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Abstract

We are studying the extraction of high-level features of
raw speech that are statistically-based. Given carefully
chosen features, we conjecture that extraction can be
performed reliably and in real time. As an example of
this process, we demonstrate how speech samples can
be classified reliably into categories according to what
language was spoken.

The success of our method depends critically on the
distributional patterns of speech over time. We
observe that spoken communication among humans
utilizes a myriad of devices to convey messages,
including frequency, pitch, sequencing, etc., as well as
prosodic and durational properties of the signal. The
complexity of interactions among these are difficult to
capture in any simplistic model which has necessitated
the use of models capable of addressing this complex-
ity, such as hidden Markov models and neural net-
works. We have chosen to use neural networks for this
study.

A neural network is trained from speech samples
collected from fluent, bilingual speakers in an anechoic
chamber. These samples are classified according to
what language is being spoken and randomly grouped
into training and testing sets. Training is conducted
over a fixed, short interval (segment) of speech, while
testing involves applying the network multiple times to
segments within a larger, variable-size window. Plu-
rality vote determines the classification. Empirically,
the proper size of the window can be chosen to yield
virtually 100% classification accuracy for English and
French in the tests we have performed.
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Introduction

In an international setting, one might overhear parts of
conversations in a variety of languages. Given the
proper experience, identifying familiar languages can
be done easily and accurately. What is it that tells us
the identity of a language? How do we know, for
example, when the same speaker speaks English or
French? Under the right circumstances, people seem to
be able to tell immediately, often not from exactly what
is being said, but from broad characteristics of the
speech.

In fact, it is not necessary that one be competent in
French to recognize that people are speaking French.
When Arte Johnson speaks English with an accent,
then suddenly starts talking in pseudo-German, the
audience identifies the language as German, even
though he may not use actal German words or
phrases. It simply “‘sounds like German.”

Spoken language is perceived on many levels. A
variety of judgements about features of speech are con-
stantly being made by a listener. Listeners uncons-
ciously notice many things about speech -- tone of
voice, style, pace, gender of the speaker, accent, degree
of excitement, who is speaking, etc. These features can
be very high level although often not consciously con-
templated under ordinary circumstances by the listener.
We further observe that spoken communication among
humans utilizes a myriad of devices to convey mes-
sages, including frequency, pitch, and sequencing, as
well as other prosodic and durational properties
measurable in the signal. The complexity of interac-
tions among these in the speech signal are impossible
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to capture in any simplistic model necessitating the use
of models such as hidden markov models and neural
networks.

While speech understanding research has focused
primarily on extracting ‘‘meaning'® from speech, it is
clear that there are many other ways humans process
speech. Most of the high-level features mentioned
above cannot be tied to any particular, conventional set
of phonetic or acoustic features of the speech. Instead,
they appear to be related to distributional patterns or
statistical aggregates of the speech waveform.

We are investigating the extraction of high-level,
statistically-based features from speech. Specifically,
in this paper, the task is to determine the language
being spoken from samples of raw speech. Bilingual
speakers fluent in two languages are recorded and
speech samples are separated into training and testing
groups. Training attempts to create a network that can
reliably determine which language is represented.

We assume that the classification task can be con-
ducted in real time by the model. We further assume
that it is only necessary for the model to see very raw
speech waveforms, represented as sampled frequency
bands over time. We specifically rule out explicit
phonetic identification as well as a variety of other
intermediate-level structuring that is typically found in
speech understanding and recognition systems.

Related Work

There have been several studies that demonstrate the
existence of statistically significant differences among
spoken languages at the acoustic level (Hanley, et al.
(1966); Atkinson (1968)) and also at the level of
phonetic features (Denes (1963); Kucera & Monroe
(1968)). Abe et al. (1990; 1991) have considered some
of the differences in automatically converting a
speaker’s voice from one language into another. Since
these differences are measurable at the low end of the
speech chain, then surely it must be possible to exploit
those differences to build a model that emulates the
human ability to comectly discriminate among
languages.

House (1977) proposes a method of language
identification which utilizes a language structure com-
ponent in conjunction with a statistical component. His
approach was apparently hindered, at that time, by the
lack of sufficient computing power to perform the
necessary statistical procedures.

We share some of House's beliefs about the value
of statistical procedures in extracting certain high-level
features. Being statistically based, the processing will
naturally be resistant to noise and tolerant to some
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variation. We further assume that such processing can
be demonstrated in real time. This assumption rules
out the existence of a sophisticated language structure
component and demands that intermediate levels of
processing normally associated with speech under-
standing be finessed.

Recently, Muthusamy et al. (1990) has followed
some of the suggestions made by House in examining
this problem for four languages: American English,
Japanese, Mandarin Chinese, and Tamil. They
recorded six male and six female speakers each speak-
ing 20 utterances in one of the languages. Four
waveform and four spectral parameters were extracted
and used to segment and label the speech with one of 7
broad phonetic categories with 82.3% accuracy. The
segmented speech was then used in a second network
designed w0 classify by language. This proved to be
79.3% accurate in classifying the speech into one of
four languages.

QOur approach differs from theirs in several
respects. We first assume all processing can be con-
ducted in real time. We also wish to finesse the need
for intermediate structures as much as possible. We
feel there is always some loss of information in map-
ping the waveform into discrete structures and this loss
could have an effect on the success of the classification
of the high-level feature.

Data Collection

For our experiments, we collected speech samples from
three bilingual speakers: two males and one female.
All speakers fluently spoke English and one other
language: male, spoke native French and non-native
English; m spoke native Japanese and non-native
English; and Temale, spoke non-native French and
native British English. Recordings were made of 12.5
second, randomly chosen samples of each speaker
reading the phonetically balanced ‘‘rainbow passage”
in English and excerpts of spoken passages read from
newspaper stories in the other languages. Two dif-
ferent samples were recorded for each language for
each speaker. Yielding a total of 12.5 speech samples.

All recordings were made in an anechoic chamber
resulting in 16-bit samples at 24kHz. Five Band-Pass
filters were used 1o separate the signal into bands which
were low-pass filtered and decimated by a factor of
200. This process is illustrated in Figure 1.

Within the 12 second samples, we selected samples
of smaller duration by specifying a start point and a
duration and clipping it from the larger sample. This
permits numerous overlapping samples to be extracted
from each collected sample depending on the size of
the sample to be extracted.
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Figure 1: Frontend Processing

System Design

Designing a system for this task requires that proper
training is performed and that testing favors correct
decisions. We are using a neural network that maps
input units representing 750ms. duration of speech to
output units representing the range of languages being
identified.

The choice of 750ms is based on a compromise
between a network that is too small to properly detect
the distinctions necessary to identify the language and
one that would require enormous computing resources
to train. For durations less than 750ms, training pat-
terns contain numerous input similarities which require
separation as output dissimilarities. This can be deter-
mined by performing boundary pair testing as
described in Kalman & Kwasny (1992). Such a situa-
tion is unacceptable since it indicates that good training
will be extremely difficult to achieve. Durations above
750ms require an enormously large input layer and
many network weights to manipulate. While a faster
machine or more time could overcome such problems,
we felt that this was also unacceptable for us given our
current environment.

After choosing the size of the input window, the
remainder of the architecture had to be determined. In
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our preliminary experiment, only two languages,
French and English (spoken by malc1 and female,),
were used. Therefore, the output layer contains only
two units, one for French and one for English. The size
of the hidden layer is determined by making intelligent
guesses. We examine the trainability of the network
for all data, training and testing, and find the number of
hidden units experimentally where the network maxi-
mally accounts for all the data. [Note that this number
could also be found through a set of experiments in
which training took place with just a randomly deter-
mined training set and then tested for generalization
among the other patterns, but that method would take
much longer.] The final netwaork connects each layer to
each layer forward of it, and so there are the standard
layered connections as well as connections directly
from the input to the output layer. All training was per-
formed using variations on the conjugate gradient
method (see Kalman, 1990 and Kalman & Kwasny,
1991).

During network training, its generalization capabil-
ity is continually being monitored by calculating a con-
fusion matrix for the testing set of patterns and apply-
ing a x* test to it. As the x? result continues to
increase, training continues. If the test levels off or
decreases, adjustments are made in training until the
best trained network has been found.



Repetitions 40 60 80 100 120
Threshold 21 31 41 51 61
Duration(secs) 1.725 2.225 2.725 3.225 3.725
Number of Patterns 1,729 1,709 1,689 1,669 1,649
(in each language)
English 99.3% 100% 100% 100% 100%
French 92.7% 96.7% 973%  99.2% 100%
Malc 100% 100% 100% 100% 100%
glish only)

Figure 2: Performance on Two Speaker/Two Language Task

To evaluate decisions regarding language
identification, the short, 750ms segment must be slid
across a wider window of speech, creating multiple
decisions on which to base the classification. We arbi-
trarily decided to do so in 25ms intervals. For the two
language problem, a simple majority rule is what is
used. In effect, the smaller segment result is integrated
across the larger time frame. For multiple languages, a
plurality vote may be used and may potentially gen-
erate ‘‘don’t know'’ classifications.

In analyzing the data by bands, the middle (third)
band shares much with the adjacent bands. We decided
to attempt to train the network from data further
reduced by the elimination of band three. We success-
fully trained the network approximately the same level
without including band three. This training is faster
since there are fewer weights to adjust and so we used
this method of training for all the results reported in the
next section.

Results

Our first results were obtained from experiments with
two speakers, male, and femalc each speaking
English and French. 'thllc this is a vcxy limited task, it
represents the technique involved in successfully clas-
sifying speech segments for this purpose.

First, the 12.5 second speech samples of the two
subjects were divided into training samples and testing
samples. Each training sample was processed into 371
overlapping 750ms segments of speech each of which
produced 360 numeric values of frequency information
across the four bands (90 samples of 4 bands). Train-
ing proceeded to settle at 73.7% correct on the test pat-
terns. This trained network was then evaluated on
varying durations of windows and performance was
measured according to a majority vote. Figure 2 shows
the performance while varying the duration from 1.725
seconds to 3.725 seconds. We report figures on all
data, both testing and training, to enable us to look at
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more cases. Clearly, these results would hold rather
closely for just the testing patterns. Note that the
identification of English examples is total when using
the duration of 2.225 seconds, while the French exam-
ples require a duration of 3.725 seconds to achieve
100% performance. This level of performance is even
more remarkable when we consider that it is based on
an evaluation of all 3,298 French and English testing
and training patterns.

We then tested the same network with English
speech samples from . These data are shown in
the final row of Figure 2, with perfect performance
achievable in a duration of about 1.725 seconds. This
illustrates the degree to which the network is capable of
generalizing to the speech of subjects for which it has
not been trained, in this case male2 whose native
language is Japanese.

It is possible to make a theoretical analysis of the
tradeoff between achieved performance level on the
short segment and the duration of the window neces-
sary for high-level performance (99.5% correct) during
testing. Figure 3 shows such a theoretical projection
for selected performance levels of the network. For
example, if the network performs at the level of 60%
correct for the worst category being classified, then
assuming independent classificatory decisions (which is
not strictly correct, but suitable for this approximation)
we use the binomial theorem to yield

[N

Here, N is assumed to be odd to make the calculation

0995 < 3 p*(1-p)*

k=M

simpler, and M is assumed to be % +2. So, in Fig-
ure 3, the initial column determines the probability, p,
used in the binomial theorem and N is determined and
shown in the second column. The third column can be
derived from the second by the formula:



Performance in Minumum (odd) N | Duration of window Normalized x?
worst category to yield 99.5% (seconds) performance on
(percent) performance training set
60 181 5.25 2040
65 81 2.75 2049
70 51 2.00 20.55
75 41 1.75 20.64

Figure 3: Theoretical Projection of Performance

0.75 + (N — 1) x (0.025)

since the segment size is 0.75 seconds and the incre-
ment for sliding the segment within the window is
0.025 seconds. Further the % performance when
applied to the confusion matrix can be estimated and
used in determining when training has reached the
proper level to achieve the performance desired.

Conclusions

We have shown how a properly defined neural network
is capable of reliably extracting the identification of
what language is being spoken from raw speech. In
our preliminary study reported here, perfect results
were obtained by summing over multiple decisions and
using a majority vote to determine a better decision
from several individual error-prone ones. In fact, it can
be shown that the error decays exponentially as the
decision-making window is extended.

In a broader sense, we have illustrated the potential
of extracting high-level features from raw speech by a
majority decision-making system. The idea of “‘col-
lecting votes’* while sequentially processing input from
a source channel is a powerful idea that results in noise
tolerant decisions leading to remarkable performance.
The majority vote technique exhibited here is a general
method for improving the performance of an errorful
method to one that is virtually flawless. Successful
application of this method requires a task that submits
to simple, aggregate classifications of the type demon-
strated here and a classification technique that achieves
areasonable level of performance.

Human communication must carry information
from one speaker to another by exploiting the charac-
teristics of the channel. The channel of voice commun-
ication constrains what is permissible in a natural
language utterance and what is not. Each language has
developed its own unique system of utilizing the chan-
nel of communication to carry messages. While there
is considerable overlap from language to language, it is
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the uniqueness that permits us to determine which
language is being spoken and, therefore, which linguis-
tic frame of reference to apply.

Future Work

Ongoing research is investigating how to incorporate
voting schemes into the network in natural ways.
There is evidence for both spatial and temporal summa-
tion in nerve cells found in the brain and we hope to
find architectures that better simulate such activity.

A promising approach involves the use of recurrent
networks. In preliminary studies, a simple recurrent
network was trained to achieve recognition rates com-
petitive with those of non-recurrent ones, but using a
much smaller window. Recurrent networks develop a
limited memory of past events and can exhibit
classification capabilities that consider both immediate
inputs and past events.

Experiments have also begun which utilize the data
we have collected to train networks for both gender
discrimination and speaker discrimination. Here again,
the thrust of the work is on reliable identification of
high-level features in real time directly from the speech
signal. With a small number of speakers, speaker
discrimination is proving to be an easy task. This situa-
tion is expected to change as data from more speakers
is collected. Our voting method is not expected to
work quite as well with gender discrimination due to
the large degree of overlap in vocal frequency between
male and female speakers.
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