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1. INTRODUCTION 
 

In a recent rethinking of our introductory courses, George Cobb reminds us just how 

pervasive have been the accommodations to problems of computability. Many of our core topics are 

progressively complex adjustments to approximations that we rely on because more direct methods 

were not previously practically computable. The normal distribution dominates introductory courses 

as we lead students progressively further afield from the essence of statistical thinking. But now we 

have cheap and powerful computing that permits us to remove the normal distribution from the center 

of our universe and instead replace it with the fundamental logic of inference. Liberated from the 

―tyranny of computability‖ we can ―emphasize the 3R’s of inference: Randomize, Repeat, Reject any 

model that puts your data in its tail‖ (Cobb, 2007). We need not worship at the altar of the Gaussian 

model, but rather we can leverage computing power to reimagine the content and structure of 

introductory statistics courses.  

 

In statistics education we have a long history of questioning what we should teach, when we 

should teach it, and how we should teach it (Federer, 1978; Hogg, 1991; Meng, 2009; Moore, Cobb, 

Garfield, & Meeker, 1995; Vere-Jones, 1995). There is an equally rich history of adapting to new 

technologies, from calculators to computers (Friedman & Stuetzle, 2002; Phillips, 2001; Schatzoff, 

1968; Tukey, 1972). This paper takes up Cobb’s exhortation and offers a recipe for a course in the 

spirit of his article. The recipe anticipates local variation according to the needs and realities of 

readers’ home institutions, but should be adaptable by many readers.  

 

In 1937 Robert Cobb introduced a salad at the Brown Derby restaurant in Hollywood, 

California featuring an assortment of vegetables, meat, eggs and cheese with each ingredient chopped 

and artistically arranged in adjacent mounds on a dinner plate. A Cobb salad is a full meal in itself—

rich in nutrients and flavor. It is loaded with proteins and fats providing the diner with a substantial 

meal of bite-sized elements, unified with a savory dressing. Though not precisely in keeping with the 

latest nutritional guidelines on healthful eating, it does have quite a lot to recommend it: with some 

subtle modification, it provides the diner with a balanced variety of protein, fats and carbohydrates, as 

well as an appealing mix of textures, colors and flavors.   

 

Our standard emphasis on technique has too often produced introductory statistics courses 

that are green salads: an enormous amount of space on the plate is occupied by bulky greens that have 

relatively little flavor or nutritional value, take a long time to chew, and ultimately leave the diner 

unsatisfied. Occasionally, there are some pickles included: old, reworked, or artificial datasets that 

appeal only to particular tastes or, worse still, lie limply on the plate. The recipe outlined here reduces 

some of the space-filling and watery leafiness and adds substantial ingredients that will fortify 

students and remain with them for a long time.  

 

2. A FRAMEWORK: CONSTRAINED OPTIMIZATION 
 

We begin building the course within a framework of multi-objective constrained 

optimization. The animating idea in Cobb’s article is that an ancient constraint has been lifted; we 

ought to productively think about our objective function(s) and our constraints. What are we 

optimizing, and what are the critical constraints? 

2.1 What Shall We Optimize? 

We live in an age when statistical thinking is one major modality of truth-seeking, policy 

development and decision-making. Scholars from various nations and cultures have cited the idea of 

―statistics for citizenship‖ for years (Bartholomew, 1995; Gal, 2003; Utts, 2003; Wild, 1994).  If we 

are to educate for world citizenship, we also must pursue the objective of statistical thinking; indeed 

our literature often points to it as the objective par excellence. One recent discussion notes that  
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―Statistical thinking uses probabilistic descriptions of variability in (1) inductive reasoning and (2) 

analysis of procedures for data collection, prediction, and scientific inference‖ (Brown & Kass, 2009). 

The authors go on to note that ―Statistical models of regularity and variability in data may be used to 

express knowledge and uncertainty about a signal in the presence of noise, via inductive reasoning.‖ I 

suggest that we emphasize the logic of inference in order to maximize our students’ preparedness for 

world citizenship, though the specifics of that preparation will have quite wide variation across 

nations. 

 

If we define an objective function to represent statistical thinking, then clearly one important 

term in that function should be the ―logic of inference‖ as Cobb says. Other factors that contribute to 

statistical thinking would include understanding important foundational concepts such as populations, 

samples, variability, data, and description. Each portion of Section 3 below focuses on one or more of 

the specific terms in the objective function: (1) populations and variability, (2) samples and 

variability, (3) the logic of inferential modeling, and (4) applications of inference.    

 

It is probably less important to agree on a single universal objective or set of objectives than it 

is to have clarity about the core objectives within the design of one university’s course. For the sake 

of this paper, let’s consider statistical thinking to be the prime objective. Suitable secondary goals 

include citizenship and global awareness, cultivation of interest in quantitative modeling, facility with 

statistical computing, and awareness of quantitative skills as valuable in the job market. 

2.2 Which Constraints Matter? 

Those who teach an introductory statistics course are well aware of the typical constraints that 

impinge on the design and conduct of the course. Cobb’s insight, of course, is that some of the long-

standing constraints are no longer relevant. Naturally the constraints vary across nations, academic 

programs and schools. Some are so embedded in the design of textbooks and courses that we have 

forgotten about them. Figure 1 identifies the key customary constraints and the associated 

characteristics of traditional introductory courses. 

 

Which constraints still matter? This section briefly outlines the proposed constraint set: 

 

 Important problems: Statistical thinking is brought to bear on problems of great importance and 

therefore illustrative problems and cases presented in our courses should be real and important. 

We would do well to take our lead from Hans Rosling (Rosling, Rönnlund, & Rosling, 2004) and 

the work of www.gapminder.org to excite students about global inequality with dazzling visual 

tools.  

 Best practices: Follow Guidelines for Assessment and Instruction in Statistics Education GAISE 

(or comparable) guidelines. 

Constraints Course and Textbook Characteristics 
 Assumptions about the Canon 

 Subject-oriented discipline requirements 

(psychology, engineering, business, etc.) 

 14 weeks 

 Student backgrounds in mathematics and subject 

domains 

 Availability of computational technologies: slide 

rules, calculators, computers, tables (z, t, F…), 

applets 

 Availability and accessibility of real, important 

data sets (very limited until recently) 

 Class sizes & management of assignments 

 

 Small samples and small-ish samples (n < 20 and 

30  < n < 100) 

 Artificial data and non-random samples 

 Instructional focus on computation 

 Focus on approximations to smooth distributions 

 Students demonstrate ―skills‖ that are exam-

friendly (finding numerical results) 

 Emphasis on ―Mechanics‖  

 Interpretation of significance test results  
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Figure 1: Traditional Constraints and Course Attributes 

  

 One semester: the introductory course is often the terminal course, and we have roughly one 

quarter of the year at our disposal (in the U.S. a 14-week course is typical, but some are shorter). 

 Infrastructure: Every course operates within a campus IT infrastructure and physical 

classrooms, and those constraints clearly have impact in this discussion. Additionally, we must 

recognize national differences in statistical infrastructure and student preparation in secondary in 

schools (Peres, Morettin, & Narula, 1985).  

 Barriers to reform: We must also recognize the social, political, economic hurdles to curricular 

reform (Kerr, 1989; Obanya, 1995). These forces exist at the institutional level (campus cultures 

and budgets come to mind) as well as at the regional and national levels. 

 SOS disciplines: Many courses serve the needs of programs in engineering, social sciences, 

business, or natural science. At institutions where service courses are common, we must meet the 

needs of the disciplines with whom we cooperate in offering Subject-Oriented Statistics (SOS) 

courses (Altman & Bland, 1991; Love & Hildebrand, 2002; McAlevey, Everett, & Sullivan, 

2001; Meng, 2009; Smeeton, 1997; Yasar & Landau, 2003). 

 Non-negativity: Here we should be inspired by the Hippocratic Oath: do no harm. Better still, 

keep the affect positive, so that on net we offer ―Happy Courses‖ (Meng, 2009). 

Cobb’s original point is that the long-standing constraints of computability have been 

substantially relaxed or effectively dropped. Sampling distributions that presented insurmountable 

computational burdens can be quickly simulated (with animation, no less) and in some cases 

exhaustively generated by standard statistical software and cheap laptops. While the Central Limit 

Theorem is still an independently valuable and impressive result
1
 it is no longer indispensible to either 

the understanding or the practice of inferential reasoning.  

 

It’s not just the computability constraints that have relaxed. We should note that in many 

nations we no longer should assume an absence of prior statistical background knowledge (Holmes, 

2003) as secondary school students regularly have formally studied statistics. Concurrently, the web 

has made available vast amounts of public-domain data and there are now numerous libraries of fair-

use experimental data and public domain microdata from reputable surveys. Though it varies across 

schools and countries, student access to computing power and appropriate software is far less a 

problem than just a few years ago. In some schools or nations, limited access may continue to present 

insurmountable barriers to implementing the ideas presented below. The expectation is that over time 

costs will continue to fall and access will continue to increase. 

2.3 Relaxed Constraints = Opportunities 

 One of Cobb’s messages is that defunct constraints live on in the topics we include in our 

introductory courses. With a new set of constraints there are a number of topics that we leave behind, 

making room for greater depth or for a reconsideration of those topics that we consider too advanced 

for an introductory course. Figure 2 lists topics and techniques which should be tossed onto the 

compost heap as we prepare this new salad as well as those we might include selectively to enrich the 

offering. 

 

OUT: Topics We Can Afford to Drop IN: Formerly “Advanced” or Neglected Topics 
 Most manual computations using small datasets 

 All software-based computation using artificial 

data 

 Data preparation, missing data, and data 

management 

 Writing about statistical investigations 

                                                      
1
 Probably more impressive to statistics teachers than to our pupils.  
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 Defining histogram bins 

 Most elementary probability 

 Reading tables of t, z, F, etc. 

 Normal approximations to other distributions 

 Z-intervals and significance tests 

 

 Resampling and Permutation tests 

 Analysis of Probabilistic non-SRS data using 

sampling weights 

 Nonparametric methods 

 Non-linear models 

 Multivariate models  

 

Figure 2: What’s Out and What’s In 

 

3. AN OUTLINE FOR A 14-WEEK COURSE 
 

Much as we think of data as a mixture of signal and noise we may do well to reexamine our 

course outlines similarly with an eye to improving the signal-to-noise ratio. Activities and lessons that 

advance statistical thinking and the logic of inference are signal, as is any content that satisfies SOS-

related applications or other constraints. All other potential course elements are noise.  

 

The course design should follow principles of good study design, following the essential 

structure of a Plan-Do-Report (P-D-R) cycle (Sharpe, De Veaux, & Velleman, 2010), and iterating the 

cycle several times within the course. In this particular proposed course, there are four iterations of 

the P-D-R pattern. Planning involves raising theory- and data-driven questions, specifying variables, 

and planning for data collection. Doing is about methods and techniques. This course proposal 

presents methods that satisfy constraints and/or increase facility with the logic of inference and 

statistical thinking. For each ―doing‖ segment, a micro P-D-R cycle will repeat according to the 

conventions of the technique. Reporting focuses on resolution of those important problems, assessing 

the extent to which conclusions can be drawn, with direct attention to language suited to 

communicating within our allied disciplines (Radke-Sharpe, 1991; Samsa & Oddone, 1994; Wild, 

1994).  

 

In keeping with the Cobb salad metaphor, let’s treat the four P-D-R cycles as four nutritious 

elements arranged artfully in mounds, and describe the topics that form ingredients for each mound. 

Instructors will likely have favorite data sets and illustrative examples. The following discussion 

presents the topics treated in each cycle, as well as some illustrative examples. The purpose is to 

invite readers to reconsider how and what we teach in the light of technologies at our disposal, 

keeping in mind that statistical software obviates the need for some traditionally critical topics. 

 

Readers will note that the specificity of examples diminishes as the discussion proceeds 

through the four mounds. This is based on the author’s view that earlier mounds are applicable to a 

wide variety of educational settings, and therefore will suit the needs of most instructors. Conversely, 

the that later mounds will tend to vary more widely by institution, so course designers and instructors 

will want to develop their own examples. In addition there are probably diminishing returns to 

repeating extended illustrations.   

3.1 Course Structure and Context 

 As noted earlier, the primary assumed objective is to maximize students’ facility with 

statistical thinking. Additional objectives include generating genuine engagement with the discipline 

and developing a positive affect about statistics. Before presenting the proposed course approach, it 

should be noted that the author has conceived of this course in a setting of classes of 25 to 35 

students, each with in-class access to computers.  That said, though, the approach should be adaptable 

to larger classes in which an instructor demonstrates the software, and then students complete 

structured assignments outside of class either in a lab setting or using their own computers.  

 

 My goal here is to spur practical and creative thinking about how to change the introductory 

course as we continue to apply computing power to the big ideas of statistical thinking. Traditionally 
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we devote considerable resources to calculations associated with (for example) theoretical 

distributions and there is no longer a need to do so. This article does not layout a turnkey plan for a 

course, but does provide a framework and some direction for working through the details of 

implementation. 

 

 We also should not underestimate the potentially constraining effects of campus cultures and 

conventions. A course like the one described here invites students to collaborate, to work 

independently outside of class, and to raise questions guided by their data. The approaches suggested 

will more readily take root in some settings than in others. 

3.2 A Word About Software 

 Because available computing power is a central driver in the argument here, it is natural to 

build the proposed framework using current software. I believe that this proposed course works best 

when students have the software installed on their own computers, and that is likely to be a problem at 

many institutions. Ideally, schools have licensing arrangements with the relevant vendor that allow 

faculty and students to download and run the software on their own computers, permitting maximum 

access for data exploration and tinkering.  

 

My bias is towards packages written specifically for statistical analysis with sizeable user 

bases in industry and academia (Minitab, SPSS, Stata, SAS, JMP, R, etc.) rather than widely available 

spreadsheet software or even marvelous tools like Fathom or Trendalyzer. This is not to denigrate the 

alternatives but rather to introduce students to tools that will serve them well in graduate programs or 

in the job market while still facilitating the habits of statistical thinking. The illustrations below use 

JMP in part because I find JMP to be an excellent environment for undergraduate introductory 

statistics students: it is menu driven, native to both Macintosh and PC operating systems, thoroughly 

visual, and consistently links graphics to the analytical methods. JMP does have an extensive 

scripting language but with menus the cognitive barrier to entry is quite low, permitting instructors to 

devote energy to teaching statistical thinking rather than teaching programming.  

 

JMP is not unique in these respects, though its ease of use, visual approach and other 

advantages certainly make it very attractive for this purpose. This course could also be implemented 

with most of the other programs mentioned, thought the burdens on students might be greater.
2
  

3.3 Mound 1: Populations and Variability (4 weeks): 

The course should start with a vivid presentation of an important international problem 

relevant to a SOS discipline. Rich areas for problem selection include social justice, public health, or 

quality of life (Lesser, 2007; Rosling, et al., 2004). This primary objective in this mound is to lay the 

foundations of the core concepts of variability within populations or processes and the generation of 

data about a population. The secondary objectives here (secondary to those of developing statistical 

thinking) include making a clear connection between a SOS discipline and statistics, as well as 

introducing students to the software environment. The constraints are those already discussed in 

Section 2.2 and 2.3. This illustration serves several SOS disciplines, including economics, political 

science, sociology, or any of the health professions. It is also accessible to most undergraduates.  

 

As we’ll soon see, the illustration included here is about the relationship between fertility and 

wealth around the world. Birth rates, life expectancies, family sizes, poverty and wealth inequality 

underlie a huge number of social, economic and political struggles. How do we study and describe the 

dimensions of such problems? What do we mean by variation and to what extent is variation at the 

root of such problems? How do we measure and characterize variation (concepts, constructs, 

                                                      
2
 One might be hard-pressed to make this approach work with spreadsheets, unless supplemented with many 

add-ins. 
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measures)? Here the students first meet concepts of study design for experimental, observational, 

survey research.  

 

The first P-D-R cycle presented below runs as follows. Through lecture and demonstration, 

the instructor explains a plan to access data published by the U.N., focusing on two variables that 

relate to the fertility-wealth dynamic. Once the data set is assembled, the plan calls for creating some 

graphs to explore and describe the variation of each variable singly and also to look at their joint 

variation. Once that plan is clarified, either in the classroom or through a structured lab or homework 

assignment, students do create the graphs (or in one case manipulate an instructor-created graph). 

Finally, students report on what they did, what they saw, and what they conclude about the univariate 

and bivariate variation.   

 

 This mound presents one population dataset and introduces data sources, discussing their 

credibility and reliability. To illustrate the kind of examples and analyses in this portion of the course, 

I use the Millennium Development Goals Indicators from the United Nations("Millennium 

Development Goals Indicators," 2010). These data feature prominently on the gapminder.org site.  

Before any exploratory analysis, it pays to ask the class to speculate about the origins of such data: 

how does the U.N. know each nation’s fertility rate, for example? Should we trust the numbers? Do 

all countries have equally rigorous systems in place to record and aggregate such figures? Are all 

Internet data sources equally credible? 

 

In JMP we can demonstrate simple database queries and data management concepts, opening 

the door to enormous databases typically available to governments and industry. We use JMP’s visual 

interface to develop deeper understanding of data types, of distributions and density, and how graphs 

and summary measures represent distributions. We can also clarify the conceptual notion of a 

population as dynamic, subject to variability over time as well as the concept of unit of analysis.  

 

The first set of examples focus on the Fertility rates and Gross Domestic Product of each 

nation in 2005
3
, and we inquire about the connection, if any, between fertility rates and national 

wealth. Like many software products, JMP’s dialog boxes reinforce some key ideas (e.g., using icons 

to represent data types) and anticipate analytical options, as shown in Figure 3.  

 

 
Figure 3: A JMP Dialog to Summarize a Distribution 

 

 This dialog generates the output displayed in Figure 4, combining graphical summaries with 

the standard set of summary measures. Moreover, it invites conversation about the shape of these two 

distributions, about why variables take on characteristic shapes, about the effect of skewness on 

measures of center, and about the utility of transformations such as the natural log. It this example we 

might also usefully discuss missing data: the UN reports fertility rates from 189 countries, but GDP 

per capita for only 157. At an early point in the course students make inquiries about data collection, 

integrity and statistical bias, as well as think about reasonable ways to cope with missing data.  

 

                                                      
3
 The full dataset used in this example contains national figures for every five-year interval from 1970 through 

2005. 
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Figure 4: Two Distributions 

 

Interactive software lends itself to active learning. Rather than becoming enmeshed in the 

computational minutiae of bin width specification, students manipulate the default bin widths in a 

JMP histogram and see how the shape of the histogram changes; in the limit, they request a 

Shadowgram which visually averages the effects of many possible bin widths, creating a very natural 

bridge between discrete and continuous data. (See Figure 5). In the left panel of the figure the user 

slides the grabber tool from left to right adjusting bin widths interactively. 

 

  
Figure 5: Two More Visualizations of the Fertility Data from Figure 4 

 

Why have we traditionally taught students how to calculate histogram bin widths? Might it be 

because that is a necessary step when the available technology was graph paper? If so, why do so 

many statistics texts continue to include this topic? This is a small but instructive example of ways in 

which some course topics persist only to satisfy defunct constraints. It may be simpler to teach and 

test proper construction of bins than to do so for thinking about what a histogram reveals, but if the 

course objectives are about statistical thinking, then the choice of topics and of assessments should 

also be about thinking. 

 

In a course free of the constraint of limited computational power, assignments and exams 

should focus on the higher-level outcomes associated with objectives, such as the interpretation of 

graphics rather than their creation. Homework assignments should pose questions that require some 
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software-based analysis, followed by short-answer responses. Similarly, (depending on the 

technology infrastructure constraints on campus) exams include a combination of hands-on, real-time 

problem solving as well as the conventional array of question types that aim directly at the specific 

learning objectives of the unit. 

 

In mound one, we use standard graphs to build students’ statistical literacy skills. Software 

affords many opportunities for creating, modifying, and customizing graphs so that users become 

increasingly self-assured interpreting graphs they have created. Figure 6, for example, shows a 

modified boxplot of the same fertility data superimposed on all 189 observations (which are colored 

and marked by regions of the world). With this plot, the student begins to understand the ways in 

which the boxplot divides the data set into four groups and identifies outliers. It also visually suggests 

the presence of regional variation in fertility rates. The purple dots from Sub-Saharan Africa tend to 

reflect much higher fertility rates than the blue dots from Europe and Central Asia. 

 

 
Figure 6: An Alternative Boxplot 

 

Finally, the obvious graphical starting point for the relationship between wealth and fertility 

is a simple scatterplot. However, if we expand the view of the dataset to include additional years, we 

use JMP’s bubble plot to produce animated graphs much like those generated by gapminder’s 

Trendalyzer tool. We see a single static image of such a graph in Figure 7. This graph displays five 

variables simultaneously: log of GDP, fertility rate, population size, year, and world region, and is 

refreshingly easy to construct by simply assigning variables to roles within the graphing dialog. When 

animated, the general trend is for the points to drift downward and to the right: fewer babies per 

woman and more wealth per capita. Students immediately notice countries that deviate from the 

pattern, commenting on the dramatic increase in China’s GDP and the disturbing decrease in the 

Congo. More subtle are the changes observable in Iraq and Rwanda during this period. Note that an 

interactive HTML version of this figure accompanies this article on the TISE website. 

 

It may prove unreasonable to expect introductory undergraduates to produce this type of 

graph on their own, but the interactivity of the graphic renders it much like an applet. With suitable 

written instruction, students should be able to manipulate the variables and the animation in ways that 

help them gain insight into relationships involving several variables over time. Whether they create 

the graph in JMP, or use an instructor-provided graph (or visit gapminder.org for that matter), the 

important learning objectives can be achieved.  
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Figure 7: Bubble Plots Summarize Large Amounts of Data in Visually Gripping Ways 

  

3.4 Mound 2: Samples and Variability (3 weeks):  

Why do we sample at all? In this mound the focus shifts to element of the objective function 

dealing with samples, including sampling methods, sampling error, and the idea of representativeness. 

In this section of the course we drill deeper into descriptive methods for sample statistics. We present 

techniques and conventions for describing sample data, for gleaning insights and for generating 

hypotheses. Here, too, is the place for the foundations of experimental design and survey research 

(depending on SOS allies).  

 

In this P-D-R cycle, we also focus on a secondary objective of having students experience 

data analysis as we practice it. With the modified constraint set allowing room for non-traditional 

topics, there may now be space for the unglamorous but critical processes for data cleaning, dealing 

with missing data, and other forms of data preparation. As appropriate, we also selectively teach how 

to design experiments and/or to design simple and complex samples for survey research. In this 

mound we introduce proper habits of speaking and writing about sample results. We reach beyond 

describing samples, crossing the threshold of inference even prior to a full theoretical development – 

to plant the seeds of the underlying concepts. 

 

Continuing with the previous data example, when one downloads the MDG data from the 

United Nations, each data series forms a rectangular array: each country occupies a row and columns 

alternate between representing a year or a footnote. Like other popular statistical software, JMP data 

tables are best organized with repeated observations stacked within columns, so there is some 

reorganization to be done. It is not difficult, but it surely is part of the practice of statistical analysis 

and is teachable.  

 

This is also the time to introduce theoretical probability distributions, moving from empirical 

relative frequency to theoretical models. To lay the foundations for the next section of the course and 

the subject of inter-sample variability, the binomial and normal distributions are likely candidates.  

 

We should recognize that most of the major statistical packages have dialog boxes asking for 

sampling weights, and that data from widely-used survey data like the General Social Survey, the 
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Current Population Survey and the National Health and Nutrition Examination Survey include 

weighting variables. Is an introductory course too soon to introduce students in the social sciences or 

commerce to the need for weighting observations differentially? 

 

Using data from one of these familiar surveys, students develop hypotheses and then analyze 

the data accordingly. Within JMP there is a seamless integration of description and inference. Having 

generated the distribution of sample data, the context-sensitive menu displays relevant analytical 

options—both descriptive and inferential. To illustrate, consider the following example. At least one 

fitness website ("Resting Heart Rate," 2010) provides guidelines for resting heart rates depending on 

gender and general fitness. Heart rates typically decline with improved fitness, and vary with age (the 

age effect is different for men and women). For instance women between the ages of 18 and 25 in 

average health should expect to find their heart rates in the range of 74 to 78 beats per minute (bpm) 

according to the site. Women of the same age in poor condition have average resting rates above 85 

bpm.  But are these website guidelines credible? 

 

To investigate the plausibility of the 74 to 78 bpm guideline we use the data from the 

National Health and Nutrition Examination Survey (NHANES) which is easily accessible online, 

subsetting the data to restrict our sample to the 619 women ages 18 to 25 years. Figure 8 illustrates 

the JMP analysis. There are four panels in the figure, corresponding to four distinct steps in the 

analysis; note that for testing purposes we use a hypothesized value of 76 bpm as the population 

mean.  

 

The point of this example is that significance testing and confidence interval construction 

flow naturally within the software from the initial stages of descriptive analysis. All JMP commands 

generate graphics alongside numerical results, so that both the descriptive and inferential procedures 

provide the learner with simple visual imagery to bolster interpretation of outputs. Notice also that the 

Test Mean dialog box implicitly offers three alternative approaches: tests based on the normal or t 

distribution, as well as the distribution-free Wilcoxon Signed Rank test. This introduces the idea that 

the ability to infer depends on our data at hand and what we are willing to assume.  

 

  
8a: Distribution of Sample Data 8b: Context-Sensitive Menu 

 

  
8c: Specifying a Significance Test 8d: Test Results 
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Figure 8: From Description to Inference 

 

Even before formal training in inference, students can be asked to reconcile the 74–78 bpm guideline 

with this sample of women whose heart rates were nearly 80 bpm in the survey group. How might we 

account for the difference between the sample mean and the guideline? Would we be willing to 

attribute the difference to the typical variation among samples? How might we decide?  

 

 To assess student progress in this mound, I ask the questions just cited in a lab report 

assignment. On an exam I ask students to perform a parallel analysis on the data for males 18-25.  

 3.5 Mound 3: The Logic of Inferential Modeling (4 weeks) 

This mound begins with a discussion of (and for some students an introduction to) the 

scientific method and the logic of inference from sample data. The core concept in this mound is the 

essential underlying logic of statistical inference. The permutation test is introduced as the canonical 

technique, first with manipulatives then with software, emphasizing visualization of sampling 

distributions. We continue with further use of software to simulate random, non-random, and complex 

samples. Hypothesis generation was previously introduced and now there is more formal coverage of 

the subject. The course presents inference as consisting of estimation and significance testing—and 

builds these concepts with resampling and permutation tests, emphasizing the concept of a P-value.  

 

We then cover conventional t-tests and interpretation of confidence intervals. As appropriate 

to the SOS-partners, we can also teach simple modeling using additional theoretical distributions 

(e.g., Chi-Square, Poisson), and expand communication skills to encompass speaking and writing 

about inferences results. Especially in SOS courses allied with social sciences, a brief treatment of the 

concept and use of sampling weights is appropriate here.  

 

JMP includes several native features that facilitate achievement of these particular objectives. 

Within the interactive platform-specific menus, simulation is straightforward without the need for 

additional code or external packages. Additionally, there are interactive P-value and power 

animations linked to t-tests. These function much like applets with which readers may be familiar, but 

make use of the sample data at hand within the context of the analysis being performed. Finally, for 

the adventurous instructors, it is also possible to write or modify scripts to carry out specific 

demonstrations.  

 

For example, using the NHANES data referenced in the previous section we investigate 

causal factors underlying variability in individual health-related measurements (like blood pressure or 

heart rates).  In this P-D-R cycle, students carry more of the planning burden through an assignment 

in which they develop an analysis plan based on the list of variables available in the dataset.  They 

then select a subsample for model development, and then use JMP’s Graph Builder tool to construct a 

boxplot like the one shown above in Figure 6. In the Graph Builder, users drag and drop candidate 

factors (gender, race, marital status, etc) to generate side-by-side boxplots. By swapping out different 

plausible factors, students have the chance to repeatedly think about cause-and-effect relationships 

and receive instant visual feedback about the models, selecting one for further more formal analysis 

using the remainder of the NHANES data. Some instructors might elect to apply the sampling weights 

provided in the dataset (see Figure 3 for an illustration of a JMP dialog accommodating weights). 

 

By this point in the course, students also will be facile enough with the software to undertake 

modest independent or group-oriented investigations, forming a discipline-specific research question, 

locating some suitable real data, performing appropriate analysis and reporting the study. Depending 

on the size of the class, short presentations by student teams would also be advisable both as an 

assessment tool and as a valuable learning outcome. 
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3.6 Mound 4: Further Applications of Inference (3 weeks) 

The selection of additional inferential techniques should be guided by allied SOS disciplines 

partners, and thus will depend on the particular setting of the course. Certainly bivariate methods 

should appear here, and multivariate techniques should also enter the mix. Such topics might include 

ANOVA, Regression, or another technique commonly applied in the discipline. As in earlier portions 

of the course we should think about which aspects of each topic are obviated by the software and 

which ones can recede into the background. The range of illustrative examples is too large to develop 

specifically here, but examples and topics should be selected according to the extent to which they 

advance the primary objectives of statistical thinking and practice and accord with the needs of the 

SOS disciplines.   

 

In this part of the course, one should include substantial student projects that step all the way 

through the P-D-R process of a good statistical study. This might be a continuation or follow-on to an 

earlier project or a standalone assignment. A major project serves as an outstanding assessment 

opportunity. Finally, the course concludes with a more sophisticated treatment of the same important 

problem with which it began. 

 

4. DISCUSSION 

 
The course sketched here is ambitious and deliberately provocative. Some recommendations 

are more feasible than others, and some reflect an orientation to social science and business. It is my 

hope that the framework of constrained optimization is a useful one, and that this proposal is both 

constructive and in keeping with the spirit of George Cobb’s challenge. There is a marked reduction 

in the coverage of specific methods and techniques, and greater attention to foundational concepts and 

to real problems that yield to statistical analysis.  

 

Now that a course in statistics is part of so many students’ program requirements, the ―first‖ 

course is no longer an introduction to the field as much as it is the one opportunity we have to make a 

lasting impact on the way a college-educated generation thinks about interpreting empirical evidence. 

The introductory course is better conceived of as the terminal course for the large majority of 

students, though clearly some may discover reasons to continue their studies within the field. As such, 

the content and approach of the course should serve to excite and inspire students. We should choose 

the elements for this salad with the care and urgency that accompanies a ―one chance‖ context. 

 

A good recipe includes a shopping list and anticipates that cooks will want to modify it 

according to their tastes and available ingredients. The recipe presented here features variation with 

populations, variation within and between samples, the logic of statistical inference and discipline-

relevant applications of interference. The discussion includes illustrative examples of specific 

elements that I have chosen, but readers naturally should adapt to their institutions, interests and 

experience.    

 

Once we have selected ingredients from the freshest and most attractive locally available, 

they should be cut into lesson-sized slices, and arrayed artfully into mounds. Finally, the salad should 

be gently tossed in a dressing that blends important and engaging problems, accessible intuitive 

technology, our enthusiasm for our discipline, and good humor.  

 

5. COLOPHON 
 

This article is based on a paper presented at the Eighth International Conference on Teaching 

Statistics, Ljubljana, Slovenia in July 2010. The author gratefully acknowledges the invitation to 

prepare this article and the invaluable guidance of Rob Gould, as well as particularly constructive 

critiques by two anonymous referees and encouragement by George Cobb, Beth Chance and Allan 
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Rossman.  Robert Carver teaches business statistics to undergraduates and graduate students at 

Stonehill College and Brandeis University respectively. Questions and comments should be directed 

to the author at rcarver@stonehill.edu. 
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