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Abstract

When semantic information is activated by a context prior to new bottom-up input (i.e. when a 

word is predicted), semantic processing of that incoming word is typically facilitated, attenuating 

the amplitude of the N400 event related potential (ERP) – a direct neural measure of semantic 

processing. N400 modulation is observed even when the context is a single semantically related 

“prime” word. This so-called “N400 semantic priming effect” is sensitive to the probability of 

encountering a related prime-target pair within an experimental block, suggesting that participants 

may be adapting the strength of their predictions to the predictive validity of their broader 

experimental environment. We formalize this adaptation using a Bayesian learning model that 

estimates and updates the probability of encountering a related versus an unrelated prime-target 

pair on each successive trial. We found that our model’s trial-by-trial estimates of target word 

probability accounted for significant variance in trial-by-trial N400 amplitude. These findings 

suggest that Bayesian principles contribute to how comprehenders adapt their semantic predictions 

to the statistical structure of their broader environment, with implications for the functional 

significance of the N400 component and the predictive nature of language processing.

Keywords

adaptation; language comprehension; N400; prediction; precision; expected uncertainty; 
unexpected uncertainty

1. Introduction

It has long been established that more predictable words are processed faster than less 

predictable words (e.g. Ehrlich & Rayner, 1981; Fischler & Bloom, 1979; see Staub, 2015 
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for a recent review). Rather than being all-or-nothing or strategic in nature, these effects of 

contextual predictability are graded, probabilistic and implicit (Luke & Christianson, 2016; 

Smith & Levy 2013; see Kuperberg & Jaeger, 2016 for a review). Probabilistic prediction 

can aid language processing by alleviating the resource bottleneck that could otherwise 

occur at word onset (because some of the “work” of comprehension can be accomplished 

ahead of time, given the information provided in the context). Such benefits, however, 

require that prediction is based on probabilistic knowledge that approximates the statistical 

structure of the input. This presents a challenge for communication in the real world where 

our linguistic and non-linguistic environments often change. Each person we talk to and 

every book we read has its own unique set of syntactic and semantic preferences. Thus, in 

order for language comprehension to remain efficient, we must be able to adapt to these 

different environments so that our predictions continue to mirror their statistical structures. 

In the present study, we explore the close relationship between probabilistic prediction and 

adaptation in the brain by modeling a classic effect of adaptation on lexico-semantic 

processing: the influence of the predictive validity of the experimental environment on the 

N400 semantic priming effect.

The fundamental link between prediction and adaptation has been widely discussed in 

cognitive science, dating back to early models of animal learning (Pearce & Hall, 1980; 

Rescorla & Wagner, 1972). One way of formalizing this link is within a probabilistic 

generative framework (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; see Perfors, 

Tenenbaum, Griffiths, & Xu, 2011, for an excellent introduction). Here, the agent’s 

overarching goal is to infer an underlying latent cause that best explains the statistics of its 

environmental input. As the agent receives more input (evidence), she is able to 

incrementally update her probabilistic beliefs using Bayes’ rule — a process known as belief 
updating.

In the domain of language, this type of probabilistic framework has most commonly been 

used to model incremental syntactic parsing (e.g. Levy, 2008), as well as to describe 

sentence comprehension more generally (Kuperberg, 2016; Kuperberg & Jaeger, 2016). In 

addition, it has recently been used to explain how we adapt to the broader set of statistical 

contingencies that are associated with, and define, any given situational context (e.g. Fine, 

Qian, Jaeger, & Jacobs, 2010; Jaeger & Snider, 2013; Kleinschmidt & Jaeger, 2015; Myslin 

& Levy, 2016), where it is referred to as “rational” adaptation (see Anderson, 1990).1

Neural indices of online processing have shown similar effects of predictability as 

behavioral measures, suggesting that probabilistic prediction is instantiated in the brain 

during language comprehension. A well-established effect of contextual probability on 

language processing is on the N400 — an event-related potential (ERP) that peaks between 

300–500ms following the onset of an incoming word, and that is thought to reflect the ease 

of semantically processing that word (Federmeier, 2007; Kutas & Federmeier, 2011; Kutas 

& Hillyard, 1984). The N400 is highly sensitive to the semantic probability of incoming 

1In the present study, we use the term “rational” descriptively to refer to the use of Bayes’ rule to update beliefs. As in any other 
Bayesian model, we can infer rationality only with respect to our assumptions about participants’ priors, likelihoods and hypothesis 
spaces (see Tauber, Navarro, Perfors & Steyvers, 2017 for discussion). We return to reconsidering these assumptions in interpreting 
our data in the Discussion.
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words (DeLong, Urbach, & Kutas, 2005; Wlotko & Federmeier, 2012): its amplitude is less 

negative (“smaller”) to words that are semantically more (versus less) predictable. This is the 

case regardless of whether the context is a sentence stem (e.g. Kutas & Hillyard, 1984), a 

larger discourse or text (e.g. van Berkum, Zwitserlood, Hagoort, Brown, 2003), or a single 

‘prime’ word (Bentin, McCarthy & Wood, 1985; Rugg, 1985).

There is also evidence that the amplitude of the N400 adapts to the statistics of its broader 

environment. A classic illustration of this is the effect of relatedness proportion on N400 

modulation during a semantic priming paradigm (Brown, Hagoort, & Chwilla, 2000; 

Holcomb, 1988; Lau, Holcomb, & Kuperberg, 2013). Behaviorally, the Relatedness 

Proportion effect on semantic priming was first described in the late 1970s by Tweedy, 

Lapinski, & Schvaneveldt (1977), and it has since been reported in numerous studies 

(reviewed by Neely, 1991). It refers to the finding that the semantic priming effect is larger 

in blocks that contain a higher (versus a lower) proportion of related (versus unrelated) 

prime-target pairs. The effect has long been linked to predictive mechanisms (Hutchison, 

2007; Keefe & Neely, 1990; Neely & Keefe, 1989; Neely, Keefe, & Ross, 1989): in higher 

relatedness proportion blocks, participants are more likely to use the prime to generate 

stronger lexico-semantic predictions of the target.

Following these behavioral studies, as well as previous ERP experiments (Brown et al., 

2000; Holcomb, 1988), we recently carried out an ERP study examining the effect of 

Relatedness Proportion on the N400 semantic priming effect (Lau, Holcomb & Kuperberg, 

2013). We measured ERPs as the same participants viewed the same core set of prime-target 

pairs, which were counterbalanced across two blocks. These blocks differed in the 

proportion of semantically related and unrelated word-pairs. In Block 1 (the lower 

relatedness proportion block), only 10% of the prime-target pairs were semantically related, 

and in Block 2 (the higher relatedness proportion block), 50% of the prime-target pairs were 

semantically related. Short breaks were given within both blocks as well as between blocks, 

and participants were not explicitly told that there would be any change between the blocks. 

We showed that the magnitude of the N400 semantic priming effect was significantly larger 

in Block 2 (the higher relatedness proportion block) than in Block 1 (the lower relatedness 

proportion block). In follow-up studies using MEG and fMRI, we also showed that the 

higher relatedness proportion block was associated with enhanced modulation of 

neuroanatomical regions sensitive to both lexico-semantic processing and learning (Lau, 

Weber, Gramfort, Hamalainen & Kuperberg, 2016; Weber, Lau, Stillerman & Kuperberg, 

2016).

These findings provide strong evidence that participants were able to implicitly adapt to the 

changes in the predictive validity across the two blocks (see Tweedy & Lapinski, 1981, for 

an early discussion of adaptation in relation to this effect). What remains unclear, however, 

is the time course and the computational principles underlying such adaptation in relation to 

prediction. In this investigation, we sought to address this question by building a 

computational model based on principles of rational (Bayesian) adaptation. This model 

computed and updated the probability of encountering target words on individual trials 

throughout Block 2 (the higher proportion block), with the assumption that participants had 

already seen Block 1 (the lower proportion block). We then use linear mixed effects 
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regression to ask whether the trial-by-trial outputs of our computational model in each 

participant could explain changes in the trial-by-trial modulation of the actual N400 data 

collected in each participant throughout Block 2 in the dataset collected by Lau, Holcomb & 

Kuperberg, 2013.

In the remainder of this paper, we describe the theory and mathematical computation of our 

model. We then give a brief overview of the experimental methods previously described in 

detail by Lau, Holcomb & Kuperberg (2013). We evaluate our model’s trial-by-trial output 

in each participant against the empirical trial-by-trial ERP data in each participant, and we 

then discuss our findings in the context of the broader literature on prediction, adaptation, 

and language processing.

2. Theory

2.1 Development of a rational probabilistic model of trial-by-trial adaptation

Our rational adaptor model considers how a comprehender makes probabilistic predictions 

during a semantic priming paradigm as she adapts to a higher relatedness proportion block 

(Block 2), following a lower relatedness proportion block (Block 1). By probabilistic 
prediction, we simply refer to the existence of a probability distribution over possible target 

words after seeing a prime on each trial.

To compute these probabilistic predictions on each trial, we assume that the agent is 

potentially able to draw upon two different types of long-term stored knowledge: her 

knowledge about semantic associations between words, and her knowledge about the 

frequency of words when encountered in isolation. These types of knowledge are, of course, 

not the only factors that influence the amplitude of the N400 amplitude; rather they are the 

two factors that we assume are most relevant to understanding how the N400 is modulated 

as the agent adapts during a semantic priming paradigm. We assume that, on each trial, the 

degree to which the agent uses each of these sources of long-term knowledge, in 

combination with the prime, to generate probabilistic predictions about the target, is 

weighted by the degree to which she believes that she will encounter a related or an 

unrelated target. These latter beliefs are updated, based on Bayes’ rule, on successive trials 

as she progresses through Block 2. As a result, the model outputs a final estimate of the 

probability of encountering a target word on each individual trial in each participant within 

Block 2. These final probabilities are then negative log transformed to yield the information-

theoretical measure surprisal on each trial in each participant.

This final model output on each trial is then tested against human trial-by-trial N400 data 

using linear mixed effects regression models. Below we step through the principles of the 

computational model and justify our assumptions at a conceptual level. Computational 

details are given in the following Calculation section.

2.2 Probabilistic predictions based on Forward Association Strength, Frequency and 
beliefs about trial type

In order to carry out a semantic priming task, we assume that participants can draw upon 

their stored knowledge about semantic associations between individual words to generate 
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predictions about a target on the basis of a prime. To index this semantic associative 

knowledge, we used the Forward Association Strength (FAS) of the prime, as estimated 

using the University of South Florida Free Association Norms (Nelson, McEvoy, & 

Schreiber, 2004). These norms are derived from responses of a large number of participants 

who are given a “prime” word as a prompt and asked to produce the first associated word 

that comes to mind. The FAS is the proportion of participants who produced a particular 

target given the prime (see discussion of interpretation by Nelson, McEvoy, & Dennis, 

2000), and it thus yields a probabilistic estimate of how likely a given target is produced 

having seen a given prime. Previous studies have shown that the FAS of a prime 

monotonically predicts the amplitude of the N400 produced by target words in semantic 

priming studies (Luka & Van Petten, 2014).

We also assume that, on any given trial, participants do not only base their predictions about 

a target on its prime’s FAS, but that they also take into account their belief about whether 

they will encounter a related or an unrelated target following a prime (that is, whether the 

trial will be a related or an unrelated word-pair). This equates to their belief about whether 

the prime’s FAS will be an informative predictor of the target. To take two extremes, if a 

participant believes with 100% probability that she is about to encounter a related word-pair, 

then she will be 100% confident that the prime will predict the target, and so she will base 

her probabilistic predictions about the target on the prime’s FAS. If, on the other hand, the 

participant believes with 100% probability that she will encounter an unrelated word-pair, 

then she might ignore the prime (and the FAS of any potential target word given the prime) 

altogether. In this case, her predictions about the target will be based only on her stored 

distributional knowledge about the probability of seeing a target word in an average or 

random context. This is identical to word frequency: high frequency words are more 

probable than low frequency words, given an average context (Norris, 2006). Word 

frequency is also known to influence the magnitude of the N400 evoked by words presented 

in isolation, with more frequent (more probable) words eliciting a smaller N400 amplitude, 

with a logarithmic relationship (reviewed by Laszlo & Federmeier, 2014).

In a semantic priming paradigm, in which related and unrelated word-pair trials are 

presented in random order, the participant never knows in advance whether or not a target 

will be related or unrelated to the prime (whether the prime will be informative). However, 

at any point in the experiment, she may have some probabilistic estimate of how likely she 

will encounter a related versus an unrelated word-pair trial. Our model assumes that she uses 

this estimate as a blending factor that weights the relative influence of FAS versus word 

frequency knowledge to estimate the final probability of encountering any particular target. 

For example, if she is 100% confident that an upcoming the prime-target pair will be related, 

then, after encountering the prime word, “salt”, she would estimate the probability of 

encountering “pepper” to be 0.7 – its FAS. If, however, given the wider contextual 

environment, she believes that the probability of encountering a related prime-target pair is 

only 0.1, then she might estimate the probability of encountering “pepper” following “salt” 

to be 0.07 (0.1*0.7) plus some very small probability of encountering it simply by chance as 

an unrelated word, as determined by its frequency. (Note that the probability of encountering 

“pepper” by chance as an unrelated target will be orders of magnitude lower than the 

probability of encountering it as a related target in this example.)
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Importantly, we assume that the participant’s estimate of the probability of encountering a 

related versus an unrelated word-pair is not static, but rather that it can change across the 

course of an experiment, as will her confidence in this estimate. A rational adapter 

framework provides a way to formalize this learning process. At any given point in the 

experiment, the participant has an initial prior belief about the probability of encountering a 

related versus an unrelated prime-target pair, with some degree of confidence in this belief. 

We assume that, at the very beginning of Block 2, this prior belief is based on the relatedness 

proportion within Block 1. Then, after encountering each prime-target pair within Block 2, 

the participant updates her belief about the relatedness proportion, using Bayes’ rule, with 

the information learned from that trial. This new posterior distribution is then used to inform 

her belief about whether, on the next trial, she will encounter a target that is related or an 

unrelated to the prime. In this way, her beliefs about encountering a related versus an 

unrelated trial adapt incrementally over the course of the Block 2.

This dynamically changing belief about trial type (related or unrelated) then weights the 

relative influence of FAS and word frequency, so that, for each trial in Block 2, the model 

computes a final estimate of the probability of encountering the target word. Finally, this raw 

probability is log-transformed using the formula −log2[probability], which converts it into 

the information theoretic measure surprisal (Shannon & Weaver, 1949). We chose to carry 

out this final log transform on the basis of some empirical evidence that surprisal may be a 

better predictor than raw probability of behavioral measures of language processing 

difficulty, particularly at low estimates of probability (Hale, 2001; Levy, 2008; Smith & 

Levy 2013). In the ERP literature, there is also some evidence that surprisal predicts the 

amplitude of the N400 (Frank, Otten, Galli, & Vigliocco, 2015; Frank & Willems, 2017), 

although it is unclear whether it is a better predictor than raw probability (see analysis by 

Yan, Kuperberg & Jaeger, 2017 of data shared by Nieuwland et al., 2018, as well as response 

by Nieuwland et al., 2018).

Finally, we took the trial-by-trial output values yielded by our rational adaptor model in each 

participant, and we used linear mixed effects regression to ask whether these values 

accounted for trial-by-trial changes in the amplitude of the N400 evoked by target words 

measured over the course of Block 2 in each participant.

3. Calculation

3.1 Experimental Design

The experiment by Lau, Holcomb & Kuperberg (2013) crossed Relatedness (semantically 

related versus semantically unrelated word-pairs) and Relatedness Proportion (higher 

relatedness proportion versus lower relatedness proportion block). The related word-pairs 

had an FAS of 0.5 or higher (mean FAS: 0.65) as estimated using the University of South 

Florida Free Association Norms (Nelson, McEvoy, & Schreiber, 2004), and the unrelated 

word-pairs were created by randomly redistributing the primes across the target items and 

checking to confirm that this did not accidentally result in any associated pairs. The 

Relatedness Proportion manipulation was achieved by adding different numbers of related or 

unrelated filler word-pairs to the two blocks. In the lower relatedness proportion block 

(Block 1 for all participants), 10% of the word-pairs (40/400) were related, and in the higher 
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relatedness proportion block (Block 2), 50% of the word-pairs (200/400) were related. A 

core set of 40 controlled and counterbalanced target items was rotated across each of the 

four conditions, counterbalanced such that no participant saw the same prime or target word 

twice. Order of related and unrelated trials were randomized individually for each 

participant, i.e. each participant viewed trials in a different order.

The principles described in the Theory section above led to the development of a Rational 

Adapter model.

The whole model takes the form:

Model output =   − log2 μ*p word|prime +   1 − μ *p word|average context

where μ is a point estimate of the probability with which a rational adapter expects a related 

trial at that point in time.

3.2 Estimating and updating the probability of receiving a related versus an unrelated 
prime-target pair

To describe a participant’s belief about the probability of seeing a related versus an unrelated 

prime-target pair, we assumed a beta-binomial model over expected trial types. Throughout 

this paper, we frequently use the parameterization of the beta distribution in terms of a mean 

μ and a precision ν.2 At any point in the experiment, the expectation μ of this distribution is 

used to estimate the probability with which a participant expects to receive a related trial. To 

set a prior on participants’ beliefs, we assumed that participants entered Block 2 believing 

that the parameters of the experiment would be the same as in Block 1, with a 10% chance 

of receiving a related trial, hence μ = 0.1.

In addition to setting an initial value for the mean parameter, μ (i.e. participants’ beliefs 

about the probability of seeing a related versus an unrelated prime-target pair at the 

beginning of Block 2), we also needed to set an initial value for the precision parameter, v 
(participants’ confidence in this belief; as discussed below, this effectively determines how 
quickly participants adapt to the new experimental environment). This precision parameter v 
can be thought of as the “sample size” of the prior, or the weight given to the prior 

observations in pseudocounts. For example, if ν = 20, then participants give the same weight 

to 20 trials of new data as to their prior beliefs (see Figure 1 for a depiction of how different 

values of ν influence the rate of adaptation). As a best-guess approximation, we set ν = 50 

at the beginning of Block 2. This value was chosen to be non-trivially different from 0 

(assuming that participants did retain some expectations from Block 1) but much less than 

400 (the total number of trials observed in Block 1).3

2This precision parameter is also known as the concentration parameter of the beta distribution. In this paper, we chose to use the term 
precision because this is the term that is most used in the neuroscience literature on predictive processing (see Clark, 2013, for a 
review). In a Gaussian distribution, precision is the reciprocal of variance. Intuitively, it refers to the narrowness of the distribution. In 
terms of the more common pseudocount parameterization, μ = α/(α+β) and v=α+β.
3To prevent inflation of the type I error rate due to experimenter degrees of freedom, we conducted all our hypothesis tests using this 
plausible a priori value of ν, rather than allowing the selection of the value to be influenced by the process of analysis. After the 
relevant hypothesis tests had been completed, we then empirically derived the optimal prior for this particular experiment to 
empirically derive the apparent rate of adaptation in this experimental setting, see Results, Finding the optimal prior certainty.
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With μ = 0.1 and ν = 50, the beta prior at the beginning of Block 2 can alternatively be 

expressed in the pseudocount parameterization as beta(5, 45), i.e. 5 pseudocounts of related 

trials and 45 of unrelated trials. After each new prime-target pair in Block 2, this beta 

distribution is updated through Bayes’ rule. Thus, μ incrementally changes after each trial. 

For example, after encountering 5 related and 5 unrelated prime-target pairs in Block 2, a 

participant’s beliefs would be modeled as beta(10, 50). In the present experiment, as 

evidence accumulates, participants’ certainty about the probability of encountering a related 

trial (μ) increases on average, and the rate of change across trials for μ decreases on average. 

Given the prior we chose and the statistics of Block 2, the estimated probability of 

encountering a related trial begins at μ = 0.1, and it asymptotes to μ = 0.5.

3.3 A mixture model to estimate the specific probability of encountering a given target 
following a given prime for each trial in Block 2

At each point in the experiment, we used a mixture model to estimate the final probability of 

encountering the specific target word given the prime and the agent’s beliefs about the 

statistical structure of the environment. The mixture has three inputs: a) the expectation of 

encountering a related target, μ, b) the Forward Association Strength (FAS) from the prime 

(Nelson et al., 2004), and c) target frequency, estimated from the SUBTLEX corpus 

(Brysbaert & New, 2009) and converted into a proportion of the corpus total in order to yield 

the same units as FAS (probability).

Just after encountering each prime, the probability of the target is computed as the weighted 

sum of its probability as a related target (FAS) and its probability as an unrelated target 

(frequency), weighted by the expectation of encountering a related target, μ:

p word =  μ*FAS +   1 − μ *Frequency

Finally, we log-transform this final estimate of raw word probability ( − log2[p(word)]) to 

convert it into the information theoretic measure surprisal.

We compute this value individually for all 80 critical targets in Block 2 for each participant, 

taking into account each participant’s idiosyncratic history of related and unrelated trials 

seen up until that point in the experiment.

4. Methods

4.1 Participants and ERP Data collection

Details about participants and ERP data collection have been previously described in detail 

by Lau, Holcomb & Kuperberg (2013), and are summarized below.

Participants were all right-handed native speakers of American English recruited from Tufts 

University. All gave written informed consent to participate. Data were originally collected 

from 33 participants (19 women; mean age = 20.5 years) and two were omitted due to 

artifacts. All participants saw the lower relatedness proportion block first (Block 1), 

followed by the higher relatedness proportion block (Block 2). To ensure that participants 

processed the words semantically while at the same time not drawing their explicit attention 
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to semantic relationships between primes and targets, they were instructed to press a button 

as quickly as possible when they saw a name of an animal. In each block, eighty of the 

unrelated filler word-pairs included an animal word. Within each block, participants were 

given short breaks after every 100 trials such that each block was divided into four runs. A 

similar break was given in between the two blocks. Participants were not explicitly told that 

there would be any differences between any of the runs.

Stimuli were presented on a computer monitor in yellow 20-point uppercase Arial font on a 

black background. The prime was visible for 500ms, followed by 100ms of blank screen 

(total SOA 600ms). The target was then presented for 900ms, followed by 100ms of blank 

screen. EEG data were collected from twenty-nine tin electrodes, held in place on the scalp 

by an elastic cap, in a modified 10–20 configuration (Electro-Cap International, Inc., Eaton, 

OH). The EEG signal was referenced online to the left mastoid, amplified by an Isolated 

Biolectric Amplifier System Model HandW-32/BA (SA Instrumentation Co., San Diego, 

CA) with a bandpass of 0.01 to 40 Hz, and digitized at a 200 Hz sampling rate.

4.2 Preprocessing and extraction of individual trial ERP data

The EEG signal was time-locked to target words and segmented. Trials with ocular and 

muscular artifact were removed as described by Lau, Holcomb & Kuperberg (2013). A 100-

ms pre-stimulus baseline was subtracted from all waveforms prior to statistical analysis.

Lau, Holcomb & Kuperberg (2013) reported the results of analyses that averaged the N400 

over related and unrelated targets and compared these averages between Block 1 and Block 

2. For the purposes of the present study, we extracted the single trial ERP data collected 

during Block 2.

In each of the 32 participants, we extracted the N400 component evoked by each of the 80 

targets per participant in Block 2 — the 40 related and 40 unrelated targets that were 

counterbalanced across conditions and across the two blocks, as described above.4 The 

N400 was operationalized as the averaged voltage between 300–500ms evoked by each 

target, averaged across three parietal channels (CP1, CP2, and Pz). These were the channels 

where the block-level N400 effect appeared maximal in the analysis reported by Lau, 

Holcomb & Kuperberg (2013). Extreme outliers in N400 amplitude were removed (3 

standard deviations or more from the mean). Altogether, after the removal of both artifact 

and extreme outliers, 18.3% of related trials and 17.7% of unrelated trials were removed 

from analysis.

4.3 Hypothesis Testing

We ran our rational adaptor model for each participant, based on the specific sequence of 

trials he/she saw in Block 2. This yielded trial-by-trial model outputs for each participant for 

each individual target item in Block 2. These values were entered as the predictor variable 

into a linear mixed effects regression model in the R statistical software program version 

4In principle, our single-trial modeling approach could be used to model every item in the experiment (not just these counterbalanced 
target items). However, because the remaining items were coded as fillers in the original experiment, we were unable to extract their 
ERPs for single trial analysis.
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3.2.4 (R Core Team, 2016). The trial-by-trial amplitude of the N400 evoked by each target 

word in each participant in Block 2 was the outcome variable. Additional control predictors 

were included as necessary for particular hypothesis tests, as described below. The maximal 

random effects structure across (crossed) subjects and items for the independent variable of 

interest (rational adaptor model output) was used (Barr, Levy, Scheepers, & Tily, 2013). 

Regression models were fit using restricted maximum likelihood with the lme4 package 

version 1.1–11 (Bates, Mächler, Bolker, & Walker, 2015). All continuous predictors were z-

transformed, with p-values calculated using the Satterthwaite approximation to degrees of 

freedom in the lmerTest package version 2.0–30 (Kuznetsova, Brockhoff, & Christensen, 

2015).

5. Results

5.1 Visualization of trial-by-trial ERP data and model predictions

In order to visualize the changes in N400 amplitude over target items in Block 2, without 

assuming any particular parameters of the adaptation, we conducted a loess local regression 

over N400 amplitudes for related and unrelated words across the ordinal position of critical 

items in the experiment. The N400 amplitudes evoked by related and unrelated critical 

targets in Block 2 are shown in Figure 2. As can be seen, the amplitude of the N400 evoked 

by related and unrelated targets were initially similar, but then diverged as participants were 

exposed to more and more trials within Block 2 and adapted to its statistical structure. We 

also noticed that N400 amplitudes for these two conditions converged again at the very end 

of Block 2 (see Discussion).

For comparison, we also visualize the trial-by-trial output of our rational adaptor model, 

computed for each individual participant based on the specific sequence of trials they saw in 

Block 2, see Figure 3. We first observe that, across participants, the model’s estimates of 

target probability are more consistent for related than for unrelated trials. This is because the 

model’s estimates of the probability of encountering targets in related trials are largely 

driven by FAS, which is relatively consistent across all related trials (between 0.5–1 for all 

related targets). In contrast, its estimates of the probability of encountering targets in 

unrelated trials are largely driven by frequency, which can vary across many orders of 

magnitude. Thus, each participant’s idiosyncratic ordering of critical trials causes larger 

fluctuations in model outputs for unrelated than for related trials. Comparing Figure 3 to 

Figure 2, we see that, although our computational model predicts a large disparity between 

related and unrelated trials from the start (unlike the initial similarity seen in the N400 data), 

it correctly predicts an increase in the divergence between related and unrelated trials over 

the course of Block 2, particularly within the first approximately 100 trials. Our model does 

not predict the convergence at the end of Block 2 (see Discussion).

5.2 Trial-by-trial model output explains trial by trial variance in N400 amplitudes

We first asked whether our model’s trial-by-trial output explains trial-by-trial variance in 

N400 amplitudes within Block 2. Recall that our model makes individualized predictions for 

each trial in each participant, based on the word-level characteristics of the trial and the 

participant’s idiosyncratic history of related and unrelated trials seen up until that point in 
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the experiment. We can thus test our model predictions against single-trial N400 amplitudes 

in each participant.

We first z-transformed the trial-by-trial output values of our model and used these values as 

the predictor in a linear mixed effects regression analysis with the N400 amplitude on each 

trial in Block 2 as the outcome variable. We included the maximal random effects structure: 

by-subjects intercepts and random slopes of model output, and by-target-word intercepts and 

random slopes of model output. As expected, the model’s trial-by-trial output values 

significantly accounted for variance in trial-by-trial N400 amplitudes (β = −1.14, t = −5.24, 

p < 0.001): the higher the estimated probability of the target words, the larger (more 

negative) the N400 amplitude, with a 1 bit increase in model-predicted surprisal (-log 

probability) corresponding with a ~0.18μv increase in N400 amplitude, 95% CI [0.11, 0.24 

μv/bit].

By design, the unrelated targets had lower probabilities than the related targets. As such, it is 

plausible that effect described above simply reflected the well-established categorical 

semantic priming effect (in this study, the main effect of Relatedness that was already 

reported by Lau, et al., 2013). To determine whether the inclusion of our model’s trial-by-

trial outputs accounted for variance in N400 amplitude over and above this categorical 

effect, we ran a second linear mixed effects regression model that included not only the 

model’s output on each trial, but also a categorical Relatedness control predictor. We again 

included by-subject and by-target-word intercepts and random slopes of model output. This 

showed that our model’s output on individual trials accounted for variance in N400 

amplitude (β = −2.21, t = −2.76, p = 0.006), over and above the categorical effect of 

Relatedness. We caution that, given the multicollinearity between the model’s trial-by-trial 

output and the Relatedness effect (the primary motivation for running this test in the first 

place), this β estimate is likely inflated. We therefore limit our conclusions here to 

establishing the significance of the effect, rather than its marginal magnitude.

5.3 The Rational Adapter Model outperforms its constituent elements alone

The analysis described above indicates that our computational model was able to explain 

trial-by-trial variance in N400 amplitudes. However, it may be that its additional explanatory 

power over and above the categorical effect of Relatedness, was simply due to the inclusion 

of items-level information (FAS and frequency, both known to predict N400 amplitude) 

within the model, rather than the specific way in which such information combined together 

with rational adaptation on each trial to yield final trial-by-trial outputs. To address this 

possibility, we ran an additional regression model that tested the effect of the rational 

adaptor model’s output, but this time controlling not only for categorical Relatedness (as in 

the previous regression model), but also for trial-by-trial frequency and FAS — the item-

specific constituent elements that went into our rational adaptor model. Specifically, log-

transformed frequency and log-transformed FAS were included as control predictors. 

(Because the log transformation requires a non-zero probability, all unrelated targets were 

given a probability of 0.005 — i.e. half a percent—prior to log transforming.5) Again, by-

subjects and by-target-word intercepts and random slopes of model output were included, 

and all continuous predictors were standardized.
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We found that the model’s trial-by-trial output significantly accounted for variance in N400 

amplitudes (β = −2.30, t = −2.11, p = 0.036), above and beyond frequency, FAS, and 

Relatedness. This indicates that the increased fit described above was not simply due to the 

fact we included additional information about items-level features. Rather, it tells us that the 

particular way in which these items-level features combined within the model, including 

weighting by the Rational Adaptation component, was an important source of explanatory 

power.

5.4 Finding the optimal prior precision

As discussed in the Calculation section, in addition to setting a prior over participants’ 

beliefs about the expectation of seeing a related versus an unrelated prime-target pair (μ), we 

also needed to set a prior over participants’ confidence in this belief. This was given by the 

“sample size” or pseudocount of the prior — its precision, ν. This number specifies the 

number of trials within Block 2 that participants would need to have encountered before 

beginning to give more weight to the statistics of Block 2 trials (50% related pairs) than the 

statistics of Block 1 trials (10% related pairs, as reflected in their prior beliefs). It therefore 

determines the rate of adaptation over trials (see Figure 1, which shows the adaptation of μ 
for different prior pseudocounts ν). Our model assumes that participants had some prior 

expectation that the environment was non-stationary—that is, that the statistical structure of 

Block 2 might differ from Block 1, and we set this prior precision at ν = 50. This 50 

pseudocount prior, however, was merely a ballpark figure, chosen to be non-trivially 

different from 0 (assuming that participants did retain some expectations from the previous 

block), but much less than 400 (the total number of trials in Block 1). We therefore next 

sought to ensure that our results were not idiosyncratically dependent on having made a 

lucky guess.

It is an empirical question what prior ν best accounts for the variance in N400 amplitude 

over the course of Block 2. To estimate this value, we re-calculated our rational adaptor 

model for every possible integer-valued ν from 1 to 800 pseudocounts (i.e. we re-calculated 

the model’s target probability estimates for all trials for all participants, as above.) This 1–

800 range encompassed the range from holding almost no beliefs from Block 1 to near-

complete resistance to new statistical information from Block 2. We then ran 800 separate 

regression models with the outputs of each computational model and categorical Relatedness 

as predictors, the amplitude of the N400 as the dependent variable, and a maximal random 

effects structure (as described above). After fitting each of these 800 regression models, we 

extracted the log-likelihood of each in order to identify the ν that maximized model fit. As 

our aim was only to describe the present dataset, and we don’t believe that the exact speed of 

adaptation here should necessarily generalize to other experiments (meaning that the optimal 

ν should be interpreted as a descriptive statistic characterizing the present data set only), we 

5Log-transformed frequency and FAS predictors (rather than raw probabilities) were used for the most direct comparison with our 
model output, which also log-transforms its final predicted probability. Moreover, frequency is standardly log-transformed for use as a 
predictor of processing difficulty (see references in Theory). However, as FAS is not standardly log-transformed, we also ran a version 
of this model using raw FAS, as well as log frequency and (categorical) Relatedness, as predictors. Results were qualitatively similar, 
and all patterns of statistical significance were identical.
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preferred this approach of maximizing model fit over all of the data to an approach that 

maximized cross-validated prediction error over smaller subsets of the data.

These data are shown in Figure 4. This shows that there was a single maximum log-

likelihood with a beta(69.3, 7.7) prior, or ν = 77 pseudocounts. However, all pseudocounts 

between 70 and 85 yielded very similar model fits, and performance degrades smoothly on 

either side. This indicates that, on average, participants in this study began giving more 

weight to the data in Block 2 than in Block 1 after around 77 trials into Block 2. In contrast, 

a much lower or much higher precision ν did not account for the N400 data well because it 

would lead to adaptation that was too fast or too slow respectively. We note that some 

models had poor fits because they did not converge. (They appear to follow a second curve, 

suggesting that they failed to converge in a similar way.) None of the models that failed to 

converge were within the 70–85 range capturing the maximum log-likelihood.

5.5 Log-transformed word probability (Surprisal) significantly accounts for variance in 
N400 amplitudes above and beyond raw estimates of word probability

In our rational adaptor model, we log-transformed our final estimate of probability to 

convert these estimates into surprisal values for each target. As discussed in the Theory 

section, this decision was based on previous empirical evidence from behavioral studies that 

surprisal may be a preferable measure of word processing difficulty than raw probability, 

particularly for very low estimates of probability (Hale, 2001; Levy, 2008; Smith and Levy, 

2013). We then explicitly tested the hypothesis that log-transformed probability (surprisal) is 

a better predictor than raw probability of the N400 amplitude in the present semantic 

priming dataset. Importantly, we addressed this question only after completing all the other 

models described above (rather than trying many different assumptions and selecting the 

ones that yielded the most publishable p-values).

To test this hypothesis, we directly compared surprisal and raw probability (as computed by 

our model in both cases) as predictors of N400 amplitudes. It would not be particularly fair 

to directly pit raw probability against log-transformed probability (surprisal) using a 

computational model with a prior precision that maximized the word surprisal effect 

(computed as ν = 77 pseudocounts, as described above), and it would also not be 

particularly coherent to continue using the arbitrarily-guessed prior precision of ν = 50 

pseudocounts. We therefore decided to derive the precision that optimized the word 

probability effect, so that we could test the marginal contribution of word surprisal given this 

prior degree of certainty. This can be viewed as the most conservative prior with which to 

carry out this test.

We determined the optimal prior certainty for (standardized) word probability by fitting 800 

linear regression models with word probability and Relatedness as fixed predictors, and we 

then identified the value of ν that maximized log-likelihood, as described above. This 

approach yielded a precision of ν = 58 pseudocounts. We reran our rational adaptor model 

using ν = 58 and extracted both raw probability and log-transformed trial-by-trial outputs. 

We then carried out another regression model to test the hypothesis that these log-

transformed probability (surprisal) values could significantly account for variance in N400 

amplitude, above and beyond what could already be accounted for with raw word probability 
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estimates. Again, we included the control categorical Relatedness variable in this regression 

model, and we again used the maximal random effects structure.

We found that surprisal on each trial did indeed significantly account for variance in N400 

amplitudes (β = −2.09, t = −2.57, p = 0.011) above and beyond estimates of raw word 

probability on each trial (in addition to the categorical Relatedness control variable). In 

contrast, estimates of raw word probability on each trial did not account for any significant 

variance in N400 amplitude that was not already accounted for by surprisal and the control 

variable, Relatedness (β = 0.38, t = 0.67, p = 0.48), despite the fact that its optimal prior had 

been assumed.

Discussion

It is well established that the magnitude of the behavioral semantic priming effect is 

sensitive to the predictive validity of the broader experimental environment (Neely, 1991; 

Tweedy et al., 1977). This effect of predictive validity also influences the modulation of the 

N400 ERP component — a direct neural index of semantic processing (Kutas & Federmeier, 

2011): when the proportion of related word-pairs within an experimental block increases, the 

N400 priming effect increases (Brown et al., 2000; Holcomb, 1988; Lau et al., 2013). In this 

study, we show that a quantitative Bayesian model was able to predict how the amplitude of 

the N400 evoked by individual target words changed as participants adapted, trial by trial, to 

a new, higher predictive validity environment (Block 2, in which 50% of trials were related 

word-pairs), following a lower predictive validity environment (Block 1, in which only 10% 

of trials were related word-pairs).

Several previous studies of semantic priming have shown that the amplitude of the N400 

evoked by a target word is influenced by the FAS of its prime (Luka & Van Petten, 2014; 

van Vliet et al., 2016) and by the proportion of related word-pairs in its broader experimental 

environment (Brown et al., 2000; Holcomb, 1988; Lau et al., 2013). We also know that when 

words are presented in isolation of any context, the amplitude of the N400 is influenced by 

their frequency (Laszlo & Federmeier, 2014). What is novel about our computational model 

is that it explicitly specifies how these factors quantitatively combine to compute the final 

probability of encountering a given target word. We found that this final estimate of 

probability (log-transformed) accounted for variance in the amplitude of the N400 evoked by 

targets beyond the static (average) categorial effect of Relatedness (within Block 2), and 

beyond the independent effects of items-level information like frequency and FAS. In other 

words, it was the particular way our model combined these two types of information and 

updated their weights, trial-by-trial, that accounted for additional variance.

Our model incorporates several core principles of probabilistic prediction, rational 

adaptation and their relationship. First, it assumes that participants weight the degree to 

which they use the predictability of a local context (here, the FAS of the prime) by their 

belief about whether that local context will be informative of the upcoming input. In our 

model, the informativeness (or predictive validity) of the prime was operationalized as the 

agent’s belief that she would encounter a related (as opposed to an unrelated) target, and it 

was modeled by the mean parameter of the beta distribution.
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Second, our model assumes that participants’ belief about the informativeness/predictive 

validity of a local context can be updated, based on new inputs, according to Bayes’ rule. A 

core principle of Bayesian inference is that the degree to which the agent updates her prior 

belief depends on her certainty in that belief, with greater uncertainty leading to more 

updating based on the current input (as opposed to the prior history). In our model, 

participants’ uncertainty about the predictive validity of the prime was represented by the 

precision parameter of the beta distribution, which describes participants’ (expected) 

uncertainty about the statistical structure of the current environment (Yu & Dayan, 2005).6 

Intuitively, the lower the precision, the wider the beta distribution and the less confident the 

agent is about the prime’s predictive validity. Importantly, we initially set the precision 

parameter to a value that was lower than the number of trials that had actually been observed 

over Block 1 (ν = 50 as opposed to ν = 400). Therefore, a key assumption of our model was 

that, at the beginning of Block 2, participants had some uncertainty about the statistical 

structure of the environment. This uncertainty is what allowed them to successfully adapt to 

Block 2.

Third, our model assumes that, as participants accumulate more data, they become 

increasingly confident about statistical structure of the environment (and hence the 

predictive validity of the prime), and so the rate of adaptation decreases. This once again 

illustrates a core principle of Bayesian inference: uncertainty decreases as more data are 

observed (so long as the statistical structure of the environment is assumed to be stable). In 

our model, this increase in confidence was reflected by the trial-by-trial increase in the value 

of the precision parameter of the beta distribution (the number of pseudocounts). Because 

this precision parameter set the degree to which participants weighted their prior history 

versus the current input during belief updating, its increase on successive trials meant that, 

on average, each successive trial carried less weight. This is illustrated in Figure 2: the 

pattern of N400 amplitude across trials suggests that adaptation proceeded more rapidly at 

the beginning of Block 2 and then slowed as the block continued (see Figure 3, which 

illustrates our model’s estimate of the adaptation effect in each participant; see also Figure 

1).

6.1 Implications of our findings for understanding the roles of probabilistic prediction 
and adaptation during language comprehension

Probabilistic prediction and adaptation are closely linked and highly relevant to 

communicating in the real world. Probabilistic prediction leads to more efficient language 

processing, but only if such predictions are based on the probabilistic statistical structure of 

the communicative environment (Kuperberg & Jaeger, 2016, section 1). Because our real-

world environment is non-stationary — that is, the statistical structures of our linguistic (and 

non-linguistic) inputs are constantly changing in systematic ways, depending on who we are 

talking to or what we are reading, we must adapt to different environments so that 

probabilistic prediction remains efficient. Indeed, there is plenty of evidence that we are able 

6This type of expected uncertainty about the statistical structure of the environment is known as estimation uncertainty (Payzan-
LeNestour & Bossaerts, 2011). Another type of expected uncertainty is outcome uncertainty or risk, which describes uncertainty 
resulting from the inherently stochastic nature of an outcome. In the current model, outcome uncertainty would be influenced by the 
mean parameter of the beta distribution and was maximal at 0.5.
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to adapt to changing environments by adjusting our predictions at multiple levels of 

linguistic representation, including phonetic (Kraljic & Samuel, 2006; Norris, McQueen, & 

Cutler, 2003; Vroomen, van Linden, Keetels, de Gelder, & Bertelson, 2004), lexical (Creel, 

Aslin, & Tanenhaus, 2008), syntactic (Chang, Dell, & Bock, 2006; Hanulikova, van Alphen, 

van Goch, & Weber, 2012; Kamide, 2012), and pragmatic (Grodner & Sedivy, 2011; 

Nieuwland, Ditman, & Kuperberg, 2010). The present model highlights the close 

computational links between probabilistic prediction and adaptation (see also Chang et al., 

2006; Dell & Chang, 2014). It is also consistent with previous work suggesting that 

adaptation is, at least in part, based on rational Bayesian principles (e.g. Jaeger & Snider, 

2013; Kleinschmidt & Jaeger, 2015; Myslin & Levy, 2016). Our results extend this previous 

work to show that these principles of rational adaptation are evident in the brain, influencing 

the N400, which indexes the earliest stages of accessing meaning from incoming words.

6.1.1. Adapting probabilistic prediction to different statistical environments 
during language comprehension—Although in the present study, we modeled the 

effects of adaptation on prediction in a simple semantic priming paradigm, we suggest that 

our findings are relevant for understanding the relationships between probabilistic prediction 

and adaptation during higher-level language comprehension. Recent evidence suggests that, 

just as the ratio of related to unrelated word-pair trials within a block influences the 

magnitude of the behavioral and N400 semantic priming effect, the ratio of predictable to 

unpredictable sentences in an experimental environment influences predictability effects 

during sentence comprehension. For example, the effect of lexical probability on reading 

times is increased when there is a higher proportion of predictable sentences in the 

environment (although this was a between-group effect; Brothers, Swaab & Traxler, 2017, 

Experiment 2). And a recent ERP study suggests that the proportion of predictable spoken 

sentences in the environment can also influence the magnitude of the N400 expectancy 

effect within participants, although, unlike in the present study, the change between blocks 

was accompanied by a more overt signal — a change in speaker identity (Brothers, 

Hoversten, Dave, Traxler & Swaab, under review), which, as discussed below, may have 

provided a cue that the environment had changed.

It will be therefore be important to determine whether the principles incorporated in our 

computational model shed light on these sentence-level adaptation effects. Of course, in 

extending this model, we emphasize that there are critical differences between prediction 

during semantic priming and sentence comprehension. First, in a semantic priming 

paradigm, the “context” is a single word (the prime), and, to generate predictions about the 

target, participants are likely to draw upon their knowledge about simple semantic 

associations between words, estimated in our model by the prime’s Forward Association 

Strength. In contrast, during sentence comprehension, the context constitutes the full set of 

words (and non-verbal information) that has been encountered prior to a given incoming 

word. Comprehenders are therefore likely to draw upon multiple different types of linguistic 

and non-linguistic knowledge to generate estimates of the probability of the upcoming 

words, typically estimated using the cloze procedure (Taylor, 1953).7 Moreover, different 

words, or combinations of words, within a context may be associated with different 

predictive validities (or reliabilities), which may be weighted, possibly in a Bayes optimal 
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fashion (cf Knill & Saunders, 2003; Ernst & Banks, 2002), in generating predictions (see 

Kuperberg, 2016, page 610 for discussion).

Another factor to consider when extending this type of model to sentence comprehension is 

whether it is appropriate to log-transform the final estimate of probability to compute the 

information theoretic measure, surprisal. In the present model, we included this final log-

transform step because previous work had suggested that surprisal can be a better predictor 

of processing difficulty than raw probabilities, particularly for very low probability words 

(Hale, 2001; Levy, 2008; Smith & Levy 2013), and we estimated the unrelated targets in the 

present study to have very low probabilities. Indeed, we subsequently verified that the 

amplitude of the N400 was better predicted by the log-transformation of the model’s 

estimated probability of each target word (its surprisal) than by its raw probability. However, 

it is an open question whether surprisal is a better predictor of N400 amplitude than raw 

probability during sentence and discourse comprehension. It can be challenging to estimate 

the true probabilities of low probability items using ngram corpus-based methods (Ong & 

Kliegl 2011) and cloze procedures, and so it will be important for future studies to 

investigate the link between neural (and behavioral) responses and probability in more 

detail, combining large-scale cloze studies with state-of-the-art language models.

Finally, it is also important to bear in mind that, during higher-level language 

comprehension, there may be metabolic costs incurred in generating predictions based on 

higher-level context. Such costs are less likely to be incurred during a simple semantic 

priming paradigm, and, indeed, our mixture model assumed no such costs, weighting the use 

of FAS and frequency purely by participants’ estimates of the prime’s predictive validity 

(the mean of the beta distribution). Thus, in the present model, participants’ confidence 

about prime’s predictive validity (represented by the precision of the beta distribution) 

influenced the rate of adaptation across trials, but it had no direct effect on the amplitude of 

the N400 evoked on any given trial. During higher-level language comprehension, however, 

comprehenders may rationally allocate their limited resources in generating predictions 

based on their confidence about the predictive validity of the local context. For example, in 

situations of high uncertainty about the informativeness of a given local context, 

comprehends may limit the influence of top-down contextual prediction, relying more on 

bottom-up stimulus features. This would be keeping with frameworks that highlight a role of 

precision in hierarchical message passing during predictive coding (e.g. Feldman & Friston, 

2010; see Clark, 2013, for a review).

While there are obviously many open questions, this type of model illustrates some of the 

core computational principles that are important to consider in models of prediction and 

adaptation during higher-level language comprehension. More practically, it also highlights 

the need to carefully describe not only any experimental manipulation of interest, but also 

details about surrounding stimuli including fillers when sharing research findings. For 

example, based on cloze norms, one might estimate the probability of a particular word in a 

7We emphasize that FAS between individual pairs of words is not thought to play a major role in sentence or discourse comprehension 
(for behavioral evidence, see Foss & Ross, 1983; Morris, 1994, Experiment 2; Traxler & Foss, 2000; for ERP evidence, see Camblin, 
Gordon, & Swaab, 2007; Coulson, Federmeier, Van Petten, & Kutas, 2005; Van Petten, 1993).
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highly constraining sentence context to be 0.9. However, if only 50% of sentences in an 

experiment end with an expected word, then, by the end of the experiment, participants may 

estimate the actual probability of encountering a predictable word to be significantly lower 

(in our model, expectations would asymptote to a probability of 0.45).

6.1.2. Inferring when to adapt during language comprehension—Another major 

set of outstanding questions is how the brain determines when and how quickly to adapt in 

any given situation. Our model was highly simplified in that, by initially setting the precision 

parameter to a number that was much lower than the number of trials actually observed 

during Block 1, we assumed that participants believed that Block 2 would be different from 

Block 1, leading them to down-weight the importance of information that they had gained 

over the course of Block 1, and adapt to Block 2. During real world language processing, 

however, the brain must infer when and how quickly to adapt to different communicative 

environments (see Qian, Jaeger & Aslin, 2012, and Kleinschmidt & Jaeger, 2015 for 

discussion). This can be challenging because the agent must be able to distinguish between 

inputs that are unpredicted as a result of a true systematic change in the environment (so-

called unexpected surprise) from inputs that are unpredicted because of the inherent 

stochasticity of the current environment and uncertainty about its statistical structure 

(expected surprise; see Yu & Dayan, 2005 and Qian, Jaeger & Aslin, 2012 for discussion). 

Correctly inferring how quickly to adapt to a systematically changing environments is 

crucial for efficient language processing: if the brain adapts too slowly or too quickly, then 

its probabilistic predictions will, on average, be inaccurate.

Future work may be able to capture something about how the agent infers how quickly to 

adapt by incorporating hyperparameters into models of adaptation that specify beliefs about 

environmental non-stationarity. These hyperparameters might specify expectations about the 

rate of continuous environmental change (volatility, e.g. Behrens, Woolrch, Walton, 

Rushworth, 2007) or the frequency of discrete change points (e.g. Gallistel, Mark, King & 

Latham, 2001). Thus, in addition to learning the current environmental statistics, this type of 

hierarchical model would also be learning how likely the environment is to change, with 

different levels of the model influencing one another. The ability to incorporate these 

hyperparameters is a strength of the Bayesian modeling approach we take here.

Another major challenge for the brain is that adaptation can potentially interfere 

inappropriately with long-term knowledge, particularly when changes in the local 

environment are only temporary (e.g. when listening to an atypical speaker). This need to 

adapt locally without losing the benefit of one’s previous or longer-term knowledge is 

known as the stability-plasticity dilemma. One proposed solution to this dilemma is that 

comprehenders are able to keep track of multiple sets of beliefs about environmental 

statistics (i.e. multiple models; see Kleinschmidt & Jaeger, 2015; Qian, Jaeger & Aslin, 

2012, 2016). Thus, unexpected surprise may not simply lead participants to adapt their 

current model to a new environment; it may instead lead them to switch to a different pre-

stored model, or switch to learn a new model entirely (see Qian, Jaeger & Aslin, 2012, 2016; 

Gallistel, Krishan, Liu, Miller & Latham, 2014). In real-world communicative situations, 

evidence that comprehenders should switch models can also come from external cues, such 

as a new face or a new voice indicating that one is now communicating with a different 
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speaker. Again, this type of model switching can be implemented naturally within a 

Bayesian modeling framework. The rational adaptor model described here forms the basis 

for adaptation to a single environment, which is a necessary building block towards being 

able to store and retrieve multiple environmental models.

Relatedly, at a neural level, it will be important to determine whether ERP components other 

than the N400 more specifically track inferences about environmental change. For example, 

we have previously hypothesized that a family of late positivities (anteriorly distributed 

when evoked by highly informative incoming words, and posteriorly distributed —the P600

— when evoked by words that are semantically or syntactically anomalous) may reflect the 

detection of unexpected surprise, triggering either rapid adaptation of the current model, or 

model switching (Kuperberg, 2013; Kuperberg & Jaeger, 2016, section 4).

Finally, we emphasize that, in addition to rational principles of Bayesian updating, both 

prediction and adaptation are likely to depend on many other factors that influence utility, 

including task demands. Indeed, as shown in Figure 2, towards the end of the block, the 

magnitude of the N400 effect appeared to become smaller. This may simply reflect a general 

fatigue effect or anticipating the end of the experiment, leading participants to invest less in 

the task. The best models of adaptation would need to be robust to these additional processes 

or else account for them.

7. Conclusion

In conclusion, our quantitative model of trial-by-trial adaptation on the N400 ERP 

component provides evidence that (1) the brain combines immediate contextual constraints 

with global probabilistic constraints to influence semantic processing of incoming words, (2) 

the brain has some prior expectation that the broad statistical structure of its environment 

might change and is able to rationally adapt its probabilistic semantic predictions of 

incoming words in response to this new environment.

Of course, there remains much work to be done to determine exactly how these principles of 

probabilistic prediction and adaptation are instantiated at the algorithmic and 

implementation/neural levels. There is evidence for close links between probabilistic 

principles and some connectionist models of language processing (McClelland, Mirman, 

Bolger & Khaitan, 2014; Rabovsky, et al., 2018) and language adaptation (Chang et al., 

2006; see Jaeger & Snider, 2013, for discussion). There is also evidence that the population 

activity of neurons can represent uncertainty that underlies probabilistic computation (Fiser, 

Berkes, Orban & Lengyel, 2010; Orban, Berkes, Fiser & Lengyel, 2016), although we know 

little about how this plays out during language comprehension. This study provides a 

mathematical description of the links between probabilistic prediction and adaptation. By 

showing that these principles influence modulation on the N400 — a direct neural measure 

of semantic processing — our findings pave the way towards bridging the experimental ERP, 

computational modeling and neuroscience literatures, thereby providing new insights into 

how our brains infer meaning from language.
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Figure 1. 
Sample beliefs μ (probability of a related trial) over the course of Block 2 of the experiment 

at different values of precision parameter ν. Higher precision (i.e. more certainty in prior 

beliefs) leads to slower adaptation to the new environment.
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Figure 2. 
N400 amplitudes over trials for related and unrelated trials, averaged over all participant data 

in Block 2.
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Figure 3. 
The output of the rational adaptor model for each participant, calculated based on their 

idiosyncratic trial ordering in Block 2
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Figure 4. 
Log-likelihoods of fitted regression models testing the rational adaptor model with different 

prior values of the precision parameter ν. Larger (i.e. less negative) log-likelihoods indicate 

better fit. A prior strength of ν = 77 optimizes the fit of the rational adaptor model to the 

empirical N400 data.
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