are related to CA clinical behavior. Weighted combinations of microbiome sig-

natures and plasma inflammatory biomarkers enhance associations with disease severity and

hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome

in a human neurovascular disease.
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Cavernous angiomas (CAs) are characterized by dys-
morphic dilated vascular capillaries, or caverns, lined by
endothelium1–3. About 30–40% of CA patients have

autosomal dominant inherited germline mutations in one of three
known CA genes (CCM1/KRIT1, CCM2/Malcavernin, and
CCM3/PDCD10), and develop multifocal lesions throughout the
brain and spinal cord. Patients with the sporadic form of the
disease manifest solitary CAs in the absence of germline muta-
tions4–9. Lesional endothelial cells in sporadic CAs harbor
somatic mutations of the same genes implicated in the familial
disease10. CCM gene-encoded proteins assemble to form a tri-
meric complex11. The function of this complex can be disrupted
by mutation of any of the three genes11, which could explain
similar brain lesions in patients with mutations in different CCM
genes, and in sporadic and familial cases.

The severity and natural course are highly variable among CA
patients even with the same genetic mutation1,2,12–14. Such var-
iation includes the number of lesions in familial cases, age at first
symptomatic manifestation, and propensity to have symptomatic
bleeds. It has been increasingly recognized that CA disease course
can be affected by inflammatory processes. Immune cells accu-
mulate within CA lesions15, B cell depletion blunts lesion devel-
opment and bleeding in mouse models16, and plasma
inflammatory cytokines may be used to differentiate CA patients
with distinctive disease characteristics17–19. Furthermore, a
genome-wide association study of CA patients with the same
common Hispanic mutation of KRIT1 showed that CA lesion
number is associated with pro-inflammatory genotypes13,
including polymorphisms in the lipopolysaccharide (LPS)
receptors TLR4 and CD1420.

A gut–brain axis has been postulated in CA disease, based on
studies in murine models. Inhibiting TLR4 pathway pharmaco-
logically or through endothelial-specific TLR4 deletion sig-
nificantly reduces, while LPS injection increases, brain lesion
burden in Ccm-deleted mice, by affecting CCM complex-
controlled TLR4-MEKK3-KLF2/4 signaling20. Germ-free Ccm-
deleted mice, those treated with antibiotics, and mice with
resistant microbiota all have significantly lower lesion volume
than mice with susceptible microbiota20. The susceptible mouse
microbiome is associated with increased LPS-producing Gram-
negative bacteria Bacteroidetes family member S24-7, and this has
been linked to LPS-induced TLR4 signaling20. Other work iden-
tified enhanced epithelial permeability in association with Ccm1
depletion21, and grossly impaired gut barrier in association with
the more severe Ccm3 deletion22. Pilot study also suggested
greater prevalence of Gram-negative bacteria in the gut micro-
biome of patients with CAs22.

To date, sensitivity and specificity of a potential diagnostic
microbiome have not been shown in human subjects with CA,
and it is not known what bacterial species might contribute to this
disease. It remains unclear whether a diagnostic microbiome
differentiates familial/multifocal cases as well as the more com-
mon cases with sporadic/solitary CAs (without germline muta-
tions in CCM genes). Furthermore, variations in microbiome
have never been correlated with CA clinical manifestations, nor
analyzed in relation to plasma biomarkers implicated in disease
severity.

Our study demonstrates that CA patients have distinctive
microbiome compared to healthy individuals. Analyses at the
biosynthesis and gene level indicate that LPS synthesis-related
genes are more abundant in CA patients, consistent with a role
of gut-generated LPS driving CA disease. This study further
shows that CA patients with distinct disease characteristics have
different microbiota, and that the combination of plasma bio-
marker and stool microbiome composition enhances this
differentiation.

Results
Microbiome distinguishes human subjects with and without
CA. A pilot 16S ribosomal RNA (rRNA) amplicon analysis based
on operational taxonomic unit calling had suggested microbiome
differences between CA and non-CA individuals22. To compare
the microbiome differences in more detail and with better con-
fidence, we recruited a larger cohort with greater representation
of CAs with various genotypes. We performed metagenomic
shotgun sequencing analysis and taxonomic identification of
genome clusters (Fig. 1a–d). For further confirmation, we also
compared the microbiome of CA patients using the 16S rRNA
amplicon sequencing data and the publicly available American
Gut Project data of age- and gender-matched non-CA individuals
with exact sequence variation (ESV) taxonomical calling
(Fig. 1e–g)23,24. Co-occurrence network analyses of metagenomic
shotgun sequencing of the proportional differences of each taxon
demonstrated significant differences in the connectivity of the
network clusters between CA and non-CA individuals, which
were supported by different keystone species between CA and
non-CA networks (Fig. 1a). Such population differences were
supported by the differences in both α- and β-diversity (p ≤ 0.05)
between CA and non-CA individuals based on 16S rRNA
amplicon analysis, suggesting substantial shifts in the richness
and proportions of community members (Fig. 1e, Supplementary
Fig. 1a, b). The trend for genera Bacteroides and Faecalibacterium
were similar irrespective of the analytical method and using dif-
ferent control populations, indicating they are robust biomarkers
(Fig. 1b, g, Supplementary Fig. 1c–e).

Three common species were identified by combining multi-
variate and machine learning-based random forest analyses of
metagenomic shotgun data. The Gram-negative Odoribacter
splanchnicus was significantly increased (false discovery rate
corrected p value (pFDR) ≤ 0.05), and the Gram-positive Faecali-
bacterium prausnitzii and Bifidobacterium adolescentis were
significantly decreased (pFDR ≤ 0.05) in CA patients (Fig. 1b, c).
Based on receiver operating characteristic (ROC) curves, the
optimal weighted combination of these three species provided
good sensitivity (92%) and specificity (67%) in association with
CA diagnosis (Fig. 1d). Notably, CA patients’ microbiota were
significantly enriched in the proportion of Gram-negative
bacteria (p ≤ 0.05, Fig. 1f), consistent with our previous animal
model study20. Similar bacterial species respectively distinguished
sporadic/solitary and familial/multifocal CA cases from non-CA
subjects (Supplementary Fig. 2). There were no batch effects
among cases recruited at various sites or during different phases
of patient recruitment (Supplementary Fig. 7 and Supplementary
Discussion). Among familial/multifocal CA patients, those with
different CCM gene mutations had limited microbiome differ-
ences (Supplementary Fig. 3 and Supplementary Discussion).
Analysis by gender did not suggest significant confounders
(Supplementary Fig. 5 and Supplementary Discussion).

CA microbiome is enriched with LPS synthesis-related genes.
Metagenomic shotgun sequencing data were also used to recon-
struct and compare metabolic pathways in both CA and non-CA
samples. Untargeted analysis identified LPS biosynthesis-related
pathways were significantly enriched in CA samples (pFDR ≤ 0.05)
(Fig. 2a), consistent with a role for Gram-negative bacteria pro-
duced LPS to promote CA-like lesion formation demonstrated in
mouse studies20. Furthermore, the relative abundance of many LPS
biosynthesis-related genes by targeted analysis were significantly
more abundant in the CA microbiome (pFDR ≤ 0.05, Fig. 2b).
Genes associated with vitamin B6 biosynthesis and the urea cycle
were also significantly enriched (pFDR ≤ 0.05) in the CA-associated
microbiome (pFDR ≤ 0.05, Fig. 2a), possibly reflecting additional
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mechanisms of action. Furthermore, the levels of LPS-binding
protein (LPB) in plasma, a protein frequently downregulated when
blood LPS content is increased25–27, were lower in CA patients
relative to non-CA patients (Fig. 2c). Taken together, these ana-
lyses show that the CA-permissive microbiome is enriched with
LPS-producing Gram-negative bacteria.

Microbiome differences in CA subpopulations. We have pre-
viously designed a classification system to categorize patients as
having aggressive or non-aggressive disease over their lifetime,
based on magnetic resonance imaging (MRI) counts of large
lesions, age of symptom onset, and the number of symptomatic
hemorrhages17. Metagenomic shotgun co-occurrence network
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analyses suggested that aggressive and non-aggressive CA
patients have different network connectivity and unique keystone
species (Fig. 3a). Multi-variate differential abundance analyses
and random forest classifier identified five significantly con-
tributive taxa, Bifidobacterium adolescentis, Bacteroides eggerthii,
Bacteroides dorei, Dorea, and Escherichia coli (Fig. 3b, c, Sup-
plementary Fig. 4c). Such microbiome differences moderately
distinguish aggressive vs. non-aggressive CA patients (Fig. 3d).
Consistent with metagenomic shotgun sequencing analysis, 16S
rRNA amplicon sequencing data suggest that α- and β-diversity
significantly differ between aggressive and non-aggressive CA
patients (Fig. 3e, Supplementary Fig. 4a, b), with a significant
decrease (pFDR ≤ 0.05) in the proportion of two ESVs belonging to
genus Bacteroides in aggressive disease (Fig. 3f).

CA patients with radiographically and clinically defined
symptomatic hemorrhage (CASH) in the prior year are at higher
risk of future bleeding2,14. These patients are likely to undergo
invasive and risky surgical treatments. We tested if CASH
patients have a unique microbiome signature. Co-occurrence
network analysis was able to construct a significant network (R2

> 0.6, p < 0.05) for non-CASH patients, but not CASH patients.
Multi-variate differential abundance analyses and random forest
analyses identified six taxa including Faecalibacterium prausnitzii,
Oscillobacter, Lactobacillus rhamnosus, Enterobacter cloacae,
Odoribacter laneus, and Bacteroides cellulosilyticus (Fig. 3g, h,
Supplementary Fig. 4i), whose best-weighted combination
generated an ROC curve that moderately distinguishes CASH
and non-CASH patients (Fig. 3i). Microbiome associations of
disease severity and hemorrhage appear different and more
complex than LPS mechanisms reflecting CA diagnosis (i.e.,
lesion development), and these require further investigations.

Combined contributions of microbiome and plasma bio-
markers. We had previously probed the relationship between
circulating plasma inflammatory cytokines and angiogenic pro-
tein levels, and disease characteristics17–19. We now tested if the
microbial taxa identified as biomarkers of CA (Figs. 1 and 3) are
associated with these circulating factors (Fig. 4a). Several corre-
lations were observed between CA distinctive bacterial species
and a number of circulating factors previously implicated in the
disease (Fig. 4a). However, the weighted combined bacterial
species best associated with disease activity had only a few sig-
nificant correlations with plasma biomarkers, indicating that they
might contribute complementary associations (Fig. 4b).

We hence tested whether microbiome abundance of distinc-
tive species enhances disease severity association of plasma
molecules. The best-weighted combination between B. dorei

(sporadic/solitary vs. familial/multifocal) and LPB offered some
improvement (Fig. 4c). The best-weighted combination between
bacterial species identified in the aggressive CA patients and
interleukin-10 (IL-10) significantly improved the ROC curve
(area under the curve (AUC)= 0.90, Fig. 4d). This improvement
was also seen when combining the species identified in CASH
patients with plasma C-reactive protein (CRP) (AUC= 0.86,
Fig. 4e). These results indicate that combining levels of
circulating factors with bacterial species identified in clinically
driven questions can enhance the disease severity association of
either biomarker.

Discussion
We show a diagnostic microbiome associated with high sensi-
tivity and specificity with a human neurovascular disease, CA,
predisposing to brain hemorrhage. This is linked to a defined
mechanism whereby LPS produced by Gram-negative bacteria
drives CA lesion genesis. The diagnostic microbiome is consistent
among subjects recruited at different sites, and those harboring
sporadic and familial disease and different CA genotypes. In
humans as in mice, a permissive microbiome appears necessary
for CA lesion development. We demonstrate other differences in
microbiome and plasma molecules associated with disease
severity features, and show how they can be combined for more
precise associations with disease severity and hemorrhage.

Results herein represent a significant advance over previous
pilot results demonstrating microbiome differences in CA sub-
jects using 16S rRNA gene amplicon analysis22. Metagenomic
shotgun sequencing allowed probing of specific bacterial species,
sensitivity, and specificity determinations, network analyses and
direct implication of their metabolic pathways. The expanded
cohort allowed confirmation of prior 16S data in comparison to a
different unrelated control population, with age and sex match-
ing, and permitted replication of analyses of 16S data. Diagnostic
microbiome was consistent regardless of genotype, gender, and at
multiple sites of patient enrollment.

Our data strongly suggest a permissive microbiome related to
postulated lesion genesis mechanisms, previously demonstrated
in murine models20, rather than microbiome differences resulting
from harboring a CA lesion. This is in view of (1) patients with
familial/multifocal disease (with germline CCM mutations) and
with sporadic/solitary lesions (without germline CCM gene
mutations) have similar microbiome composition (Supplemen-
tary Fig. 2); (2) among familial/multifocal cases, those with
greater CA lesion numbers had limited microbiome differences
(Supplementary Fig. 4); and (3) bacterial species differences
between sporadic/solitary and familial/multifocal disease, and

Fig. 1 Fecal microbiotas are different in CA and non-CA cohorts. a Organization of microbiome species in non-CA and CA cohorts. Co-occurrence
network analyses were performed at the species level, as determined by metagenomic shotgun sequencing data analysis (n= 27 non-CA, n= 122 CA,
keystone species are labeled in red). b Multi-variate differential abundance analyses of metagenomic shotgun data at species level. Species with
significantly different abundance (ANCOM analysis, followed by two-sided Mann–Whitney U test with Benjamini–Hochberg false discovery rate (FDR)
correction for multiple testing, pFDR < 0.01) and medium relative abundance ≥0.25% in either group are presented as box-whisker plots (blue boxes: non-
CA cohort; red boxes: CA cohort). c Identification of key species (medium relative abundance ≥0.1% in either group) by random forest analysis. Species
identified in both multi-variate and random forest analyses are shown in green. d ROC curve was identified based on best-weighted combination of
common bacterial species identified by multi-variate and random forest analyses (AUC= 0.826, specificity= 0.667, sensitivity= 0.925). e α-Diversity
analyses of fecal samples by Shannon and Simpson indices based on 16 S rRNA gene amplicon sequencing data, presented as box-whisker plots (n= 250
non-CA, n= 115 CA, Kruskal–Wallis one-way analysis of variance test; blue boxes: non-CA cohort; red boxes: CA cohort). f Relative abundance of Gram-
negative and Gram-positive bacteria in non-CA and CA cohorts (n= 250 non-CA, n= 115 CA, ANCOM analysis, followed by two-sided Mann–Whitney U
test, blue boxes: non-CA cohort, red boxes: CA cohort). g Multi-variate differential abundance taxonomic analyses of 16S rRNA gene amplicon sequencing
data. ESVs with significantly different relative abundances (pFDR≤ 0.01) and medium relative abundance of ≥1% in either group are presented as box-
whisker plots (n= 250 non-CA, n= 115 CA, ANCOM analysis, followed by two-sided Mann–Whitney U test with Benjamini–Hochberg FDR correction; blue
boxes: non-CA cohort; red boxes: CA cohort). In box plots, bounds of boxes show interquartile range (IQR), top and bottom whiskers demonstrate
maximum and minimum, lines in the middle of the box indicate median, and stars show mean of the data. + signs indicate outliers.
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between non-aggressive and aggressive CA patients are different
from the permissive microbiome characterized between CA and
non-CA patients. If harboring a CA were the cause of observed
microbiome differences, we would expect the presence or absence

of familial/multifocal disease with greater lesion numbers, and/or
differences in disease aggressiveness would be associated with the
same microbiome differences as CA vs. non-CA patients. These
were not observed in our analyses.
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Of the three species identified in the diagnostic microbiome
(Fig. 1e, f), F. prausnitzii and B. adolescentis are Gram-positive
species have been shown to be protective against gut inflamma-
tion28–30, and are less abundant in CA patients. The Gram-
negative species O. splanchnicus, more abundant in CA patients,
enhances gut inflammation, and has been linked to other neu-
rological diseases31. Other species identified by multi-variate

analysis are also largely protective against gut inflammation, with
decreased abundance in CA patients. Based on such knowledge,
our data suggest that CA patients have pathogenic microbiota,
which may promote inflammation. Metagenomic shotgun
sequencing-based pathway analysis and individual gene analyses
suggest that CA-associated microbiome have increased LPS
synthesis (Fig. 2a, b). Furthermore, we show decreased LPB
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concentrations in peripheral plasma of CA patients (Fig. 2c),
consistent with increased LPS activity25–27.

Patients with aggressive vs. non-aggressive features of CA have
significant differences of fecal microbiome, other than those
identified in the diagnostic microbiome (Fig. 3, Supplementary
Fig 4). This suggests that the microbiome differences favoring
lesion genesis are not necessary or sufficient to drive disease
severity. Microbiome organization differences with disease
severity are evident by metagenomic shotgun sequencing-based
co-occurrence network analyses and 16S rRNA gene amplicon
sequencing-based α- and β-diversity analyses (Fig. 3a, e, Sup-
plementary Fig. 4). Decreases in Bacteroides abundance were
independently identified by both 16S rRNA gene amplicon
sequencing and metagenomic shotgun sequencing approaches
(Fig. 3b, f). Because the identified Bacteroides species have been
shown to be protective in intestinal inflammation32,33, it is likely
that loss of such Bacteroides species could contribute to the
aggressive CA phenotype via altered intestinal mucosal home-
ostasis. Metagenomic shotgun sequencing identified species dif-
ferences in cases with the aggressive vs. non-aggressive CA
phenotype. One of the identified species, when comparing
patients with non-aggressive and aggressive CA phenotype, B.
dorei, is also the sole species differentiating CA patients with
sporadic/solitary and familial/multifocal disease (Supplementary
Fig. 2g). This species also negatively correlates with CA brain
lesion counts in familial/multifocal patients (Supplementary
Fig. 4d–f). Interestingly, B. dorei has been shown to be decreased
in atherosclerosis patients. Introducing B. dorei to the gut of mice
prone to have atherosclerosis decreases fecal LPS content and
decreases atherosclerosis load, and B. dorei LPS is
immunoinhibitory32,33. The exact contribution of B. dorei to CA
disease needs to be further investigated in CA mouse models.

In the case of microbiome in CASH and non-CASH patients,
no global microbiome differences were readily observed based on
16S rRNA gene amplicon sequencing. The metagenomic shotgun
sequencing study showed both the Gram-positive species F.
prausnitzii and Gram-negative Oscillibacter are both higher in
CASH cases. F. prausnitzii is considered a protective bacterium
for intestinal homeostasis and its decrease is part of the micro-
biome signature of CA patients. Lower Oscillibacter abundance

has been associated with non-alcoholic liver disease and intestinal
inflammation34. These suggest that development of CASH cannot
be simply explained by an altered Gram-negative to Gram-
positive bacteria ratio, or increases in pro-inflammatory bacteria.
However, limited differences could also be explained by the low
frequency of CASH cases in our cohort. Expanded patient
numbers and longitudinal follow-up are needed to better inves-
tigate potential microbiome differences associated with lesional
hemorrhage.

We have previously observed that CA patients have differences
in circulating cytokines and other factors related to angiogenesis
and inflammation17–19. We were able to detect direct associations
between several CA distinctive bacterial species and plasma
proteins implicated in disease activity (Fig. 4a, Supplementary
Table 1). However, the best combined bacterial associations with
CA diagnosis and disease severity had limited or no associations
(Fig. 4b, Supplementary Table 1), indicating that the relationship
between the microbiome and circulating factors may be com-
plementary. Obtaining both plasma circulating factor and
microbiome datasets from the same patients provided us an
opportunity to explore the effectiveness of combining micro-
biome and circulating factors as biomarkers to differentiate CA
with different characteristics (Fig. 4c–e). Our data suggest that
microbiome and inflammation together drive CA disease severity,
which may explain the improved ROC curve when combining
microbiome signature of CA disease severity and pro-
inflammatory cytokines. These proof-of-concept findings should
motivate a larger prospective study, to validate combinations of
microbiome and circulating factors as potential disease severity
and prognostic biomarkers.

In summary, we have identified a pathogenic microbiome
signature of human CA patients that is permissive for CA
development, consistent with the previous mouse mechanistic
studies demonstrating a role of LPS signaling. Different micro-
biome signatures are associated with disease severity features.
Furthermore, we have demonstrated that application of machine
learning methods can identify weighted combinations of micro-
biome signatures and plasma biomarkers that enhance disease
severity associations. Future studies shall include larger cohorts
with prospective follow-up, powered to detect associations in

Fig. 3 CA patient subpopulations can have different microbiota. a Organization of microbiome species in non-aggressive and aggressive patients.
Co-occurrence network analyses were performed at species level, as determined by metagenomic shotgun data analysis (n= 45 non-aggressive patients,
n= 62 aggressive patients, keystone species are labeled in red). b Multi-variate differential abundance analysis of metagenomic shotgun data between non-
aggressive and aggressive patients at species level. Species with significantly different abundance are presented as box-whisker plots (ANCOM analysis
followed by two-sided Mann–Whitney U test with Benjamini–Hochberg FDR correction, blue boxes: non-aggressive patients, red boxes: aggressive patients).
c Identification of key species by random forest analysis. d ROC curve was identified based on best-weighted combination of all bacterial species identified by
multi-variate and random forest analyses (AUC=0.778, specificity=0.786, sensitivity=0.660). e α-Diversity analyses of fecal samples of CA patients with
non-aggressive and aggressive disease by Shannon and Simpson indices based on 16S rRNA gene amplicon sequencing data (n= 43 non-aggressive patients, n
= 58 aggressive patients, Kruskal–Wallis one-way analysis of variance test, blue boxes: non-aggressive patients, red boxes: aggressive patients). f Multi-variate
differential abundance taxonomic analyses between non-aggressive and aggressive CA patients based on 16S rRNA gene amplicon sequencing results. ESVs
with significantly different relative abundances are presented as box-whisker plots (ANCOM analysis followed by two-sided Mann–Whitney U test with
Benjamini–Hochberg FDR correction, blue boxes: non-aggressive patients, red boxes: aggressive patients). g Multi-variate differential abundance analysis of
metagenomic shotgun data between non-CASH and CASH patients at the species level. Species with significantly different abundance are presented as box-
whisker plots (n= 100 non-CASH patients, n= 13 CASH patients, ANCOM analysis followed by two-sided Mann–Whitney U test with Benjamini–Hochberg
FDR correction, green boxes: non-CASH patients, orange boxes: CASH patients). h Identification of key species by random forest analysis. i ROC curve was
identified based on best-weighted combination of all bacterial species identified by multi-variate and random forest analyses (AUC=0.682, specificity=0.933,
sensitivity=0.432). j α-Diversity analyses of fecal samples of CA patients with non-CASH and CASH disease by Shannon and Simpson indices based on 16S
rRNA gene amplicon sequencing data, presented as box-whisker plots (n= 93 non-CASH patients, n= 13 CASH patients, Kruskal–Wallis one-way analysis of
variance test, green boxes: non-CASH patients, orange boxes: CASH patients). k Multi-variate differential abundance taxonomic analyses between non-CASH
and CASH patients based on 16S rRNA gene amplicon sequencing results. ESVs with significantly different relative abundances are presented as box-whisker
plots (ANCOM analysis followed by two-sided Mann–Whitney U test with Benjamini–Hochberg FDR correction, green boxes: non-CASH patients, orange
boxes: CASH patients). In box plots, bounds of boxes show IQR, top and bottom whiskers demonstrate maximum and minimum, lines in the middle of the box
indicate median, and stars show mean of the data. + signs indicate outliers.
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specific disease genotypes, sex, age, and disease activity. Labora-
tory, and ultimately translational research should also explore the
impact of diet or specific microbiome modifications on CA
development and bleeding. Approaches herein contribute to the
understanding of a mechanistically defined neurovascular disease,
and may be applicable to other diseases where gut–brain axis is
postulated.

Methods
Stool collection and processing. Institutional review board approval, consistent
with the Belmont Report and in compliance with the rules and regulations of the
Federal Policy for the Protection of Human Subjects, was granted to all institutions,
and all patients underwent written informed consent consistent with the
Declaration of Helsinki. BSD/UCMC Institutional Review Boards at the University

of Chicago, University of California San Francisco Institutional Review Board,
University of New Mexico Institutional Review Board, and Quorum Review IRB
(now part of Advarra) approved sample collections, at the University of Chicago,
University of California San Francisco, University of New Mexico, and Angioma
Alliance, respectively.

Stool collection was conducted by enrolling patients at clinic visits associated
with routine CA medical care, or through recruiting phone calls. Stool samples
were collected using in home stool collection kits (Thermo Fisher Scientific,
Waltham, MA) and stored in at home refrigerators. Samples were then shipped to
centralized sample collection center at the University of Pennsylvania via overnight
shipment in insulated coolers with frozen ice packs. At the time of sample
collection, patients also finished a survey, including major surgery history,
antibiotic use, major gastrointestinal diseases, prebiotic and probiotic use, and
other pertinent questions. Upon receipt, sample temperature was assessed and
warm samples were rejected from further processing. Samples were then
homogenized, aliquoted, and banked in −80 °C freezers until DNA exaction.
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Fig. 4 Plasma and fecal microbiome as CA biomarkers. a Correlation between individual bacterial species and circulating factors. Correlation between
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Clinical parameters. Fecal samples were collected consecutively and prospectively
from four institutions (The University of Chicago, Angioma Alliance, University of
New Mexico and University of California San Francisco) between 10 April 2017
and 29 August 2018 (Supplementary Fig. 6). Inclusion criteria were a clinical index
diagnosis of CA where at least one brain lesion had not been resected. CA disease
severity features were collected from patients’ medical records17. The presence of
inflammatory bowel disease and antibiotic exposure within 6 months were col-
lected via the patient survey. Patient characteristics are detailed in Supplementary
Table 2. MRI was completed on clinical 3-tesla scanners at participating sites.
Susceptibility weighted sequences (SWI) and T2-weighted sequences (T2) were
utilized to quantify lesion numbers. Lesions with a diameter > 4 mm on T2-
weighted images and all lesions on SWI images were manually counted. Enrolled
and screened patients had similar disease characteristics (Supplementary Table 3).
Patients enrolled at the four sites had similar disease characteristics, with the
exception of younger patients enrolled by the Angioma Alliance (Supplementary
Table 4). Consistent with this, patients enrolled at all four sites have similar bac-
terial α-diversity (Supplementary Fig. 7). For 16S rRNA gene amplicon sequencing
non-CA controls, patients within the publicly available American Gut Project
Database23 were screened to generate age- and gender-matched controls free from
neurological or other potential confounding parameters (n= 250, 128 females)
with an average age of 42.5 (SD 18.3) Patients were excluded based on the following
categories: outside the United States, Alzheimer’s, pregnant, phenylketonuria,
substance abuse, bulimia nervosa, and anorexia nervosa. Metagenomic shotgun
sequencing non-CA controls consist of stool samples banked at the University of
Pennsylvania in a previously published study35 (n= 27, 17 female) with an age of
32.7 (SD 12.4) years. Potential age and gender confounders were adjusted in
subsequent analyses.

All microbiome assessments were made by investigators blinded to any clinical
features of the cases. Conversely, clinical features were adjudicated by the clinical
investigative team prior to any microbiome evaluations.

DNA purification. DNA was extracted from 200 mg of stool using the DNeasy
PowerSoil Kit (Qiagen, Germantown, MD). Extracted DNA was quantified with the
Quant-iT PicoGreen Assay Kit (Thermo Fisher).

16S rRNA gene amplicon sequencing. Libraries were generated using barcoded
PCR primers 27F 5′-AGAGTTTGATCCTGGCTCAG-3′ and 338R 5′-
TGCTGCCTCCCGTAGGAGT-3′ annealing to the V1–V2 region of the 16S rRNA
gene36. PCR reactions were carried out in quadruplicate using Q5 High-Fidelity
DNA Polymerase (New England Biolabs, Ipswich, MA). After amplification,
quadruplicate PCR reactions were pooled and then purified using a 1:1 volume of
SPRI beads (GE HealthCare, Chicago, IL). DNA in each sample was then quan-
tified using Quant-iT PicoGreen Assay Kit (Thermo Fisher) and pooled in equal
molar amounts. The resulting library was sequenced on the MiSeq instrument
(Illumina, San Diego, CA) using 2 × 250 bp chemistry. Extraction blanks and DNA-
free water were subjected to the same amplification and purification procedure to
allow for empirical assessment of environmental and reagent contamination.
Positive controls, consisting of eight artificial 16S gene fragments synthesized in
gene blocks and combined in known abundances, were also included37.

Metagenomic shotgun sequencing. Shotgun libraries were generated using the
NexteraXT Kit (Illumina) and sequenced on the HiSeq 2500 instrument (Illumina)
using 2 × 125 bp chemistry. Extraction blanks and DNA-free water were processed
the same way as the samples and were included to empirically assess environmental
and reagent contamination. Laboratory-generated mock communities consisting of
DNA from Vibrio campbellii and Lambda phage were included as positive controls.

16S rRNA gene amplicon sequencing analyses. 16S rRNA gene amplicon
sequencing data from enrolled CA patients and American Gut Project non-CA were
quality-filtered and de-multiplexed using QIIME 238. Because different regions were
sequenced for enrolled CA patients (V1–V2) and American Gut project (V4),
fragment insertion methodology (also known as SEPP) was used in QIIME 2 to
overcome the potential bias for sequencing different regions of the 16S rRNA gene.
De-multiplexed sequences were then selected for ESV picking using DeBlur trim-
med to 125 nucleotides39. ESVs present in <10 samples were removed using Phy-
loseq. The final BIOM file comprising of unique 60,141 ESVs with average 32,190
reads per sample was then used for further analyses. Stool samples with low read
counts were excluded from analysis. For five patients with two separate stool sample
collections, they are considered as one sample during analysis. Richness, Shannon,
and Simpson indices as measurements of α-diversity were calculated and compared
using phyloseq package in R. Variations between groups (β-diversity) was statisti-
cally tested using permutational multi-variate analysis of variance (PERMANOVA)
using microbiomeSeq package in R. Analysis of composition of microbiomes
(ANCOM) was used to identify differentially abundant bacterial ESVs between the
groups at p value cut-off of 0.05 with Benjamini–Hochberg FDR correction40. The
confounding variable, that is, age, gender, and collection site were adjusted for in the
ANCOM analyses. For gender-specific studies, ANCOM analyses were adjusted for
age. ANCOM results were plotted using box plots in R, with the boxes representing
the interquartile range for the data, the line in the middle of the box is the median,

the whiskers are the minimum and maximum of the values in the data, and the star
is the mean of the data. The + signs are the outliers. Spearman’s rank correlation
and generalized linear models (GLMs) were used to establish association between
the microbiome and other continuous variables in the metadata using micro-
biomeSeq() and glm() packages in R.

Control for batch-to-batch variations and duplicate validation. 16S rRNA gene
amplicon sequencing was completed in two batches, including a repeated run of 40
randomly selected samples for duplicated validation. To limit run-to-run influence,
40 samples, randomized by the category from batch 1 were re-run in batch 2,
providing overlapping duplicates between runs. Some runs were removed from
analysis due to duplicated sample collection of the same patient, and samples
received at incorrect temperatures. The Shannon α-diversity values and β-diversity
indices (weighted UniFrac) were then compared for the overlapping samples
between two runs. PERMANOVA was used and re-run sequencing results were not
significantly different relative to the initial run (weighted UniFrac distance ≤ 0.06 in
all cases; pPERMANOVA > 0.05). For samples sequenced in both batch one and batch
two, batch two data was used for subsequent analyses.

Analysis with two control groups. Although differences in sequencing technology
between the CA patients and American Gut Project were minimized as much as
possible using established protocols, it is still possible that methodological differ-
ences in the 16S rRNA gene amplicon sequencing of American Gut Project control
samples could introduce bias and lead to apparent differences in the microbiome.
To address this concern, a second control sample set was used. This sample set was
chosen from banked stool samples from the University of Pennsylvania35. β-
Diversity analysis showed that although separation between CA patients and this
control cohort was less pronounced, it was still significant (Supplementary Fig. 1b),
despite a smaller number of samples in this control group. This result increases
confidence that the microbiota of the CA cohort are different relative to two
distinct non-CA cohorts. This notion was further supported by metagenomic
sequencing analysis results.

Metagenomic shotgun sequencing analysis. For metagenomic shotgun
sequencing analysis, 2.2 billion paired-end metagenome reads were quality trim-
med (for adapters, primers, and oligonucleotides) with Nesoni. To assess taxo-
nomic diversity, trimmed data were analyzed using MetaPhlAn2 to profile the
composition of microbial communities (bacteria, archaea, eukaryotes, and viruses)
at the species level41. A database of ~1M unique clade-specific marker genes
identified from ~17,000 reference genomes were used in MetaPhlAn2, and Bow-
Tie2 was used for reference-based alignment of the reads42. For five patients with
two separate stool sample collections, they are considered as one sample during
analysis. Co-occurrence networks were generated by calculating Spearman’s cor-
relations between abundance of species using Hmisc in R. Significant connections
(Benjamini–Hochberg FDR-corrected p value < 0.05) were exported as GML for-
mat network files using igraph in R. The modularity analyses and keystone node
identification were performed using Gephi. ANCOM was used to identify differ-
entially abundant bacterial species between the groups at p value cut-off of 0.05
with Benjamini–Hochberg FDR correction40. Confounding variables, includ-
ing age, gender, and collection site, were adjusted for in ANCOM analyses. For
gender-specific studies, ANCOM analyses were adjusted for age. Functional pro-
filing was performed using HUMAnN2, which identifies the species profile from
metagenomic shotgun sequencing data and aligns reads to their pangenomes,
performs translated search on unclassified reads, and quantifies gene families and
pathways43. HUMAnN2 was used to regroup gene families to MetaCyc reactions.
Differential analyses and plotting was performed using ANCOM. Age, gender, and
sites were adjusted for in all the analyses. Random forest algorithm was used to
extract the most important features in the microbiome species information using
the Boruta pipeline44. Spearman’s rank correlation and GLMs were used to
establish association between the microbiome and other continuous variables in the
metadata using microbiomeSeq() and glm() packages in R. For control population,
a control cohort stool samples banked at the University of Pennsylvania Micro-
biome Center were processed35, sequenced, and analyzed along with CA cohort
samples, and sequencing results were corrected for age and gender during analysis.

Plasma biomarker measurements. Whole blood was collected in a subset of
patients (n= 47) from the University of Chicago site17–19. Plasma were separated
from cellular components of the blood, aliquoted, and stored at −80 °C until
analysis. Quantification of plasma biomarkers were performed using commercially
available individual and multiplex ELISA Kits. ELISA assays were performed
according the manufacturer’s protocols. For individual ELISA assays (TLR4
[Raybiotech ELHTLR41], LPB [R&D Systems, DY87005], CRP[R&D Systems,
DCRP00], sCD14 [R&D Systems, DC140], endoglin [R&D Systems, DNDG00],
thrombospondin 1 [R&D Systems, DTHBD0], thrombomodulin [R&D Systems,
DTSP10]), plates were washed using a BioTek 405TS automatic plate washer
(BioTek Instruments, Winooski, VT, USA), and absorbance were measured using a
Bio-Rad iMark plate reader (Bio-Rad, Hercules, CA, USA). Multiplex ELISA assays
(interferon-γ, IL-10, IL-1β, IL-6, tumor necrosis factor, vascular endothelial growth
factor) were performed using a V-plex multi-spot assay and detection system
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(Meso Scale Diagnostics, Rockville, MD, USA). LBP and other individually mea-
sured plasma factors were performed in two batches, and batch effect was corrected
by applying Bioconductor package limma (https://bioconductor.org/packages/
release/bioc/html/limma.html)45, and was compared by unpaired t test with
Welch’s correction. Samples with values outside 2 SD of mean were excluded from
the analysis.

Integrated analyses of microbiome and plasma data. Association of relative
abundance of metagenomic shotgun sequencing determined species and plasma
biomarkers was determined by calculating the Pearson’s correlation coefficient with
Benjamini–Hochberg FDR correction. Plasma marker values 2 SD from mean are
excluded from the analysis. To evaluate the clinical predictive performance of
metagenomic shotgun sequencing determined species, plasma biomarkers, and
combination of microbial species and plasma biomarkers to differentiate CA
patients with distinctive disease characteristics, logistic models were used. Linear
discriminant analyses were conducted to acquire combined scores. AUC and 95%
confidence interval from the calculated ROC curve. Optimal values of specificity
and sensitivity were determined by Youden index to measure the best fit of a
model. Analyses were performed using SAS 9.4 (SAS, Cary, NC).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
16S sequencing dataset is deposited into European Molecular Biology Laboratory-
European Nucleotide Archive EMBL-ENA with a project ID PRJEB35505 [https://www.
ebi.ac.uk/ena/data/view/PRJEB35505]. Metagenomic shotgun sequencing dataset is
deposited into Sequence Read Archive at National Center for Biotechnology Information
with a Bioproject ID PRJNA629755 [https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA629755]. Data underlying all figures are provided as Source data files. Other
information is available from corresponding authors upon reasonable requests.
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