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We report on a Dalitz plot analysis of B� ! Dþ���� decays, based on a sample of about 383� 106

�ð4SÞ ! B �B decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at

SLAC. We find the total branching fraction of the three-body decay: BðB� ! Dþ����Þ ¼ ð1:08�
0:03� 0:05Þ � 10�3. We observe the established D�0

2 and confirm the existence of D�0
0 in their decays to

Dþ��, where the D�0
2 and D�0

0 are the 2þ and 0þc �u P-wave states, respectively. We measure the masses

and widths of D�0
2 and D�0

0 to be: mD�0
2
¼ ð2460:4� 1:2� 1:2� 1:9Þ MeV=c2, �D�0

2
¼ ð41:8� 2:5�

2:1� 2:0Þ MeV, mD�0
0
¼ ð2297� 8� 5� 19Þ MeV=c2, and �D�0

0
¼ ð273� 12� 17� 45Þ MeV. The

stated errors reflect the statistical and systematic uncertainties, and the uncertainty related to the assumed

composition of signal events and the theoretical model.

DOI: 10.1103/PhysRevD.79.112004 PACS numbers: 13.25.Hw, 14.40.Lb, 14.40.Nd

I. INTRODUCTION

Orbitally excited states of the D meson, denoted here as
DJ, where J is the spin of the meson, provide a unique
opportunity to test the heavy quark effective theory
(HQET) [1,2]. The simplest DJ meson consists of a charm
quark and a light antiquark in an orbital angular momen-
tum L ¼ 1 (P-wave) state. Four such states are expected
with spin-parity JP ¼ 0þ (j ¼ 1=2), 1þ (j ¼ 1=2), 1þ
(j ¼ 3=2), and 2þ (j ¼ 3=2), which are labeled here as
D�

0, D
0
1, D1, and D�

2, respectively, where j is a quantum

number corresponding to the sum of the light quark spin

and the orbital angular momentum ~L.
The conservation of parity and angular momentum in

strong interactions imposes constraints on the strong de-
cays of DJ states to D� and D��. The j ¼ 1=2 states are
predicted to decay exclusively through an S-wave: D�

0 !
D� and D0

1 ! D��. The j ¼ 3=2 states are expected to
decay through a D-wave: D1 ! D�� and D�

2 ! D� and
D��. These transitions are summarized in Fig. 1. Because

of the finite c-quark mass, the two JP ¼ 1þ states may be
mixtures of the j ¼ 1=2 and j ¼ 3=2 states. Thus the broad
D0

1 state may decay via a D-wave and the narrow D1 state

may decay via an S-wave. The j ¼ 1=2 states with L ¼ 1,
which decay through an S-wave, are expected to be wide
(hundreds ofMeV=c2), while the j ¼ 3=2 states that decay
through a D-wave are expected to be narrow (tens of
MeV=c2) [2–4]. Properties of the L ¼ 1 D0

J mesons [5]

are given in Table I.
The narrow DJ mesons have been previously observed

and studied by a number of experiments [6–16].DJ mesons
have also been studied in semileptonic B decays [17–24].
Precise knowledge of the properties of the DJ mesons is
important to reduce uncertainties in the measurements of
semileptonic decays, and thus the determination of the
Cabibbo-Kobayashi-Maskawa [25] matrix elements jVcbj
and jVubj. The Belle Collaboration has reported the first
observation of the broad D�0

0 and D00
1 mesons in B decay

[12]. The FOCUS Collaboration has found evidence for
broad structures in Dþ�� final states [13] with mass and
width in agreement with the D�0

0 found by the Belle

Collaboration. However, the Particle Data Group [5] con-
siders that the J and P quantum numbers of theD�0

0 andD00
1

states still need confirmation.
In this analysis, we fully reconstruct the decays B� !

Dþ���� [26] and measure their branching fraction. We
also perform an analysis of the Dalitz plot (DP) to measure
the exclusive branching fractions of B� ! D0

J�
� and

study the properties of the D0
J mesons. The decay B� !

Dþ���� is expected to be dominated by the intermediate

 -0  -1  +0  +1  +1  +2
 PJ

1.8

2.0

2.2

2.4

2.6

2.8

L= 0 L= 1
j=1/2 j=3/2

 S-waveπ
 D-waveπ

)
2

M
as

s 
(G

eV
/c

D

*D

0
*D

1
’D 1D 2

*D

FIG. 1 (color online). Mass spectrum for c �u states. The verti-
cal bars show the widths. Masses and widths are from Ref. [5].
The dotted and dashed lines between the levels show the domi-
nant pion transitions. Although it is not indicated in the figure,
the two 1þ states may be mixtures of j ¼ 1=2 and j ¼ 3=2, and
D0

1 may decay via a D-wave and D1 may decay via an S-wave.

TABLE I. Properties of L ¼ 1 D0
J mesons [5].

JP Mass Width Decays Partial

(MeV=c2) (MeV) seen [5] waves

D�0
0 0þ 2352� 50 261� 50 D� S

D00
1 1þ 2427� 36 384þ130

�105 D�� S, D

D0
1 1þ 2422:3� 1:3 20:4� 1:7 D��, D0�þ�� S, D

D�0
2 2þ 2461:1� 1:6 43� 4 D��, D� D
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states D�0
2 �� and D�0

0 �� and has a possible contribution

from B� ! Dþ���� nonresonant (NR) decay. The D0
1

and D00
1 states cannot decay strongly into D� because of

parity and angular momentum conservation. However, the
D�ð2007Þ0 (labeled as D�

v here) mass is close to the D�
production threshold and it may contribute as a virtual
intermediate state. The B� (labeled as B�

v here) produced
in a virtual process B� ! B�

v�
� may also contribute via

the decay B�
v ! Dþ��. Possible contributions from these

virtual states are also studied in this analysis.

II. THE BABAR DETECTOR AND DATA SET

The data used in this analysis were collected with the
BABAR detector at the PEP-II asymmetric-energy eþe�
storage rings at SLAC between 1999 and 2006. The sample
consists of 347:2 fb�1 corresponding to ð382:9� 4:2Þ �
106 B �B pairs (NB �B) taken on the peak of the �ð4SÞ reso-
nance. Monte Carlo (MC) simulation is used to study the
detector response, its acceptance, background, and to vali-
date the analysis. We use GEANT4 [27] to simulate reso-
nant eþe� ! �ð4SÞ ! B �B events (generated by EvtGen
[28]) and eþe� ! q �q (where q ¼ u, d, s, or c) continuum
events (generated by JETSET [29]).

A detailed description of the BABAR detector is given in
Ref. [30]. Charged particle trajectories are measured by a
five-layer, double-sided silicon vertex tracker (SVT) and a
40-layer drift chamber (DCH) immersed in a 1.5 T mag-
netic field. Charged particle identification (PID) is
achieved by combining information from a ring-imaging
Cherenkov device with ionization energy loss (dE=dx)
measurements in the DCH and SVT.

III. EVENT SELECTION

Five charged particles are selected to reconstruct decays
of B� ! Dþ���� with Dþ ! K��þ�þ. The charged
particle candidates are required to have transverse mo-
menta above 100 MeV=c and at least 12 hits in the DCH.
A K� candidate must be identified as a kaon using a
likelihood-based particle identification algorithm (with an
average efficiency of �85% and an average misidentifica-
tion probability of �3%). Any combination of K��þ�þ
candidates with a common vertex and an invariant mass
between 1.8625 and 1:8745 GeV=c2 is accepted as a Dþ
candidate. We fit the invariant mass distribution of the
K��þ�þ candidates with a function that includes a
Gaussian component for the signal and a linear term for
the background. The signal parameters (mean and width of
Gaussian) and slope of the background function are free
parameters of the fit. The data and the result of the fit are
shown in Fig. 2. The invariant mass resolution for this Dþ
decay is about 5:2 MeV=c2. The B� candidates are recon-
structed by combining a Dþ candidate and two charged
tracks. The trajectories of the three daughters of the B�
meson candidate are constrained to originate from a com-

mon decay vertex. The Dþ and B� vertex fits are required
to have converged.
At the �ð4SÞ resonance, B mesons can be characterized

by two nearly independent kinematic variables, the beam-
energy substituted massmES and the energy difference�E:

mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2þ ~p0 � ~pBÞ2=E2

0 � p2
B

q
; (1)

�E ¼ E�
B � ffiffiffi

s
p

=2; (2)

where E and p are energy and momentum, the subscripts 0
and B refer to the eþe�-beam system and the B candidate,
respectively; s is the square of the center-of-mass energy
and the asterisk labels the center-of-mass frame. For B� !
Dþ���� signal events, the mES distribution is well de-
scribed by a Gaussian resolution function with a width of
2:6 MeV=c2 centered at the B� meson mass, while the �E
distribution can be represented by a sum of two Gaussian
functions with a common mean near zero and different
widths with a combined root-mean-square (RMS) of
20 MeV.
Continuum events are the dominant background.

Suppression of background from continuum events is pro-
vided by two topological requirements. In particular, we
employ restrictions on the magnitude of the cosine of the
thrust angle, cos�th, defined as the angle between the
thrust axis of the selected B candidate and the thrust axis
of the remaining tracks and neutral clusters in the event.
The distribution of j cos�thj is strongly peaked towards
unity for continuum background but is uniform for signal
events. We also select on the ratio of the second to the
zeroth Fox-Wolframmoment [31], R2, to further reduce the
continuum background. The value of R2 ranges from 0 to 1.
Small values of R2 indicate a more spherical event shape
(typical for a B �B event) while values close to 1 indicate a 2-
jet event topology (typical for a q �q event). We accept the
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FIG. 2 (color online). Kþ���� invariant mass distribution for
Dþ candidates for the selected B� ! Dþ���� decays without
the cut on the mass of Dþ. Data (points with statistical errors)
are compared to the results of the fit (solid curve), with the
background distribution marked as a dashed line. The shaded
area marks the Dþ signal region.
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events with j cos�thj< 0:85 and R2 < 0:30. The j cos�thj
(R2) cut eliminates about 68% (71%) of the continuum
background while retaining about 90% (83%) of signal
events.

To suppress backgrounds, restrictions are placed onmES:
5:2754<mES < 5:2820 GeV=c2, and �E:�130<�E<
130 MeV. The selected samples of B candidates are used
as input to an unbinned extended maximum likelihood fit
to the �E distribution. The result of the fit is used to
determine the fractions of signal and background events
in the selected data sample. For events with multiple
candidates (� 3:5% of the selected events) satisfying the
selection criteria, we choose the one with best �2 from the
B vertex fit. Based on MC simulation, we determine that
the correct candidate is selected at least 65% of the time.
We fit themES distribution of the selected B

� ! Dþ����
candidates with a sum of a Gaussian function for the signal
and a background function for the background having the

probability density, PðxÞ / x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
expð��ð1� x2ÞÞ,

where x ¼ mES=m0 with m0 fixed at 5:29 GeV=c2 and �

is a shape parameter [32]. The signal parameters (mean,
width of Gaussian) and the shape parameter of the back-
ground function are free parameters of the fit. The data and
the result of the fit are shown in Fig. 3(a). We fit the �E
distribution of the selected B� ! Dþ���� candidates
with a sum of two Gaussian functions with a common
mean for the signal and a linear function for the back-
ground. The signal parameters (mean, width of wide
Gaussian, width and fraction of narrow Gaussian) and the
slope of the background function are free parameters of the
fit. The data and the result of the fit are shown in Fig. 3(b).
The resulting signal yield is 3496� 74 events, where the
error is statistical only. A clear signal is evident in bothmES

and �E distributions.
To distinguish signal and background in the Dalitz plot

studies, we divide the candidates into three subsamples: the
signal region, �21< �E< 15 MeV, the left sideband,
�109<�E<�73 MeV, and the right sideband, 67<
�E< 103 MeV. The events in the signal region are used
in the Dalitz plot analysis, while the events in the sideband
regions are used to study the background.
In order to check the shape of the background �E

distribution, we have generated a background MC sample
of resonant and continuum events with B� ! Dþ����
signal events removed. The background MC sample has
been scaled to the same luminosity as the data. The �E
distribution of the selected events from the background
MC sample is shown as the histogram in Fig. 3(b). A small
amount of peaking background is found from misrecon-
structed decays of �B0 ! Dþ�� with �� ! ���0, where
a �0 is missed and a random track in the event is mis-
identified as a signal ��. The background histogram in
Fig. 3(b) is fitted with a sum of two Gaussian functions
with a common mean for the peaking background, with
parameters fixed to those obtained from the fit to data, and
a linear function to describe the combinatorial background.
The amount of peaking background is estimated at 82� 41
events. After peaking background subtraction, the number
of signal events above background is Nsignal ¼ 3414� 85.

The background fraction in the signal region is ð30:4�
1:1Þ%.

IV. DALITZ PLOTANALYSIS

We refit the Dþ and B� candidate momenta by con-
straining the trajectories of the three daughters of the B�
meson candidate to originate from a common decay vertex
while constraining the invariant masses of K��þ�þ and
Dþ���� to the Dþ and B� masses [5], respectively. The
mass-constraints ensure that all events fall within the
Dalitz plot boundary.
In the decay of a B� into a final state composed of three

pseudoscalar particles ðDþ����Þ, 2 degrees of freedom
are required to describe the decay kinematics. In this
analysis we choose the two D� invariant mass-squared
combinations x ¼ m2ðDþ��

1 Þ and y ¼ m2ðDþ��
2 Þ as the

E (GeV)∆
-0.1 -0.05 0 0.05 0.1

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

500

1000

1500

E (GeV)∆
-0.1 -0.05 0 0.05 0.1

E
ve

nt
s 

/ (
 0

.0
1 

G
eV

 )

0

500

1000

1500
(b)

)2 (GeV/cESm

5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
E

ve
nt

s 
/ (

 0
.0

02
 G

eV
/c

0

500

1000

1500

2000

)2 (GeV/cESm

5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
E

ve
nt

s 
/ (

 0
.0

02
 G

eV
/c

0

500

1000

1500

2000

(a)

2

FIG. 3 (color online). (a) mES and (b) �E distributions for
Dþ���� candidates. Data (points with statistical errors) are
compared to the results of the fits (solid curves), with the
background contributions marked as dashed lines. The histo-
grams are the corresponding distributions of the background MC
sample as described in the text. The shaded area in (a) shows the
signal region, while the three shaded areas in (b) mark the signal
region in the center and the two sidebands.
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independent variables, where the two like-sign pions ��
1

and ��
2 are randomly assigned to x and y. This has no

effect on our analysis since the likelihood function (de-
scribed below) is explicitly symmetrized with respect to
interchange of the two identical particles.

The differential decay rate is generally given in terms of
the Lorentz-invariant matrix element M by

d2�

dxdy
¼ jMj2

256�3m3
B

; (3)

where mB is the B meson mass. The Dalitz plot gives a
graphical representation of the variation of the square of
the matrix element, jMj2, over the kinematically acces-
sible phase space ðx; yÞ of the process. Nonuniformity in
the Dalitz plot can indicate presence of intermediate reso-
nances, and their masses and spin quantum numbers can be
determined.

A. Probability density function

We describe the distribution of candidate events in the
Dalitz plot in terms of a probability density function
(PDF). The PDF is the sum of signal and background
components and has the form

PDF ðx; yÞ ¼ fbg
Bðx; yÞR

DP Bðx; yÞdxdy
þ ð1� fbgÞ

� ½Sðx; yÞ �R��ðx; yÞR
DP½Sðx; yÞ �R��ðx; yÞdxdy ; (4)

where the integral is performed over the whole Dalitz plot,
the Sðx; yÞ �R is the signal term convolved with the signal
resolution function, Bðx; yÞ is the background term, fbg is

the fraction of background events, and � is the reconstruc-
tion efficiency.

An unbinned maximum likelihood fit to the Dalitz plot is
performed in order to maximize the value of

L ¼ YNevent

i¼1

PDFðxi; yiÞ (5)

with respect to the parameters used to describe S, where xi
and yi are the values of x and y for event i respectively, and
Nevent is the number of events in the Dalitz plot. In practice,
the negative-log-likelihood (NLL) value

NLL ¼ � lnL (6)

is minimized in the fit.

B. Goodness-of-fit

It is difficult to find a proper binning at the kinematic
boundaries in the x-y plane of the Dalitz plot. For this
reason, we choose to estimate the goodness-of-fit �2 in the
cos� (range from�1 to 1) and m2

minðD�Þ (range from 4.04

to 15:23 GeV2=c4) plane, which is a rectangular represen-
tation of the Dalitz plot. The parameter � is the helicity

angle of theD� system andm2
minðD�Þ is the lesser of x and

y. The helicity angle � is defined as the angle between the
momentum vector of the pion from the B decay (bachelor
pion) and that of the pion of theD� system in theD� rest-
frame.
The �2 value is calculated using the formula

�2 ¼ X
i

�2
i ¼

Xntotal
i¼1

ðNcelli � NfitiÞ2
Nfiti

; (7)

for cells in a 18� 18 grid of the two-dimensional histo-
gram. In Eq. (7), ntotal is the total number of cells used,
Ncelli is the number of events in each cell, and Nfiti is the
expected number of events in that cell as predicted by the
fit results. The number of degrees of freedom (NDF) is
calculated as ntotal � k� 1, where k is the number of free
parameters in the fit. We require Nfit 	 10; if this require-
ment is not met then neighboring cells are combined until
ten events are accumulated.

C. Matrix element M and fit parameters

This analysis uses an isobar model formulation in which
the signal decays are described by a coherent sum of a
number of two-body (D� systemþ bachelor pion) ampli-
tudes. The orbital angular momentum between the D�
system and the bachelor pion is denoted here as L. The
total decay matrix element M for B� ! Dþ���� is
given by

M ¼ X
L¼ð0;1;2Þ

�Le
i�L½NLðx; yÞ þ NLðy; xÞ�

þX
k

�ke
i�k½Akðx; yÞ þ Akðy; xÞ�; (8)

where the first term represents the S-wave (L ¼ 0),
P-wave (L ¼ 1), and D-wave (L ¼ 2) nonresonant con-
tributions, the second term stands for the resonant contri-
butions, the parameters �k and �k are the magnitudes and
phases of the kth resonance, while �L and �L correspond
to the magnitudes and phases of the nonresonant contribu-
tions with angular momentum L. The functions NLðx; yÞ
and Akðx; yÞ are the amplitudes for nonresonant and reso-
nant terms, respectively.
The resonant amplitudes Akðx; yÞ are expressed as

Akðx; yÞ ¼ RkðmÞFLðp0r0ÞFLðqrÞTLðp; q; cos�Þ; (9)

where RkðmÞ is the kth resonance line shape, FLðp0r0Þ and
FLðqrÞ are the Blatt-Weisskopf barrier factors [33], and
TLðp; q; cos�Þ gives the angular distribution. The parame-
ter mð¼ ffiffiffi

x
p Þ is the invariant mass of the D� system. The

parameter p0 is the magnitude of the three momentum of
the bachelor pion evaluated in the B-meson rest frame. The
parameters p and q are the magnitudes of the three mo-
menta of the bachelor pion and the pion of the D� system,
both in the D� rest frame. The parameters p0, p, q, and �
are functions of x and y.
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The nonresonant amplitudes NLðx; yÞ with L ¼ 0, 1, 2
are similar to Akðx; yÞ but do not contain resonant mass
terms:

N0ðx; yÞ ¼ 1; (10)

N1ðx; yÞ ¼ F1ðp0r0ÞF1ðqrÞT1ðp; q; cos�Þ; (11)

N2ðx; yÞ ¼ F2ðp0r0ÞF2ðqrÞT2ðp; q; cos�Þ: (12)

The Blatt-Weisskopf barrier factors FLðp0r0Þ and FLðqrÞ
depend on a single parameter, r0 or r, the radius of the
barrier, which we take to be 1:6 ðGeV=cÞ�1, similarly to
Ref. [12]. A discussion of the systematic uncertainty asso-
ciated with the choice of the values of r and r0 follows
below. The forms of FLðzÞ, where z ¼ p0r0 or qr, for L ¼
0, 1, 2 are

F0ðzÞ ¼ 1; (13)

F1ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z20
1þ z2

s
; (14)

F2ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3z20 þ z40
9þ 3z2 þ z4

s
; (15)

where z0 ¼ p0
0r

0 or q0r. Here p0
0 and q0 represent the

values of p0 and q, respectively, when the invariant mass
is equal to the pole mass of the resonance. For nonresonant
terms, the fit results are not affected by the choice of
invariant mass (we use the sum of mD and m�) used for
the calculations of p0

0 and q0. For virtual D
�
v decay, D�

v !
Dþ��, and virtual B�

v production in B� ! B�
v�

�, we use
an exponential form factor in place of the Blatt-Weisskopf
barrier factor, as discussed in Ref. [12]:

FðzÞ ¼ expð�ðz� z0ÞÞ; (16)

where z0 ¼ rpv for D�
v ! Dþ�� and z0 ¼ r0pv for B� !

B�
v�

�. Here, we set pv ¼ 0:038 GeV=c, which gives the
best fit, although any value of pv between 0.015 and
1:5 GeV=c gives a negligible effect on the fitted parame-
ters compared to their statistical errors.

The resonance mass term RkðmÞ describes the intermedi-
ate resonance. All resonances in this analysis are parame-
trized with relativistic Breit-Wigner functions:

RkðmÞ ¼ 1

ðm2
0 �m2Þ � im0�ðmÞ ; (17)

where the decay width of the resonance depends on m:

�ðmÞ ¼ �0

�
q

q0

�
2Lþ1

�
m0

m

�
F2
LðqrÞ; (18)

where m0 and �0 are the values of the resonance pole mass
and decay width, respectively.

The terms TLðp; q; cos�Þ describe the angular distribu-
tion of final-state particles and are based on the Zemach
tensor formalism [34]. The definitions of TLðp; q; cos�Þ for

L ¼ 0, 1, 2 are

T0ðp; q; cos�Þ ¼ 1; (19)

T1ðp; q; cos�Þ ¼ �2pq cos�; (20)

T2ðp; q; cos�Þ ¼ 4p2q2ðcos2�� 1=3Þ: (21)

The signal function is then given by

Sðx; yÞ ¼ jMj2: (22)

In this analysis, the masses of D�
v and B

�
v are taken from

the world averages [5] while their widths are fixed at
0.1 MeV; the magnitude �k and phase �k of the D�0

2

amplitude are fixed to 1 and 0, respectively, while the
masses and widths of D0

J resonances and other magnitudes
and phases are free parameters to be determined in the fit.
The effect of varying the masses of D�

v and B
�
v within their

errors [5] and widths of D�
v and B�

v between 0.001 and
0.3 MeV is negligible compared to the other model-
dependent systematic uncertainties given below.
Since the choice of normalization, phase convention,

and amplitude formalism may not always be the same for
different experiments, we use fit fractions and relative
phases instead of amplitudes to allow for a more mean-
ingful comparison of results. The fit fraction for the kth
decay mode is defined as the integral of the resonance
decay amplitudes divided by the coherent matrix element
squared for the complete Dalitz plot:

fk ¼
R
DP j�kðAkðx; yÞ þ Akðy; xÞÞj2dxdyR

DP jMj2dxdy : (23)

The fit fraction for nonresonant term with angular momen-
tum L has a similar form:

fL ¼
R
DP j�LðNLðx; yÞ þ NLðy; xÞÞj2dxdyR

DP jMj2dxdy : (24)

The fit fractions do not necessarily add up to unity because
of interference among the amplitudes.
To estimate the statistical uncertainties on the fit frac-

tions, the fit results are randomly modified according to the
covariance matrix of the fit and the new fractions are
computed using Eq. (23) or (24). The resulting fit fraction
distribution is fitted with a Gaussian whose width gives the
error on the given fraction.

D. Signal resolution function

The detector has finite resolution, thus measured quan-
tities differ from their true values. For the narrow reso-
nance D�

2 with the expected width of about 40 MeV, the
signal resolution needs to be taken into account. In order to
obtain the signal resolution onm2ðD�Þ around theD�

2 mass
region, we study a sample of MC generated B� ! X�� !
Dþ���� decays, with the mass and width of X set to
2:460 GeV=c2 (D�

2 mass region) and 0 MeV, respectively,
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and subject these events to the same analysis reconstruc-
tion chain. The reconstructed events are then classified into
two categories: truth-matched (TM) events, where the B
and the daughters are correctly reconstructed, and self-
crossfeed (SCF) events, where one or more of the daugh-
ters is not correctly associated with the generated particle.

The two-dimensional distribution of cos� versus
m2ðD�Þ for truth-matched events is shown in Fig. 4.
Since the resolution is independent of cos�, we fit the
distribution of the quantity q0 ¼ m2ðD�Þ �m2

true using a
sum of two Gaussian functions with a common mean to
obtain the resolution function for truth-matched events
(RTM). The signal resolution for an invariant mass of the
D� combination around the D�0

2 region is about

3 MeV=c2.
The two-dimensional distribution of cos� versus

m2ðD�Þ for self-crossfeed events is shown in Fig. 5. The
SCF fraction, fSCF, varies from 0.5% to 4.0% with cos�.
We fit the fSCF distribution with a fourth-order polynomial
function. The fSCF distribution and the result of the fit are
shown in Fig. 6. The resolution for self-crossfeed events
varies between 5 MeV=c2 and 100 MeV=c2 with cos�. We
divide the cos� interval into 40 bins of equal width and use
these bins to describe the resolution function (RSCF) in
terms of a sum of two bifurcated Gaussian (BGaussian)
functions with different means. The BGaussian is a
Gaussian as a function of q0 with three parameters, q00
the mean, and the two widths, �1 on the left and �2 on
the right side of the mean. The form of BGaussian is

BGaussianðq0 � q00;�1;�2Þ

¼

8>><
>>:

2ffiffiffiffiffi
2�

p ð�1þ�2Þ exp
�
�ðq0�q0

0
Þ2

2�2
1

�
if q0 <q00;

2ffiffiffiffiffi
2�

p ð�1þ�2Þ exp
�
�ðq0�q0

0
Þ2

2�2
2

�
if q0 	 q00;

(25)

where q00, �1, and �2 are free parameters.

The signal resolution function is then given by

R ðq0; cos�Þ ¼ ð1� fSCFðcos�ÞÞ �RTMðq0Þ
þ fSCFðcos�Þ �RSCFðq0; cos�Þ: (26)

The functionRðq0; cos�Þ represents the probability density
for an event having the true mass-squared m2

true to be
reconstructed at m2ðD�Þ for different cos� regions.
The signal term S in Eq. (4) is convoluted with the above

resolution function. For each event, the convolution is
performed using numerical integration:

Sðx; yÞ �R ¼
Z

Sðqmin þ q0; q0maxÞ �Rðq0; cos�Þdq0;
(27)

where S is the signal function in Eq. (22) and qmin (qmax) is
the lesser (greater) of x and y. The quantity cos� is deter-
mined from qmin and qmax and is assumed to be constant
during convolution. The resolution in cos� has a negligible
effect on the fitted parameters. The quantity q0max is com-
puted using the kinematics of three-body decay with qmin,
q0, and cos�.

FIG. 4. Two-dimensional histogram cos� versus m2ðD�Þ of
the truth-matched events as defined in the text.
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FIG. 6 (color online). fSCFðcos�Þ distribution. The observed
self-crossfeed fractions (points with statistical errors) are com-
pared to the results of the fit (solid curve).
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The resolution function and the integration method in
Eq. (27) have been fully tested using 262 MC samples with
full event reconstruction given below. We have compared
D invariant mass resolutions for D0 ! K��þ,
K��þ���þ, and Dþ ! K��þ�þ between data and
MC-simulated events and find that they agree within their
statistical uncertainties. Estimated biases in the fitted pa-
rameters due to uncertainties in the signal resolution func-
tion are small and have been included into the systematic
errors.

E. Efficiency

The signal term S defined above is modified in order to
take into account experimental particle detection and event
reconstruction efficiency. Since different regions of the
Dalitz plot correspond to different event topologies, the
efficiency is not expected to be uniform over the Dalitz
plot. The term �ðx; yÞ in Eq. (4) is the overall efficiency for
truth-matched and self-crossfeed signal events, hence the
efficiency for truth-matched signal events is

�TMðx; yÞ ¼ �ðx; yÞð1� fSCFðcos�ÞÞ: (28)

In order to determine the efficiency across the Dalitz
plot, a sample of simulated B� ! Dþ���� events in the
Dalitz plot is generated. Some events are generated with
one or more additional final-state photons to account for
radiative corrections [35]. As a result, the generated Dalitz
plot is slightly distorted from the uniform distribution. The
number of generated events isNgen ¼ 1252k. Each event is

subjected to the standard reconstruction and selection,
described in Sec. III. In addition, we require that the
candidate decay is truth matched. After correcting for
data/MC efficiency differences in particle identification,
which are momentum dependent and thus vary over the
Dalitz plot, the total number of accepted events is Nacc ¼
121 390. We employ an unbinned likelihood method to fit
the Dalitz plot distributions for generated and accepted
event samples. The PDF for generated events (PDFgen) is

a fourth-order two-dimensional polynomial while the PDF
for accepted events (PDFacc) is a seventh-order two-
dimensional polynomial. The efficiency function is then
given by

�TMðx; yÞ ¼ PDFaccðx; yÞ � Nacc

PDFgenðx; yÞ � Ngen

: (29)

Figure 7 shows the efficiency as a function of m2ðD�Þ
and the fit result for MC-simulated events.

F. Background

The background distribution is modeled using MC back-
ground events, selected with the same criteria applied to
the data and requiring the B candidate to fall into the signal
�E region defined in Sec. III. Events in the data �E
sidebands could also be used to model the background,
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FIG. 7 (color online). The efficiency for signal decays as a
function of m2ðD�Þ, as determined by MC simulation (points
with statistical errors) and the results of the fit to the accepted
and generated distributions (solid curve).
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band: Dalitz plot for (a) data and (b) MC-simulated events, and
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with data (points with statistical errors) and MC predictions
(histograms).
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however in MC studies we find differences between the
Dalitz plot distributions of the background in the signal
and sideband regions. Since we find the Dalitz plot distri-
butions of sideband events in data and in the MC simula-
tion to be consistent within their statistics, we are confident
that the MC simulation can accurately represent the
background distribution in the signal region. Figures 8(a),
8(b), and 9(a) show the Dalitz plot distributions of side-
band events in data, sideband events in the MC sample and
background events in the �E signal region of the MC
sample, respectively. Figures 8(c)–8(e) show the compari-
sons of �E sideband events between data and MC simu-
lation in m2

minðD�Þ, m2
maxðD�Þ, and m2ð��Þ projections,

respectively. Here m2
minðD�Þ (m2

maxðD�Þ) is the lesser

(greater) of x and y.

The parametrization used to describe the background is

Bðx; yÞ ¼ c0ðqmin � q1Þc1 � expðc2ðqmin � q1Þ
þ c3ðqmin � q1Þ2Þ þ c4ðq2 � qmaxÞc5
� expðc6ðq2 � qmaxÞ þ c7ðq2 � qmaxÞ2Þ
þ c8ðz� z1ÞÞc9 expðc10ðz� z1Þ þ c11ðz� z1Þ2Þ
þ c15BGaussianðqmax � c12; c13; c14Þ
þ c19BGaussianðz� c16; c17; c18Þ; (30)

where the coefficients c0 to c19 are free parameters to be
determined from the fit, q1¼ðmDþm�Þ2¼4:04GeV2=c4

and q2 ¼ ðmB �m�Þ2 ¼ 26:41 GeV2=c4 are the lower
and upper limits of the Dalitz plot, respectively, z1¼
ð2m�Þ2¼0:077GeV2=c4 is the lower limit of m2ð��Þ,
qmin is the lesser of x and y, qmax is the greater of x and
y, z is the invariant m2ð��Þ, and BGaussian is given in
Eq. (25).
The projections on m2

minðD�Þ, m2
maxðD�Þ, and m2ð��Þ

and the result of the fit for the background events in
the signal region of the MC sample are shown in
Figs. 9(b)–9(d). The �2=NDF for the fit is 72=64.

V. RESULTS

A. Branching fraction BðB� ! Dþ����Þ
The total B� ! Dþ���� branching fraction is calcu-

lated using the relation:

B ¼ Nsignal

ð �� �BðDþÞÞ � 2NðBþB�Þ ; (31)

where Nsignal ¼ 3414� 85 is the fitted signal yield given

in Sec. III, �� is the average efficiency, BðDþÞ ¼ ð9:22�
0:21Þ% is the branching fraction for Dþ ! K��þ�þ
[5,36], and the total number of BþB� events, NðBþB�Þ ¼
ð197:2� 3:1Þ � 106, is determined usingNB �B and the ratio
of �ð�ð4SÞ ! BþB�Þ=�ð�ð4SÞ ! B0 �BÞ ( ¼ 1:065�
0:026) [5].
Since the reconstruction efficiencies vary slightly for

different resonances, the average efficiency is calculated
by weighing the accepted and generated events by Sðx; yÞ
with the values for the parameters of our nominal Dalitz
plot model (discussed below):

�� ¼
PNacc

i¼1 Sðxi; yiÞ � wiPNgen

j¼1 Sðxj; yjÞ
; (32)

where wi is the correction factor which depends on x and y
due to particle identification efficiency. The value �� ¼
ð8:72� 0:05Þ% is obtained using this method.
The measured total branching fraction is BðB� !

Dþ����Þ ¼ ð1:08� 0:03Þ � 10�3, where the stated er-
ror refers to the statistical uncertainty only. A full discus-
sion of the systematic uncertainties follows below.
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FIG. 9 (color online). Fit to background events in the �E
signal region of the MC sample: (a) Dalitz plot and projections
on (b) m2

minðD�Þ, (c) m2
maxðD�Þ, and (d) m2ð��Þ with MC

predictions (points with statistical errors) and the fits (solid
curves).
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B. Dalitz plot analysis results

The Dalitz plot distribution for data is shown in Fig. 10.
Since the composition of events in the Dalitz plot and their
distributions are not known a priori, we have tried a variety
of different assumptions. In particular, we test the inclusion
of various components, such as the virtual D�

v and B�
v as

well as S-, P-, and D-wave modeling of the nonresonant
component, in addition to the expected components ofD�0

2 ,

D�0
0 , and background. The D-wave nonresonant term does

not improve the goodness-of-fit and the fraction ofD-wave
nonresonant contribution is close to 0. The results of these
tests with variations of the models are summarized in
Table II. Of these models, model 1 produces the best fit
quality with the smallest number of components, and we
choose it as the nominal fit model. The components con-
sidered in this fit model are D�0

2 , D�0
0 , D�

v, B
�
v, and P-wave

nonresonant. The P-wave nonresonant component is an
addition to the fit model used in the previous measurement
from Belle [12]. The sum of the fractions ð115� 5Þ% for
the nominal fit differs from 100% because of destructive
interferences among the amplitudes. The �2=NDF for the
nominal fit is 220=153. To better understand the large
�2=NDF, we look at the contributions to the total �2

from individual cells. We find four cells with �2 > 7,
which inflate the total �2. The central points in these cells
are at ð6:83;�0:722Þ, ð6:83;�0:611Þ, (6.83, 0.5), and
ð8:08;�0:722Þ, where the first value is m2

minðD�Þ and the

second is cos�. In order to determine the effect on the fitted
parameters from these cells, we repeat the nominal fit with
these cells excluded. The resulting �2=NDF is 182=149,
corresponding to a probability of 3.4%. Assuming these
large �2 contributions are caused by an unknown system-
atic problem, removing them from the fit is reasonable.
However, under the assumption that these high �2 contri-
butions have a statistical origin, the �2 probability is 0.04%
[37]. The low probability indicates that a model more
complex than the isobar model may be necessary to de-
scribe the characteristics of the data. The differences in the
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FIG. 10. Data Dalitz plot for B� ! Dþ����.

TABLE II. Fit results for the masses, widths, fit fractions, and phases from the Dalitz plot analysis of B� ! Dþ���� for different
models. The errors are statistical only. The magnitude and phase of the D�0

2 amplitude are fixed to 1 and 0, respectively. The

background fraction is fixed to 30.4% as described in Sec. III. The nominal fit corresponds to model 1. The labels, S-NR and P-NR,
denote the S-wave nonresonant and P-wave nonresonant contributions, respectively.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

mD�0
2
(MeV=c2) 2460:4� 1:2 2460:2� 1:0 2459:1� 1:0 2460:1� 1:1 2461:5� 1:2 2458:1� 1:1 2457:4� 1:0

�D�0
2
(MeV) 41:8� 2:5 41:7� 2:4 41:1� 2:4 41:8� 2:4 42:0� 2:5 41:8� 2:4 41:7� 2:4

mD�0
0
(MeV=c2) 2297� 8 2309� 7 2297� 7 2312� 10 2307� 11 2270� 8 2273� 5

�D�0
0
(MeV) 273� 12 285� 11 288� 12 289� 20 313� 21 262� 12 276� 10

fD�0
2
(%) 32:2� 1:3 30:8� 1:2 31:5� 1:1 30:7� 1:5 32:6� 1:3 32:9� 1:3 30:9� 1:1

�D�0
2
(rad) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)

fD�0
0
(%) 62:8� 2:5 59:0� 2:1 57:5� 1:7 57:0� 4:5 88:0� 8:1 64:8� 2:2 69:7� 1:1

�D�0
0
(rad) �2:07� 0:06 �2:06� 0:05 �2:01� 0:05 �2:00� 0:12 �2:14� 0:10 �1:96� 0:06 �2:00� 0:05

fD�
v
(%) 10:1� 1:4 11:3� 1:5 9:0� 1:2 11:0� 1:5 9:6� 1:3

�D�
v
(rad) 3:00� 0:12 2:99� 0:08 3:17� 0:10 3:05� 0:12 2:82� 0:17

fB�
v
(%) 4:6� 2:6 1:4� 0:5 1:7� 0:8 12:2� 5:4 2:2� 1:4

�B�
v
(rad) 2:80� 0:21 �2:43� 0:28 �2:33� 0:28 2:52� 0:25 2:28� 0:38

fP-NR (%) 5:4� 2:4 1:6� 0:4 12:6� 4:0 12:7� 3:1
�P-NR (rad) �0:89� 0:18 �1:46� 0:20 �0:84� 0:12 �0:71� 0:10
fS-NR (%) 0:3� 0:3 5:2� 3:8
�S-NR (rad) �0:77� 0:49 3:30� 0:23
fbg (%) 30.4 (fixed) 30.4 (fixed) 30.4 (fixed) 30.4 (fixed) 30.4 (fixed) 30.4 (fixed) 30.4 (fixed)

NLL 22970 22982 22977 22982 22964 23046 23125

�2=NDF 220=153 240=152 236=154 239=153 216=150 328=160 454=161
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fitted D�
2 and D

�
0 parameters, when these cells are included

or excluded, are assigned to systematic uncertainties and
are much smaller than the statistical uncertainties. The
removal of these cells does not affect the choice of model
1 as the nominal fit from Table II.

Reference [38] argues for an addition of a D� S-wave
state near the D� system threshold to the model of the
D�� final state. We have performed tests using the models
1–4 in Table II with theD�

v replaced by aD� S-wave state.
Two different parametrizations for D� S-wave state am-

plitude are used: one is the function given by Eq. (8)
of Ref. [38] with the numerator set to constant, the other
function is the relativistic Breit-Wigner given by Eq. (17).
Among the tests we have performed with these parametri-
zations, the model with D�

2, D
�
0, D� S-wave (using Eq. (8)

of Ref. [38]), B�
v and P-wave nonresonant gives the best fit

with NLL and �2=NDF values of 22 997 and 271=151,
respectively, which are worse than those of the nominal fit
even when allowing the D� S-wave’s parameters to vary.
Each of these models also requires large fractions of D�

0.

The nominal fit model results in the following branching
fractions: BðB� ! D�0

2 ��Þ �BðD�0
2 ! Dþ��Þ ¼

ð3:5� 0:2Þ � 10�4 and BðB� ! D�0
0 ��Þ �BðD�0

0 !
Dþ��Þ ¼ ð6:8� 0:3Þ � 10�4, where the errors are statis-
tical only. A full discussion of the systematic uncertainties
follows below.
Figures 11(a)–11(c) show the m2

minðD�Þ, m2
maxðD�Þ,

and m2ð��Þ projections, respectively, while
Figs. 12(a) and 12(b) show the cos� distributions for the
D�0

0 and D�0
2 mass regions, respectively. The distributions

in Figs. 11 and 12 show good agreement between the data
and the fit. The angular distribution in the D�0

2 mass region
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FIG. 12 (color online). Result of the nominal fit to the data: the
cos� distributions for (a) 4:5<m2ðD�Þ< 5:5 GeV2=c4 region
and (b) 5:9<m2ðD�Þ< 6:2 GeV2=c4 region. The points with
error bars are data, the solid curves represent the nominal fit. The
dashed, dash-dotted, and dotted curves in (a) show the fit of
hypotheses 2–4 in Table III, respectively. The shaded histograms
show the cos� distributions from �E sidebands in data.
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FIG. 11 (color online). Result of the nominal fit to the data:
projections on (a) m2

minðD�Þ, (b) m2
maxðD�Þ, and (c) m2ð��Þ.

The points with error bars are data, the solid curves represent the
nominal fit. The shaded areas show the D�0

2 contribution, the

dashed curves show the D�0
0 signal, the dash-dotted curves show

the D�
v and B�

v signals, and the dotted curves show the back-
ground.
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is clearly visible and is consistent with the expected
D-wave distribution of j cos2�� 1=3 j2 for a spin-2 state.
In addition, the D�0

0 signal and the reflection of D�0
2 can be

easily distinguished in the m2
minðD�Þ and m2

maxðD�Þ pro-
jection, respectively. The lower edge of m2

minðD�Þ is better
described with D�

v component included than without.
Table III shows the NLL and �2=NDF values for the

nominal fit and for the fits with the broad resonance D�0
0

excluded or with the JP of the broad resonance replaced by
other quantum numbers. In all cases, the NLL and �2=NDF
values are significantly worse than that of the nominal fit.
Figure 12(a) illustrates the helicity distributions in the D�0

0

mass region from hypotheses 2–4; clearly the nominal fit
gives the best description of the data. We conclude that a
broad spin-0 state D�0

0 is required in the fit to the data. The

same conclusion is obtained when performing the same
test on Models 2–5.

VI. SYSTEMATIC UNCERTAINTIES

A. Uncertainties on BðB� ! Dþ����Þ
As listed in Table IV, the systematic error on the mea-

surement of the total B� ! Dþ���� branching fraction
is due to the uncertainties on the following quantities: the
number of BþB� events in the initial sample, the charged
track reconstruction and identification efficiencies, and the
Dþ ! K��þ�þ branching fraction. The uncertainty in
the �E background shape, the uncertainty in the average

efficiency due to the fit models, and a possible fit bias also
contribute to the systematic error.
The uncertainty on the number of BþB� events is de-

termined using the uncertainties on �ð�ð4SÞ !
BþB�Þ=�ð�ð4SÞ ! B0 �B0Þ [5] and integrated luminosity
(1.1%). The uncertainty on the input Dþ branching frac-
tion is taken from [36]. The uncertainty in the �E back-
ground shape is estimated by comparing the signal yields
between fitting the �E distribution with a linear back-
ground shape and with higher-order (second and third-
order) polynomials. The uncertainty in the fit models is
estimated by comparing the average efficiencies in Eq. (32)
using Models 2–5 of Table II. The fit bias is estimated to be
less than 1% by comparing the generated and the fitted
value of BðB� ! Dþ����Þ from resonant and contin-
uum MC samples.

B. Uncertainties on Dalitz plot analysis results

The sources of systematic uncertainties that affect the
results of the Dalitz plot analysis are summarized in
Table V. These uncertainties are added in quadrature, as
they are uncorrelated, to obtain the total systematic error.
The uncertainties due to the background parametrization

are estimated by comparing the results from the nominal fit
with those obtained when the background shape parame-
ters are allowed to float in the fit. The errors from the
uncertainty in the background fraction are estimated by
comparing the fit results when the background fraction is
changed by its statistical error. We vary the set of cuts on
�E, mES, R2, cos�th, and mass of Dþ, which increase the
number of signal events by 25% and the background
fraction to 36.5%, and repeat the fits. The difference in
the fit results is taken as an estimate of the systematic
uncertainty due to the event selection. Fit biases are studied
using 1248 parametrized MC samples and 262 MC
samples with full event reconstruction. Small biases are
observed for some of the parameters. We combine these
biases with those coming from high �2 cells, as discussed
in the previous section, in quadrature to obtain the total
systematic contribution from the fit bias. The uncertainties
in PID are obtained by comparing the nominal fit results
with those obtained when the PID corrections to the re-
construction efficiency are varied according to their un-
certainties. The uncertainties in the efficiency and signal
resolution parametrization are found to be negligible using
the fits to the reconstructed MC samples.
In addition to the above systematic uncertainties, we

also estimate a model-dependent uncertainty that comes
from the uncertainty in the composition of the signal model
and the uncertainty in the Blatt-Weisskopf barrier factors.
The model-dependent uncertainties are estimated by com-
paring the fit results with Models 2–5 in Table II and by
varying the radius of the barrier, r0 and r in Eqs. (14)–(16)
from 0 to 5 ðGeV=cÞ�1.

TABLE III. Comparison of the models with different reso-
nances composition. The labels, S-NR and P-NR, denote the
S-wave nonresonant and P-wave nonresonant contributions,
respectively.

Hypothesis Model NLL �2=NDF

Model 1 (nominal fit) 22 970 220=153
1 D�0

2 , D�
v, B

�
v, P-NR 23 761 1171=143

2 D�0
2 , D�

v, B
�
v, P-NR, ð2þÞ 23 699 991=144

3 D�0
2 , D�

v, B
�
v, P-NR, ð1�Þ 23 427 638=135

4 D�0
2 , D�

v, B
�
v, P-NR, S-NR 23 339 652=157

TABLE IV. Summary of systematic uncertainties (relative er-
rors in %) in the measurement of the total branching fraction.

Systematic source �BðB�!Dþ����Þ
BðB�!Dþ����Þ (%)

Number of BþB� events 1.6

Tracking efficiencies 2.5

PID 1.5

�E background shape 1.3

Dþ branching fraction 2.3

Fit models 0.7

Fit bias 1.0

Total systematics 4.4
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VII. SUMMARY

In conclusion, we measure the total branching fraction
of the B� ! Dþ���� decay to be

B ðB� ! Dþ����Þ ¼ ð1:08� 0:03� 0:05Þ � 10�3;

where the first error is statistical and the second is
systematic.

Analysis of the B� ! Dþ���� Dalitz plot using the
isobar model confirms the existence of a narrow D�0

2 and a

broad D�0
0 resonance as predicted by heavy quark effective

theory. The mass and width of D�0
2 are determined to be

mD�0
2
¼ ð2460:4� 1:2� 1:2� 1:9Þ MeV=c2 and

�D�0
2
¼ ð41:8� 2:5� 2:1� 2:0Þ MeV;

respectively, while for the D�0
0 they are

mD�0
0
¼ ð2297� 8� 5� 19Þ MeV=c2 and

�D�0
0
¼ ð273� 12� 17� 45Þ MeV;

where the first and second errors reflect the statistical and
systematic uncertainties, respectively, the third one is the
uncertainty related to the assumed composition of signal
events and the Blatt-Weisskopf barrier factors. The mea-
sured masses and widths of both states are consistent with
the world averages [5] and the predictions of some theo-
retical models [39–41].

We have also obtained exclusive branching fractions for
D�0

2 and D�0
0 production:

B ðB� ! D�0
2 ��Þ �BðD�0

2 ! Dþ��Þ
¼ ð3:5� 0:2� 0:2� 0:4Þ � 10�4

and

BðB� ! D�0
0 ��Þ �BðD�0

0 ! Dþ��Þ
¼ ð6:8� 0:3� 0:4� 2:0Þ � 10�4:

Our results for the masses, widths, and branching frac-
tions are consistent with but more precise than previous
measurements performed by Belle [12].
The relative phase of the scalar and tensor amplitude is

measured to be

�D�0
0
¼ �2:07� 0:06� 0:09� 0:18 rad:
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TABLE V. Summary of systematic uncertainties in the masses, widths, and fit fractions of the D�0
2 and D�0

0 and the phase of D�0
0 .

Systematic source �mD�0
2

��D�0
2

�mD�0
0

��D�0
0

�fD�0
2

�fD�0
0

��D�0
0

(MeV=c2) (MeV) (MeV=c2) (MeV) (%) (%) (rad)

Background parametrization 1.0 1.1 3 5 1.2 0.0 0.04

Background fraction 0.1 0.4 2 1 0.4 0.4 0.00

Event selection 0.6 1.6 1 14 0.3 0.8 0.08

Fit bias 0.3 0.7 4 8 0.7 1.4 0.02

PID efficiency 0.0 0.1 0 0 0.0 0.1 0.01

Total systematic error 1.2 2.1 5 17 1.5 1.7 0.09

Fit models 1.3 0.7 15 40 1.5 17.2 0.07

r constant 1.4 1.9 12 21 3.8 7.8 0.17

Total model-dependent error 1.9 2.0 19 45 4.1 18.9 0.18
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