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Since the development of chirped pulse amplification, there has been a significant increase

in high peak intensity many-cycle laser pulses. Such pulses are of great interest for driving

a variety of laser-plasma interactions, with many of these effects depending greatly on the

driving intensity of the laser field. These effects include phenomena such as relativistic high

harmonic generation with solid density targets and electron acceleration to relativistic speeds

using laser wakefield acceleration.

These interactions scale with the peak intensity of the laser pulse, meaning higher peak

intensities are desired. Since the pulse duration for many of these systems are ≈ 10x longer

than their single cycle limit, a factor of 10 increase in peak intensity could be achieved by

creating a pulse with identical energy but with a single cycle pulse duration.

The current amplifier technologies makes the creation of high energy few-cycle laser pulses

a very difficult task. Instead of focusing on maintaining a few-cycle laser pulse during

amplification, one aspect of this thesis focuses on the application of self-phase modulation as

a high efficiency method to compress a many-cycle laser pulse after amplification, enabling

the creation of high energy few-cycle laser pulses.
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As the single-cycle limit is approached, the bandwidth required to support the pulse in-

creases substantially. This can cause issues as a pulse propagates through material to an

experiment, as material dispersion is able to substantially alter the temporal profile of the

pulse, substantially reducing the peak intensity. In addition to material dispersion, there can

be a nonlinear coupling between self-phase modulation and the material dispersion which

can cause a substantially larger than expected change in the peak intensity of the pulse,

which can not be pre-compensated for like material dispersion. In this thesis, I examine the

effect of this coupling for a variety of laser intensities and discuss methods of mitigating the

undesired decrease of the peak intensities.

Since a few-cycle laser pulse is easily able to have the peak intensity reduced due to material

propagation, proper temporal profile characterization is required to ensure the desired pulse

duration is actually obtained. In this thesis, I discuss two machine learning based methods

that utilize self-phase modulation to characterize the phase and temporal profile of the laser.
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Chapter 1

Introduction

Since the invention of the ruby laser in 1960 by Theodore Maiman [2], lasers have significantly

influenced the development of the world. Lasers have enabled a wide range of advancements

in many industrial fields. These developments include technologies such as photo-lithography

systems for making computer chips [3], optical fiber based communications [4], laser cutting

[5], and metallic 3D printing [6]. Lasers have also directly improved the lives of many

individuals through medial surgical procedures [7], such as laser eye surgery [8, 9, 10], along

with the usage of many current or previous everyday technologies such as disk readers,

computer mice, and barcode scanners.

One of the major benefits of lasers compared to more traditional incoherent light sources is

the capabilities to reach extraordinary peak intensities. Due to lasers being able to amplify

light, while maintaining both spatial and temporal coherence, even continuous wave laser

system can reach high enough average optical powers to enable applications such as laser

welding. While these laser systems can reach impressive average powers compared to inco-

herent light sources, the achievable peak powers can be significantly increased by using a

form of laser pulsing.
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Pulsing a laser pulse is capable of increasing the peak power of the laser as it can be used

to temporally concentrate the energy of the laser. Since the power of a laser is related to

the amount of energy a laser is capable of delivering to a system over the time period it

is applied, a substantial increase of the intensity is possible with the same laser energy by

decreasing the time period that it is being delivered. This relationship means if an increase

in the peak power of a laser system is desired, either the energy needs to go up or the pulse

duration needs to go down.

1.1 Pulsed Laser Systems

One of the first methods to generate a high power pulsed system was the development of the

Q-switching technique [11]. Q-switching, or quality switching, is performed by changing the

quality factor of a laser cavity, or in other words allowing the laser energy to build up when

the quality factor is large and be expelled from the cavity when the quality factor switches

to a lower value. The pulse durations possible are related to either the time the laser cavity

is swapped to a low quality factor or the time that it takes for light to complete one full pass

of the laser cavity. These limitations makes it difficult to have pulse durations significantly

shorter than a nanosecond [12], though methods such as microchip based q-switch lasers

exist which can produce picosecond pulses [13] .

Another method of short pulse creation was active mode locking, where the laser cavity

contains an actively changing feature. While there are multiple methods of applying active

mode locking [14, 15], they all are based around the idea of having modifications of the laser

cavity to cause preferential amplification of specific modal features, forcing pulsed structures

to form. Since the pulse structure is being enforced within the laser cavity, that means the

duration of the created pulse can be decoupled from the size of the laser cavity, enabling the

production of shorter pulse durations.
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While activate mode-locking requires some kind of active modification of the laser cavity,

passive mode-locking is another method of mode locking that do not require any active

modifications to the laser cavity. One such passive mode-locking technique is Kerr lens

model locking [16, 17, 18]. Kerr lens mode locking is based off of the optical Kerr effect,

which is a nonlinear changing in the index of refraction:

n(I) = n0 + n2I

where n0 is the normal index of refraction of the material, n2 is the Kerr index of the material,

and I is the intensity profile of the laser. The intensity profile can have spatial variations,

which is commonly broken down into a transverse spatial profile and longitudinal temporal

profile. If the intensity profile of the pulse varies spatially the optical Kerr effect can cause

a phase delay in the wavefront of the pulse similar to the delay induced by a lens [19, 20].

This focusing effect that can occur due to the optical Kerr effect is called self-focusing. Self-

focusing inside of the gain medium of a laser can be utilized to self-select the high intensity

portions of the beam allowing for the generation of laser pulses on the order of single optical

cycle [21]. This means, for a 800 nm titanium sapphire laser, the pulse duration would be

c
λ

= 2.7fs. A single-cycle pulse is often desired due to it being able to reach the highest

possible peak powers for a given energy, while also opening the doors for exciting physics

that only occurs for pulses near the single-cycle limit [22, 23, 24, 25].

While a single-cycle pulse duration may be desired for some ultrafast laser interactions, it

also comes with the complication of that even a small amount of energy can cause significant

damage to optics due to the high intensities the single-cycle pulse naturally can have [26, 27,

21, 28] This damage threshold limits maximum energies that a single oscillator is capable of

outputting.
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Figure 1.1: Timeline of Laser Intensity Progression Starting with the discovery of
the ruby laser, this figure shows the timeline of the progression of peak laser intensities.
Importantly, between the mid-sixties to the mid-eighties there was a plateua of intensity
gains. It was not until the development of CPA that significant growth of peak laser intensity
became possible. Image Credit: [1]

1.2 Pulse Compression and Limits of Femtosecond Pulses

1.2.1 Chirp Pulse Amplification

This material damage limitation drastically slowed the increase of peak achievable intensities

of a laser, as gain media could not handle higher energies and the pulse durations produced

with Kerr lens mode locking was close to the pulse duration limits [29]. To counter this

limitation, a technique inspired by microwave technology, chirped pulse amplification (CPA),

was developed in 1985 by Donna Strickland and Gérard Mourou [29]. CPA is a method to

further amplify pulsed laser systems by temporally stretching an initial seed laser pulse and
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increasing the pulse duration by orders of magnitude, causing a substantial drop in the peak

power of the pulse. By reducing the peak power, additional amplification can occur before

risking material damage, enabling a substantial increase to the maximum energy contained

inside of the pulse. After the amplification of the temporally stretched pulse, the temporal

stretching of the pulse is reversed to create a high energy laser pulse with a pulse durations

on the order of tens of femtoseconds. Designing a laser system around CPA can enable

ultrafast laser pulses with pulse duration on the order of tens of femtoseconds with energies

on the order of tens of milliJoules for commercial systems [30] to more than Joules of energy

for state-of-the-art laser facilities [31, 32].

While CPA has seen great success in the past decades, there are limitations to the technique.

CPA is able to create laser pulses with large energies, but it requires many passes through

laser gain media and many other optics during the amplification stages. Between effects such

as gain narrowing and high-order material dispersion effects, the pulse durations after CPA

tend to be limited to 30 fs or greater [33].

While high intensities are achievable with these systems, the pulse durations are still tend

to be an order of magnitude longer than the singe-cycle pulse duration limit [34]. While

making a high-energy single-cycle laser pulse output from the laser might be fairly difficult,

one path forward is to break the tasks up in creating a high-energy many-cycle laser pulse,

which CPA already can do, and then later converting the many-cycle laser pulse into a few

cycle laser pulse after the amplification [22, 35].

1.2.2 Nonlinear Pulse Compression

To create a single-cycle laser pulse, a wide spectral bandwidth is required. This is due to

the width of a laser’s spectrum being fundamentally tied to the shortest possible pulse du-

ration, where a single cycle laser pulse requires spectral spanning hundreds of nanometers of
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bandwidth[36]. This means, if the laser has a narrow spectrum, the shortest possible pulse

duration is going to be significantly longer than a single optical cycle. In other words, to

convert a many-cycle laser pulse into a single-cycle laser pulse some mechanism is needed

to spectrally broaden the laser pulse. Whatever method is used, some form of nonlinearity

is required to generate the additional spectral bandwidth required to decrease the shortest

possible pulse duration [37]. Commonly, the shortest possible pulse duration a given spec-

trum can produce is refered to as the Fourier transform limited (FTL) pulse duration, due

to the Fourier relationship between the temporal and spectral electric fields.

A nonlinear optical effect is required to generate additional frequency components because

linear optics obey the principle of superposition. This means linear interactions can be

viewed of a sum of the individual spectral components interacting independently, which

means no new frequencies can be introduced through a linear interaction [38]. To introduce

additional frequency components, which is required to spectrally broaden the pulse, nonlinear

interactions are required. The main nonlinear interaction that is used to spectrally broaden

the laser pulse is an effect caused self-phase modulation (SPM) [39, 40, 41, 22].

SPM originates from the optical Kerr effect and acts as the temporal equivalent to the self-

focusing effect that is used to create a Kerr-lens Mode Locked laser system [39]. The nonlinear

change in the index of refraction causes a nonlinear temporal phase shift across the pulse.

This nonlinear phase shift can significantly increase the complexity of the temporal profile,

create a pulse that requires additional frequency components to support. With the correct

conditions, self-phase modulation can substantially broaden the laser spectra [42, 40, 41, 22].

Since SPM is able to cause spectral broadening in a laser pulse, SPM can be used as a

method to reduce the FTL pulse duration of a pulse. With proper phase compensating

optics, SPM can be used to convert a many-cycle laser pulse into a single-cycle laser pulse

[43, 40, 41, 22]. Since SPM is able to convert a many-cycle laser pulse into a single-cycle

laser pulse without introducing significant losses into the system SPM is an ideal candidate
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for compressing high-energy many-cycle laser pulses.

Optical Fiber

Before high-energy CPA laser systems existed, one common way to introduce self-phase

modulation to spectrally broaden a laser pulse involved passing the pulse through an optical

fiber [44, 43]. The optical fiber is very conducive towards low energy pulse compression due

to it enabling the pulse to propagate a large distance with a small beam diameter, enabling

the intensity dependent SPM to build up as it propagates, broadening the spectrum. One

major benefit of using an optical fiber is the beam mode is able to be well preserved since

the beam is propagating inside of a well-defined waveguide [45]. While this method of pulse

compression works well for low energy pulses, material damages limit the peak intensity

that is able to be reasonably compressed using this method due to material damage. For

this method, pulses tend to be limited to energies on the order of 0.1mJ [46, 47]. Another

complication that can occur is the material dispersion of the long optical fibers can cause the

intensity to change as the pulse propagates. Depending on the laser and material properties

of the system, this effect can either cause the laser intensity to drop substantially after

propagation but with the correct parameters it can actually undergo an effect called self-

compression. Self-compression occurs when the material dispersion counters the nonlinear

phase added from self-phase modulation, causing the pulse to undergo compression while

inside the optical fiber [44].

Hollow-Core Fiber

One method to be able to handle higher energies is the usage of hollow-core fibers [48, 49,

50, 51, 52, 53]. Hollow-core fibers work off of a similar principle as traditional optical fiber

compression, where a waveguide enables the pulse to propagate at focused intensities over a
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distance larger than a Rayleigh length. Instead of having the nonlinearity coming from the

material that creates the fiber though, the nonlinearity comes from the high pressure gas,

commonly argon, that gets pumped through the tube [54, 55]. While SPM is commonly the

dominant nonlinearity, other nonlinearities such as plasma formation can play a significant

role in the spectral broadening of the laser pulse [56]. Since there is only gas in the highest

intensity portions of the beam, hollow core fibers can support higher energies than normal

optical fibers. While hollow-core fibers can reach higher intensities than optical fibers, they

are still eventually limited by material breakdown on the inner walls of the optical fiber [55],

which requires going to larger and larger fiber diameters.

Bulk Material and Thin Film Compression

Ideally, any method utilized to convert a many-cycle laser pulse into a few-cycle laser pulse

would be able to scale well with higher energies. Wanting to scale to larger energies means

working with any technique that relies on being at the focus of the beam, such as fiber based

compression techniques, is going to be infeasible. To be able to implement a fiber based

compression technique, at high energies, without damaging any of the optical components in

the system, larger and larger focal spots are required. This requires focusing optics with focal

lengths on the order of meters to achieve the required focal spots without causing optical

damage even for milliJoule level systems [49, 50]. Scaling beyond milliJoule energies would

require even longer focal length focusing optics.

Since the major limit in both traditional and hollow-core optical fibers is the high intensities

reached at the focus of the laser, one solution to reaching high compressible energies is to do

spectral broadening away from focus. Techniques such as multiple-plate compression [57, 58,

40] and thin-film compression [22, 59, 60, 61, 62, 63] use self-phase modulation in geometries

that prevent the nonlinear media to be at the high intensity focii of the beam, preventing

material breakdown from occurring. Since material breakdown is less of an issue for these
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techniques, scaling the system to higher energies is possible, with thin-film compression

having been demonstrated on pulses with energies up to 17 Joules [64].

One of the main issues with undergoing self-phase modulation in a bulk material is the

nonlinear self-focusing that can occur. Fiber compressors can avoid these effects due to

the mode preservation that occurs due to the wave-guide nature of the optical or hollow-

core fibers. Since bulk materials do not exhibit any guiding structure, a different method to

counter self-focusing is required. The usage of a flat-top beam profile, meaning a beam with a

constant spatial intensity, prevents self-focusing from occur due to the fact that self-focusing

requires variation in the beam profile. Multiple-plate compression addresses this issue by

having multiple stages of nonlinear lensing occurring inside of a focusing beam enforcing a

specific modal structure.

1.3 Applications of Few-Cycle Sources

Ultrafast optics has a great many fields and applications [65, 66, 67, 23]. Due to being

able to reach very high peak intensities ultrafast laser pulses are ideally suited for driving

many nonlinear interactions. While using a few-cycle laser pulse could enable even higher

intensities to be reached, some interesting physical effect can occur at the few-cycle limit

[25, 22, 24, 23, 68].

1.3.1 High Harmonic Generation

There are a variety of different nonlinear interactions can cause an up-conversion of the initial

laser frequency into frequency in the extreme ultraviolet (EUV) regime [65, 66, 69, 70, 67].

This up-conversion of the fundamental frequency into the various harmonic orders is called

high harmonic generation (HHG).
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While the exact mechanisms of the up-conversion depends on the technique used, commonly

the converted EUV light is generated by the extrema of the electric fields in the regions

of high intensity. When driven by a multiple-cycle laser pulse this can generate multiple

pulses of EUV light in relation to the extrema of the electric fields. The generated pulse

train forces the spectral components of the light to take the form of a frequency comb at

the harmonics of the fundamental wavelength. The width of the individual harmonics is

inversely proportional to the number of pulses in the pulse train. This means by going to

a few-cycle laser pulse, the individual harmonics can be broadened enough that an EUV

continuum forms. Driving with a single-cycle laser pulse also enables the generation of a

temporally isolated EUV pulse, enabling time-resolved spectroscopic measurements.

Gas High Harmonic Generation

Gas high harmonic generation is a strong field (∼ 1014 Wcm−2) [67, 25] nonlinear optical

effect that occurs when the laser is focused into a gaseous target. The gas HHG mechanism

can be viewed as the laser introducing a significant perturbation of the local electric field

of an atom, enabling the electron to be promoted to a high energy virtual state through a

multiple photon process [71]. When the electron then gets demoted from the high energy

virtual state the emitted photon can have significantly more energy than the energy of the

fundamental photon. This mechanism is able to generate EUV photons to a maximum

energy related to the binding energy of the atomic gas and the ponderomotive energy of the

laser used in the experiment [72, 71], normally limiting the output energies to be on the

order of tens to hundreds of eV for gases like argon. but if the laser intensity is increased to

around 1016 this limit can be increased to photons on the order of 1 keV [73].

While a single atom behaves as described above, the build up a large amount of signal the

coherent build up of multiple individual events has to occur. This macroscopic effect is called

phase matching and can be viewed as ensuring that the newly generated EUV light always
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constructively interferes with previously generated light, instead of destructively interfering

and causing the signal strength to drop [74].

Relativistic Solid-Density High Harmonics Generation

Solid density high harmonic generation is a relativistic nonlinear process that occurs in the

high field limit of nonlinear optics. This processes can occur when the electrons relativistic

momentum approaches or exceeds the electrons rest mass. This occurs when the normalized

vector potential, given by Eq. 1.3.1 approaches or exceeds unity

a0 = 0.85× 10−9
√
I0[W/cm2]λ0[µm]2 (1.3.1)

For a laser wavelength of 800 nm, this occurs at laser intensities of > 1018 Wcm−2. At

these intensities, electrons of the laser-generated plasma are able reach relativistic velocities

within a single optical cycle. This interaction occurs at the critical surface of the plasma,

which is where the plasma transitions from being transparent to being reflective. Due the

the relativistic motion of the critical surface electrons and the coupling between the plasma

and the laser, the reflected pulse becomes modulated, creating harmonics of the fundamental

frequency [69, 66, 70, 75, 76, 22, 24].

Since the up-conversion into EUV occurs at the critical density surface for all frequencies,

the newly generated harmonics are innately phase-matched. In addition to being inherently

phase matched, due to the modulation in the beam being from the relativistic interaction,

the pulse durations possible in the reflected beam scale with the intensity used to drive the

interaction [77]. This means higher intensity system could create pulse durations down to

attosecond or even zeptosecond timescales [22].
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1.3.2 Particle Accelerators

Few cycle laser pulses can also be used for various types of plasma-based particle acceleration

techniques. Plasma-based particle accelerators are able to support substantially larger accel-

eration gradients than traditional accelerators, due to the supported acceleration gradients

in traditional accelerators being limited by material breakdown. Plasma-based accelerators

avoid this limitation due to the material already being broken down. The increased accelera-

tion gradients enabling a drastic reduction of total propagation required to reach equivalent

particle energies [78, 79].

Laser wakefield acceleration is one of the method for electron acceleration using ultrafast

high intensity laser systems [78]. Laser wakefield acceleration works by having the laser be

focused to a relativistic intensity and focused into a gas jet. The high intensity laser expels

the electrons from a portion of the gas, creating a region of positive space charged surrounded

by a bubble of the negatively charged electrons. For any electrons that were trapped inside

of the bubble, they will see acceleration gradient on the order of 100 GeVm−1 or higher

[79, 80]. Electrons up to the energy of 7.8 GeV have been produced using laser-wakefield

in ∼ 20 cm off acceleration distance [81]. Few-cycle drivers are useful for laser-wakefield

acceleration due to the short pulse duration enabling high intensities along with enabling

matching the pulse duration to resonant structures of the wakefield [68].

It has been proposed that using TFC to generate a single-cycle pulse that in-turn is used

to create single-cycle EUV pulses. This interaction potentially can generated EUV pulses

with durations reaching below a single attosecond [22]. The pulses then could be used

to drive a laser-wakefield experiment in a solid-density target [82]. Doing laser-wakefield

acceleration at such high densities allow for the acceleration gradient to grow substantially,

up to acceleration gradients of TeVcm−1 [80], reducing the total amount of distance required

to accelerate a particle.
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In addition to electron acceleration, few-cycle laser pulses can also be used to accelerate

protons. While there are many different proposed mechanisms for proton acceleration [83,

84], the various techniques tend to be based on using a laser to accelerate electrons to create

a space charge which then is able to accelerate the positively charged ions of interest. While

some of the proton acceleration mechanisms do not inherently require sub-100 fs pulses

[85, 86], some of the mechanisms are able to take advantage of a single-cycle pulse, like

Single-Cycle Laser Acceleration [23].

1.4 Machine Learning

Machine learning is a branch of artificial intelligence and statistics, where a statistical model

is used to learn from existing data to make a desired prediction or decision. There is a wide

spectrum of machine learning models that could be used, each with their pros and cons.

While there are a vast number of machine learning algorithms, in this thesis we are going to

be mainly focused on using neural networks. Neural networks are based around a collection of

individual “neurons”, which are mathematical constructs that are based on a simplified model

of the biologic neurons. These neurons are trained using a supervised learning model, which

exposes the neural network to a known dataset and each individual neuron gets updated to

make the entire neural network get be closer at predicting the desired values.

Within the past ten years neural networks have gained significant popularity due to their

immense power as a general learner. Neural networks are implemented by many technology

based companies, for tasks such as image recognition, video recommendations, and speech

recognition. It is due to this wide range of applicable problems and generalizability of neural

networks that neural networks are widely used.
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1.5 Thesis Overview

The rest of this thesis will be broken up into chapters focused on the following topics. Chap-

ter 2 contains a theoretical introduction to many of the important topics that are discussed

within the later chapters. The beginning of this chapter is largely focused on motivating

and deriving the equations used to describe the linear and nonlinear propagation of light.

The second portion of the chapter is focused on deriving the theoretical structure for a feed-

forward neural network, along with an introduction to other important topics in machine

learning. Chapter 3 focuses on introducing the pulse measurement diagnostics and other

important tools used to create the results described in this thesis. Chapter 4 describes an

experimental method to create a few-cycle laser pulse using compression inside of a bulk ma-

terial, which enabled the generation of a electron spectrum with an increased electron signal

and the generation of a extreme-ultravioletlight continuum. Chapter 5 shows application

of a feed-forward neural network to both experimental and simulated self-phase modulated

spectra to retrieve the initial temporal profile of the laser pulse in a known material, enabling

the retreival of spatially localized temporal intensity profile of the laser pulse in real-time.

Chapter 6 applies a convolutional neural network to a self-phase modulation dispersion scan

inside of an material with an unknown linear and nonlinear response, enabling the prediction

of the lasers temporal profile and estimates of the linear and nonlinear material properties of

the unknown material. Chapter 7 discusses the affect self-phase modulation can have on the

peak intensity of a laser pulse after propagating through media, causing potential errors in

peak intensity calculates for systems that require propagation through vacuum windows or

significant amounts of air. The results discussed in this chapter highlight a potential source

of experimental intensity error in many high intensity multi-milliJoule systems along with a

method to help mitigate the effect. Chapter 8 contains a brief summary of the other chapters

along with potential future works.
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Chapter 2

Background

In this chapter, the topics heavily discussed in this thesis will be given a brief introduction

and theoretical background. Since the focus of this thesis is the mechanism of self-phase

modulation, pulse compression, and applications of neural networks to nonlinear optics the

given background will largely be focused on these topics. Each of these topics by themselves

is extremely rich and has many aspects that will not be discussed in this work.

2.1 Ultrafast Pulses

To begin, we will start with Maxwell’s equations in a vacuum. Since the system is assumed

to be a vacuum, we know there are no charges or currents that can possibly exist, leaving

the Eqs. 2.1.1 and 2.1.2 as the equations of interest.
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Figure 2.1: Temporal Interference Three infinite plane waves are shown with frequencies
ω (magenta), 2ω (orange), and 3ω (green). The waves are summed and the net electric field
shows a pulse feature starting to occur. a) All three frequencies are generated in phase at
the center of the plot, with the summed field shown in blue b) All three frequencies are
generated out of phase, with relative phases of π

4
(purple), 0 (yellow), and −π

4
(green) from

the center of the figure. The summed field is shown in red. c) The intensity profiles of the
in phase (blue) and out of phase (red) fields generated in a) and b), with both normalized
to the peak value of the in phase intensity. The out of phase intensity shows a decrease in
the peak intensity compared to the in phase intensity along with a double pulse structure
that has appeared.

∇ · (~E) = 0 (2.1.1)

∇× ~E = −∂
~B

∂t
(2.1.2)

∇ · ~B = 0 (2.1.3)

∇× ~B =
1

c2

∂(~E)

∂t
(2.1.4)

These coupled differential equations can be solved give Eq. 2.1.5, which take the form of an

electromagnetic wave equation.

1

c2

∂2~E

∂2t
−∇2~E = 0 (2.1.5)

If we assume the light in linearly polarization along a set direction then we can ignore the
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vector nature of Eq. 2.1.5 and treat the electric field as a scalar value. Since Eq. 2.1.5 is a

wave equation, we know that solutions can be treated as a linear combination of oscillatory

functions. Assuming the electromagnetic wave is propagating in the positive z direction and

solving for a single monochromatic plane wave we can write the solution in the form of Eq.

2.1.6, where E0 is the maximum amplitude of the electric field and ω is the angular frequency

of the wave and k is the wave number for the wave.

E(z, t) = Re[E0e
i(kz−ωt)] (2.1.6)

One consequence of defining an electric field in the way that it is done in Eq. 2.1.6 is it

will periodically oscillate for all of time. To create a more complex temporal structure,

additional frequency components are required. This can be seen by multiplying Eq. 2.1.6 by

an envelope function, forcing the pulse to have an additional structure, and looking at the

Fourier transform of the constructed pulse.

The ability to form additional structure can even be seen with only a few frequencies of

light. The structure forms through the constructive and destructive interference between

the different frequencies at different points in time. Fig. 2.1 shows a pulsed structure

forming from three infinite plane waves of different frequencies.

At the center of Fig. 2.1a, all three waves have been defined to have the same relative

phase. This causes constructive interfere to occur between all three of the waves. As we

move further from the center of the figure, each wave will undergo a different amount of

cycles due to the difference frequencies of the wave. This means as we move away from

central region where all three waves are constructively interfering, cancellations between the

waves can start occurring. Eventually, after moving far enough from the one of the points
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of maximal constructive interference, all three waves will each undergo an integer number of

cycles, meaning all of the waves have returned to having the maximum in the same location,

causing constructive interference once again.

While we assumed the monochromatic waves started off with the maxima occurring all at

the same location, there can be a relative phase difference between the waves meaning there

is no location where they all are a maximum at the same time, as shown in Fig. 2.1b. This

causes a temporal broadening of the pulse as they no longer will constructively interfere

purely in one location but will partially constructively interfere across a wider range. This

can cause a drop in the peak intensity of the laser pulse in addition to additional structure

to form. This can be seen in Fig. 2.1c, where the intensity from Fig. 2.1b has multiple

extrema, which is repeated instead of the single extremum of Fig. 2.1a.

While for the three frequencies shown we see this pulse structure will occur every period of

the lowest frequency wave, by choosing waves that are closer in frequency the time between

constructive interference locations can be increased substantially. This increase of distance

is due to the fact that it will take more periods of oscillation to have the two waves have

the maximum in the same location if the difference in frequency is small. Meaning if we

want an isolated pulse in time without repeating features, we will need to not represent the

electric field as a finite sum of discrete frequencies, but instead as a continuous function of

frequencies.

E(ω) = A(ω)eiφ(ω) (2.1.7)

In this equation, A(ω) is the spectral envelope function and φ(ω) is the relative spectral

phase of the different frequency components. With this representation we can easily see the
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relative amplitudes of the frequencies by examining A(ω) and how they relative phases of

the frequencies by examining φ(ω).

In general, φ(ω) can be any arbitrary functions but in practice it commonly is approximated

by the Taylor series expansion of the real phase centered on the central frequency of the

spectrum, ω0. Taylor expanding the phase is beneficial due to many sources of phase pri-

marily adding quadratic phase. This means the phase will commonly be represented in the

form shown in Eq. 2.1.8.

φ(ω) =
∞∑
n=0

∂nφ(ω)

∂ωn

∣∣∣∣
ω=ω0

(ω − ω0)n

n!
=
∞∑
n=0

φ(n)(ω = ω0)
(ω − ω0)n

n!
(2.1.8)

Due to their importance and physical interpretation, the first three terms of this expansion

have their own name. The constant term is called the carrier envelope phase, which deter-

mines if the carrier frequency has a maximum at the center of the envelope function or if it

has been shifted relative to the center. The linear term, group delay, determines the relative

time delay of the entire pulse envelope. The quadratic term of the expansion is the group

delay dispersion (GDD), which is the first time which will alter the shape of the envelope.

Higher order terms tend to be referred to as the power of the expansion they originate from,

for example after GDD the next term of the expansion is the third-order dispersion.

From a predefined spectral profile and phase, the temporal profile of the electric field can

be calculated by taking the Fourier transform of the fields defined by Eq. 2.1.7. Once the

fields are converted into the temporal domain, it can be help to separate the amplitude

information from the phase of the electric field, as shown in Eq. 2.1.9, similar to the spectral
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representation shown in Eq. 2.1.7.

E(τ) = E0(τ)e−iω0τ = A(τ)e−iΦ(τ)e−iω0τ (2.1.9)

Here, E0(z, τ) represents the electric field of the wave with the linear phase term, which is

the central frequency information of the field, separated out into the complex exponential

e−iω0τ . The removal of the central frequency is done so the electric fields can be viewed as

having a slowly varying envelope with small phase perturbations being multiplied by a fast

oscillation, which enables some key approximations to be made later in this chapter. Similar

to Eq. 2.1.7, A(τ) is the temporal envelope function and Φ(τ) is the temporal phase with the

linear term removed. From the temporal phase, we can calculate the instantaneous frequency

of the wave as a function of time, which is obtained by taking the temporal derivative of the

total phase of the pulse.

ω(τ) =
∂

∂τ
(ω0τ + Φ(τ)) = ω0 +

∂Φ(τ)

∂τ
(2.1.10)

While the electric field is important, it is very difficult to directly measure. Most detection

methods, such semiconductor based detectors, are not able to directly measure the fields but

instead measure the intensity of the pulse. This means it is useful to define the intensities

in form of the electrics fields, which is given by Eq. 2.1.11 [87]:

I(τ) =
1

2
n0ε0c|E(τ)|2 (2.1.11)
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Since the energy the in temporal and spectral domain must be the same, due to Parseval’s

theorem, we can calculate the analogous formula for the spectral intensity by setting the

area under the curve of I(τ) and I(ω) to be the same, giving the Eq. 2.1.12.

I(ω) =
n0ε0c

π
|E(ω)|2 (2.1.12)

Now that we have a way to convert from our spectral and temporal domains, along with

converting fields into intensities, we can use this to examine the effect of different spectral

phases on the temporal profiles. To do this we examine four different phases being applied

to a Gaussian spectral intensity profile with a full-width at half-maximum (FWHM) of 12.6

THz, as shown in 2.2a. The temporal profile for pulses with identical spectral intensity but

different phases are then given in 2.2b-e.

2.2 Material Response to Electromagnetic Waves

2.2.1 Maxwell’s Equation in Materials

Now that a discussion on how electromagnetic waves can propagate in a vacuum, we can

discuss how the addition of material can affect the propagation. To do this, we will assume

the light is interacting inside of a change-neutral non-magnetic amorphous dielectric material.

These assumptions mean no free currents or changes can exist, the magnetic permeability

is the same as a vacuum, and that the response is isotropic. With these assumption, a

simple but powerful model is able to be built to describe the response of a material to an

electromagnetic wave.
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Figure 2.2: Temporal Effects of Phase a) Multiple different spectral phases applied to
the same Gaussian spectrum with a spectral FWHM of 12.6 THz. b) The Fourier transform
limited pulse of the spectrum, or the pulse with all frequencies with no relative phase between
them. This pulse is the shortest possible pulse capable of being produced by the given
spectrum. c) The pulse formed when −25000 fs3 of third-order dispersion (TOD) added to
the pulse. TOD is able to create asymmetric temporal profiles from a Gaussian spectrum.
d) The pulse formed when 1000 fs2 of group delay dispersion (GDD) added to the pulse.
GDD is not able to create asymmetric temporal profiles from a Gaussian spectrum. e) The
combination of −1000 fs2of GDD and −25000 fs3 of TOD. Due to the interaction between
the GDD and TOD phase terms the actual change to the temporal FWHM is actually less
than the pulse with just GDD.
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We will start with Maxwell’s equations and discuss how it interacts with a change-neutral

non-magnetic amorphous dielectric material, such as fused silica. To simplify the equa-

tions we will assume the material has a negligible magnetic response and that the resulting

magnetization vector can be ignored.

∇ · (ε0~E + ~P) = ρfree (2.2.1)

∇× ~E = −1

c

∂~B

∂t
(2.2.2)

∇ · ~B = 0 (2.2.3)

∇× ~B =
µ0

c
(~Jfree +

∂(ε0~E + ~P)

∂t
) (2.2.4)

In these equations ~E is the electric field vector, ~P is the polarization of the material in

response to the electric field, ~B is the magnetic field, ρfree is the free charge in the system,

and ~Jfree is the free current of the system.

Since we are assuming the material is neutrally charged and a dielectric material, we know

there will be no free charge or free currents in the system. This means, in Eqs. 2.2.1 and

2.2.4, ρfree and ~Jfree are assumed to be zero. If we assume the material is a homogeneous and

amorphous material, which is true for many glasses, we can assume that the polarization of

the material occurs in the same direction and is a function of the driving electric field. This

means the material response can be written as the scalar function χ(~E) can be written in the

form ~P = ε0χ(~E)~E. One thing to note is that χ(~E) itself can have a complex dependencies

on the electric field, enabling a material to exhibit both linear and nonlinear responses.

With these assumptions one can derive the wave equation of light in material to have the
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following form:

∇2~E− ε0µ0
∂2

∂t2
(
(1 + χ(~E))

c2
~E) = 0 (2.2.5)

While χ(~E) can be a highly complex tensor, with the above assumptions and the assumption

that χ(~E) is only weakly dependent on ~E, we can simplify Eq. 2.2.5 by doing a power series

expansion of χ(~E). To keep the system general, we also include a dependency on ω for χ to

enable different frequencies to respond differently.

∇2~E− ε0µ0
∂2

∂t2
(
(1 + χ1(ω) + χ2(ω)~E + χ3(ω)~E

2
+O(~E

3
)

c2
~E) = 0 (2.2.6)

While this equation is much simpler than Eq. 2.2.5, many of the potential complexities of

these interactions have already been dealt by assuming the a change-neutral non-magnetic

amorphous dielectric material. Due to the original assumptions of amorphous dielectric

media, the various χ terms already have been simplified from a tensor form into the scalar

forms shown in Eqs 2.2.6. Even beyond these assumptions, χ can also be a function of many

different effects, such as frequency, temperature, strain, or electric field polarization.

With the additional assumption that χ has a negligible dependencies on the amplitude of

the electric field, then Eq. 2.2.6 can be simplified to only include the linear response of a

material.

∇2~E− ε0µ0
∂2

∂t2
(
(1 + χ1(ω))

c2
~E) = 0 (2.2.7)
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Figure 2.3: Taylor Series of Potential a) An example potential that is described in Eq.
2.2.8. The minimum of the potential is the location the Taylor series is expanded around.
b) The zoomed in potential centered on the local minimum. Along side the true potential
(black) is the approximations keeping the first three (blue) and five (red) Taylor series
terms. As the distance, r, gets further from zero the three term series begins to no longer
well approximate the true potential. c The percent error between the expansion terms and
the true potential. The three term series begins to have significant errors at the edge where
the five term series has a significantly lower error.

2.2.2 Linear Material Response Approximation

While we now know that Eq. 2.2.7 governs the interactions of an electromagnetic field in the

presence of a material with a linear response, it is worth asking what the physical origins of

such a response may be and how χ1 could be approximated. A model can be built based on

the examining how a bound system interacts with a electric field that perturbs the system

from equilibrium. In general, this technique can be used to model any bound system but

in context of material response it will be modeling the polarization of a atom or molecule.

Since the actual potential for such systems can be highly complex, instead we will work with

a significantly simpler potential given by 2.2.8.

Veff (r) =
a

r2
− b

r
(2.2.8)

This is an effective potential for classically bound systems under an attractive force, such as
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gravity or electrical forces, but the concepts we can explore with this model can be expanded

to more complex potentials. For example, the Lennard-Jones potential is a common potential

used to describe inter-molecular interactions between atoms.

In Eq. 2.2.8 the a and b constants normally are tied to the specific physical system of

interest but for this analysis we can view them as an arbitrary scaling term between the two

parts of the equation. Since we are assuming that the electric field is only having minor

perturbations to the system, we can approximate the system using a Taylor series centered

on the equilibrium point, as shown in Eq. 2.2.9.

While the Taylor series itself is done in terms of the displacement from the equilibrium point,

this can also be viewed as examining how the nonlinearity scales with larger electric fields.

This is due to the fact that weak electric fields are only able to cause small displacements

away from equilibrium, meaning only quadratic term of the expansion is needed to accurately

approximate the potential. As the field strength increases, the number of terms required to

accurately describe the potential increases, causing the potential to be dependent on the

electric field.

Veff (x) =
a

(x+ 2a
b
)2
− b

(x+ 2a
b
)

=
−b2

4a
+
b4x2

16a3
− b5x3

16a4
+

3b6x4

64a5
+O(x5) (2.2.9)

While the Taylor series expansion involves an infinite number of term to fully model the entire

system, as long as the perturbations of the system are minor and stays close to equilibrium

only the first couple of terms of the Taylor series are required to give a strong approximation

of the actual potential.

To see how well the first few terms of Taylor series actually models the potential, Fig. 2.3

shows a region around the minimum of the potential with the Taylor series with various
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number of terms. If the fields are weak enough that all terms of O(x3) are negligible, that

means the actual potential is able to be approximated as a quadratic potential. Having

a quadratic potential greatly simplifies a significant amount of the analysis required as it

means the system is able to be modeled by a simple harmonic oscillator.

If we assume we have a bound system modeled by a quadratic potential and experiencing an

external electric field E, we can write out the force equation for a simple harmonic oscillator

(Eq. 2.2.10), where x is the displacement from the point of equilibrium and q is the charge

of the electron, for the forces felt by the electron.

F = mẍ = qE −mω2
ax (2.2.10)

This equation can be solved by viewing the electric field as a sum of monochromatic plane

waves of a frequency ωj with amplitudes |Ej|. While sine and cosine could be use, it makes

some of the math slightly easier to view these plane waves in a complex representation.

Doing this gives the displacement given in Eq. 2.2.11:

x(t) =
N∑
j=0

q

m(ω2
a − ω2

j )
|Ej|eiωjt (2.2.11)

This shows that the displacement of the electron happens in phase with the driving electric

field and as the frequency approaches the resonance frequency the maximum displacement

will increase. Since no damping terms are included in this model the displacement has

asymptotic behavior occurring at the resonance frequency, meaning this approximation is

only valid away from the resonance frequency. If damping terms were included this asymp-
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totic behavior can be suppressed.

With the displacement of a single electron calculated, we can now calculate the induced

polarization vector from this displace electron, which will be p(t) = qx(t). By summing all of

the individual contributions from the different atoms in the material, the total polarization of

the material can be calculated. This can happen since each individual oscillation responds in

phase with the driving wave, meaning phase-mismatch is not needed to be taken into account.

Multiple atoms with different resonances can also be taken into account, by summing over all

of the individual contributions for each atom type. In general, there can be spatial variation

of the number of electrons, though for this deviation the assumption of a uniform desnsity

will be made. This leads to the total polarization of the material with multiple resonant

frequencies that is exposed to a monochromatic plane wave takes the form of:

P (t, ω) = ε0(
k∑
j=1

Njq
2

m(ω2
j − ω2)

)|E|eiωt (2.2.12)

If we examine Eq. 2.2.12 we see it takes the form of a linear polarization term. This means

Eq. 2.2.12 has the same response as the χ1(ω) term in 2.2.7. If the assumption of a uniform

electron density was not being made, then the system may not be naturally described by a

set of infinite plane waves and require a more complex analysis . For example, if the density

only slowly varied a WKB approach may be a better approach. With the assumption of a

linear polarization, we can rewrite Eq. 2.2.12 in terms of a χ1(ω) response, as shown in Eq.

2.2.13.

P (t, ω) = ε0(
k∑
j=1

Njq
2

m(ω2
j − ω2)

)|E|eiωt = ε0χ1(ω)|E|eiωt (2.2.13)
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In Eq. 2.2.13, k is the total number of different resonances exists in the material, Nj is the

number of atoms with a given resonance exists, and ωj is the resonant frequency for each

bound state. From this we can find the total χ1 induced by the various resonances inside

the dielectric media, which can be used to calculate the index of refraction for the medium.

n(ω)2 = 1 + χ(ω) = 1 + χ1(ω) = 1 +
k∑
j=1

Njq
2

m(ω2
j − ω2)

(2.2.14)

Rewriting this equation in terms of wavelength and collecting all non-wavelength terms into

arbitrary constants we are able to get the generic form of the Sellmeier equation, which is a

commonly used equation to model the index of refraction for a wide variety of materials

n(λ)2 = 1 +
k∑
j=1

Ajλ
2

(λ2 −B2
j )

(2.2.15)

These coefficients can be used to fit experimentally measured index of refraction to create a

analytical approximation to the index of refraction. For example, the Sellmeier formula for

fused silica is given by[88]:

n(λ)2 = 1 +
0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(2.2.16)

With the index of refraction given by this Sellmeier equation plotted in in Fig. 2.4.

If we solve the electromagnetic wave equation, Eq. 2.2.5 assuming the a plane wave and an
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Figure 2.4: Linear Response of Fused Silica The index of refraction (blue) and group
velocity dispersion (red) of fused silica, as calculated from the Sellmeier equation given
in Eq. 2.2.16. The vertical dashed line represents the wavelength where the group velocity
dispersion changes signs, where normal dispersion is a postive value and anomalous dispersion
is a negative value.
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index of refraction which varies as a function of ω we find that the solution is given by:

E(z, t) =
N∑
j=0

E0,je
i(ωjt−

n(ωj)

c
ωjz) (2.2.17)

From Eq. 2.2.17 we can see one major impact that material dispersion has on width band-

width laser pulses, that different frequencies of light propagate at different phase velocities.

This means if a pulse is transform limited and propagates through material, different fre-

quencies will undergo a relative phase shift. Since each individual frequencies no longer have

the same relative phase, the pulse can start stretching out and decreasing the peak intensity

as it propagates through material, as seen in Fig. 2.2. Similar to how we Taylor expanded

the phase, it is common to Taylor expand the amount of phase accumulated per distance

around the central frequency, ωa.

φ(ω − ω0)

z
=
n(ω)

c
ω =

∞∑
m=0

1

m!

dm

dωm
[
n(ω)

c
ω]

∣∣∣∣
ω=ω0

(ω − ω0)m (2.2.18)

These coefficients can be viewed as how much each of the phase terms mentioned in Eq.

2.1.8 changes as light propagates through a set amount of material. The constant term is the

index of refraction at the central frequency. The linear term, or group velocity, determines

how much the envelope of the pulse will be delayed compared to a pulse that would be

propagating inside of a vacuum. The quadratic term, or group velocity dispersion (GVD), is

how much GDD is accumulated per distance. For femtosecond laser systems, this quantity

is commonly written in the units of fs2mm−1. One implication of this is that propagating

through materials can substantially stretch the pulse out in time due to material dispersion.
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Since GVD is defined at the carrier wavelength of the pulse, the value of GVD can vary

substantially as a function of frequency, as shown in Fig. 2.4. One important feature in

about the frequency dependency of the GVD is the zero dispersion point, which is where

the frequency where the GVD is zero. This means pulses around this wavelength will see

substantially less temporal broadening as the pulse propagates through material.

The zero dispersion point splits the GVD into two main regions, a region of “normal” dis-

persion and a region of “anomalous” dispersion. In this context, normal dispersion refers to

materials adding a positive quadratic phase (e.g. GDD) while anomalous dispersion adds

negative GDD. These names come primarily from the fact that in most materials, visible

light will undergo normal dispersion [89].

2.3 Nonlinear Optics

While assuming a quadratic response can greatly simplify the math involve in deriving the

response of a material, this approximation does not always hold. The quadratic approxima-

tion is able to be made only assuming the oscillations around the equilibrium point are small.

When driving by a large enough driving force, such as a high-intensity laser, the driven oscil-

lations can be large enough to require higher order correction terms. Many nonlinear optical

effects come from these higher order correction terms. If higher order responses are added

to equation 2.2.10 then the resulting equation is give by Eq. 2.3.1.

F = mẍ = qE −mω2
cx− ax2 − bx3 −O(x4) (2.3.1)

Where a and b are constants that correspond to the strength of the nonlinearities of that
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order. For the works within this thesis it will be assumed a = 0 due to the focus on

centrosymmetric materials used, which are required to have a = 0 due to the symmetries of

the material. The assumption of an instantaneous nonlinear response is also assumed. This

means the dominant nonlinear term will be bx3, meaning Eq. 2.3.1 reduces to Eq. 2.3.2.

mẍ+mω2
ax+ bx3 = ηqE (2.3.2)

Where η is a parameter of which a power series expansion of the displacement will be around,

which is then inserted into 2.3.2 with terms of similar powers of η solved separately, which

gives the set of equation in 2.3.5.

η : ẍ1 + ω2
ax1 =

q

m
E (2.3.3)

η2 : ẍ2 + ω2
ax2 = 0 (2.3.4)

η3 : ẍ3 + ω2
ax3 + bx3

1 = 0 (2.3.5)

We can solve Eqs. 2.3.5 in a similar fashion to how Eq. 2.2.10 was solved, where we want

to assume the solution to be a linear combination of purely real plane waves of different

frequencies. The purely real plane waves can be achieved by including the complex conjugate

of the initial plane wave. The reason why this is assumed is because of the fact that η3

equation in Eqs. 2.3.5 contains a term that will scale as E3, meaning nonlinear mixing

of frequencies can occur. Specifically, since the electric field is being cubed, we can have

interactions of up to three distinct frequencies. To make the math significantly simpler,

we will assume that we only have a field of a single frequency, which means the nonlinear
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polarization of the material will become 2.3.6.

P3(t, ω) =
Nbq4

8m3(ω2
a − ω2)4

|E|3(ei3ωt + e−i3ωt) +
3Nbq4

8m3(ω2
a − ω2)4

|E|3(eiωt + e−iωt) (2.3.6)

From Eq. 2.3.6 we can see there are two main effects that are occurring. The first term is

related to nonlinear response of the polarization vector at a frequency of 3ω, which induces a

new frequency of light to be generated at the third harmonic of the driving beam. Since the ω

and 3ω will commonly have different refractive indices, a phase mismatch will form between

the fundamental and third harmonic frequencies. This phase mismatch will significant reduce

the strength of the third harmonic generated, as the third harmonic generated in different

locations inside the material will destructively interfere, preventing a coherent build up of

signal unless the phase mismatch between the third harmonic and fundamental is negligible.

The second term in Eq. 2.3.6 is the term that the majority of the work in this thesis is

focused on, which is the term related to self-phase modulation. Self-phase modulation is

automatically phase matched, if we assume the third harmonic generation term is negligible

we can rewrite in terms of a nonlinear electric susceptibility, similar to how we handled the

linear electric susceptibility found in Eq. 2.2.12.

P3(t, ω) =
3Nbq4

8m3(ω2
a − ω2)4

|E0|3(eiωt + e−iωt) =
3ε0
4
χ3(ω)|E|3(eiωt + e−iωt) (2.3.7)

Now that we have an idea where the χ3 nonlinearity comes from we can write the full χ
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vector for self-phase modulation, as given by Eq. 2.3.8

χ(t, ω) = ε0χ1(ω) +
3ε0
4
χ3(ω)|E(t)|2 (2.3.8)

Based off of the relationship between the electric susceptibility and the index of refraction

as discussed in Eq. 2.2.14, we can write the index of refraction in terms of the linear and

nonlinear susceptibilities.

n2(ω, t) = 1 + χ(t, ω) = 1 + ε0χ1(ω) +
3ε0
4
χ3(ω)|E(t)|2 (2.3.9)

Since the nonlinear response of the material is significantly smaller than the linear response,

a Taylor expansion of n(ω, t) can be done in terms that go as χ3

1+χ1
. Doing this expansion

enables the index of refraction to be viewed as the linear index of refraction plus a nonlinear

correction term proportional to a second order correction term to the index of refraction, n2.

n2,field(ω, t) =
3ε0

8(1 + ε0χ1(ω))
χ3(ω) (2.3.10)

Using Eq. 2.3.10 to write

n(ω, t) = n0(ω) +
3ε0

8n(ω)2
χ3(ω)|E(t)|2 = n0(ω) + n2,field(ω, t)|E(t)|2 (2.3.11)

Commonly, Eq. 2.3.11 will not be written in terms of the electric field but instead in terms
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of the intensity as defined in Eq. 2.1.11. Doing this defines an intensity nonlinear index of

refraction as given by Eq. 2.3.12 [90].

n2,I(ω, t) =
2

ε0cn0

n2,field(ω, t) (2.3.12)

n(ω, t) = n0(ω) + n2,I(ω, t)I(t) (2.3.13)

2.3.1 Nonlinear Shrödinger Equation

While solving the nonlinear response assuming a monochromatic plane-wave is a good way

to gain better insight on how a material can respond nonlinearly to an electric field, a similar

deviation can be done for the nonlinear polarization’s effect on pulses of light. While this

effect can be seen on a wide range of pulse durations, the work done in this chapter will

focus on pulses with pulse durations < 100fs.

To generalize the nonlinear response to a pulse of light, we will assume the electric field is

allowed to be described by a envelope and phase term, as discussed in Section 2.1 and that

it is undergoing a χ3 nonlinearity.

Since we are focusing on the self-induced response of the material we will also assume the

polarization for all the electric field components are linearly polarized along the same axis.
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With these assumptions the nonlinear wave equation is given by Eq. 2.3.14

∂2

∂z2
E(z, t)− ∂2

∂t2
E(z, t) + PL + PNL

c2
= 0 (2.3.14)

Where PL and PNL are the linear and nonlinear polarization terms, respectively. If we use the

P3(t, ω) that was calculated in Eq. 2.3.7 the result is a second order nonlinear differential

equation, which has no general analytical solution. While no general analytical solution

exists, with a few approximations we can get Eq. 2.3.14 into a approximate form where an

analytical solution can be derived. To do this we need to assume that the electric field, once

the carrier frequency is subtracted out, is a slowly varying function. Mathematically, this

means that the following approximations are valid [91]. We will also be assuming that the

material dispersion is negligible and an instantaneous nonlinear response.

|∂
2E0(z, t)

∂z2
| << k

∂E0(z, t)

∂z
(2.3.15)

|∂
2E0(z, t)

∂t2
| << ω

∂E0(z, t)

∂t
(2.3.16)

This allows the second order nonlinear differential equation to be approximated by a first-

order nonlinear differential equation, given by 2.3.17. This differential equation is the Non-

linear Schrödinger Equation (NLSE) and it determines how a pulse evolves while under the

effect of self-phase modulation in a dispersionless material. These assumptions start to break

as the pulse duration approaches the duration of a single optical cycle. For example, a pulse
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with a temporal Gaussian profile of widths of 10 fs, 20 fs, 35 fs, and 100 fs evaluated at the

extremum of the first derivative where the second derivative is non-zero, the approximation

made in 2.3.16 gives 0.11, 0.05, 0.03, and 0.01 respectively. To better model the system,

correction terms such as self-steepening can be included.

∂E0(z, t)

∂z
=
iω2

2k
|E0(z, t)|2E0(z, t) (2.3.17)

From Eq. 2.3.17 we can calculate that the net effect on the electric field will be a nonlinear

temporal phase shift that is proportional to the temporal intensity profile of the pulse, the

nonlinear index n2, and the amount of material traveled through, z.

E0(τ) = E0(0)ei
2π
λ
n2I(τ)z (2.3.18)

Since the nonlinear response is purely a nonlinear phase shift and does not change the tempo-

ral amplitudes, self-phase modulation by itself can not change the temporal intensity. While

having a nonlinear phase shift might not affect the temporal profile, a major consequence

of this is seen by taking the Fourier transform of Eq. 2.3.18. By taking the Fourier trans-

form we see this nonlinear phase shift can nonlinearly alter the spectral content of the laser,

enabling SPM to be utilized as a way to spectrally broaden the pulse for pulse compression.

While Eq. 2.3.17 does a good job of predicting the self-phase modulation in systems where the

material dispersion is negligible, this becomes more difficult as the pulse duration becomes

shorter or material dispersion significantly alters the pulse duration during propagation. As

shown in 2.1, as the spectral bandwidth of the laser pulse increases, the more sensitive the
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Figure 2.5: NLSE Simulations The effect of self-phase modulation on the temporal and
spectral intensities (solid blue) and phases (dashed red). Before SPM, the pulses started
off transform limited with a flat phase in both time and frequency space. After self-phase
modulation, the temporal phase added has the identical shape as the temporal intensity
profile. Spectrally, this caused significant spectral broadening and
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system is to slight phase perturbations. If material dispersion or additional nonlinear effects

are need to be included, correction terms are needed to be added to the NLSE. The new

equation created by including these additional correction terms is the Generalized Nonlinear

Schrödinger Equation (GNLSE) and is given by Eq. 2.3.19 [92].

∂E0(z, t)

∂z
= −D̂(ω)E0(z, t)+ (2.3.19)

i
ω

c
n2(1 +

1

ω0

∂

∂t
)[(1− fR)|E0(z, t)|2E0(z, t) + fRE(z, t)

∫ ∞
0

hR(τ)|E(z, t− τ)|2dτ ]

This equation is significantly more complex than the basic NLSE, with multiple operators

in both the temporal and spectral domains. The first element of the equation, D̂(ω), is

the material dispersion operator, which applies the spectral phase changes due to linear

propagation of light through a material. The integral and the hR(τ) function represent the

non-instantaneous response of the material, with fR being the fraction contribution of the

total nonlinearity that the delay Raman response contributes. The 1
ω0

∂
∂t

term is related to

optical shock formation, which is the first-order correction to the nonlinear response of the

material which causes optical shock formations.

While there are many other nonlinear optical effects that can occur inside of a χ3 material,

the work of the this thesis is focused on the specific nonlinearities discussed in this section.

2.4 Machine Learning and Neural networks

Machine learning is a branch of artificial intelligence which builds statistical models that are

trained on existing data to generate a desired result. While there are many different types

of machine learning algorithms [93, 94], the focus for this thesis is neural networks.
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Figure 2.6: NLSE Simulations a) The spectral changes induced by self-phase modulation
assuming the analytical solution to the NLSE. b) The spectral changes induced by self-phase
modulation when including material dispersion to the NLSE. c) The spectral changes induced
by self-phase modulation when including self-steepening and delayed Raman effect to the
NLSE. d) The spectral changes induced by self-phase modulation when including material
dispersion, self-steepening and delayed Raman effect to the NLSE.

Figure 2.7: Network Structure a) A simple fully connected neural network structure. The
structure is divided into three main sections, the input, hidden, and output layers. Each
layer consists of neurons (circles). The neurons connect to other neurons through solid
lines, which represent the individual weights. The network is ’fully connected’ due to all
neurons in a given layer being connected to all neurons of the previous layer. b) An in-depth
view of how a single neuron interacts with the neurons of the previous layer. The previous
layers activation (an) are individually weighted by a learnable parameter (wn) with the sum
calcuated with a bias term (b). The sum is then passed to the activation function (f(z)).
The output of the activation function now because that neurons activation value (a)
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Neural networks get their name due to being inspired by the neurons in the brain. Neural

network function as a simplified model of the data processing that brains are able to do.

While the structure of a neural network can be very complex, all neural networks are based

off of the interactions between various neurons [95]. These neurons commonly are clustered

into various “layers”, where any given neuron is only able to interact with neurons from

the previous layer, though architectures exist that include more complex interactions. The

simplest example of a neural network is a fully connected neural network is shown in Fig.

2.7. The beginning of the network starts with the input layer, where the features are fed into

the network. While the features could be the data directly input into the neural network,

the data commonly has various kinds of pre-processing, such as feature scaling or feature

engineering, done before being fed into the input layer. The input layer then feeds into the

hidden layers of the neural network, which is where most of the computation will occur.

Each of these hidden layers is built from multiple individual nodes called neurons. Each of

these neurons calculate a weighed sum of the previous layer’s nodes, with the weights being

a learnable parameter which is optimized during training. The output of the neurons is

calculated by passing the weighted sum into an activation layer, which can either be a linear

or nonlinear function. This means the output of a given neuron is able to be calculated by

the following expression:

zlm = ~wlmn · ~al−1 + blmn (2.4.1)

alm = fl(zlm) (2.4.2)

where alm is the output of the mth neuron in the lth layer of the network, ~wlm is the vector

of weights for the given neuron, ~al−1 is the output of the previous layer, zlm is the weighted

sum of the previous layer’s activations, blm is the bias of the neuron, and the function being
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the activation function given to the layer. The activation function can be wide range of

function, as long as the derivative is a well defined function for all of the parameter space.

The activation functions could be a linear function or a nonlinear function, such as sigmoid

functions, rectified linear unit (ReLU). After all of the hidden layers a final output layer is

used to make the final prediction, either with classification or regression.

Before the weights of the neural network can be optimized, a metric to compare the perfor-

mance of different parameter values is required. While there are many ways to do this, the

method I will be using in this work will be based on calculating the loss of the network. The

loss functions quantifies the error between the output of the neural network and a known

target value. Depending on the exact problem different loss function commonly are used,

such a mean square error for regression and binary cross-entropy for two class classification.

Once a loss has been defined, different parameter values can now be compared, enabling

optimization of the network through minimizing the loss. While there are many techniques

that could be used to optimize the network, such as uniformly or randomly sampling the

parameter space, these quickly become impractical for even small neural networks. For

example, if we have a network with 5 inputs, 5 hidden nodes, and 1 output node and assume

each weight can only take on 10 distinct values, the parameter space contains∼ 1036 potential

combinations. While this number does not take into account effectively identical networks,

which would reduce the number of truly unique network structures, it serves the purpose of

showing how quickly a neural network can grown in size for even small networks and highly

constrained weights. Instead of randomly searching, methods such as gradient descent can

be used to intelligently update the parameters.
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2.4.1 Gradient Descent and Back Propagation

One of the most popular methods of optimizing a neural network is through the combination

of gradient descent and back propagation. Gradient descent is a generalized optimization

technique based around using the gradient of the loss function to know the optimum way

to update the network’s weights for a given dataset. Since the gradient of a function is

contains the direction and rate of fastest increase of the function, by moving in the opposite

direction by an amount proportional to the rate of fastest increase the loss can efficiently be

minimized.

If we assume the gradient of the loss for each parameter was known, then we could define

the update rules for each parameter to be:

∆wlmn = −η∂L(aL,T)

∂wlmn
(2.4.3)

∆blm = −η∂L(aL,T)

∂blm
(2.4.4)

Where η is an additional parameter called the learning rate which helps control the size of

parameter updates.

The difficulty of gradient descent is in the actual calculation of the gradient. Numerical

estimates of the gradient for a given parameter could be estimated by making minor per-

turbations to that parameter and observing how that changes the loss of the network, but

similarly to the random optimization of the neural network this is a sub-optimal solution.

Ideally, we would have an equation which actually calculates the derivative of the loss in

respect to every individual parameter, so we know how to update the entire neural network.

The method of calculating the derivative of the loss with respect to the parameters is called
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back propagation. It is called this because the derivatives for the parameters are initially

calculated in the last layer of the network, then by calculating how the loss changes in respect

to the previous layer’s activation the gradient information is able to be calculated for earlier

layers, propagating through the network backwards.

To focus on the logic of back propagation, I will first show back propagation to on a neu-

ral network with L layers with a single neuron each. While this network would not be a

useful network for most applications, it shows the simplest case of how the loss information

propagates up the network.

To begin, I first will define an arbitrary loss function L(aL, T ) and the activation function

fl(zl), where l represents the lth layer of the network, aL represents the activation of the lth

layer, and T represents the target value. Since we are interested in calculating the gradient

of the loss, which highly depends on the activation of the neurons, both the loss function

and activation function should have a known well defined derivative, with the derivative of

the activation function in respect to zl being denoted by f ′l (zl)

∂L(aL, T )

∂wL
=
∂L(aL, T )

∂aL

∂aL
∂fL

∂fL
∂zL

∂zL
∂wL

(2.4.5)

∂L(aL, T )

∂bL
=
∂L(aL, T )

∂aL

∂aL
∂fL

∂fL
∂zL

∂zL
∂bL

(2.4.6)

While the Eqs. 2.4.5 and 2.4.6 may initially seem complex, we actually already know the

form of a large portion of these derivatives. Since we picked loss and activation functions

with known derivatives, know that zL is directly proportional to the activation function, and

the derivative of zL in respect to the weight and bias are known, these equations can be

simplified into the following forms:
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∂L(aL, T )

∂wL
=
∂L(aL, T )

∂aL
f ′L(zL)aL−1 (2.4.7)

∂L(aL, T )

∂bL
=
∂L(aL, T )

∂aL
f ′L(zL) (2.4.8)

With these equation we know how to update the parameters of the last layer, which means

now we have to pass the loss information into the next layer. To do this, we need to see how

the loss changes in respect to the activation of the previous layer, so:

∂L(aL, T )

∂aL−1

=
∂L(aL, T )

∂aL

∂aL
∂fL

∂fL
∂zL

∂zL
∂aL−1

(2.4.9)

Doing this gives nearly the same equations as Eq. 2.4.5, except the final derivative changes

to be in respect to the previous layers activation. Simplifying this similar to what we did

with 2.4.7 we get:

∂L(aL, T )

∂aL−1

=
∂L(aL, T )

∂aL
f ′L(zL)wL (2.4.10)

We now have all the equations to update the last layer and to pass the loss information into

the second to last layer, but we still need to figure out how to pass the loss information and

update the weights of an arbitrary layer. To do this we we follow a similar procedure as the

last layer, but in terms of an arbitrary layer l, to get the following equations:
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∂L(aL, T )

∂wl
=
∂L(aL, T )

∂aL

∂aL
∂fl

∂fl
∂zl

∂zl
∂wl

(2.4.11)

∂L(aL, T )

∂bl
=
∂L(aL, T )

∂aL

∂aL
∂fl

∂fl
∂zl

∂zl
∂bl

(2.4.12)

∂L(aL, T )

∂aL
=
∂L(aL, T )

∂al+1

∂al+1

∂fl+1

∂fl+1

∂zl+1

∂zl+1

∂wl+1

(2.4.13)

Which, once simplified reduce to:

∂L(aL, T )

∂wl
=
∂L(aL,T)

∂aL
f ′l (zl)al−1 (2.4.14)

∂L(aL, T )

∂bl
=
∂L(aL,T)

∂aL
f ′l (zl) (2.4.15)

∂L(aL, T )

∂al
=
∂L(aL,T)

∂al+1

f ′l+1(zl+1)wl+1 (2.4.16)

With these equation and the equations for the last layer, we now have the information to

calculate the updates for all of the layers. As a reminder, even though the index is listed as

just l, the calculations actually start at l = L and then go down to the initial layer of l = 1,

which is why this method is called back propagation.

While we did this for a neural network with only 1 neuron per layer, the general logic holds

for a fully connected neural network with more neurons per layer. Equations 2.4.14 and

2.4.15 generalize surprisingly easily, only requiring additional indexing to reference which

weights are being updated:
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∂L(aL,T)

∂wlmn
=
∂L(aL,T)

∂alm
f ′l (zlm)a(l−1)n (2.4.17)

∂L(aL,T)

∂blm
=
∂L(aL,T)

∂alm
f ′l (zlm) (2.4.18)

(2.4.19)

Where m denotes which neuron in the current layer that the weight or bias is connect to

and n denotes the neuron in the previous layer that the weight is connected to.

Where back propagation become a bit more complex is the calculation of the derivative

of the loss in respect to the activation of an arbitrary layer. This is due to the fact that

the activation of a layer influencing the weights of multiple neurons of the next layer. To

calculate the total result then we are required to sum up all of the individual contributions

for the different weights to different neurons:

∂L(aL,T)

∂aln
=

M(l+1)m∑
m=1

∂L(aL,T)

∂a(l+1)m

f ′(l+1)m(z(l+1)m)w(l+1)mn (2.4.20)

With these equation, the gradient of the loss is able to be calculated for every single parameter

inside of the neural network for a single example. While updating the parameters for each

example is possible, one common technique is batch learning, where the gradients for multiple

examples are summed and the weights are updated based on the average behavior of the

network.
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Chapter 3

Methods

3.1 Pulse Measurement Techniques

While measuring the temporal profile of a ultrafast laser pulse is critical to know the intensity

of the laser, getting a good measurement of the pulse is nontrivial. Ideally, one would be

able to directly observe the change in the temporal electric fields as a function of time using

a photo-diode or camera, but this does not work as the response time of the detector tends

to be on the order of nanoseconds but the electric fields vary on the order of femtoseconds.

Measuring the pulses spectrally gives a bit more information, in the form that knowing

the laser spectrum enables the calculation of the pulse’s transform limited pulse duration,

but spectrometers are not able to measure phase information. This is due to the fact that

most detectors are square integrating detectors, meaning they are only able measure the

intensity of the fields and not the actual phase, meaning the critical phase information is

lost. To counter this loss of information, a form of nonlinearity is required to be introduced,

enabling imprinting of temporal information of the pulse into a signal measureable by a

square integrating detector.
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3.1.1 Field Auto-correlation

While direct measurement of the electric fields might not be possible, one might start with

the idea of using a Michelson interferometer with one of the paths with a variable delay,

otherwise known as a field auto-correlation. The idea would be that when the pulses are

temporally overlapped, you can measure interference of the pulse. Unfortunately, the field

auto-correlation does not enable measurement of any temporal structure but is a useful

method for measuring the spectral intensity of a pulse. This is due to the Fourier transform

and auto-correlation being related through the Wiener-Khinchin theorem.

We can see how spectral intensity is recoverable from the field auto-correlation by looking at

the summed electric field between the initial field as it would be measured by a slow detector

such as a photo-diode or camera. The resulting intensity as measured as a function of delay,

I(τ), will be given by Eq. 3.1.1, where τ is the relative delay between the two pulses.

I(τ) =

∫ ∞
−∞
|E(t) + E(t+ τ)|2dt = C +

∫ ∞
−∞

E(t)E∗(t+ τ) + E(t)E∗(t− τ)dt (3.1.1)

The C value represents the constant background signal that occurs due to the individual

squares of the electric fields, which can be ignored for the purpose of this as it just corresponds

to a constant offset of the signal of interest. The temporal integral shown in 3.1.1, which is

the signal of interest, ends up taking the form of a auto-correlation. Using the relationship

between the auto-correlation and the Fourier transform, we can take Eq. 3.1.1 and convert it

into spectral information, as shown in Eq. 3.1.2. To obtain temporal structure information,
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some form of nonlinear response is required.

F(

∫ ∞
−∞

E(t) ? E(t+ τ)dt) = E(ω)E∗(ω) = I(ω) (3.1.2)

Doing this shows how the field auto-correlation only measure the spectral intensity but does

not contain any temporal structure information.

3.1.2 Intensity Auto-correlation

One of the simplest forms of nonlinear pulse measurement is intensity auto-correlation, com-

monly using a second harmonic generation crystal as the nonlinear media. The intensity

auto-correlation is done by copying a beam using a beam splitter and spatially overlapping

the two beams inside of nonlinear media. One of the beams has a scannable delay in its

beam path, enabling the relative timing of the two beams to change. If the delay is such

that the beams arrive in the nonlinear media at different times, then no interaction between

the two beams occur. If they arrive in the nonlinear media at the same time, there is a

interaction between the two pulses through the nonlinear effect, enabling a measurement

directly related to the pulse duration to be possible.

While it is possible to do an intensity auto-correlation in the same geometry as a field

auto-correlator to enable background free measurements. Background free measurements

are able to be taken by using a small crossing angle between the two beams. This works as

the nonlinear processes can create beams pointing in different directions from either beam,

enabling isolation of the signal of interest from undesired backgrounds.

In general, the auto-correlation takes the form of Eq. 3.1.3, where Esig(t,τ) is the nonlinearly
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generated signal measured as a function of delay τ .

I(τ)AC =

∫ ∞
−∞
|Esig(t, τ)|2dt (3.1.3)

If a second harmonic generation crystal is used then Esig will take the form of E(t)E(t− τ).

If there is a crossing angle between the two fundamental beams, a third beam will appear

between the two fundamental beams but only when the two initial beams are temporally

overlapped. By monitoring the delay of the intensity of the third beam as a function of

delay, the second harmonic generation auto-correlation of the beam is able to be measured.

Mathematically, the intensity auto-correlation takes the form of Eq. 3.1.4.

IAC(τ) =

∫ ∞
−∞
|E(t)E(t− τ)|2dt =

∫ ∞
−∞

I(t)I(t− τ)dt (3.1.4)

If the functional form of the temporal intensity profile is assumed, a deconvolutional factor is

able to be used to convert the auto-correlations into a temporal profile. For example, if the

pulse is assumed to have primarily quadratic spectral phase and a approximately Gaussian

spectrum, then the temporal profile able to be approximated as a Gaussian temporal pro-

file. Under these conditions the auto-correlation alone is able to give a reasonably accurate

estimate of the true temporal profile. If a more complex spectrum or spectral phases are

allowed, it becomes harder to understand how the auto-correlation is related to the actual

temporal structure of the pulse, meaning complete temporal profile information is no longer

able to be recovered. While the full temporal profile may not be recovered for these more

complex pulses, minimizing the autocorrelation width will approximately be at the same

location of the minimal pulse duration allowing some optimizations to still occur using the
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auto-correlation.

3.1.3 Frequency Resolved Optical Gating

To be able to measure the pulses temporal structure without assuming a specific functional

form of the temporal profile, a more generalized technique is required. One of the most

common techniques to retrieve the temporal structure without assuming a temporal structure

is the frequency resolved optical gating (FROG) familiy of techniques. The FROG techniques

are built off of the intensity auto-correlation and can be viewed as a spectrally resolved

auto-correlation, meaning the setup for a FROG is actually nearly identical to a intensity

auto-correlation. The only modification that is required is for the detector to be a spectrally

resolve the nonlinearly generated signal.

Doing this changes the representation of the collected data from being a 1D amplitude versus

delay graph to a 2D representation of the spectral content of the signal beam as a function

of delay is commonly referred to as the FROG trace. In general, the FROG trace can be

written as shown in Eq. 3.1.5, where Esig(t, τ) is the signal beam that is produced from the

nonlinear interaction inside the nonlinear media [96].

I(τ, ω) = |F (Esig(t, τ))|2 (3.1.5)

While all FROGs share this general form, the differences between the different FROG meth-

ods is largely due to the nonlinear interactions used. Different nonlinear interactions can

require different experiemental systems along with the mathematical form of the Esig(t, τ)

changing depending on the nonlinearity used.

53



Second Harmonic Generation FROG

The most common nonlinearity used is the second harmonic generation FROG (SHG FROG).

In this case the Esig(t, τ) and FROG trace take the following forms [96]:

ESHG(t, τ) = E(t)E(t− τ) (3.1.6)

I(τ, ω) = |F (E(t)E(t− τ))|2 (3.1.7)

Due to the SHG FROG relying on a χ2 process, the nonlinear conversion into the second

harmonic is relatively efficient, making it the FROG technique that is most sensitive. The

high sensitivity of the SHG FROG enables pulses with energies on the order of nanoJoules

to be measured [96]. While it is very sensitive, SHG FROG also has two main negatives

associated with it, as direction of time ambiguity and a requirement to ensure the crystal

used is able to properly phase match the entire spectral bandwidth of the pulse of interest. If

an SHG-FROG is desired of an pulse with a wide spectral bandwidth, very thin crystals are

required to ensure proper phase-matching. Since second harmonic generation is a χ2 process,

only materials with a non-zero χ2, like BBO, are able to be used for these measurements.

Due to the symmetries of the nonlinear interact, one unfortunately not able to differentiate

between the front and the back of the pulse, causing a direction if time ambiguity. Due

to this direction of time ambiguity, all SHG FROG traces are symmetric around t = 0, as

shown by Fig. 3.1.
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Figure 3.1: Example FROG Traces All four of the main FROG nonlinearities for a pulse
with a 30 fs temporal FWHM with 100 fs2 of group delay dispersion and 10000 fs3 of third-
order dispersion.

Third Order FROGs

In addition to SHG FROG, there are a variety of FROG variants that are based on the χ3

response of a material. Since χ3 is not forced to be zero for most materials like χ2 is, the

range of usable materials is much greater than SHG FROGs.

There are four main types of third order FROG, which all are based on different nonlinear

effects of χ3: third harmonic generation, polarization gating, self-diffracting, and transient

grating (TG). While the discussion of χ3 in Section 2.3 discusses the origin of the third
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harmonic mechanism, the other three mechanisms require a full tensor treatment of the

χ3 processes to derive. The various Esig(t, τ) for the different χ3 FROGs are given by the

following equations [96]. Due to the asymmetry in the delay and non-delayed electric fields,

for the majority of cases χ3 based FROGs are able to resolve the direction of time ambiguity

that SHG FROGs are plagued with.

ETHG(t, τ) = E(t)2E(t− τ) (3.1.8)

EPG(t, τ) = E(t)|E(t− τ)|2 (3.1.9)

ESD(t, τ) = |E(t)|2E(t− τ)∗ (3.1.10)

ETG(t, τ) = E(t)|E(t− τ)|2 or |E(t)|2E(t− τ)∗ (3.1.11)

While all of these individual FROG have different pros and cons, this work will primarily

focus on the TG FROG. One of the major benefits of using a TG FROG is the process

is automatically phase matched, meaning large bandwidth pulses are able to be measured

without inherent artifacts in the spectrum. While this capability of TG FROG is great, it

also is significantly more complex that systems like the SHG and THG FROG. This is due to

the fact that the TG FROG mechanism actually requires three separate beams to interact

instead of the two beams that the other FROG variants require. Due to this additional

complexity, TG FROG traces can actually take two separate forms, as shown in Eqs. 3.1.11

[96]. For the work in this thesis, a TG FROG in a configuration to give ETG(t, τ) in the PG

FROG form, is used for the characterization of few-cycle laser pulses.

One complication of TG FROG is that it requires splitting the beam not into two but into

three separate beams. Due to the more complex interaction between the three beams than

compared to just two beams, the ETG(t, τ) has two possible forms listed in Eqs. 3.1.11.

The form depends on which of the three beams are delayed relative to the other beams, and
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either will be mathematically identical to PG or SD FROG traces.

3.2 GNLSE Simulations

To numerically solve the full GNLSE a python package called pyNLO was used. The tech-

nique pyNLO uses to solve the GNLSE is the split-step Fourier method, which is where

Eq. 2.3.19 is separated out into a linear and nonlinear operator, as shown in 3.2.1. For

the GNLSE, the linear operator D̂ contains material dispersion and the nonlinear operator

contains the rest of Eq. 2.3.19.

∂E0(z, t)

∂z
= (D̂ + N̂)E(z, t) (3.2.1)

The total amount of material needed to propagate through, L, is then split into N different

section, each with a length of L/N. Each of these section then undergoes the dispersion

operator for half of the section length, then the nonlinear operator is applied to the electric

field, then the second half of the dispersion operator. This gets repeated for each section in

the material until the material is done. If each individual step is too large, the separation of

the linear and nonlinear operators into independent operators no longer is valid, as it assumes

within a step the temporal profile change induced by the linear operator is negligible, which

enables the nonlinear operator to be solved.

For the work done in this thesis, a Python code PyNLO is used to simulate the GNLSE,

including effects like self-phase modulation, delayed Raman effect, self-steepening, and ma-

terial dispersion. To ensure the accuracy of the simulations, PyNLO automatically will

determine proper step sizes for the code to ensure an accurate model of the simulation.
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Figure 3.2: MNIST Dataset Examples of the MNIST dataset

3.3 Machine Learning and Neural Networks

3.3.1 MNIST Dataset

One of the main usages of neural networks is in image recognition and processing. One of

the classic exmaples for image recognition is the Modified National Institute of Standards

and Technology (MNIST) dataset, which is a database of handwritten digits. The dataset

consists of 28x28 pixels images containing a numerical value between 0 − 9. The dataset

is split into 60 thousand training images and 10 thousand testing images. To show the

capabilities of different neural network structures, both a convolutional neural network and

a fully-connected neural network will be shown below.
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Figure 3.3: Fully-Connected Neural Network Training Losses The training losses (a)
for the multiple network used during hyperparameter optimization. The training losses (b)
and training accuracy (c) of the optimized neural network.

Fully-Connected Neural Network

One of simpler neural networks to use for classification is a fully-connected (FNN) network.

A FNN is considered ”fully-connected” due to the fact that each neuron in the network is

connected to every neuron in the previous layer. Since all neurons in a single layer see all

neurons in a previous layer, no assumptions are made about the layout of the data. FNNs

tend to be used to solve problems that do not have aspects of them that enable assumptions

to be made about the underlying data structure that would allow a more specialized network

to perform better.

For training of the neural network, a hyperparameter optimization was done to find the opti-

mal network structure. The hyperparameter optimization was done by training 30 networks

for 300 epochs with the number of hidden layer to being between 1 and 6 and the number of

neurons in each layer to be between 100 and 1200. The validation loss curves are shown in

Fig. 3.3.a, showing the performance of the network can change substantially depending on
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the exact structure used. The training and validation curves of the best performing model is

shown in Fig. 3.3.b with the accuracies of the model shown in Fig. 3.3c. The final accuracy

of the model is then determined by evaluating the model on the test data, which has an

average accuracy of 97%.

Figure 3.4: Fully-Connected Neural Network Results Predictions of the fully-connected
neural network trained to predict handwritten digits from the MNIST dataset. On the
left, 4 examples of correctly predicted numbers (top row) and on the bottom 4 digits of
incorrectly classified numbers (bottom row). On the right, the accuracy of the network for
each individual number.

While fully-connected neural networks perform well for the MNIST dataset, expanding to

larger resolution images will substantially increase the number of parameters requiring train-

ing. For example, a neural network consisting of 5 layers with 500 neurons per layer will have

few parameters than a single neuron of a 1920x1080 image using a fully-connected neural

network structure. To reduce the required number of parameters, either some form of feature

reduction is required or a change in the neural network structure is required to significantly

reduce the number of learnable parameters.
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Figure 3.5: Convolutional Neural Network Training Losses The training losses (left)
and training accuracy (right) of the convolutional neural network.

Figure 3.6: Convolutional Neural Network Results Predictions of the convolutional
neural network trained to predict handwritten digits from the MNIST dataset. On the
left, 4 examples of correctly predicted numbers (top row) and on the bottom 4 digits of
incorrectly classified numbers (bottom row). On the right, the accuracy of the network for
each individual number.
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Convolutional Neural Networks

While fully-connected neural network are capable of making a predictor with 95% accuracy

for the MNIST dataset, it does not take advantage the spatial information held within the

images. The individual pixels of the images in the dataset are not largely independent of

each other but are highly correlated with the neighboring pixels. A convolutions neural

network (CNN) is able to take advantage of this spatial dependencies. Instead of each

neuron having connections to everything in the previous layer, CNNs cluster weights into

filters that get convolved across the input features. These filters are commonly organized in

a n× n matrix, which undergoes element wise multiplication with the input features. Since

each filter interacts with multiple pixels, the filters are able to learn spatial features inside

of the image. The number of trainable parameters in a convolutional layer is tied to the

filter structure and not the input features dimensionality, meaning larger images can be used

without a substantial increase in trainable parameters.

The ability to learn spatial information can be seen by training a new convolutional neural

network on the MNIST dataset. The CNN described in Fig. 3.6 was trained on the MNIST

dataset. While hyperparameter optimization could be used to find a more optimal network

structure, using a single network structure gives us an idea of the performance, as any

hyperparameter optimization should mainly improve the result. The loss curves and accuracy

curves are shown in Fig. 3.5. Even without hyperparameter optimization we can see that

the CNN outperforms the FNN, with a total test dataset accuracy of >99%.

Overall both FNNs and CNNs are very capable deep learning techniques, each with their

own benefits and downsides. In the context of the MNIST dataset, it is clear that CNNs

can easily outperform the FNNs on image based datasets due to its abilities to share weights

across all of the input feature space and the ability to take advantage of spatial information

inside of the image.
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While there are many different types of machine learning algorithms, both based on neural

network and non-neural network techniques, the network structures used within this thesis

are either FNNs or CNNs.
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Chapter 4

Few Cycle Pulse Generation

4.1 Introduction

Since the advent of Chirped Pulse Amplification [97], a rapid increase of focused laser inten-

sity has occurred, to the current record of 5.5 × 1022 Wcm−2 [98]. Relativistic intensities,

> 1018 Wcm−2 at wavelengths of λ ≈ 1µm, enable applications from compact GeV electron

acceleration via Laser Wakefield Acceleration (LWFA) [78, 99, 100, 101] to MeV photon

generation via laser-Compton scattering [102, 103]. Few-cycle intense lasers enable access

to new regimes of science. Recent simulations suggest that a dramatic improvements in

proton energy spread and maximum energy can be achieved as pulse durations approach

a single cycle [23], while the production of multi-MeV energy electron beams from LWFA

have been demonstrated using few-cycle laser pulses at kilohertz repetition rates with only

a few milliJoules of laser energy [104, 105, 106, 107, 108]. Additionally, the use of few-cycle

laser pulses enable efficient generation of attosecond pulses via relativistic high harmonic

generation [75, 76].

Due to inherent limitations of amplification, pulse durations are typically on the order of
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tens of femtoseconds (fs), or ≈ 10 laser cycles at 800 nm. Post-compression is a technique

in which the output of a laser system is spectrally broadened, and then phase corrected to

produce pulses with shorter pulse durations. The spectral broadening is most commonly

performed via Kerr-induced self-phase modulation (SPM), which was demonstrated several

decades ago using optical fibers as the nonlinear medium [109, 110]. In general, SPM is

used to generate broadened spectra, which then enables a shorter transform-limited pulse

duration. If the SPM medium is unable to compensate for spectral phase differences (e.g.,

dispersion effects), then dispersion correcting optics such as chirped mirrors may be used.

Since these early experiments, many techniques of post-compression have been developed.

For pulses which have durations initially on the order of picoseconds or longer, consider-

able bandwidth must be generated. To achieve such large amounts of nonlinearity, there

necessarily must be large amounts of propagation through the SPM medium, as increasing

intensity leads to optical damage. One important consideration for SPM is the accumulation

of wavefront errors, as small intensity modulations can be enhanced and self-focused, often

leading to the catastrophic degradation of the laser wavefront [111]. Techniques such as

multi-pass cells [112, 113, 114] ensure beam quality by placing the SPM medium inside of a

cavity. While this method has been shown to support laser energies up to hundreds of mJ

[112], reducing the final pulse duration below a limit of tens of femtoseconds is difficult due

to effects such as optical wave breaking [113].

Pulse compression to single or few optical cycles can be achieved by using laser pulses

which are initially tens to hundreds of femtoseconds. Higher intensities can be achieved

with much lower energy, and the factor of spectral broadening required is smaller than for

picosecond pulse lasers. For these pulses, the SPM medium can be placed at the focus to

enable efficient SPM. MicroJoules of laser energy compression has been demonstrated by

propagating through a bulk dielectric, and the portion of the beam with the most pulse

broadening can be discriminated for use in experiment [115, 116, 117, 52]. At higher laser
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energies, the small and large scale self focusing prevents the bulk from being used as an SPM

medium. A popular technique to compress laser pulses is hollow core fiber compression,

in which the laser is focused into a hollow-core, gas filled waveguide which acts as the

SPM medium [48]. Though this technique has been shown to work up to pulse energies

of milliJoules [49, 50], waveguides on the order of meters in length are required and must

have a sufficiently large diameter to prevent substantial ionization of the gas inside the fiber

[50]. Furthermore, losses are typically on the order of 35-50% [118, 53, 49, 49, 51]. Scaling

hollow core fiber compression to even higher intensities is thus practically difficult. Another

technique known as multiple plate compression utilizes cascading dielectric plates [57, 58].

Placing a plate near the laser focus enables a strong nonlinear lens to occur, which then

provides a waveguiding effect through the multiple plates. While this technique has also

been shown to accommodate up to a milliJoule of laser energy [40], the geometry would have

to be scaled considerably to maintain the correct nonlinear lensing geometry for significantly

higher pulse energies.

A technique that has been proposed to produce few-cycle laser pulses that is scalable to

Joule energy levels is Thin-film Compression (TFC) [22, 59]. In TFC, a collimated, top-hat

beam profile is spectrally broadened through a thin dielectric film. The thin films can be

various amorphous materials, for instance, a variety of glasses and plastics have been used in

the past [119, 35, 120, 60, 121, 122, 123]. While TFC has been used to compress pulses up to

a factor of 5 on multi-Joule systems [62, 63], relativistic intensities have only been produced

with tens of femtosecond pulse durations [60, 61]. In order to achieve uniform broadening, a

top-hat beam profile is necessary, and the collimated geometry of the large beam diameters

produce negligible nonlinear lensing effects. For the common Gaussian beam profile, spatially

varying phase causes the focal spot quality to be strongly diminished [120, 61]. TFC has

been staged to achieve higher compression, as proposed in [22] and implemented in [64], has

numerous benefits [120]. One major benefit is the additional distance between the plates can

enable self-healing of the beam to occur, mitigating effects of beam breakup [124] for TFC
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and multiple plate compression.

In this chapter, we demonstrate a stageable pulse compression scheme using thin dielectric

media to produce high intensity, few-cycle pulses suitable for strong and high field science

applications. A spectral broadening factor up 6.8 was shown for three stages. The output

of two stages was compressed to a measured 7 femtoseconds, and the focal spot was shown

to be minimally affected by wavefront errors. This beam was used to generate broadened

harmonic spectrum in a high harmonic generation experiment, and MeV electrons from a

relativistically intense laser solid interaction.

4.2 Experimental setup

The experiments were performed using a commercially available, single-stage Ti:Sapphire

regenerative amplifier (Spectra-Physics Solstice ACE) operating at a kilohertz repetition rate

with a central wavelength of 800 nm with P-polarization. The wavefront was a Gaussian

mode with an M2 of < 1.25. The initial pulse duration was measured to be 36 fs as measured

by a second harmonic generation frequency resolved optical gating (SHG FROG) with a 70

nm bandwidth at the -20 dB level. The laser energy delivered at the input of the compression

set-up was up to 6.9 milliJoules, corresponding to a maximum peak power of 180 GW, though

for most experiments 0.95 mJ was used to prevent optical damage. The energy throughput

depends on the number of stages used and is limited by the reflectivity of the mirrors used.

For example, the energy throughput of the two stage system is 75±1%, primarily from the

use of metallic mirrors.

We used a two stage pulse compression scheme for most of the characterization and exper-

iments in this paper, as shown in Fig. 4.1. The laser enters a reflective Galilean telescope

consisting of two curved mirrors, which relays the beam through focus. A thin plate of fused
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silica is placed sufficiently far from focus such that ionization of the material is suppressed,

yet close enough such that nonlinearity is present. In all experiments presented here, we

placed the fused silica such that the intensity on target is approximately 4 TWcm−2. Fused

silica plates were used due to the high damage threshold, optical quality, and known optical

parameters. The laser intensity in the fused silica can be adjusted by positioning the plates

at a suitable location along the optical axis. The pulse compression apparatus is housed

inside a vacuum chamber, to enable the laser to pass through focus without laser breakdown

occurring.

A single 500 µm thick fused silica plate is used as the SPM media in each stage. The plates

were positioned at Brewster’s angle to minimize reflection losses, increasing the propagation

length to 600 µm. Due to the small beam size on the fused silica plate, Kerr lensing of

the broadened beam is non-negligible, which shifts the focus closer to the focusing optic of

the telescope [120]. The collimation optic is placed to compensate this nonlinear lensing,

outputting a collimated, broadened pulse and reducing the overall length of the telescope.

The residual unbroadened laser pulse, not experiencing the nonlinear lens, will output the

telescope with positive divergence. For high efficiency compression to occur, pulses are

recompressed between stages, which is done with commercially available chirped mirrors

(Newport 10Q20UF.40 and Thorlabs UMC10-15FS) as the dispersion compensating optics.

To temporally characterize the broadened beam without introducing additional nonlineari-

ties, the beam was reduced in intensity by reflecting off fused silica wedges near Brewster’s

angle. Temporal characterization of this pulse was performed by sending the beam into a

transient-grating frequency resolved optical gating (TG-FROG) due to the supercontinuum

nature of the pulse. The beam can be diverted from the TG-FROG into a F/2 off-axis

parabolic (OAP) mirror to characterize the focal spot. The focal spot was reimaged using

an infinity-corrected, plane achromatic microscope objective and an imaging lens which mag-

nified the focal spot onto a digital camera. The wavelength dependence of the far field was
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measured by placing dielectric bandpass filters (Thorlabs FB650-40, Newport 10BPF10-700,

and Thorlabs FB800-10) in the collimated portion of the focal spot imaging optics. The di-

agnostics were aligned with the collimated, many cycle laser output. The broadened output

of the pulse compressor was aligned into the diagnostics without changing any of the imaging

conditions. While imaging the broadened beam, any residual portion of the unbroadened

beam will not be properly collimated and thus is focused to a different focal plane in both

the TG-FROG and the focal spot characterization setup.

The broadened spectrum is measured by taking a spatial average of the beam, either by

measuring diffuse scatter of the beam onto a screen, or by focusing the beam onto a cosine

corrector and optical fiber spectrometer. Both measurements produced similar results, and

the spectrometer was calibrated with a NIST-calibrated Tungsten Halogen lamp. When pos-

sible, the entire beam was used for diagnostics and characterization. However, the diverging

unbroadened portion of the beam, preferentially existing in the outer edge of the beam, was

blocked by a hard aperture in the TG-FROG and in the third stage spectral measurements.

4.3 Results

Spectral broadening numerical modeling

Numerical modeling of the interaction was performed using a Python nonlinear optics pack-

age (PyNLO). PyNLO solves the generalized nonlinear Schrodinger equation using a split-

step Fourier method (SSFM) [125, 126]. Though including self-steepening and the delayed

Raman response in the simulations produced better agreement with experiment, inclusion

of material dispersion has the largest effect. Material dispersion was modeled up to the

fourth order dispersion term of fused silica. The thickness of material and locations of the

fused silica were the same as the experimental values. Before each stage, the reflective losses
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Figure 4.1: Two Stage Experimental Setup The pulse enters at the top and is directed
into the first stage reflective telescope, consisting of two curved mirrors. Spectra broadening
occurs inside of a 0.5 mm fused silica plate oriented at Brewster’s angle. The collimating
curved mirror in each stage is positioned to collimate the broadened beam which experiences
nonlinear lensing. The beam can be sent into an additional stage, into an experiment, or
into characterization diagnostics. The power is reduced for the characterization diagnostics
by multiple reflections off of wedged glass substrates.

from two silver mirrors (Newport ER.2) are taken into account. Due to the target being

oriented at Brewster’s angle to minimize reflective losses, there is an effective decrease of the

peak intensity of ∼ 1.4 within the fused silica. The initial pulse for the simulation matches

the experiment with a measurement taken with a SHG-FROG and includes simulating the

nonlinear propagation in air and the vacuum window.

The simulations are one dimensional, though unexpectedly produce predicted spectra con-

sistent with experimental measurements. This is because the the areas of highest intensity

will produce the most bandwidth, and in a spatially integrated spectrum the extrema of the

spectra are from this central portion. While two dimensional simulations would undoubtedly

produce better agreements, we experimentally observe consistent enough correlation between

experiment and simulation that such an approach was not warranted.

Though the targets are thin, introducing a small amount of group delay dispersion (GDD) in-

duced from material dispersion will dramatically alter the SPM modulated output spectrum;
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we observed a predicted FTL pulse duration 40% shorter than experimentally measured for

the 2 stage system when not including dispersion. Asymmetric broadening is observed in

both simulated and experimental results, largely due to the residual third-order phase in-

herent to many laser systems. Material dispersion, self-steepening, delayed Raman response

also contributing to the asymmetric broadening of the spectrum.

Experimental compression

The numerical modeling was used to determine the intensity on the dielectric plates, and

the magnitude of dispersion correction required for the chirped mirrors. Placing the fused

silica plates to produce the expected intensities, the laser bandwidth is nearly tripled to 198

nm maintaining the central wavelength of 800 nm, corresponding to an FTL duration of 12

fs, as shown in Fig. 4.2. The beam diameter on the plate was approximately 1 mm, from

the initial 12 mm output from the laser system. A total of -90 fs2 of group delay dispersion

was used to compress the pulse after the first stage.

Multi-staged compression

We implemented two additional stages experimentally, again with each stage consisting of a

one to one telescope, a 0.5 mm fused silica plate, and chirped mirrors. Due to the temporal

compression from the previous stages, it was necessary to increase the on-target beam di-

ameter for each successive stage to maintain the correct intensity and not damage the fused

silica. Beam diameters were approximately 1.7 mm and 1.9 mm in the second and third

stage, respectively.

The second stage produces a spectrum which is broadened to a −20 dB width of 316 nm as

shown in Fig. 4.2. Dispersion was corrected with a combination of −54 fs2 from a chirped
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Figure 4.2: Experimental and Simulated Spectra a) Experimental spectral measure-
ments of the pulse with a varying number of stages in logarithmic scale. The initial pulse
(blue) has a -20 dB width of 70 nm. The output bandwidth of each stage is 198 nm for a
single stage (red), 316 nm for two stages (black), and 477 nm for three stages (magenta),
leading to a total broadening factor of 6.8. b-e) Output spectrum for each stage experimen-
tally (solid lines) and simulated (dashed) in linear scale. The experimental Fourier transform
limit is listed for each stage. The simulated spectrum results in Fourier transform limits of
35 fs initially, 12 fs for 1 stage, 6 fs for 2 stages, and 4 fs for 3 stages.

mirror and 22 fs2 of dispersion from material dispersion from an additional plate of fused

silica. When removing the dispersion accumulated propagating to the FROG, a retrieved

pulse duration of 7 fs was measured, nearly at the transform limit of 6 fs.

In the third stage, the spectrum was further broadened to a -20 dB width of 477 nm, corre-

sponding to a 4 fs FTL pulse duration or a sub-two cycle pulse. However, this spectrum was

broader than the available chirped mirror bandwidth so compression could not occur. Sim-

ulations of the pulse predicted that the pulse should still be compressible to the FTL with

GDD compensation. Similar to the prior stages, the phase is dominated by group velocity

dispersion and thus is suitable for compression via chirped mirrors. For such large band-

widths, imperfect compensation of the GDD from the previous stage can have a significant

effect on the broadening of the pulse. For the input of the third stage, an error in dispersion

compensation of 22fs2 produces a spectrum that is ∼ 15% narrower.

The input energy of the two stage compressor was increased to 6.9 mJ. The beam diameter
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Figure 4.3: TG-FROG Reconstruction a) Temporal profile of two stage laser pulse from
TG-FROG measurement (red) demonstrating a pulse duration of 7 fs (2-3 cycles); and from
numerical simulations (blue) demonstrating an identical pulse duration of 7 fs. b) Spectrum
of the two stage output, with power spectrum (solid) and spectral phase (dashed) overlaid.
The reconstructed pulse (red) and the numerical simulations (blue) show good agreement.
c-d) The experimentally measured and retrieved FROG traces.

was increased to 24 mm to prevent optical damage after the first stage of compression. The

fused silica plates were adjusted longitudinally to maintain approximately the same peak

intensity on the fused silica as for the 0.95 mJ case. The spectra from the 6.9 mJ with two

stages of broadening had a nearly identical output spectrum, with a FTL pulse duration

of 8 fs, with spectral differences resulting from the additional nonlinearity propagating to

the compressor. Simulations for the 6.9 mJ spectrum predict a 8.5 fs FTL. We were unable

to compress the output of the two stages compression as the increased intensity required a

beam diameter larger than our available chirped mirrors.

Focal spot characterization

The collimated, unbroadened beam is used to align the focal spot diagnostic and as a refer-

ence focal spot. When sent into the focal spot diagnostic, the unbroadened beam focused to

a near diffraction limited spot of 2.1× 1.8± 0.1µm FWHM, as shown in Fig. 4.4a). For the

broadened case, a near identical focal spot of 2.1 × 1.7 ± 0.1µm FWHM was measured, as
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Figure 4.4: Camera images of focal spot before and after pulse compression. a)
Focal spot of the non-broadened laser pulse, normalized to the peak count values. b) Focal
spot of the spectrally broadened laser pulse, normalized to the peak count value. c) Horizon-
tal lineouts of the focal spots, normalized to the peak counts of the initial focal spot, show
that the peak counts and enclosed energy drops by 15% while the overall shape is largely
maintained, with only a slight additional wing structure added to the focus.

shown in Fig. 4.4 b). The shape of the focus is largely maintained. A slight wing structure

appears, resulting in the 1/e2 focal diameter to increase by ∼ 8%. The beam quality was

largely similar at all wavelengths, with the 1/e2 width being within 10% of each other on

average for each bandpass filter used. We observe a drop in peak fluence of only ∼ 7% per

stage, for two stages the peak was 15% lower, as shown in Fig. 4.4 c). Similarly, the energy

contained in the 1/e2 focal spot for two stages decreased by ≈ 14%, as measured by a large

area photodiode with a pinhole placed in the image plane and a thermopile power meter.

4.4 Strong and high field science applications

The two stage few-cycle output is suitable for a number of strong and high field applications.

Due to the flexibility of the compression technique, we were able to use the same experimental

setup that is discussed above for both regimes. Placing the fused silica on linear actuators

enabled reliable positioning of the fused silica between input laser conditions.
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Few-cycle HHG

We performed a high harmonic generation experiment with the compressed pulse, and mea-

sured the spectra using a homebuilt flat-field extreme ultraviolet (EUV) imaging spectrome-

ter. The compressed 7 fs beam with roughly 0.7 mJ of focusable energy at a 1 kHz repetition

rate was produced from the two stage compression setup. To compare the spectral broad-

ening to the initial many-cycle pulse, the dielectric media were removed, enabling the 36 fs

beam to be used traversing the same optics. The collimation optics of the compressor were

adjusted such that the output was collimated for this case as well.

The laser was focused by a curved mirror with focal length of 50 cm onto a 256 micron Argon

gas jet. The laser beam was apertured to an on-target intensity of ∼ 5x1014 Wcm−2, which

produced the brightest harmonic emission for the many-cycle beam. The few-cycle beam

had its energy further reduced to be as similar in intensity to the many-cycle as possible.

Data was averaged for 20 seconds, consisting of 20,000 shots. Compared to the many-

cycle interaction, the few-cycle interaction produces a harmonic spectrum with significant

broadening of the harmonics and a higher energy cutoff due to the dynamic phase matching

from ionization [127, 128]. The extra bandwidth at higher energies illuminates the aluminum

absorption edge from the 1.4 µm Al x-ray filters used, demonstrating the source’s potential

for spectroscopic applications such as X-ray absorption fine structure [129]. On par with

other experiments, the estimated flux of the beam exiting the gas jet is inferred to be ∼ 105

photons/shot within the range of 38 to 43 eV[130, 131] after accounting for filter absorption,

the quantum efficiency of the x-ray CCD, and grating reflectivity.

Relativistic electrons from solid density target

MilliJoule lasers can be focused to relativistic intensities on solid materials, producing

suprathermal electron beams with a temperature that scales with laser intensity [132]. In
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Figure 4.5: Few-Cycle EUV Harmonic Broadening a) EUV spectra produced though
gas high harmonic generation, normalized to the maximum of the many-cycle spectrum.
When driven by the many-cycle pulse (blue) discrete harmonics are observed. For the few-
cycle pulse (red) broadening of the harmonic widths occurs. b) Diagram of the experimental
setup used for gas high harmonic generation process.c-d Images of the few-cycle and many-
cycle spectra from 54 to 78 eV. The broadening of the harmonics in the few-cycle harmonic
spectrum is able to resolve the sharp absorption edge of Al at 72 eV

order to have sufficient space to position a target at the laser focus, an OAP with a 50.8

mm focal length was used. The input beam was upcollimated to ∼20mm 1/e2 diameter

using a reflective telescope to maintain a similar f-number as in the focal spot diagnostic.

Due to the increase in collimated beam size, the fused silica plates were moved to maintain

the same on-target intensity as was used in 4.3, similarly producing a measured few-cycle

pulse duration of 7 fs. After compression, a gold-coated OAP focused the p-polarized beam

onto a soda-lime glass target at an angle of incidence of 45o. The targets were mounted

on a motorized XYZ translation stage to keep the target within the Rayleigh range of the

laser and to continually refresh the target during the experiment. The electron spectra were

then measured using a homebuilt permanent dipole magnet electron spectrometer positioned

along the specular direction with the entrance slit of the spectrometer positioned ∼ 12.5cm

from the laser focus. The dipole spectrometer was coupled to a scintillating screen (Lanex

Fine) imaged by a digital camera (Basler). To ensure sufficient signal-to-noise, each electron

spectrum was integrated over 650 shots.
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For the comparison between many-cycle and few-cycle, we again removed the dielectric plates

from the compressor and recollimated the many-cycle output. We performed experiments

with three different beam parameters. Electron spectra were taken with the many-cycle

pulse at two energies, 1 and 4 mJ. When compared to the few cycle pulse, this corresponds

to a comparison case of having the same total energy (1 mJ) and having the same inferred

peak intensity 1.3 ± 0.1 × 1018Wcm−2, or 4 mJ. We then performed an intensity scan at

these energies by changing the separation of the grating compressor of the laser system. The

change of the inferred peak intensity due to the changing temporal profile was then modeled

using the numerical techniques discussed in section 4.3. This takes into account the change

in temporal profile, including nonlinear propagation obtained while propagating into the

vacuum chamber. This was done for the many-cycle and few-cycle laser beams. The same

method for intensity scanning was used for all sets of data.

The spectra produced by the two highest intensities of the few-cycle and many-cycle drivers

are shown in 4.6 a). While these pulses have approximately the same inferred peak intensity,

the many-cycle pulse has approximately four times the laser energy. The temperature of the

electrons measured scales with the intensity of the laser, as previously observed for many

cycle pulse interactions [132]. The measured temperature of the compressed beam was 122

± 6 keV with measured electron energies surpassing 1 MeV, comparable to what is measured

with the many pulse beam at a similar intensity. Fig. 4.6b) shows the electron spectra of

the many-cycle compared to the few-cycle when they have the same energy and inferred

peak intensity. The maximum energy as a function of intensity is shown in Fig. 4.6d). A

clear difference can be observed between the few-cycle 1 mJ driver and the many-cycle 1 mJ

driver, suggesting a much higher intensity in the former case. Additionally, as we reduce

the intensity by introducing GDD, we observe the expected drop in the maximum electron

energies.
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Figure 4.6: Relativistic Electron Generation a) Electron spectrum produced by the few-
cycle pulse and many-cycle pulse at intensities of 1.2× 1018 Wcm−2 and 1.4× 1018 Wcm−2.
Electron energies above 1 MeV detected. b) Electron spectrum produced by the few-cycle
pulse and many-cycle pulse at intensities of 0.27× 1018 Wcm−2 and 0.28× 1018 Wcm−2. c)
Diagram of the experimental setup use for relativistic electron generation. d) Shows the
change in electron energy at 1% the maximum electron spectrum amplitude as the laser
compressor is adjusted, changing the peak intensities. Note that the intensities for the few
cycle case are inferred.
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4.5 Discussion

The amount of accumulated nonlinearity in the dielectric plate can be characterized with

the B-integral:

B =
2π

λ0

∫
n2I(z)dz,

where λ0 is the central wavelength of the laser, n2 is the nonlinear index of the dielectric, and

the intensity I(z) is the maximum intensity of the pulse at location z inside of the material.

Commonly, I(z) is assumed to be constant throughout propagation, but as the bandwidth

of the pulse increases this approximation becomes less valid. The B-integrals reported in

this work are calculated using a summation approximation of the B-integral as it propagates

inside of the material, based on the nonlinear simulations of the system. A B-integral of 3.6

was calculated for the first stage, 2.8 for the second stage, and 2.7 for the third stage. The

total B-integral of 9.7 for all three stages, with the B integral being slightly higher due to

the presence of nonlinearity from the air and vacuum window prior to the compressor. The

FTL for the spectral output of each stage is predicted well by the simulations, and is also in

agreement with analytical spectral broadening factor for a Gaussian pulse [120].

Particularly in nonlinear schemes of pulse broadening, great care must be taken when dis-

cussing the properties of the beam. There is likely some amount of inhomogeneity in the

beam profile with regards to both broadening and pulse duration. For instance, in the case

of TFC, our 12 mm beam entering a dielectric at a lower B integral [61] produces narrower

spectra, but also produces spatial phase errors that cannot easily be compensated [120]. We

have previously observed in our laser system that there exist significant losses in the focal

spot quality and intensity when a TFC geometry is used [120, 61]. These losses appeared

to have been mitigated in the system utilized in this chapter. The mechanism for why the

focusability of the beam has improved over the collimated system cannot be explained using

the same models and warrants further study. One potential explanation is is the interaction
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between the multiple stages of spectral broadening in a focusing geometry and nonlinear

lensing occurring inside of the dielectric media.

While the spatiotemporal effects do not introduce substantial losses in the focusabiliy of the

pulse, they introduce complications into a calculation of the peak intensity of the laser [120,

133]. Assuming the focal spots and pulse durations discussed in this work, the intensity could

increase by a factor of ∼1.2 to ∼3.7 [120]. The peak intensity was not directly measured,

and with spatially averaging measurements we can only infer an intensity value, which may

vary between a value of 0.4 and 1.2×1018Wcm−2. The relativistic electron spectra produced

by the compressed few-cycle laser pulse was nearly identical to the many-cycle laser pulse

with an on-target intensity of 1.4 × 1018 Wcm−2, shown in Fig. 4.6 a), suggesting that we

are likely closer to the higher estimated intensity. When the intensity scan was performed,

pulses with similar inferred peak intensities produce similar electron spectra, as seen in Fig.

4.6b and 4.6 d). Though factors such as laser contrast, pulse duration, pulse structure, and

focal quality may have an unknown impact in this experiment, the similarities between the

two experiments suggest that these effects are minimal.

The pulse compression scheme presented in this work used all commercially available compo-

nents with a total cost of less than three thousand US dollars, yet enabled MeV electrons to

be generated with a factor of 4 less laser energy. While the system does require to be under

vacuum, potentially increasing the cost, relativistic laser-plasma experiments require the use

of vacuum, and such a system may be implemented within current vacuum infrastructure

in a manner similar to ours. The current dominant cost is due to the chirped mirrors. In-

creasing the energy of the laser system to even 10 mJ will require 2 inch optics to maintain

a collimated intensity below 0.5 TWcm−2 after 2 stages of compression, corresponding to

chirped mirrors which can cost tens of thousands of dollars.

With the required high reflectivity dielectric optics, terawatt peak powers are possible out of

our laser system, a commercially available single-stage amplifier. This scheme can be easily
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adapted for laser systems with tens of milliJoules, such as the 30 mJ red Wyvern (KMLabs).

Assuming similar losses to what we have observed in our system, a two stage compressor with

larger diameter optics, and a F/1.5 OAP focusing optic enables the commercially available

Red Wyvern to achieve on-target intensities of ∼ 1020 Wcm−2 at a kilohertz repetition rate.

At such high intensities laser contrast is an important consideration. The ratio between laser

prepulse and the on-target intensity laser is known as the laser contrast. Laser contrast has

been shown to have a major impact in experiments such as laser ion acceleration and high

harmonic generation [134, 135]. Changing the laser contrast by changing the main pulse

intensity does not necessarily imply that the prepulse is negligible, and in some experiments

pulse cleaning may be required. It should be noted that since the laser system used is not

Carrier Envelope Phase stabilized, the compressed pulse would not be either. If applied to

systems that are Carrier Envelope Phase stabilized or have features such as orbital angular

momentum these features should be maintained [51, 136].

In this chapter, relativistically intense few-cycle laser pulses capable of driving both high

and strong field physics were demonstrated utilizing an inexpensive and easy to implement

staged compression setup. In hollow core fiber compression, the laser undergoes SPM in a gas

media and the broadened portion of the beam propagates through a waveguide, maintaining

beam quality. In multiple plate compression, the technique is similar, now the SPM media is

a solid dielectric and the waveguiding comes in the form of the repeating nonlinear lens. Our

technique can be thought of in a similar manner, where instead of using the nonlinear lens to

guide the broadened spectra we instead use repeated real lenses, in the form of our reflective

curved mirrors. The benefit of such an approach is that we decouple the SPM from the

recollimation, enabling more compact and efficient geometries to be employed. Due to this

technique relying only on self-phase modulation and dispersion compensation, it is expected

that this technique can be applied to other optical and near infrared wavelengths. Addi-

tionally, if a dielectric material is chosen with a similar nonlinear index and is transparent

across the entire range of expected spectra this technique should work.
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Chapter 5

Real-time pulse measurement from

self-phase modulation and deep

learning

The following work has been adapted from a publication in submission to Nature Scientific

Reports.

Real-time reconstruction of intense, ultrafast laser pulses using deep learning, 2021 M. Stan-

field, J. Ott, C. Gardner, N. F. Beier, D. Farinella, C. A. Mancuso, P. Baldi, F. Dollar

5.1 Introduction

Short pulse duration lasers (< 100 fs) focused to relativistic intensities (> 1018Wcm−2) are

used for a wide variety of applications, such as x-ray generation [75, 76], electron acceleration

[78, 99, 100, 101], and ion acceleration [137, 23]. Creating the short pulse durations used in

these interactions requires the pulse to have a large spectral bandwidth along with having
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minimal phase shifts between the frequencies. If spectral phase differences are introduced

to the pulse, significant changes to the temporal structure of the pulse can occur. The

change in temporal structure could affect physical interactions, either due to a decrease

in peak intensity or through complex temporal profiles introducing non-trivial interactions

when used in an experiment. While knowing the temporal profile is essential for many

applications, measuring the temporal profile of a high energy beam in situ is non-trivial.

Numerous techniques exist to measure the temporal profile of an ultrafast laser pulse [138,

139, 140, 141, 142, 143, 144, 145, 146]. A nonlinear interaction is typically used to encode

the phase information into a signal measurable by a square-integrable detector. Techniques

such as intensity auto-correlation and frequency resolved optical gating (FROG) rely on

measuring a nonlinearity induced from the interaction between two or more pulses [141].

Other techniques, such as dispersion scan (D-Scan), rely on changing the phase of the ini-

tial pulse by a known amount and monitoring how that affects the nonlinear interaction

[142]. Commonly, a second harmonic mechanism is used for the nonlinear effect but other

nonlinearities, such as the effects originating from the third-order term of the nonlinear elec-

tric susceptibility, χ3, have been used [138, 147]. While these techniques have been highly

successful, in situ measurements of high energy beams are practically difficult.

Another nonlinearity that can be used for pulse measurement is self-phase modulation

(SPM). SPM is a nonlinear optical effect that occurs due to an intensity dependent in-

dex of refraction called the optical Kerr effect, which is a χ3 effect [148]. The nonlinear

change in index takes the form of n = n0 + γP (τ), where n0 is the linear index of refraction,

γ is the nonlinear coefficient, and P (τ) is the temporal power profile of the pulse. SPM can

be modeled by the generalized nonlinear Schrödinger equation (GNLSE), which takes into

account the effects of material dispersion, delayed Raman effect, and self-steepening [149].

If these effects are negligible, then the GNLSE is able to be solved analytically, taking the

form of a nonlinear temporal phase shift, E(z) = E(0)eiγP (τ)z, where E(z) is the electric field
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Figure 5.1: Example setup for using self-phase modulation to measure the initial temporal
profile of a pulse. The initial spectrum passes through a material with a Kerr nonlinearity,
causing a change in the spectrum due to self-phase modulation. A neural network takes the
initial and final spectrum as inputs and extracts the initial phase and fluence of the initial
pulse, allowing the initial temporal profile to be reconstructed.

after propagating through a material of thickness z. The total amount of nonlinearity of the

system is described by the B-integral, which is the integral of the nonlinear phase shift accu-

mulated through self-phase modulation. Under the approximation that the temporal profile

is constant during propagation, the B-integral simplifies to B = γPmaxz with Pmax being

the peak power of the pulse. In general, the inclusion of effects such as material dispersion,

delayed Raman effect, and self-steepening requires the GNLSE to be solved numerically.

Since the spectral change between the initial and SPM spectrum are directly dependent on

the temporal intensity profile, both the spectral phase and peak power can be reconstructed

by comparing the relative shape of the two spectra [143, 144]. Specifically, the phase recon-

struction does not require information about the peak power of the pulse and does not have

a direction of time ambiguity (i.e. which side of the pulse is the leading edge of the pulse).

Combining the peak power reconstruction with knowledge of the spatial profile of the laser

pulse, the peak intensity of the laser pulse can also be calculated. With the usage of a high

damage threshold dielectric as a nonlinear media, self-phase modulation can be performed

with high intensity beams, enabling in situ pulse reconstructions of the beam for high energy

beams. Commonly, the analytical solution for the GNLSE has been used in an Gerchberg-
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Saxton style iterative phase reconstruction algorithm, in which the phase is reconstructed

from the measured spectra of subsequent thin dielectric plates [143, 144, 145]. Iterative

phase retrieval methods have seen success for many-cycle laser pulses, however relying on

the analytical solutions to the GNLSE limits the application to systems with negligible ma-

terial dispersion. For broadband laser systems, even a small amount of material dispersion

can substantially alter the way the spectrum changes from SPM, requiring the GNLSE to

be solved numerically.

Deep learning based algorithms recently have shown great promise for ultrafast laser pulse

reconstructions. Deep learning has been applied to other pulse measurement techniques, such

as SHG FROG and D-Scan, where neural networks replaced iterative algorithms [150, 151].

Deep learning can directly learn nonlinear relationships between various features within data

and map them to the desired target variables [152]. Since the information is present in the

data used in the iterative phase reconstruction algorithms, deep learning can be used to

directly learn the transformation between the data and the reconstructions without the need

for the iterative algorithms. Since deep learning methods bypass the need for an iterative

algorithm during reconstruction, deep learning approaches can be significantly faster than

their iterative counterparts, enabling real-time reconstructions. Recently, it has been shown

that the peak power and pulse duration of a soliton transversing a fiber can be machine

learned [153].

In this chapter, we demonstrate a technique to perform a robust deep learning reconstruction

of the spectral phase and peak fluence of ultrafast laser pulses, which enables phase recon-

struction to occur even if material dispersion is non-negligible. The reconstruction is based

using neural networks trained to extract the initial phase and fluence from the relative shapes

of the laser spectrum before and after self-phase modulation through a dielectric medium.

The training for the neural networks is done by generating a large simulated dataset of var-

ious spectra and phases before and after self-phase modulation. By solving the GNLSE and
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including effects such as material dispersion, self-steepening, and the Raman response in the

simulations for the training data, the neural network is able to take these effects into account

when retrieving the phase.

5.2 Method

The method is based on predicting the phase of the initial laser pulse, as shown in Fig. [5.1]

by using self-phase modulation in a nonlinear media and a neural network. The spectrum

of the laser pulse is measured before and after sending the pulse through a known nonlinear

media. The network was trained using simulated pulses to predict the spectral phase of the

laser pulse from the initial and final spectrum. While non-trivial phases would not give a

human-interpretable spectral response, a neural network can be trained to extract the initial

spectral phase and fluence from the change in spectrum.

Training of the neural network occurs by running many examples of the problem through the

neural network and updating the parameters of the network to find the optimum weights for

predicting the desired target values. Once trained, neural networks can be used to predicted

the phase of pulses similar to the training data. While neural networks can excel in extract

information from data similar to what it was trained on, prediction on data vastly different

from the training data can drastically hurt the performance of the network. Due to the

quasi-infinite range of laser pulses possible, generating a single generalized network is non-

trivial, as one would be required to ensure all possible laser spectrum and phases are present

in the training data. While a single neural network may not be generalize to a complete

range of spectral bandwidths, the method of generating a neural neural network still holds.

In this work, we focus on two systems of interest and train neural networks separately

for each system. One system is purely simulation based and simulates a wide range of
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broadband spectral shapes and initial phases. The second system uses simulations to model

an experimental Ti:Sapphire laser. For the experimental system, due to the stability of

the laser spectra the initial spectrum is able to be assumed to reduce the number of input

features into the neural network.

5.3 Broadband Simulated Pulse Reconstruction

5.3.1 Data Generation

To generate sufficiently large data sets for training neural networks, numerical simulations

of a wide range of ultrafast laser pulses with varying phases were produced. The nonlinear

propagation was modeled with PyNLO, a python based 1-dimensional GNLSE solver using

the split-step Fourier method [149, 125]. PyNLO numerically models material dispersion,

self-steepening, and the delayed Raman response. The central frequency of the simulations

was set to 374.0 THz, which is the central frequency of Ti:Sapphire lasers. The material

properties were based on the values for fused silica, which is a common optical glass that

is able to be obtained with high optical quality and is well characterized. The material

dispersion was modeled by using the second, third, and fourth order expansion curves of the

Sellmeier equation for fused silica, which are 36.1 fs2mm−1, 27.49 fs3mm−1, and −11.4335

fs4mm−1.

To ensure a representative set of phases and spectrum were present, the training data was

generated from a randomly generated vector. The vector has a Gaussian envelope applied

in the temporal and then spectral domains, generating a pulse with a random spectrum and

spectral phase. The temporal envelope used to generate the data is 30 fs. The spectral

envelope used has a width of 40 THz centered on 374 THz.
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After the temporal and spectral envelopes have been applied, the peak fluence is set by

randomly sampling from a uniform distribution spanning the range of 16.2 mJcm−2 to 43.2

mJcm−2. To remove the constant phase ambiguity, the spectral phase was defined to be

zero at the central frequency. To remove the linear phase ambiguity, the temporal power’s

central moment was set to be centered at t=0. Simulations were then ran using PyNLO

inside of 1 mm of fused silica assuming a nonlinear coefficient, γ, of 6x10−8 (Wm)−1. Due to

the method of generating random spectra, some pulses with B-integrals > 3 are generated.

These pulse are not filtered out but experimental pulses with this B-integral may run into

spatial effects that break the 1-dimensional assumptions made in this work [154, 149]. The

resulting simulations had a B-integral ranging from 0.65 to 4.25, with an average B-integral

of 2.23.

The initial phase and initial spectrum were interpolated to 40 linearly space bins spanning

a frequency range of 120 THz centered on 374 THz. The SPM spectrum was interpolated

onto a linearly spaced vector with 100 bins and spanning the frequency range of 300 THz

centered on 374 THz. After interpolation the area under the curve (i.e. the energy) for

both the initial and SPM spectrum were normalized to unity to ensure the neural network

is learning from the relative shape changes of the spectra. The initial and SPM spectra are

then combined to create the feature vector that the neural network is trained on. A total

of 1,830,000 samples were generated for the training and validation sets, with an additional

20,000 samples generated for the test set. An example pulse generated using this method is

shown in Fig. 5.2.

5.3.2 Neural Networks

The neural network models were trained on a dataset of 1,830,000 generated samples, initially

with 70% of the data in the training dataset and 30% in the validation data set. The networks
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Figure 5.2: A) An example of a randomly generated spectrum (black) centered on 374
THz along with the randomly generated phase (red).B) GNLSE simulations based from the
reconstructed initial pulse(dashed blue) and the true initial pulse (red). C) Temporal profiles
of the reconstructed pulse(dashed blue) and the true temporal profile (red).

Name Range Parameter Type Phase Fluence Baseline
Batch Normalization (yes, no) Choice yes yes no

Dropout (0., 0.25) Continuous 0.175 0. 0.
Learning Rate (0.00001, 0.01) Continuous (log) 0.008 0.003 0.001

Learning Rate Decay (0.5, 1.) Continuous 0.98 1. 1.
Number of Layers (3, 20) Discrete 4 8 5
Number of Nodes (128, 512) Discrete 505 360 256

Optimizer (Adam, SGD, RMSProp) Choice Adam Adam SGD

Table 5.1: Hyperparameter Space. The hyperparmaters from the optimized phase and flu-
ence neural networks are shown in their respective columns, along with the baseline archi-
tecture.

were trained by gradient descent (backpropagation) using the training set. The validation

dataset is then used to assess their performance and make sure the networks generalize

properly to previously unseen data and do not overfit the training data.

The input features to the neural network are the interpolated initial and SPM spectra, with

a total of 140 features. The individual features of the input tend to be right-skewed, with

a majority of events taking smaller scalar values and a small minority occurring in higher

regions. In order to correct this we first take the log of the input features and then normalize

them, by subtracting the mean and dividing by the standard deviation. The target variables

are also normalized in the same fashion. Transforming the data through this process ensures

all features are on the same scale.
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Separate networks were trained to reconstruct the initial phase and the fluence of the pulse.

The phase neural networks were trained with the targets being the initial phase of the

pulse interpolated to the same 40 length frequency grid as the initial spectrum. The fluence

networks were trained with the only target being the fluence of the initial pulse. All networks

were implemented in Keras with a Tensorflow backend and trained on NVIDIA TITAN X

GPUs.

All training samples were augmented with small amounts of Gaussian noise, N (0, 0.05),

to mimic the imprecise fluctuations of experimental observations due to sources like laser

fluctuations and thermal noise in silicon based detectors. This augmentation, added during

training batches, also serves to prevent overfitting to the training set. Other models of exper-

imental noise could be included by applying the noise model to the data, either during data

generation or training. Training occurred over a maximum of 400 epochs. The performance

of each network is characterized by calculating the mean square error loss of the predicted

values compared to the target values. If the validation loss did not improve after fifteen

epochs, training was terminated.

Building and training neural networks requires one to set many values, called hyperparam-

eters, a priori. Hyperparameters include the number of layers, the number of nodes per

layer, the kinds of activation functions, the learning rates, and the dropout rates. Dropout

is a randomization procedure used during training that turns off different connections in the

neural network, forcing the network to learn a more general solution which also helps avoid

overfitting [155, 156].

In the experiments, the hyperparameters were optimized using SHERPA [157], a Python

software library which is compatible with Keras and other modern deep learning libraries,

and has been used to effectively optimize neural networks in various scientific applications

(e.g. [158, 159]).
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Figure 5.3: Validation loss of SHERPA trials, measured by the mean squared error, over
time. Each line depicts the validation loss of a different SHERPA trial during the course
of training. a) Trials from phase networks with varying hyperparameters. b) Trials from
fluence networks with varying hyperparameters. Note: not all 500 trials are shown in each
figure. Some trials with higher validation losses are left out for figure clarity. This discards
50 and 145 networks for a and b, respectively.
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Leveraging SHERPA, a large suite of 500 models were explored using a Bayesian optimiza-

tion algorithm. The Bayesian search has the advantage of learning a distribution over the

hyperparameters of the network architecture, in relation to the task to be optimized. By

employing this procedure we are able to evaluate a large space of possible models and test

many configurations. To demonstrate the efficacy of the hyperparameter search, we compare

the resulting model against an initially proposed baseline model. The baseline architecture

is shown in Table 5.1. The optimized phase and fluence networks contained roughly 608

thousand and 970 thousand parameters, respectively.

In total, 500 network architectures were explored with differing hyperparameters for both

the phase and fluence neural networks. The final architectures from the hyper-parameter

search are shown in Table 5.1. The table displays the hyperparameters of the best performing

phase and fluence network, along with the hyperparameters of the baseline network. The

distribution of the validation mean squared errors (MSE) for the phase and fluence networks

are shown in Figure 5.3a and 5.3b respectively. These figures highlight the performance of

the best optimized model compared to the initially proposed baseline network.

Following the hyperparameter search, the best performing phase and fluence networks were

evaluated using 10-fold cross validation. During 10-fold cross validation the data is randomly

partitioned into 10 distinct folds. Each network is then trained on 9 of the folds and tested

on the remaining one, and the process is repeated 10 times. The mean and the standard

deviation of the performance (error bars) can then be computed over the 10 experiments.

The results from 10-fold cross validation are presented in Figure 5.4a and 5.4b. These figures

demonstrate consistent performance across all 10 folds. We confirm that neither the phase

network nor the fluence network overfits the training data by comparing the performance

on the training and validation set across all 10 folds. The average difference between the

training and validation loss is less than 0.01 and 0.002 for the phase and fluence networks

respectively.
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Figure 5.4: Training and validation loss, measured by the mean squared error, over time.
Loss curves show the average (solid line) and one standard deviation (shaded region) for the
10 folds of cross validation. a) Phase network b) Fluence network

93



Figure 5.5: Examples of Reconstructed Pulses Multiple examples of the variety of initial
spectra and phases predicted by the neural network (dashed blue) and the true phase (red).
The predicted phase matches well in all regions of high spectral intensity, with disagreement
only occurring in regions of near zero spectral intensity. Vertical dashed lines show location
of the dB-20 spectral width.

5.4 Results

For the broadband simulated spectra, two separate neural networks were trained on randomly

generated simulated pulses. Both networks were designed to make predictions off of the

spectral measurements of the initial pulse and the pulse after SPM, with one network used

to predict the initial phase of the pulses and the other network used to predict the initial

fluence of the pulses. After training, 20,000 pulses withheld from the training data were run

through the networks to test the accuracy of the reconstructions for previously unseen data.

A set of example reconstructions are given in Fig. 5.5. To quantify the accuracy of the

neural network on the physical qualities we are predicting, the relative reconstruction error

is calculated for the fluence and the peak value of the energy normalized temporal profile. To
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Figure 5.6: Reconstruction Error in Peak Intensity Prediction To show the accuracy
of the reconstructions of the neural networks the percent error is shown. a) Reconstruc-
tion error in the predictions for the fluence of the pulse. b) Reconstruction error in the
predictions for the maximum of the normalized temporal profile of the reconstructed pulse.
c) Reconstruction error in the predictions for the peak intensity of the reconstructed pulse
using predicted fluence of the pulse.

quantify the combined accuracy of the two networks the peak value of the intensity profile

is calculated.

Comparing the reconstructed fluence to its known value provides a way to measure the ac-

curacy of the neural network’s predictions on the physical values we are trying to predict.

For 99% of the pulses in the test data, the neural network was able to predict the peak flu-

ence within an error of < 10%, a mean fluence reconstruction error of 1.6% and a standard

deviation of the fluence reconstruction error being 2.1%, as shown in Fig [5.6]. When cal-

culating the error of the phase reconstruction, we only considered regions within the pulses

dB-20 spectral width, since the phase is ill-defined and not physically meaningful outside of

areas with significant power spectrum. The mean standard deviation of the predicted phase

was 0.13 radians. To examine how the accuracy of the phase neural network translates into

the temporal domain, the reconstruction error in the predicted maximum of the normalized

temporal profile was calculated. For this calculation, 93% of the pulses had a reconstruction

error below 10%, a mean reconstruction error of 3.3% and a standard deviation of the error

of 6.7%. An example of a reconstructed pulse is shown in Fig. 5.2.
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Figure 5.7: Reconstructions with Gaussian Noise To show the robustness of the phase
predictions from the neural network above is three random initial spectra(black) and the
noisy spectra(magenta) after adding a 0%, 20%, and 40% Gaussian noise. The true phase
(solid red) is shown in comparison to the noisy phase (blue dashed) predicted from the noisy
spectrum. The vertical dashed lines denote the location where the spectral intensity falls
below 1% of the maximum value, outside this region the phase is ill-defined.
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By combining the results from the fluence neural network with the results of the phase neural

network, the temporal intensity profile can be reconstructed, including the direction of time.

Using the peak temporal intensity as an estimate of the intensity reconstruction error, which

has an mean intensity reconstruction error of 3.7% and a standard deviation of the intensity

reconstruction error of 7.1% with over 90% of the data set has less than 10% error.

Even in the presence of noise, accurate reconstructions can be obtained. In Fig. 5.7, three

pulses are shown with their phase reconstructions in the presence of 0%, 20%, and 40%

Gaussian noise. When applied to the entire test data set, the 20% Gaussian noise caused an

increase of the mean intensity reconstruction error to 5.9% and a standard deviation of the

intensity reconstruction error of 8.3% with over 85% of the data set has less than 10% error.

For 40% Gaussian noise the mean intensity reconstruction error to 50.1% and a standard

deviation of the intensity reconstruction error of 61.2% with 25% of the data set has less

than 10% error.

5.5 Experimental Pulse Reconstruction

In additional to validating the technique on broadband simulated data, we also utilized this

method to reconstruct the phase of a experimental Ti:Sapphire laser pulse. This experiment

was performed on a commercially available, 1 kHz repetition-rate laser system (Spectra-

Physics Solstice ACE) with an energy of 6.6 mJ, beam diameter of 12 mm, central wavelength

of 800 nm, and FTL pulse duration of 34 fs. The output of the laser was characterized using

an SHG FROG. The nonlinear media, 8 mm of fused silica, is oriented at Brewster’s angle

such that the effective propagation length after taking into account refraction is 9.6 mm.

The collimated laser beam has a peak fluence of 11.7 mJcm−2. Due to the large amount of

material that the laser is propagating through, material dispersion will significantly impact

the SPM spectrum. The spectra were taken by isolating the center of the beam with a hard
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Figure 5.8: Experimental Phase Reconstruction Phases measured from experimental
data. Spectra measured after propagating through 8 mm of fused silica at Brewster’s an-
gle. Spectra and temporal profiles are normalized to the area under the curve. a) FROG
reconstruction of a positively chirped laser pulse in comparison to the reconstructed results
from the neural network. Self-Phase modulated spectra and temporal profile are normal-
ized to area under the curve for ease of comparison. b) FROG reconstruction of a near
transform-limited pulse in comparison to the reconstructed results from the neural network.
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aperture and sent to a fiber spectrometer utilizing a optical diffuser to minimize spectral

interference from occurring inside the optical fiber.

To predict the initial phase of the laser, a new neural network was trained. While the network

trained on simulated broadband pulse performed well in the previous section it has limited

application to the experimental system due to the training data for that network having a

bandwidth ∼ 3x larger that the experimental laser system.

Due to the laser having < 0.5% root mean square energy fluctuations and a standard devia-

tion of transform limited pulse duration < 0.75fs, the initial laser spectrum and pulse energy

can be assumed to be constant and is not needed to be included in the features given to the

neural network.

The simulations used to generated the training data were based on the methods discussed

in Sections 5.3. Due to the dominant phase terms of the pulse being group delay dispersion

(GDD) and third-order dispersion (TOD), the phase was modeled primarily as a Taylor series

expansion, with random GDD, TOD, and forth-order (FOD) phase terms. The dispersion

coefficient were generated from a normal distribution with the standard deviation of 103 fs2,

104 fs3, 106 fs4 for the GDD, TOD, and FOD phase terms. To allow for minor deviations from

this expansion, a random phase was generated by taking the phase of a random spectrum

generated using the Fourier technique described used to generate the broadband simulated

data and was added to the Taylor series phase. This Fourier phase was generated using

a temporal and frequency FWHMs used were 60 fs and 50 THz with a maximum phase

deviation within 25 THz of the central frequency being sampled from a normal distribution

with a standard deviation of 0.5π. The peak fluence of the pulse was set to match the fluence

from the laser and propagated through 9.6 mm of fused silica. A total of 432 thousand

simulated pulses were used for training the network.

A neural network was then trained on 432 thousand pulses total using a 80/20 split for

99



the training and validation data sets. Due to assumption of a single initial laser spectrum,

the features used in training only needed to be based on the SPM spectrum. Both the

broadened spectrum and the initial phase were interpolated to the range from 330 THz to

418 THz binned 100 linearly spaced bins. The network consisted of 8 layers with a width of

200 and was trained using a Gaussian noise of 0.1, learning rate off 0.001, drop out rate of

0.1 over 200 epochs.

The reconstruction of the experimental neural network for two separate pulses is shown in

Fig. 5.8 and is compared to a reconstruction from a second harmonic generation FROG.

The pulse duration for the positive chirped pulse predicted by the neural network was 73 fs

compared to the FROGs 76 fs. The pulse duration predicted by the neural network for the

near transform-limited pulse was 36 fs compared to the FROGs 35 fs pulse duration.

5.6 Discussion

We have shown an inexpensive and easy to experimentally implement method for measuring

the temporal intensity profile of the laser pulse by utilizing self-phase modulation. While

two separate neural networks were trained to predict the phase for the initial pulse, this was

only done to simplify the data generation process. Since a neural network is only able to

predict pulses of similar structure to what it was trained on, a specifically tailored network

was designed for the broadband simulated pulses and many-cycle experimental pulses. Since

the majority of experimental systems output laser spectrum that are relatively consistent

in spectral width this constraint does not cause significant limitations when the method is

applied to experimental systems.

Due to relying only on the localized intensity of the pulse and requiring no scanning, single-

shot intensity profile characterization can be performed in-situ for a collimated beam of
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with energies ranging from the milli-Joule to Joule level without requiring attenuation of

the beam. With the usage of a imaging spectrometer and sampling the beam at various

spatial locations, a 3-dimensional intensity mapping of the beam could be created. These

capabilities make this technique ideal for large aperture multi-petawatt laser systems such as

ZEUS [31], which often measure the beam using a low energy sampling of the beam. When

combined with the knowledge of the focal spot of an experimental system, this information

would enable peak intensity of the focal spot to be calculated.

When applied to experimental data, as shown in Fig. 5.8, we see that both the FROG and the

neural network method are in good agreement with the SPM spectrum, and the reconstructed

temporal profiles are nearly identical. Since the spectral modulations tend to not contain fast

varying features, high spectral resolution is not needed. For example, the neural network

trained on simulated broadband pulses was trained on data with a wavelength resolution

of > 4 nm per pixel, compared to the resolution < 2 nm resolution for the spectrometer

used. The phase was able to be reconstructed using the neural network in under 10 ms on

a commercially available desktop computer, implying that real-time display of the spectral

phase and reconstructed temporal profile is possible.

OPCPA laser systems have enabled high power large bandwidth laser systems in the mid-

infrared (MIR) wavelength regions. In these regions traditional silicon-based detectors no

longer work, meaning forcing a reliance on more expensive InGaAs detectors. While this

technique was demonstrated for wavelengths from a Ti:Sapphire laser system, the technique

could be applied to the wavelengths in the MIR region. Scaling to other wavelengths would

only require knowledge of material properties of the nonlinear media used along with re-

training of the neural network. Being able to reconstruct the phase from only two spectral

measurements enables the phase information to be readily obtainable from a field auto-

correlator, meaning phase information could be reconstructed from a single power diode.

Field auto-correlators are already commonly used for techniques such as Fourier transform
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infrared spectroscopy, making this technique simple to implement into such systems.

The ability for self-phase modulation to spectrally broaden a pulse is utilized in many pulse

compression techniques to generate a few-cycle laser pulses. Modifying the neural network

to predict the spectral phase after self-phase modulation would enable the reconstruction of

the temporal profile after pulse compression. With this modification, the same system could

be used to generate and characterize a few-cycle laser pulse.

While the assumptions required for the GNLSE may begin to break down as the pulse

duration approach a single optical cycle, the methods discussed in this chapter can easily

be modified to not require those assumptions. Since the machine learning is trained on only

spectral information, the methods discussed in this chapter are actually model agnostic. A

more complete model or a full field solver could be used to generate the spectral data without

any modification of the methods of training described in this chapter. Since these methods

may be more computationally intensive, a neural network trained on data generated using

the GNLSE could be used with transfer learning to speed up the training process and limit

the number of the more complex simulations required for training.

5.7 Conclusion

The presented pulse measurement technique shows a general technique of measuring the

intensity profile of a laser pulse in single-shot applications using inexpensive and readily

available components, only requiring a piece of glass and a spectrometer. By using a fully con-

nected neural network phase reconstruction based on the generalized nonlinear Schrödinger

equation is able to be done, which includes material dispersion, delayed Raman effect, and

self-steepening. Since material dispersion is included in the modeling this technique is able

to be used to characterize broadband laser pulses in real-time. With minor modifications,
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this technique enables measuring the fluence and spectral phase of the pulse across the wave-

front, enabling measuring variance in the temporal profile across the beam for large aperture

beams that are common at facilities such as ZEUS.

103



Chapter 6

Deep Learning Phase Retrieval from

Self-Phase Modulated Dispersion

Scan

6.1 Introduction

As highlighted in the previous chapters of this thesis, understanding the temporal structure

of a ultrafast laser pulse is critical for the creation of high intensity laser pulses. Without

understanding the temporal structure, the peak intensity of the pulse can vary widely.

Commonly, techniques such as SHG FROG may require beam splitters, delay stages, or

nonlinear crystals cut at specific angle [96]. These requirements create a complex system

which increases the possibility for misalignment or other sources of experimental error. One

class of techniques, which eliminates the need for beam splitting and delay stages, is the

dispersion scan (D-Scan) techniques [142]. The various forms of the D-scan technique are

based on measuring the spectral changes of a nonlinearly generated signal as the group delay
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dispersion (GDD) of the initial pulse is changed by a known amount. Due to the technique

inherently requiring fine control over the initial GDD of the laser pulse, it not only is able

to measure the temporal profile of the laser pulse but it can also be used to correct any

preexisting GDD of the laser pulse.
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Figure 6.1: SPM D-Scan Examples An example of two different SPM D-Scan traces
created by a laser pulse with a 60 THz Gaussian spectrum with different initial phases. a)
The SPM D-Scan trace of a FTL pulse. b) The SPM D-Scan trace with 2000 fs3 of third
order dispersion and −20, 000 fs4 of fourth order dispersion.

The data generated by taking a D-scan trace is a image-like two-dimensional trace, with the

varied amount of GDD on one axis and the laser spectrum along the other axis. Commonly,

an iterative algorithm is used to retrieve the temporal profile from the trace, This is done by

minimizing the error between the reconstructed d-scan from an initial guess of the spectral

phase and the measured d-scan trace [142, 41].

While all D-Scan techniques eliminate the requirement for having a delay line in your exper-

imental system, the initial work was based around the second harmonic generation (SHG)

mechanism. By utilizing an SHG crystal, the nonlinearly generated light propagates at a

different phase velocity, requiring specially cut thin crystals to properly phase match the

wide bandwidth of the laser pulse [142].

One D-Scan variant that does not require any specific nonlinear crystals is Self-Phase Mod-

ulation D-Scan (SPM D-Scan) [41]. This technique utilizes the nonlinear effect self-phase

modulation (SPM) to induce a nonlinear spectral change of the initial laser spectrum, mean-
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ing the process is automatically phase matched. SPM originates from a nonlinear change to

the index of refraction proportional to the intensity of the laser system.

One limitation of the originally proposed SPM D-Scan technique was the assumption that

the temporal profile of the pulse was constant throughout the entire material, in other words

the material is assumed to be dispersionless. This assumption was made because it greatly

simplifies the differential equation that describes the nonlinear interacting, enabling the

nonlinear interaction to be modeled by a nonlinear temporal phase shift, as shown in Eq.

6.1.1.

E(z, τ) = E(z = 0, τ)e
i
2πn2
λ0
|E(z=0,τ)|2z

(6.1.1)

Where E(z, τ) is the temporal electric field after propagating a thickness of z into the material

and τ is the time relative to the center of the pulse. Using this equation, with a variable

amount of initial GDD of the pulse, enables the SPM D-Scan to be represented by Eq. 6.1.2,

where I(ω, φ2) is the SPM D-Scan trace, E0(t, φ2) is the initial temporal electric field with

an additional GDD phase term φ2, n2 which is the Kerr index, and z which is the thickness

of the nonlinear media.

I(ω, φ2, z) = |F(E0(t, φ2)exp(i
2πn2

λ0

|E0(t, φ2)|2z)|2 (6.1.2)

While this equation is valid for systems with negligible amounts of material dispersion, if

dispersive effects cause the temporal structure of the pulse to vary substantially during

propagation then Eq. 6.1.2 is no longer valid. In this case, the SPM D-scan trace requires
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the nonlinear propagation to be solved numerically by solving the generalized nonlinear

Schrödinger equation, given by Eq. 6.1.3.

∂E(z, t)

∂z
= icωn2|E(z, t)|2E0(z, t)− iβ2

2

∂

∂t
E(z, t) + icωn2

1

ω0

∂

∂t
|E(z, t)|2E(z, t) (6.1.3)

In this equation, the first term on the right hand side of the equation is self-phase modulation,

the second term is group velocity dispersion, and the third term is self-steepening.

Due to the SPM D-Scan’s trace sharing many traits with image, convolutional neural net-

works (CNNs) are an natural alternative the iterative algorithm approach. Popularized with

the creation of Alexnet [160], CNNs have become on of the standard machine learning al-

gorithm for state-of-the-art computer visions models [161]. CNNs perform well image-like

data due to their capabilities to use spatial information contained within the images through

the learning of various convolutional filters during training. These filters not only able to

take into account spatial relationship between neighboring pixels, but enable weight shar-

ing across the entire image. This weight sharing can reduce the total number of weights

compared to a fully connected feed forward neural network, reducing the size of the neural

network. In context of replacing iterative phase retrieval processes, convolutional neural

networks have been shown to rival their iterative counterparts for retrieving the pulses from

SHG FROG and SHG D-Scan traces [150, 151].

In the case of SPM D-Scan, the application of CNNs could enable a replacement for the

iterative algorithm, potentially enabling a significant speed of in phase reconstruction [151],

along with enabling a more more complex model of the physical system to be utilized. Since

neural networks are trained off of a large collection of data, more complex physics can be

included during simulation of the data used for training. Since the nonlinear effect was
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included in the training data, the neural network will automatically take into account the

effect when the network performs its predictions.

While SPM is an ideal nonlinearity for pulse measurement techniques, one complication in

modeling the system is it requires a well characterized nonlinear response of the material

to properly be able to predict how a pulse will change during propagation. Any changes

to either the material or wavelength of light used in the interaction can change the Kerr

index the interaction sees. Ideally, the exact value of the Kerr index would be required to

be known for the phase retrieval process.

In this chapter, the application of convolutional neural network to phase retrieval of SPM

D-Scan traces is performed in a material with an unknown group velocity dispersion and

Kerr index. We show that the temporal profile of the laser pulse, along with the GVD and

Kerr index of the material, are able to be predicted.

[41]

6.2 Method

The system used to obtain an SPM D-scan requires a form of variable dispersion control,

a nonlinear media, and a spectrometer. The spectrometer measures the spectral changes

that occur inside the nonlinear media due to SPM as it changes for different initial group

delay dispersion (GDD) values, as controlled by the dispersion control. The dispersion

control mechanism could be any method with reliable adjustments to the pulse’s GDD, such

as adjusting the laser compressor or through variable amounts of propagation in a known

dispersion material. Once a scan has been obtained the scan can be pass through a pre-

trained CNN that has been trained to extract the desired pulse or material properties of the

system.
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Figure 6.2: SPM D-Scan Trace Reconstruction Errors Three examples of SPM D-Scan
trace reconstructions. a-c is the initial simulated SPM D-Scan (True Trace) in the presence
of material dispersion and a given Kerr index. d-f are the SPM D-Scan based with the initial
phase, GVD, and Kerr index predicted from the neural network (Reconstructed Trace). g-i
are the absolute difference between the values of the true trace and the reconstructed trace
(Reconstruction Error).
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Due to the similarity the SPM D-scan data has to image data, a convolutional architecture

for the neural network can be used to fully take advantage of the spatial information in

the data. A convolutional neural network (CNN) have commonly been used for a wide

range of image based datasets due to their capabilities to efficiently take into account spatial

relationships within a given image. CNNs are based around learning sets of filters, which are

matrices that get convolved with the image. The CNN is trained by updating the values that

consist of the filters to minimize the error in the network, relative to the predicted values to

the known values.

6.2.1 Data Generation

To obtain the data to train the CNNs, simulated SPM D-scan traces are generated by solving

the Generalized Nonlinear Schrödinger Equation (NLSE) using the split-step Fourier method

(SSFM) to simulate the SPM in the dispersive nonlinear media, with the NLSE given by Eq.

6.1.3. The specific code used to simulate the interact is PyNLO, a GNLSE solver written in

python.

The full equation simulated in this work is given by Eq. 6.1.3. The first term on the right

hand side of is the term for self-phase modulation. This term is the only term which stays

when the assumption of a constant temporal profile while propagating through material is

made. Solving Eq. 6.1.3 with only this term will give the analytical solution for SPM.

Expanding beyond the analytical solution for the GNLSE, the two additional terms in Eq.

6.1.3 involves the temporal profile of the laser pulse change during propagation through

two separate mechanisms. The β2 term accounts for the change of the temporal profile

while propagating due to material dispersion, specifically the group velocity dispersion. The

partial derivative term corresponds to a nonlinear correction term called self-steepening. Self-

steepening accounts for the change of the group velocity due to the nonlinear response of
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the material, which causes the high intensity portion of the pulse to propagate at a different

group velocity relative to lower intensity portions of the pulse forming an optical shock [92].

The laser conditions that are assumed during the simulations are a central frequency of 374.0

THz and a peak fluence of 15.6mJcm−2 propagating through 2 mm of material. To simulate

a wide range of different materials, the β2 and n2 of the nonlinear media are varied. The β2

is randomly sampled from a normal distribution centered on zero with a width of 200 fs2.

The n2 of the material was randomly sample from a uniform distribution from a range of

0.5 to 3.0.

To ensure a wide range of pulses are generated for the training data, both the spectral

profile and phase are both randomly generated. The spectral profiles are generated from

an randomly generated complex vector in the time domain. A Gaussian envelope is then

applied to the random vector with a width of 20 fs centered on t = 0. The vector is then

transformed into the spectral domain by using a Fast Fourier Transform and then another

envelope of 60 THz that has a Gaussian envelope applied centered on the central frequency.

The phase is randomly generated by randomly creating up to 5 Gaussians in the frequency

domain along with a randomly sample third and forth order phase term added. Each Gaus-

sian has a 1/e2 width randomly sampled from an uniform distribution between 10 THz and

60 THz along with frequency locations and amplitudes all sampled from normal distributions

with standard deviations of 30 THz, and 2π radians respectively. The third and forth order

phases were individually sampled from a normal distribution of a with of 103fs3 and 104fs4

respectively.

To remove the linear spectral phase ambiguities the pulse’s temporal intensities central mo-

ment is centered on t=0. Due to the random phases potentially having significant amounts

of GDD, the GDD is optimized in 5 fs2 steps to set the peak intensity to occur at 0 fs2 to

ensure the maximum of the d-scan exists in the center of the scan.
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For each dispersion step in the scan the maximum B-integral is calculated and only traces

with a maximum B-integral ranging from 0.5 to 3.0 are kept, due to small B-integrals having

negligible nonlinearities occurring and larger B-integrals being experimentally limited due to

spatial effects such as beam breakup. After filtering for the B-integrals to the given range,

a total of ∼ 102 thousand d-scans being used during training of the neural network. An

additional 20 thousand d-scans were generated for the purpose of a test dataset that was

not utilized during training. All d-scans are normalized to the peak value of the d-scan after

subtracting off 0.5% of the signal to mimic the signal floor of a detector.

Figure 6.3: Temporal Profile Reconstructions Three examples of the temporal profile
reconstructions produced from the SPM D-Scan. Each trace shown along with the recon-
structed spectral phase and the reconstructed temporal profiles are plotted alongside the
ground truth values for these parameters.
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6.2.2 Convolutional Neural Network

Convolutional neural networks were used to generate predictions for the initial spectral

phase, β2, and n2. Each network was trained independently from each other but used the

same network structure up until the final prediction layer.

Each network was constructed using 3 repeated modules, with each consisting of three con-

volutional layers with 128 filters per layer and a max pooling layer after the convolutional

layers. For each convolutional layer a padding of the data occurred to ensure the dimension-

ality of the data did not get reduced after each convolutional layer. After all three modules of

convolutional layers the images were flattened and passed into 5 fully connected dense layers,

each with a width of 300 neurons. The prediction layer of the neural network consists of the

one neuron for the GVD and n2 neural networks and 100 neurons for the phase network. For

all layers before the final layer a rectified linear unit (ReLU) activation function was used

and for the final prediction layer a linear activation function was used.

The network was trained for up to 200 epochs using the mean square error (MSE) loss

function in batches of 256 using the Adam optimizer. For training, ∼ 102 thousand pluses

were actively used, with 20% of the pulses used for a validation dataset. To ensure the

neural network is not just overfitting and to enable early stopping the validation data. If

the networks validation loss stopped improving after 10 epochs, the training was halted. To

assist with the training of the neural network, the distribution of each of the target values

were individually normalized to have a mean value of 0 and a standard deviation of 1.

6.3 Results

After training each of the individual neural network, each network was characterized using

the data reserved in the test set of 20, 000 pulses. The normalized test set had a MSE error of
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Figure 6.4: Material Property Predictions Distribution of the predictions of the material
properties of the unknown nonlinear media. The values are binned into 100 linearly spaced
bins of on the x-axis. The mean predictions (solid blue line) within the bin are calculated
along with the standard deviation of the predictions (shaded blue) within each of these bins.
The line denoting a perfect prediction (red dashed line) is listed for reference of accuracy.
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Figure 6.5: Distributions of Error a) The cumulative percentage of the dataset with a
given RMS reconstruction error or below. b) The cumulative percentage of the dataset with
a peak intensity percent error.
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0.088 for the phase network, 0.068 for the GVD network, and 0.056 for the n2 network. The

distribution of the Kerr index and GVD prediction can be seen in Fig. 6.4. The standard

deviation and median n2 error was 0.13 m2W−1 and 0.05 m2W−1 respectively. The standard

deviation and median GVD error was 50 fs2mm−1 and 13 fs2mm−1 respectively.

Due to the phase of the pulse only being well-defined in regions of non-negligible spectral

intensity, two additional error calculations are done. The first calculation was using the

predicted spectral phase and the known spectral intensity to calculate the peak intensity

error of the predicted pulse. The second additional metric used was the rerunning of the D-

Scan simulations using the phase and material properties predicted by the neural networks.

The error of the D-Scan is shown in 6.2, along with the true and reconstructed SPM D-Scan

traces. The distribution of the reconstruction error and the peak intensity error is shown

in Fig. 6.5, where we see the cumulative percentage of the dataset below a given error.

Over 82% of the reconstructions have a peak intensity error less than 10%. Two example

reconstructions are shown in Fig. 6.3

6.4 Discussion

With the ability account for the changing temporal structure induced by the GVD of the

material, thicker materials can be used to characterize the beam. By using thicker mate-

rials, the intensity of the beam while propagating can be less while maintaining the same

total amount of nonlinearity. These intensity are important, as many Ti:Sapp laser system

will output collimated intensities within this range, meaning beam characterization can be

perform using the unattenuated collimated beam or an attenuated focused beam.

With the application of machine learning to the SPM D-Scan technique reconstruction of a

laser pulse’s temporal profile is able to be done using a material with an unknown material

115



dispersion and Kerr index. This means this technique could be applied to wavelengths where

the nonlinear index is not well characterized. In addition to being able to be done without

prior knowledge of the GVD or Kerr index, estimates of these parameters is actually able to

retrieved from these traces. This means this technique will be a valuable tool for working

with wavelengths where poorly characterized Kerr indices exist.

Edges of the space a neural network’s training data has can cause under-predictions to occur

due to the fact that the network any predictions beyond the limits of the distribution will

always be penalized for all predictions. This means the network can favor predictions closer

to the average value, as they are able to better minimize the loss for a wider range of values.

Low representation of the dataset can also affect performance, as the network is only able

to learn from examples it has seen. If there are not enough examples in a given region of

parameter space it will not be able to learn the correct weights to make a good prediction in

that region. This potentially is occurring in Fig. 6.4b) where the average values of the GVD

tend toward zero along with the standard deviation of results also start increasing. This is

due to the fact that the GVD value was generated using a normal distribution with a width

of 200 fs2, meaning the number of samples far from zero are much lower than the number of

sample close to zero. Both of these issues could likely be accounted for by generating data

with a wide range of Kerr indices and GVDs.

A potential method for both improving the accuracy of this technique and enabling uncer-

tainty estimates of a single data point is the implementation of ensembles of neural networks

[162]. For these methods, instead of a single neural network being trained to predicted a

single value, multiple networks are trained and the collective response of the networks can

be used to gain a better statistical understanding of the predictions, which could be used to

increase the accuracy of the predictions or to estimate the uncertainties of the system.

Like the result discussed in Chapter 5, the assumptions made in the GNLSE may begin to

no longer be valid as the single-cycle limit is approached. Similarly, the methods described
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in this chapter generalize beyond the GNLSE, as a more complete model could easily be

used to generate the training data for the convolutional neural networks.

6.5 Conclusion

With convolutional neural networks, the phase of an ultrafast laser pulse is able to be recon-

structed from an SPM D-Scan measurement in a material with an unknown group velocity

dispersion and Kerr index. In addition to the reconstruction of the phase, estimates of the

group velocity dispersion and Kerr index are possible. This makes this technique idea for

pulse measurements in materials without a well characterized Kerr index, such as many

materials within in mid-infrared wavelengths.

117



Chapter 7

Pulse Propagation in Optical Systems

7.1 Introduction

Due to the advancement of laser technologies of Kerr-mode locking and chirp pulse am-

plification, commercially available milliJoule level short pulse laser systems are able to be

developed and reach relativistic intensities (>1018 Wcm−2). One complication with many of

these systems is that the collimated intensities are high enough to induce nonlinear optical

effects during propagation to an experiment. With only few milliJoules of energy, collimated

intensity of >100 GWcm−2 can obtained for even a beam diameter of 1 cm.

These high collimated intensities coupled with propagation through air or through a vacuum

window can cause a coupling between self-phase modulation and material dispersion. This

coupling can introduce a temporal broadening effect that can significantly affect the peak

intensity of a laser pulse. The reduction in peak intensity can be significantly more than

what would be expected by each effect individually. Understanding this interact is critical for

many milliJoule level laser systems performing experiments that require a well characterized

laser intensity, as the laser intensity may be significantly different than the assumed peak
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intensity.

Material dispersion is an effect that occurs due to the variance of the index of refraction

across different wavelengths of light, causing each wavelength to propagate with a different

phase velocity. This variance in phase velocity can temporally stretch and add structure to

the laser pulse, which requires all of the frequencies to have the same phase to achieve the

highest possible intensity. Commonly, if linear dispersion is the only interaction at play it

can be pre-compensated for by adjusting the laser compressor to optimize the pulse duration

of the system, enabling the same peak intensity to be achievable regardless of how much

linear dispersion has been included.

Self-phase modulation is a nonlinear effect that is due to the nonlinear temporal phase added

from an intensity dependent change to the index of refraction. In materials where dispersion

has negligible effect on the temporal intensity profile, self-phase modulation is able to be

analytically solved by Eq. 7.1.1.

E(τ, z) = E(τ, 0)eiγ|E(τ,0)|2 (7.1.1)

From Eq. 7.1.1, we can see with from the analytical solution to the NLSE that the nonlinear

effect only affects the temporal phase of the laser pulse. This means, if dispersion is negligible,

SPM will have no effect on the temporal amplitudes of the temporal electric field.

When both effects are present a coupling between the two can occur which can substantially

effect the laser pulse. The interaction occurs due both effects adding an additional phase

terms to the pulse but in the two different Fourier domains. Self-phase modulation adds a

nonlinear temporal phase and material dispersion adds a linear spectral phase. This inter-

action can cause a significant change in how the pulse temporally broadens as it propagates

119



Figure 7.1: Peak Intensity After Propagation: 5 mJ The evolution of the pulses peak
intensity as it propagates through 10 mm of fused silica with a beam diameter of 1 cm and
pulse energy of 5 mJ

through a media such as a vacuum windows at collimated intensities commonly used for a

variety of laser systems.

7.2 Simulations

To explore the effect of propagating through material has on a peak intensity of a laser the

system will be simulating the interaction by solving the 1D nonlinear Schrodinger equation

(NLSE), including both self-phase modulation and group velocity dispersion. While assum-

ing a 1-D interaction does ignore potential spatial effects that may occur(ie self-focusing,

beam break up), these effects are already actively avoided in experimental systems. Solving

the 1D NLSE can be viewed as modeling either a flat-beam profile or the center portion of

a pulse with a spatial Gaussian distribution

The method used to solve the NLSE is the split-step Fourier Method (SSFM), in which the

material propagation is split into multiple steps and in each step the step is split into a linear

and nonlinear sub-step, where the linear sub-step accounts for the linear dispersion the pulse

experiences in that step and the nonlinear sub-step accounts for the self-phase modulation

accumulated during that propagation. The code used to run these simulation is PyNLO.
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While the interaction between self-phase modulation and linear dispersion can occur for a

variety of materials and laser systems, this work will focus on the interaction between a 800

nm laser pulse propagating through fused silica, due to the wide prevalence of Ti:Sapphire

laser systems and fused silica optics in many optical systems.

The parameters used for the simulation are an 800 nm laser with a Gaussian spatial profile,

a Fourier transform limited (FTL) pulse duration of 30 fs. To enable a comparison to

common beam diameters and energies, the peak power for the systems were models to be

approximately the powers achieved by a beam with a 1/e2 beam diameter of 10 mm with

1 mJ, 5 mJ, and 10 mJ of energy. These powers equate to be approximately equal to

80GWcm−2, 400GWcm−2, and 800GWcm−2 respectively. propagating in fused silica with a

group velocity delay (GVD) of 36 fs2mm−1 and a nonlinear kerr index of 2.5x10−20 m2W−1

[163].

To examining how the pulse changes due to the different combinations of optical effects,

three different sets of simulations are performed by varying the initial group delay dispersion

(GDD) and the thickness of material with only self-phase modulation included, only group

velocity dispersion included, and both self-phase modulation and group velocity dispersion

included, as shown in Fig. 7.1.

For pulses of 1 mJ, 5 mJ, and 10 mJ the initial GDD of the pulse varies from -1500 fs2

and 1500 fs2 and the amount of material ranges from 0 to 10 mm of fused silica, with the

resulting intensities displayed in Figures 7.1 a-c.

7.3 Discussion

In the cases of only self-phase modulation or only group velocity dispersion the same peak

intensity is achievable with the proper pre-compensation regardless of the amount of material
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Figure 7.2: Energy scaling for post-compression Plots a-c show the affect of SPM and
GVD on pulses with 1 mJ, 5 mJ and 10 mJ of pulse energy without any GDD added after
material propagation. Plots d-f show the affect of SPM and GVD on pulses with 1 mJ, 5
mJ and 10 mJ of pulse energy with −2000fs2 added after material propagation

the pulse propagates through, as shown by Fig. 7.1 a and b. From these plots we see that

for all thicknesses of materials, the same peak intensity is always able to be recovered with

the proper initial phase. Even though individually they are compensate, when combined

the peak intensity can drop dramatically in a fashion that can not be pre-compensated, as

shown in Fig. 7.1 c. In this figure we see that even after 4 mm of material propagation,

the combined effect of SPM and GVD prevent the peak intensity to be retrieved causing the

optimal compressor position to have a lower peak intensity than the initial laser.

Even in the 1 mJ system, the peak intensity after propagating through 4 mm of fused silica

drops by ∼ 12%, creating a significant error in the intensity. As the collimated intensity

increases or with additional material propagation occurs a larger drop in intensity will occur,

for example the 5 mJ and 10 mJ systems see a 34% and 46% drop in peak intensity after
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Figure 7.3: Effect of initial dispersion and chirp mirrors The simulations of the 5
mJ pulse without post-compression (a-c) compared to simulates with −2000fs2 of post-
compression (d-f). Dashed black lines represents 4 mm of propagation in fused silica, which
is where the pulse duration vs initial dispersion (b and e) and the optimized temporal profile
(c and f).

propagating through 4 mm of fused silica.

Since self-phase modulation itself is highly dependent on the initial shape of the temporal

profile, pre-compensation of the pulse can not occur. This can be observed in Fig. 7.2,

where Fig. 7.2 a-c show the optimized initial phase giving intensities below the initial peak

intensity. This is due to the fact that pre-compensating any amount of GDD will change

the nonlinear interaction that occurs. While compensation before the nonlinear media is not

able to be done, compression after the material is able to hold a relatively constant intensity

for a variety of different material thicknesses, as seen in Fig. 7.2d-e the material.

By adding in post-compression, through the usage of chirped mirrors or some other type

of phase correcting optic, negligible change can be induced from the coupling of SPM and

GVD. This is due to the fact that the large amount of post-compression drops the intensity
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during propagation enough to minimize the amount of nonlinearity that is occurring. In Fig

7.3a-c, we see without the −2000fs2 of post-compression the peak intensity of the pulse drops

a significant amount and the pulse broadens, even with only 5 mJ of pulse energy. With the

post-compression, the amount of nonlinear coupling between SPM and GVD is minimizes,

enabling the post-compression to compress the pulse back to a temporal profile and intensity

nearly identical to the initial pulse, as shown in Fig. 7.3 d-f.

In addition to post-compensation of the phase, another method that could be used to help

minimize this effect is expanding the beam size. By increasing the beam diameter before

the nonlinear material interactions can occur, the intensity during those interactions can be

reduced. While this can help mitigate the effect, beam diameters may be limited by the size

of the optics used. Two common optics size are one inch and two inch optics. If the 10 mJ

beam was expanded to completely fill a one inch optic at normal incidence, the resulting

peak intensity would still fall between the original 1 mJ and 5 mJ beams. Even if a 2 inch

optic at a 45 degree angle, filling this optic would drop the collimated intensity just below

the intensities used for the 1 mJ beams in this paper.

While the nonlinear material used in these simulations was modeled after a glass such as

fused silica, similar effects can occur even while propagating through air. For comparison,

at 800 nm air has a GVD of ∼0.02 fs2mm−1 [164] and a Kerr index of 3 × 10−23 m2W−1

[165]. Comparing these values to the values of fused silica means traveling through one meter

of air is approximately equivalent to traveling through one millimeter of fused silica. This

means, even if the beam is expanding to lower the intensity during propagation through a

vacuum window, a non-negligible temporal profile change could occur due to the nonlinear

interaction in the air.
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7.4 Conclusion

Without the post-compensation of a milliJoule level laser pulse commonly produced by many

commercially available laser systems a significant error in the peak intensity can occur. With

peak intensity decreasing form 12% to 45% for pulse ranging from 1 mJ to 10 mJ at 1 cm

beam diameter, significant amounts of error could be produced without proper compensation.

While many systems run with parameters within this regime, the majority of the negative

effects can be mitigated by the usage of post-compensation of phase.
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Chapter 8

Conclusion and Future Works

In this work, various methods to apply self-phase modulation to both generate and character-

ize relativistically intense few-cycle laser pulses was discussed. It has been shown in Chapter

4 a method to create a relativistic few-cycle laser pulse, along with multiple applications of

the produced few-cycle pulse. It was also shown that with the machine learning algorithms

discussed in Chapters 5 and 6, a SPM based phase retrieval is possible, either in real-time in

a known nonlinear media or by using a scanning technique in an unknown nonlinear media.

These techniques not only are able to predict the phase of the pulse but also the fluence and

material properties of the system.

While the topics discussed within this work have shown great results, further extensions of

these results are still possible and will be briefly discussed

8.1 Self-Compression

The few-cycle pulse generation technique discussed within this work required multiple stages

of phase compensation after each stage of spectral broadening. The phase compensation
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came from chirped mirror pairs, which are specially designed dielectric optics which add a

known amount of GDD to the pulse. While for 800 nm in fused silica this was required,

if a material exhibits negative GVD at the wavelength of interest, material dispersion can

replace the chirped mirrors for the phase correcting optic. Having a negative GVD occurs

the if the wavelength exists in the anomalous dispersion region of the material.

While directly replacing the chirped mirrors in a system similar to the one used in Chapter 4

would work, if the nonlinear media itself had the proper negative dispersion the pulse could

be compressed while undergoing self-phase modulation, an effect called self-compression.

Similar to the nonlinear coupling between SPM and GVD in Chapter 7, the negative GVD

and the nonlinear phase from self-phase modulation are able to interact and substantially

change the temporal profile during propagation. Unlike Chapter 7, where the interaction

caused a substantial broadening of the temporal profile, the negative spectral phase from

material dispersion is actually able to cancel with the positive spectral phase from self-phase

modulation, causing compression of the pulse to occur during propagation.

While most materials in or near the visible light spectrum have positive GVD, moving

to longer wavelengths, such as 2 µm can cause the dispersion to transition from ”normal”

dispersion to ”anomalous” dispersion. With proper balancing between self-phase modulation

and material dispersion, a technique similar to what was shown in 4 could be able to compress

the pulse while propagating, ensuring a near transform limited pulse duration throughout

the entire system without requiring any specially designed dielectric mirrors to compress the

pulse, like was used in 4.
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8.2 Extensions to Machine Learning Based Pulse Mea-

surement Techniques

With a few modification to the machine learning based pulse measurement technique dis-

cussed in Chapter 5, prediction of the final temporal profile after the few-cycle pulse produc-

tion technique described by Chapter 4 should be possible. This can be done by predicting

the pulse after the nonlinear interaction and phase compensation instead of the pulse before

the nonlinear interaction. With multiple stages of spectral broadening, additional constrains

could potentially be retrieved due a multiple broadened spectrum being measurable. While

including these multiple stages of compression could require a new network to be designed

for each experimental system, due to the interactions potentially changing for each system,

the additional constraints could enable more accurate reconstructions of the phase.

A change to the machine learning model used could potentially be used to improve recon-

struction accuracy or training times of future networks based on the 5 results. Specifically,

using a one-dimensional convolutional neural network, similar to the two-dimensional used in

6, could enable easier learning of the phase of the pulse due to the fact that neighboring pixels

are highly related. Doing this could also work well with previously mentioned modification

to the network for measuring the pulse after multiple stages of pulse compression. By having

a convolutional network trained on the input features of spectra from each stage at once,

filters may be trained to find correlations between the different stages spectra, potentially

improving training accuracy or training times.
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dispersion-controlled ti:sapphire laser. Opt. Lett., 20(6):602–604, Mar 1995.

[29] Donna Strickland and Gerard Mourou. Compression of amplified chirped optical pulses.
Optics communications, 56(3):219–221, 1985.

[30] Solstice ace high-energy ultrafast amplifiers.

[31] John Nees, Anatoly Maksimchuk, Galina Kalinchenko, Bixue Hou, Yong Ma, Paul
Campbell, Andrew McKelvey, Louise Willingale, Igor Jovanovic, Carolyn Kuranz,
Alexander Thomas, and Karl Krushelnick. Zeus: A national science foundation mid-
scale facility for laser-driven science in the qed regime. In 2020 Conference on Lasers
and Electro-Optics (CLEO), pages 1–2, 2020.

[32] Jin Woo Yoon, Yeong Gyu Kim, Il Woo Choi, Jae Hee Sung, Hwang Woon Lee,
Seong Ku Lee, and Chang Hee Nam. Realization of laser intensity over 1023w/cm2.
Optica, 8(5):630–635, May 2021.

[33] K. Kalashnikov, M. P.and Osvay, I. M. Lachko, H. Schönnagel, and W. Sandner.
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gali Lozano, Jean-Philippe Rousseau, Zhao Cheng, Dominykas Gustas, Andreas Blu-
menstein, et al. Relativistic-intensity near-single-cycle light waveforms at khz repeti-
tion rate. Light: Science & Applications, 9(1):1–9, 2020.

[109] R. H. Stolen and Chinlon Lin. Self-phase-modulation in silica optical fibers. Phys.
Rev. A, 17:1448–1453, Apr 1978.

[110] C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson. Compression of
femtosecond optical pulses. Applied Physics Letters, 40(9):761–763, 1982.

[111] Artur A. Mak, Leonid N. Soms, Viktor A. Fromzel’, and Vladimir E. Iashin. Nd-glass
lasers. Moscow Izdatel Nauka, January 1990.

[112] Martin Kaumanns, Vladimir Pervak, Dmitrii Kormin, Vyacheslav Leshchenko,
Alexander Kessel, Moritz Ueffing, Yu Chen, and Thomas Nubbemeyer. Mul-
tipass spectral broadening of 18&#x2009;&#x2009;mj pulses compressible from
1.3&#x2009;&#x2009;ps to 41&#x2009;&#x2009;fs. Opt. Lett., 43(23):5877–5880,
Dec 2018.

[113] Moritz Ueffing, Simon Reiger, Martin Kaumanns, Vladimir Pervak, Michael Trubet-
skov, Thomas Nubbemeyer, and Ferenc Krausz. Nonlinear pulse compression in a
gas-filled multipass cell. Opt. Lett., 43(9):2070–2073, May 2018.

[114] Thomas Metzger, Christian Grebing, Clemens Herkommer, Sandro Klingebiel, Peter
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mintchev, and Margaret M. Murnane. Near- and extended-edge x-ray-absorption fine-
structure spectroscopy using ultrafast coherent high-order harmonic supercontinua.
Physical Review Letters, 120(9), March 2018.

[130] P. C. Huang, C. H. Lu, B. H. Chen, S. D. Yang, M.-C. Chen, and A. H. Kung. Euv
continuum from compressed multiple thin plate supercontinuum. In Conference on
Lasers and Electro-Optics, page FTu3N.7. Optical Society of America, 2016.

[131] M. Stanfield, H. Allison, N. Beier, S. Hakimi, A. E. Hussein, and F. Dollar. Few cycle
euv continuum generation via thin film compression. In 2020 Conference on Lasers
and Electro-Optics (CLEO), pages FF2C–7, 2020.

[132] Aghapi G Mordovanakis, Paul-Edouard Masson-Laborde, James Easter, Konstantin
Popov, Bixue Hou, Gérard Mourou, Wojciech Rozmus, Malcolm G Haines, John Nees,
and Karl Krushelnick. Temperature scaling of hot electrons produced by a tightly
focused relativistic-intensity laser at 0.5 khz repetition rate. Applied Physics Letters,
96(7):071109, 2010.

[133] Eugeny Perevezentsev, Anatoly Poteomkin, and Efim Khazanov. Comparison of phase-
aberrated laser beam quality criteria. Appl. Opt., 46(5):774–784, Feb 2007.

[134] M. Kaluza, J. Schreiber, M. I. K. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter
Vehn, and K. J. Witte. Influence of the laser prepulse on proton acceleration in thin-foil
experiments. Phys. Rev. Lett., 93:045003, Jul 2004.

[135] F. Dollar, P. Cummings, V. Chvykov, L. Willingale, M. Vargas, V. Yanovsky, C. Zulick,
A. Maksimchuk, A. G. R. Thomas, and K. Krushelnick. Scaling high-order har-
monic generation from laser-solid interactions to ultrahigh intensity. Phys. Rev. Lett.,
110:175002, Apr 2013.

[136] Fanqi Kong, Hugo Larocque, Ebrahim Karimi, P. B. Corkum, and Chunmei Zhang.
Generating few-cycle radially polarized pulses. Optica, 6(2):160, January 2019.

[137] L Torrisi, M Cutroneo, A Torrisi, L Silipigni, G Costa, M Rosinski, J Badziak,
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