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ORIGINAL ARTICLE

The influence of noise on BOLD-mediated vessel size imaging
analysis methods
Michael A Germuska, James A Meakin and Daniel P Bulte

Vessel size imaging (VSI) is a magnetic resonance imaging (MRI) technique that aims to provide quantitative measurements of
tissue microvasculature. An emerging variation of this technique uses the blood oxygenation level-dependent (BOLD) effect
as the source of the imaging contrast. Gas challenges have the advantage over contrast injection techniques in that they are
noninvasive and easily repeatable because of the fast washout of the contrast. However, initial results from BOLD-VSI studies
are somewhat contradictory, with substantially different estimates of the mean vessel radius. Owing to BOLD-VSI being an
emerging technique, there is not yet a standard processing methodology, and different techniques have been used to
calculate the mean vessel radius and reject uncertain estimates. In addition, the acquisition methodology and signal modeling
vary from group to group. Owing to these differences, it is difficult to determine the source of this variation. Here we use
computer modeling to assess the impact of noise on the accuracy and precision of different BOLD-VSI calculations. Our
results show both potential overestimates and underestimates of the mean vessel radius, which is confirmed with a
validation study at 3T.
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INTRODUCTION
Magnetic resonance imaging (MRI) measurement of vessel size
aims to provide a quantitative measurement of tissue microvascu-
lature. Typically, the mean vessel size, or vessel caliber index (VCI),
is calculated from the ratio of the change in R2* and R2 because of
the injection of a contrast agent.1–3 In the majority of studies
either gadolinium diethylenetriaminepenta-acetic acid (Gd-DTPA)
or superparamagnetic iron oxide particles are used as the contrast
agent. Alternatively, the blood oxygenation level-dependent
(BOLD) effect can be used as the source of this contrast.4–7 The
blood oxygenation is modulated with either hypoxic, hyperoxic, or
hypercapnic gas challenges, probing the venous vasculature.

The use of contrast agents to determine the mean vessel size
has been validated with histology in a number of animal
studies.1,8–10 For example, Lemasson et al10 found a high corre-
lation between VCI and stereologic measurements on histology
data from rat brain tumor and Bosomtwi et al8 showed a
significant correlation between MRI-derived vessel size and
histologic measurement after stroke. In addition, clinical studies
have shown the potential of vessel size imaging (VSI) to provide a
noninvasive assessment of tumor grade11 and aid in defining the
ischemic penumbra in acute stroke.12 Although the initial clinical
findings are promising, the requirement to inject a contrast agent
somewhat limits the potential patient population. Furthermore,
because of the requirement of paramagnetic contrast agents to
remain intravascular the technique is limited to the brain, where
the blood–brain barrier restricts the distribution of the contrast
agent to the intravascular space.6

To date a small number of BOLD-VSI studies have been reported
in the literature. The first quantitative study13 used blocks of visual

stimulation to modulate the BOLD signal, whereas subsequent
studies4,6,7 have used gas challenges. Some difference between
BOLD-VSI and Gd-DTPA studies might be expected; with
Gd-DTPA providing contrast to the whole vascular system
while BOLD provides a venous weighted contrast. However,
there is a degree of symmetry between the arterial and venous
vasculature. In vivo measurements show that the average cerebral
arteriole and venule radii are approximately the same, 26.5 and
25.5mm, respectively.14 Therefore, we might expect the measured
VSI distributions to be similar. Indeed, initial BOLD-VSI
experiments4,13 do show a high degree of similarity with Gd-
DTPA measurements.12,15,16 However, subsequent BOLD-VSI
measurements6,7 estimate a mean vessel radius that is o50% of
these. The difference in vessel size estimates appear to
derive primarily from a difference in the measured DR2*/ DR2

ratio (denoted q). Although changes in q might be expected
with field strength, the signal modeling used for VCI calculations is
expected to account for this. Such large differences in vessel
size estimates need to be addressed before BOLD-VSI can be
considered a robust and reliable technique, suitable for clinical
implementation.

As the BOLD signal provides a relatively low contrast-to-noise
(CNR) measurement, BOLD-VSI is inherently more sensitive to
noise than contrast-based methods. We believe it is this noise
sensitivity that underlies some of the discrepancy in vessel size
estimates obtained with this technique. Here we use computer
modeling to assess the impact of noise on the accuracy q and VCI
calculations with different BOLD-VSI analysis methods and noise
content. The results of the modeling are then compared with
in vivo measurements using an oxygen challenge and different
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levels of spatial smoothing, producing a number of data sets with
varying CNR.

MATERIALS AND METHODS
Signal Modeling
The magnitude of MRI signals acquired with gradient echo (GE) and spin
echo (SE) acquisitions are dependent on the transverse relaxation rates R2

*

and R2, respectively. Assuming monoexponential signal decay, constant
proton density and negligible T1 effects (related to inflow or molecular
oxygen), changes in transverse relaxation rates can be determined from GE
and SE acquisitions as per equations (1a and 1b).

DR�2 ¼ �
In SðtÞGE

�
S0;GE

� �
TEGE

ð1aÞ

DR2 ¼ �
ln SðtÞSE

�
S0;SE

� �
TESE

ð1bÞ

Where S(t) is the time course of the signal magnitude, S0 is its average
value during baseline and TE is the corresponding GE or SE time.

As DR2* and DR2 have differential vessel size sensitivity,17 the vessel
radius, rv, can be modeled as a function of q and the BOLD-induced
susceptibility change, Dw,4 so that rv¼ f(q,Dw). Therefore, by acquiring GE
and SE signals during rest and stimulation, estimates of the vessel
radius can be made. In vivo, each voxel will typically contain a distribution
of vessel radii. If this distribution has a small variance compared
with the mean, then the measured q (and therefore rv) will be equal to
the mean.13 Given this, rv represents the voxelwise average over the
postcapillary population with each vessel size weighted by its blood
volume fraction.

GE and SE signals (at 3T and 7T) were estimated using a Monte–Carlo
simulation of water in a vascular network. The ODIN framework18 was used
to produce numerical integrations of the Bloch equations along a large
number of random walk paths, as described by Jochimsen et al.13

Intravascular signal was also included in the modeling, with the field
distribution inside a vessel calculated according to Bandettini and Wong.19

Vessel modeling was undertaken for intravascular susceptibility changes,
Dw, ranging from � 0.05 to � 0.3 p.p.m. (SI units). This range of
susceptibility changes was chosen to include the measured susceptibility
change with oxygen in volunteers and the reported susceptibility changes
in previous studies.

In all simulations, the difference between fully oxygenated and
deoxygenated hemoglobin was taken to be 0.264 p.p.m.20 A diffusion
coefficient of 0.76� 10� 3 mm2/second, a postcapillary blood volume
fraction of 3%, and a hematocrit of 0.40 were assumed. GE and SE echo
times of 30/90 milliseconds at 3T and 18/55 milliseconds at 7T were chosen
to be representative of recent BOLD-VSI studies. The blood T2 values at 3T
were calculated by fitting to Zhao et al21 and assuming a venous oxy-
hemoglobin saturation, Y, of 60% at rest; producing T2 estimates of 32.2,
36.5, 41.4, 53.3, and 68.0 milliseconds for Dw¼ 0, � 0.05, � 0.1, � 0.2, and
� 0.3 p.p.m., respectively. Blood T2 values at 7T were extrapolated as
per Jochimsen et al;4 producing T2 estimates of 8.1, 9.7, 12.0, 18.4, and
27.3 milliseconds for Dw¼ 0, � 0.05, � 0.1, � 0.2, and � 0.3 p.p.m., res-
pectively. Figures 1A and 1B show plots of VCI against q for the simulated
susceptibility changes at 3T and 7T, respectively. It is clear from the figures
that the relationship between q and rv has a much greater dependence on
Dw at 3T compared with 7T (particularly for large q). This is the result of
increased sensitivity to intravascular contributions at 3T, which are
significantly reduced at 7T because of the short T2 of blood.

It should be noted that the modeling does not account for changes in
blood flow or blood volume during stimulation, which are expected in
hypercapnic gas challenges.22 Simulations performed by Shen et al7

suggest only a small error is introduced by ignoring DCBV up to 12%. Using
a large hypercapnic stimulus, 7% CO2, Ito et al22 measured a 30.5%
increase in cerebral blood flow with an associated 9.6% change in total
blood volume, well below the modeled DCBV. Animal experiments23

indicate that the venous DCBV, which is relevant for BOLD-weighted
studies, only accounts for 36% of this increase. However, the majority of
this increase occurs in the small cerebral vessels, 5 to 15mm radius, and
was found to be as large as 23% in this range of vessels with a 9% CO2

stimulus in rat.23

Noise Modeling
Magnetic resonance imaging experiments were simulated with MATLAB
(Mathworks, Natick, MA, USA) to assess the impact of noise on different
analysis methods. The noise modeling used a hybrid simulation, with
measured noise added to simulated MR signals. A hybrid simulation
method was used to accurately capture the noise characteristics, including
any correlation between the GE and SE noise that might arise because
of physiologic fluctuations. Noise data sets (n¼ 4) were acquired with
Siemens MRI Scanners (Erlangen, Germany) at 3T (Siemens Verio with
32-channel head coil) and 7T (Siemens Magnetom with 32-channel Nova
Medical head coil) using identical acquisition parameters to the simulated
vessel data, echo time (TE) 30/90 milliseconds at 3T and 18/55 milliseconds
at 7T, repetition time (TR) 3.5 seconds. In each case, a GRAPPA acceleration
factor of 2 and a matrix size of 64� 64 was used with a 200 mm field of
view. A slice thickness of 3 mm (1 mm slice gap) and 28 slices (26 slices at
7T) were used for full brain coverage.

The measured noise data sets were preprocessed with FSL (FEAT) (http://
www.fmrib.ox.ac.uk/fsl).24 Each data set was registered to a corresponding
structural acquisition, corrected for motion, high pass filtered to remove
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Figure 1. Modeled relationship between mean vessel radius (mm)
and the vessel size index, q. Modeled at 3T (A) and 7T (B) for
susceptibility changes � 0.05 to � 0.3 p.p.m.
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baseline drift (cutoff¼ 400 seconds) and spatially smoothed. For each
acquisition, four different data sets were produced with 0, 4, 6, and 8 mm
full width at half maximum (FWHM) spatial smoothing. After preprocessing
with FEAT, the data sets were masked to produce gray matter volumes,
creating over 25,000 GE and SE time courses for each field strength and
level of smoothing. Before spatial smoothing, gray matter voxels had a
mean time course signal-to-noise ratio (tSNR) of 66±29 for GE acquisitions
and 35±13 for SE acquisitions at 3T. At 7T, the GE acquisitions had a
similar tSNR, with a mean value of 67±29. However, the SE tSNR value
increased slightly to 45±19. Given the nonuniform distribution of tSNR
values across the brain, a random sampling of voxels (from all volunteers)
was used during simulations, ensuring an unbiased noise distribution for
each simulated vessel size.

During modeling, the randomly selected GE and SE noise pairs were
added to simulated experimental data, representing the expected BOLD
signal change because of a gas challenge. The experimental paradigm
consisted of two stimulation blocks of 3 minutes (TR¼ 3.5 seconds)
interleaved with three 2-minute baseline periods. When presented with a
block gas challenge, the change in oxy-hemoglobin saturation is some-
what delayed and dispersed. To account for this, the block design was
convolved with a gamma-variate function (mean lag 30 seconds and s.d.
30 seconds). In our experience, the resulting time course fits well with gray
matter BOLD data acquired in CO2 challenges. Although the mean lag
would be greater for an oxygen challenge, which is typically accounted for
by longer rest periods, these differences are not expected to have a large
influence on the analysis.

Vessel Population Modeling
To analyze the impact of noise when assessing a region of interest,
smoothing splines were fitted to the modeled MRI signals, allowing noise
simulations to be performed on a distribution of vessel radii between 1
and 70mm. An assumed VCI distribution was used to modulate the number
of simulations at each vessel size (using a step size of 0.01 mm), with a
minimum of one simulation at each radius. To extend the range of SNR
values probed by the simulations each analysis was repeated using four
different levels of spatial noise smoothing (0, 4, 6, and 8 mm FWHM).

The VCI distribution was chosen to represent the expected distribution
of mean vessel radii present in gray matter region of interest analysis. The
in vivo distribution of the VCI over a region of interest is unknown and
cannot easily be inferred from ex vivo measurements, such as confocal
laser microscopy. Ex vivo measurements of vessel size typically exclude
veins and arteries, and are subject to ill-defined vessel shrinkage; while
BOLD-VSI is sensitive to the entire postcapillary network including veins. As
such, estimates made using VSI are expected to be significantly greater
than ex vivo measurements.

As a result of the difficulty in inferring the true in vivo distribution, we
have taken the practical approach in deriving a distribution from the
current VSI literature4,12,13,15,16; which all present data with similar mean
values and distributions. However, the Gd-DTPA studies are sensitive to the
entire vasculature, not just the postcapillary network. In addition, contrast
agent-based experiments have been shown to have a dependence on
the relative arterial and venous blood volume and the tracer bolus
dispersion.25 Jochimsen and Moller13 acquired data using a smaller
susceptibility change and lower field strength than Jochimsen et al,4 and
so are expected to have a lower CNR. As a result of these considerations,
the volunteer data presented in (ref. 4) was used as the basis for the VCI

distribution. MATLAB was used to fit the averaged data with a generalized
extreme value distribution, the resulting probability density function being
described by a Frechet distribution (a¼ 0.41, b¼ 5.8, g¼ 10.1, and
R2¼ 0.99), equation (2).

f ðxÞ ¼ a
b

b
x� g

� �aþ 1

exp � b
x� g

� �a� �
ð2Þ

Where a is the shape parameter, b is the scale parameter, and g is the
location parameter.

MRI Validation Study
To validate the simulation results, five VSI data sets were acquired at 3T
from five healthy volunteers (4 men and 1 woman, mean age 34). The
experimental paradigm and data acquisition were identical to the
simulations; TR¼ 3.5 TE¼ 30/90 milliseconds, 3� 3� 3 mm3 voxel, 28
slices with 1 mm slice gap. The BOLD signal was modulated with two
periods (3 minutes each) of elevated oxygen. During the stimulation
periods, 100% oxygen was delivered to the subjects via a nonrebreathing
mask (Flexicare Medical, Mountain Ash, UK) at a flow rate of 15 L/minutes.
During rest periods, air was delivered through the mask at the same flow
rate. The acquired MR data were motion corrected and smoothed with four
different Gaussian smoothing kernels (FWHM 0, 4, 6, and 8 mm) to produce
four different VSI data sets. The data sets were then analyzed as described
in the following sections.

To calculate the blood susceptibility change caused by the stimulus,
blood T2 was measured in the sagittal sinus at baseline and stimulation
(using a further oxygen block). The T2 measurements were performed
using an implementation of T2-relaxation-under-spin-tagging.26 In our local
implementation, spin tagging was performed using a pseudo-continuous
inversion in the sagittal sinus superior to the imaging slice with a tag
duration of 1.4 seconds and a postlabeling delay time of 150 milliseconds.
A Malcom-Levitt T2 preparation was used with a 10 milliseconds
Carr-Purcell-Meiboom-Gill time,27 with effective TEs of 0, 40, 80, and 120
milliseconds, with four tag-control pairs acquired for each preparation
time. As per Xu et al,28 global spoiling was used at the end of each TR,
allowing a TR of 4 seconds and a total acquisition time of 2.2 minutes. Tag-
control image pairs were motion corrected, subtracted, and the average
value of a selected sagittal sinus voxel fit to obtain an estimate of T2. The
measured T2 values were converted to venous oxygen saturation values
according to Lu et al27 assuming a hematocrit of 0.4, and then into blood
susceptibility values according to equation (3);29 where Dwdo¼ 4p � 0.264.

w ¼ HctDwdoð1� YvÞ ð3Þ

Analysis Methods
All data sets (simulations and volunteer studies) were analyzed using the
two principal methods to calculate q, and therefore calculate the vessel
size. In the first case, the average decay rates (DR2* and DR2) during signal
plateau periods are used, in the second case a linear regression of DR2*
timepoints against DR2 is used as per Jochimsen et al.4 In each case, a
refinement of the method is also investigated. For the plateau analysis, a
t-test was used to identify statistically significant signal changes between
baseline and stimulation periods as per Shen et al 6,7. Only simulations that
showed significant signal increases in both the GE and the SE data were
included (P¼ 0.0001). The regression analysis, which was originally

Table 1. VCI error with degree of spatial smoothing at 3T

OLS TLS Plateau Plateau with T-test

Mean Median Mean Median Mean Median Mean Median

No filter 38% 21% 21% � 0.5% 0.7% � 12% � 23% � 22%
4mm 28% 15% 14% 2.3% 4.3% � 6.6% � 14% � 14%
6mm 17% 8.7% 8.7% 2.6% 4.7% � 3.3% � 5.8% � 7.5%
8mm 12% 6.4% 7.9% 2.6% 5.0% � 1.5% � 1.9% � 4.2%
Average 24% 13% 12% 1.7% 3.7% � 5.8% � 11% � 12%

OLS, ordinary least squares; TLS, total least squares; VCI, vessel caliber index.
Group mean and median error values for vessel size estimates averaged over all simulated susceptibility changes at 3T. Full width at half maximum of Gaussian
filter 0mm to 8mm.
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evaluated with ordinary least squares (OLS), was extended via the use of a
total least squares (TLS) regression. TLS allows for observational errors on
both dependent and independent variables and so allows for uncertainties
in both DR2*and DR2. This is untrue for simple linear regression, which
assumes the independent variable to be error free, and thus leads to
attenuation bias when this is not the case.30

Calculated q values were converted into distributions of vessel radii
using the Monte–Carlo modeled data and the relationships described in
Figure 1. Unrealistic vessel sizes estimates, o1 mm and 470mm, were
discarded. Vessel distributions are summarized using the median, as is
appropriate for non-normal distributions, however, in some instances
mean values are also quoted for consistency with previous publications.

RESULTS
Simulations
Using the estimated VCI distribution, the modeled data (without
noise) predict a median q value of 4.0 (±0.4) at 3T and 5.6 (± 0.1)
at 7T, corresponding to a median VCI of 11.8 mm (mean value
13.8mm). Tables 1 and 2 summarize the mean and median errors
in VCI values for the population analysis at 3T and 7T, respectively.
The tables include summary results for all susceptibility changes
and for each degree of spatial smoothing (separated by analysis
method). Table 3 shows the errors for a modeled oxygen
challenge (Dw¼ � 0.05 p.p.m.) at 3T, where the small susceptibility
change emphasizes the bias present in each analysis method.

The simple regression technique (OLS) produces a large
overestimation of VCI at 3T, reducing with increased smoothing
or susceptibility change. The TLS regression significantly reduces
this overestimation taking the group median error down from
13% to 1.7%. However, the plateau analysis results in a consis-
tent underestimation of the median value, with a group error
of � 5.8%. The inclusion of a t-test increases this error to � 12%.
The majority of the error in the t-test approach is because of
underestimations of q in low CNR situations, with a maximum
error of � 43% (for no smoothing and Dw¼ � 0.05 p.p.m.).
Increasing levels of smoothing reduce this error to around the
13% level for a smoothing kernel of 8 mm FWHM.

Figures 2A–2D show estimated VCI distributions for Dw¼ � 0.05
and � 0.3 p.p.m. (spatial smoothing¼ 6 mm FWHM) for each
analysis method. It is clear from the figures that the plateau
analysis shifts the modal value to the left, increasing the number
of small vessel estimates. The OLS analysis shifts the modal value
to the right. Introducing a t-test preferentially removes large
vessel estimates, with increasing bias for smaller susceptibility
changes. The TLS analysis shows reduced bias compared with the
OLS analysis, more closely matching the true distribution.
Increasing Dw reduces the bias present in all analysis techniques.

As shown in Table 2, the OLS estimates of VCI at 7T show only a
modest overestimation in the median (group value of 3.5%), even
with no spatial smoothing. Overall, the errors at 7T are much
reduced compared with 3T. However, there is still a surprisingly

high bias introduced by the t-test method (for small Dw), which is
apparent in the summary statistics. The cause of this anomaly is
likely because of the sharper decrease in SE signal with vessel size,
the same reason for increased q values at 7T. Thus, the statistical
test is more heavily biased to larger vessel sizes at higher field
strengths.

In Vivo Validation
Measurements of the change in intravascular T2 (as a result of the
hyperoxic stimulus) were made with a T2-relaxation-under-
spin-tagging sequence. The average T2 value at baseline was
found to be 65 milliseconds, increasing to 75 milliseconds during
hyperoxia, which is equivalent to an intravascular suscepti-
bility change of � 0.057 p.p.m. The closest modeled susceptibility
change of � 0.05 p.p.m. was used to calculate radius estimate
from the volunteer data.

Figure 3 shows example parameter maps for each of the
analysis methods (OLS, TLS, plateau and plateau plus t-test) from
the acquired volunteer data. The maps appear generally similar,
with an apparent reduction in vessel size with the plateau
techniques. The variation in vessel size with analysis method and
smoothing level is summarized in Table 4. As with the modeled
data, OLS estimates are consistently greater than TLS, while the
median TLS value is relatively insensitive to the degree of spatial
smoothing. Plateau estimates of VCI are less than with the
regression techniques, and are further reduced by including a
t-test. This is consistent with the modeled data presented in
Table 3, which predicts errors of 13%, 4.4%, � 5.3%, and � 13%
for a susceptibility change of � 0.05 p.p.m. and an 8 mm spatial
smoothing kernel. Given the correspondence between the results
and the expected errors, we can infer that the true mean and
median VCI values in this subject group are approximately 11 and
8.5 mm, respectively. These values are obtained by choosing VCI
values that best correspond to the modeled error in each of the
analysis methods.

DISCUSSION
Blood oxygenation level-dependent-mediated VSI offers a novel
method for quantifying vessel sizes and vessel size changes
in vivo. However, because of the relatively low CNR of the method,
care must be taken when analyzing and comparing results. Here
we have explored the noise sensitivity of different analysis
methods using a simulated BOLD acquisition. The results show
significant CNR-dependent variations in calculated q values, and
therefore vessel size estimates.

The use of a linear regression to assess the ratio q provides a
model-free analysis method, which should be unaffected by
regional changes in hemodynamic latency and/or delay.4

Although this may prove important in certain disease states, it is
also insensitive to any delayed hypercapnic response between

Table 2. VCI error with degree of spatial smoothing at 7T

OLS TLS Plateau Plateau with T-test

Mean Median Mean Median Mean Median Mean Median

No filter 15% 3.5% 8.0% � 4.4% 0.5% � 11% � 16% � 19%
4mm 13% 3.8% 7.4% � 1.9% 1.7% � 7.5% � 12% � 14%
6mm 3.7% � 0.3% 0.6% � 3.4% 0.3% � 4.9% � 6.9% � 8.4%
8mm 2.2% � 0.2% � 0.0% � 2.3% 0.2% � 3.3% � 4.6% � 5.8%
Average 8.5% 1.7% 4.0% � 3.0% 0.7% � 6.7% � 9.8% � 11.8%

OLS, ordinary least squares; TLS, total least squares; VCI, vessel caliber index.
Group mean and median error values for vessel size estimates averaged over all simulated susceptibility changes at 7T. Full width at half maximum of Gaussian
filter 0mm to 8mm.
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healthy gray and white matter. However, standard regression
techniques have long been known to underestimate the
gradient because of noise in the independent variable.31 As the
regression is used to estimate 1/(DR2*/DR2), this can lead to
an overestimation of q and hence vessel size. Here we include a
TLS regression to mitigate this effect. The modeling results show
that the TLS regression removes much of the overestimation in

vessel size, correcting a median overestimation of 13% to only
1.7% at 3T.

As large vessels produce a small DR2, any reduction in this
because of noise can lead to a significant overestimation of q. One
method to remove these uncertain estimates, proposed by Shen
et al,6 is to use a t-test to accept estimates only if there is a
significant increase in GE and SE signals between rest and

Table 3. VCI error for Dw¼ � 0.05 p.p.m. at 3T

OLS TLS Plateau Plateau with T-test

Mean Median Mean Median Mean Median Mean Median

No filter 55% 33% 14% � 9.4% � 7.9% � 26% � 46% � 43%
4mm 43% 24% 16% � 3.6% 0.8% � 16.5% � 38% � 35%
6mm 29% 15% 15% 2.0% 4.9% � 9.1% � 23% � 21%
8mm 23% 13% 14% 4.4% 6.2% � 5.3% � 13% � 13%

OLS, ordinary least squares; TLS, total least squares; VCI, vessel caliber index.
Group mean and median error values for different levels of spatial smoothing (full width at half maximum of Gaussian filter 4mm to 8mm) with
Dw¼ � 0.05 p.p.m. at 3T.
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Figure 3. Example mean vessel caliber estimates (mm) from an individual subject. The same slice is shown analyzed with each of the
investigated methodologies.
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stimulation. However, above approximately 10 mm the change in
GE signal should always be significantly greater than the change
in SE. Therefore, for the most part, this is really a test for significant
changes in the SE signal. As DSE decreases with vessel size, great
care must be taken not to exclude legitimate voxels that are
dominated by large vessels. In addition, any estimates where noise
adds to DSE such that it passes the t-test will be accepted, while
estimates where noise reduces DSE below significance will be
rejected. Our simulations show that this biased rejection causes an
increased underestimation of the mean and median vessel size.
A mean reduction in vessel size of approximately 30% to 40% is
predicted in low CNR situations (small Dw and minimal spatial
smoothing), this corresponds well with the 40% change observed
by Shen et al.6

It could be argued that the distribution used in our modeling is
unrepresentative of the true vessel distribution, including an
unrealistic number of large vessels. In our model distribution, 20%
of vessels have a radius 420mm, while in recent in vivo studies
Perez-Barcena et al32 suggest that only 10% of vessels fall in to this
range. However, this difference could be explained by BOLD
sensitivity to large veins that were excluded from the study. In
addition, our validation study revealed a consistently lower
estimate of vessel size with the t-test approach that reduced
with the level of spatial smoothing (as predicted by the modeling).
Although the motivation for the t-test approach is to remove
unrealistic estimates of large vessels, it appears that the level of
significance chosen is such that it includes a significant proportion
of large vessel estimates in low CNR situations. This phenomenon
becomes increasingly important when comparing acquisitions
performed with different apparatus and gas challenges. For
instance, if this approach is used to compare the vessel size
response to hyperoxia and hypercapnia (where an SNR increase is
expected because of an increase in Dw), then care must be taken to
analyze the same vessel populations to avoid biasing the results.

If the estimated mean vessel size in this study (11 mm) is
compared with the reported VCI estimates in Shen et al,6 we can
see that a reduction of approximately 40% is required to match
the estimated vessel size of 6.5 mm. As previously observed, this
reduction is similar to the impact of the t-test in their study, and
implies a low CNR compared with our modeling results. The low
CNR is plausible as the results in this study are derived from a
32-channel head coil rather than the 8-channel coil used by
Shen et al. Comparing our result to Jochimsen et al 4, it requires a
22% increase in the mean vessel estimate to match their estimate
of 13.4 mm; while our modeling can only account for 10% of this
increase, the remainder can be explained by the vasodilatory
effect of CO2 (ref. 22). Assuming any increase in blood volume is
the result of an increase in the radius, the required 10% increase
corresponds to a 20% blood volume increase, well within the
range measured by Lee et al.23

The sensitivity to CNR in this study has been examined through
the use of different degrees of spatial smoothing. The approach
offers the opportunity to investigate the noise dependence of the

analysis methods without the need to acquire multiple data sets.
In addition, it is relevant to practical BOLD-VSI implementations,
which will typically use some degree of Gaussian smoothing.
However, there is the possibility that distribution of vessel sizes
under examination will vary with the degree of spatial smoothing.
For example, a large degree of spatial smoothing could enhance
the contribution of surface draining veins to nearby tissue, thus
increasing the median VCI. This phenomenon is more likely to
present itself in the in vivo experiments, as the simulations
implicitly assume a uniform distribution. However, given the
qualitative agreement between the simulations and in vivo data,
this effect appears to be small in comparison with the investigated
CNR dependence.

Our results highlight the important interaction between CNR
and BOLD-VSI analysis methodology. The low CNR inherent in
BOLD-VSI studies, particularly at lower field strengths, can lead to
both large overestimation (OLS) and underestimation (t-test) of
the mean vessel size. We have shown how the use of a more
appropriate regression method (TLS) removes much of this bias.
Although the underestimation observed with the t-test methodol-
ogy goes some way toward explaining the differences observed in
vessel size estimates made by Jochimsen et al4,13 and Shen et al.6,7

Further differences between the results are expected because of
vasodilatory effect of CO2(22) and are within the physiologic range
of blood volume changes.

To increase the reliability and robustness of BOLD-VSI, it is
important to consider the influence of the CNR on the analysis
method. Ideally, data should be acquired and smoothed to
achieve a CNR such that the analysis method minimally influences
the results. If this is not possible then the effect of all processing
steps should be understood and characterized to avoid significant
bias. At 7T, our modeling shows that all analysis methods
result in a group error of 10% or less for large (� 0.3 p.p.m.)
susceptibility changes. At lower field strengths and with smaller
susceptibility changes, the choice of analysis method becomes
increasingly critical and great care is required.
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25 Xu C, Kiselev VG, Möller HE, Fiebach JB. Dynamic hysteresis between gradient
echo and spin echo attenuations in dynamic susceptibility contrast imaging.
Magn Reson Med 2013; 69: 981–991.

26 Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using
T2-relaxation-under-spin-tagging MRI. Magn Reson Med 2008; 60: 357–363.

27 Lu HZ, Xu F, Grgac K, Liu PY, Qin Q, van Zijl P. Calibration and validation of TRUST
MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2012; 67:
42–49.

28 Xu F, Uh J, Liu PY, Lu HZ. On improving the speed and reliability of T2-relaxation-
under-spin-tagging (TRUST) MRI. Magn Reson Med 2012; 68: 198–204.

29 Weisskoff RM, Kiihne S. MRI susceptometry: image-based measurement of
absolute susceptibility of MR constrast agents and human blood. Magn Reson Med
1992; 24: 375–383.

30 Frost C, Thompson SG. Correcting for regression dilution bias: comparison of
methods for a single predictor variable. J R Stat Soc Ser 2000; 163: 173–189.

31 Spearman C. The proof and measurement of association between two things.
Am J Psychol 1904; 15: 72–101.

32 Perez-Barcena J, Ibanez J, Brell M, Llinas P, Abadal JM, Llompart-Pou JA.. Study of a
brain microcirculation in Cranioencephalic trauma using the side stream field
(Sdf) system. Medicina Intensiva 2009; 33: 256–259.

BOLD-mediated VSI analysis methods
MA Germuska et al

1863

& 2013 ISCBFM Journal of Cerebral Blood Flow & Metabolism (2013), 1857 – 1863


	title_link
	Introduction
	Materials and methods
	Signal Modeling
	Noise Modeling

	Figure™1Modeled relationship between mean vessel radius (mgrm) and the vessel size index, q. Modeled at 3T (A) and 7T (B) for susceptibility changes -0.05 to -0.3thinspp.p.m
	Vessel Population Modeling
	MRI Validation Study
	Analysis Methods

	Table 1 
	Results
	Simulations
	In Vivo Validation

	Discussion
	Table 2 
	Table 3 
	Figure™2Modeled probability density estimates of vessel radii for each analysis method at 3T with an assumed vessel distribution (true distribution). Modeled data derived from 6thinspmm full width at half maximum smoothed data sets and susceptibility chan
	Figure™3Example mean vessel caliber estimates (mgrm) from an individual subject. The same slice is shown analyzed with each of the investigated methodologies
	A5
	A6
	ACKNOWLEDGEMENTS
	A7
	Table 4 




