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ARTICLE

Obesity and brain structure in schizophrenia – ENIGMA study in
3021 individuals
Sean R. McWhinney1, Katharina Brosch2, Vince D. Calhoun 3, Benedicto Crespo-Facorro4,5,6, Nicolas A. Crossley7,8,
Udo Dannlowski 9, Erin Dickie 10, Lorielle M. F. Dietze1, Gary Donohoe 11, Stefan Du Plessis12,13, Stefan Ehrlich 14,
Robin Emsley12, Petra Furstova15, David C. Glahn16,17,18, Alfonso Gonzalez- Valderrama19,20, Dominik Grotegerd9, Laurena Holleran11,
Tilo T. J. Kircher2, Pavel Knytl15,21, Marian Kolenic 15,21, Rebekka Lencer 9,22, Igor Nenadić2, Nils Opel9,23, Julia-Katharina Pfarr2,
Amanda L. Rodrigue 16,17, Kelly Rootes-Murdy24, Alex J. Ross1, Kang Sim25,26,27, Antonín Škoch15,28, Filip Spaniel 15,21,
Frederike Stein 2, Patrik Švancer15,21, Diana Tordesillas-Gutiérrez 29,30, Juan Undurraga 20,31, Javier Váquez-Bourgon 4,32,33,
Aristotle Voineskos10, Esther Walton 34, Thomas W. Weickert 35,36, Cynthia Shannon Weickert35,36,37, Paul M. Thompson38,
Theo G. M. van Erp 39,40, Jessica A. Turner 24 and Tomas Hajek 1,15✉

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how
the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical
measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research
sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using
mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and
subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily
associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with
cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain
correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive
disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with
both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity
appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain
imaging outcomes among people with schizophrenia.
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INTRODUCTION
Schizophrenia is among the most disabling and expensive
psychiatric disorders [1, 2]. It is frequently associated with brain
structural changes, including lower cortical thickness, larger
ventricles, and altered subcortical volumes [3, 4]. Individuals with
schizophrenia also show greater variability in the structure of
individual brain regions than controls [5, 6]. We need to better
understand why neurostructural findings vary within the same
diagnosis and which factors underlie this heterogeneity. One
potential source of differences among individuals with schizo-
phrenia are the comorbidities with medical conditions known to
affect the brain [7]. One such condition, which targets the brain
and is disproportionately frequent in schizophrenia, is obesity.
Obesity affects 40–60% of patients with psychotic spectrum

disorders [8–11], which is significantly more than in the general
population [9]. Higher rates of obesity in schizophrenia may be
related to shared genetics, pathophysiology, risk factors, including
effects of medications or lifestyle factors. Regardless of the
ethiology, the presence of obesity has a marked impact on
physical health/mortality [12, 13], but could also affect brain
structure and related psychiatric outcomes [14, 15]. Indeed,
obesity is associated with similar brain imaging alterations in
frontal, mesial temporal regions and ventricles, as schizophrenia
[16–19]. This overlap has important implications. Obesity could
contribute to the varying extent of brain alterations among people
with schizophrenia. It could help us identify which individuals with
schizophrenia will likely show more pronounced brain changes.
This in turn could have clinical implications, as brain alterations are
often associated with poor clinical outcomes [20–22]. In addition,
perhaps the high rates of obesity, which are shared across major
psychiatric disorders, including major depressive disorder (MDD),
bipolar disorders (BD) and schizophrenia, could help explain the
brain imaging commonalities across these disorders.
Despite the many links between obesity, schizophrenia and the

brain, this remains an under researched area. We have previously
demonstrated that in people with first episode of psychosis,
obesity was associated with advanced brain age and lower
cerebellar volume [23, 24] and that BMI was a predictor of future
neurostructural alterations [20]. The single previous study in 32
older individuals with schizophrenia found that higher BMI was
significantly associated with lower volume of total gray matter,
orbitofrontal and prefrontal cortices, and hippocampus [25].
Another study suggested that in schizophrenia, structural brain
volume reductions, especially in areas of the reward circuitry,
appeared to be related to comorbid metabolic syndrome [26].
We need larger studies in more generalizable samples to better

understand how the brain correlates of obesity map onto the
brain alterations in schizophrenia. To this goal, we investigated the
association between schizophrenia, obesity and neurostructural
measures in a large, highly generalizable, multicenter sample from
the ENIGMA-Schizophrenia working group. We also compared
profiles of obesity-related brain structural alterations with previous
large studies in obesity and other neuropsychiatric disorders,
including MDD and BD.

METHODS
Participating sites
The ENIGMA Schizophrenia Working Group brings together researchers
with brain imaging and clinical data from people with schizophrenia.
Twelve site members of this group contributed individual subject
structural MRI data, medication information and body mass index (BMI)
values from a total of 1260 individuals with schizophrenia and 1761
healthy controls. Supplementary Tables S1 and S2 list the demographic
and clinical details for each cohort. One cohort (COBRE) did not provide
BMI for patients, and so only control participants for this site were
analyzed. We included this site in analyses to obtain a better estimate of
obesity-related brain alterations in controls. The sample is a broad,

ecologically valid, and generalizable representation of schizophrenia. All
participating sites received approval from local ethics committees, and all
participants provided written informed consent.

Data acquisition and segmentation
High-resolution T1-weighted brain anatomical MRI scans were acquired at
each site, see Supplementary Table S3. All groups used the same analytical
protocol and performed the same visual and statistical quality assessment,
as listed at: http://enigma.ini.usc.edu/protocols/imaging-protocols/. These
protocols are standardized across the consortium, are open-source and
available online for anyone to scrutinize, to foster open science, replication,
and reproducibility. They were applied in large-scale ENIGMA studies
of major depression, schizophrenia, ADHD, OCD, PTSD, epilepsy, and
autism [27].
Briefly, using the freely available and extensively validated FreeSurfer

software, we performed segmentations of 34 cortical regions and
8 subcortical regions, per hemisphere (left and right), based on the
Desikan–Killiany atlas. Cortical thickness, cortical surface area, and/or
subcortical volume were extracted for each region. We also computed
measures of total intracranial volume (ICV) to standardize estimates. Visual
quality controls were performed on a region of interest (ROI) level aided by
a visual inspection guide including pass/fail segmentation examples. In
addition, we generated diagnostic histogram plots for each site and
outliers (i.e., ROI volumes), which deviated from the site mean for each
structure at 3 or more standard deviations, were flagged for further review.
All ROIs failing quality inspection were withheld from subsequent analyses,
see Supplementary Tables S4–S6 (on average, 1.33% of data per region).
Previous ENIGMA analyses showed that scanner field strength, voxel
volume and the version of FreeSurfer used for segmentation did not
significantly influence the effect size estimates [28, 29].

Statistical modeling
In this mega-analysis, we used linear mixed modeling (package nlme
version 3.1–152 in R version 4.1.1) with individual subject cortical thickness,
cortical surface area, or subcortical volumes as dependent variables and
with both BMI and group (schizophrenia or healthy control) as dependent
variables. In each case age, sex, and hemisphere (left or right) were also
included as fixed predictors. Total intracranial volume (ICV) was included as
a covariate in models of cortical surface area and subcortical volume.
Models also included a random effect of hemisphere within participants
and a random effect of data collection site. We first tested for additive
effects, i.e., whether the association between BMI and brain structure was
significant even when controlling for the statistical effect of schizophrenia
and other covariates, and would therefore add to the effect of the
diagnosis on brain structure. We also checked for interactions and included
them where significant.
We created one model per region, with each model including both

hemispheres and all of the covariates described above. We used BMI as
continuous variable, which captures more variability between participants,
increases sensitivity and was the preferred approach in most previous
studies [19]. BMI was normally distributed, see Supplementary Fig. S1. We
checked the normality of model residuals using QQ plots and tested for
multicollinearity using the variance inflation factor (VIF) of all predictor
variables included in modeling. Variance in regional volumes was
comparable between groups.
We also tested for associations between BMI and available clinical

variables, and in any cases where the two were associated we also tested
for associations between the particular clinical variable and brain structure.
All tests controlled for age, sex, and a random effect of data collection site.
Next, we were interested whether the patterns of changes associated

with obesity overlapped with patterns of changes found in major
psychiatric disorders. To test this, we ordered the effect sizes of BMI
across all regions and using Spearman rank order correlations compared
them with rank ordered effect sizes across the same regions, as reported in
previous large studies in schizophrenia, MDD or BD. We performed these
analyses for measures where the majority of regions showed a significant
association with BMI.
We adjusted all p values for multiple comparisons using false discovery

rate (FDR), with adjusted p values reported, at α= 0.05. We calculated
effect sizes for between-group differences and associations between BMI
and ROI volumes, expressed as standardized coefficients, together with
their 95% confidence intervals. The code for all analyses will be provided
upon reasonable request.
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RESULTS
Sample description
We included 3021 participants (1260 individuals with schizophre-
nia and 1761 healthy controls), see Table 1.

Regional volume differences by group and BMI
When modeled jointly, numerous regions showed significant
partial effects of either BMI, diagnosis, or both (Fig. 1). Participants
with schizophrenia showed significantly thinner cortex relative to
controls in all regions except for the entorhinal cortex. Higher BMI
was associated with thinner cortex in many of the same regions
as schizophrenia, and it was uniquely associated with thinner
entorhinal cortex.
Surface area was significantly lower in participants with

schizophrenia relative to controls for a subset of these same
regions. Higher BMI was associated with larger surface area in the
isthmus of the cingulate gyrus, the paracentral lobule, and
transverse temporal cortex.
Lastly, participants with schizophrenia had significantly larger

lateral ventricles, caudate nucleus, putamen, and pallidum, but also
significantly smaller thalamus, hippocampus, amygdala, and nucleus
accumbens, relative to controls. Higher BMI was significantly and
additively related to larger volume in a number of these same
regions, including thalamus, pallidum, and amygdala.
Overall, all of the regions associated with BMI were also

associated with the diagnosis of schizophrenia, with the exception
of entorhinal cortex thickness. In contrast, of the 41 unique regions
related to schizophrenia, 17 were additively associated with BMI
(41.5%). There was no interaction effect of schizophrenia and BMI
on cortical thickness, surface area or volume for any brain region
(Supplementary Tables S7–S9). The association between BMI and
cortical thickness was linear across all regions and all measures,
i.e., thickness, surface area or volume, see Supplementary
Tables S10–S12 and Supplementary Fig. S2.

Associations with antipsychotic medications and clinical
variables
Among individuals with schizophrenia, the association between
BMI and brain structure persisted even when controlling for dose
of antipsychotic medications at the time of scanning, see Table 2.
Antipsychotic dose at the time of scanning was not significantly
related to volume for any subcortical regions, or the thickness
or surface area of any cortical regions, see Supplementary
Tables S13–S15.
There was no association between BMI and any other clinical

variables, including type of medication (typical vs. atypical
(F(1,733)= 0.47, p= 0.494)), PANSS negative (F(1,917)= 0.01,
p= 0.954), positive (F(1,916)= 0.01, p= 0.933), or total (F
(1,919)= 0.53, p= 0.463) scores or with SAPS (F(1,458)= 0.19,
p= 0.662) or SANS (F(1,772)= 0.15, p= 0.701) scores.

Common effects of BMI and psychiatric illnesses
The rank ordered partial effects of BMI across regions in
our sample significantly correlated with the rank ordered
effects of BMI across regions as reported by Opel et al. [30]
in cortical thickness (ρ= 0.419, p= 0.014) and subcortical
volume (ρ= 0.905, p= 0.005). Also, the partial effect of
BMI across regions significantly correlated with patterns of
brain changes in MDD; [31] for cortical thickness (ρ= 0.369,
p= 0.033), but not for subcortical volume (ρ=−0.429, p=
0.098).
In contrast, the partial effect of BMI across regions in the

present study did not significantly correlate with previously
reported group differences in those with BD relative to healthy
controls [4, 29] for cortical thickness (ρ= 0.146, p= 0.410) or
subcortical volume (ρ=−0.310, p= 0.462) or in those with
schizophrenia relative to healthy controls either in cortical
thickness (ρ= 0.056, p= 0.755) or subcortical volume (ρ=
−0.515, p= 0.299) [3, 4].

Table 1. Demographic, diagnostic and treatment characteristics of sample.

Controls Cases Difference

N 1761 1260

Age, mean (SD) 32.99 (12.05) 32.12 (11.74) Z= 3.73, p < 0.001a

BMI, mean (SD) 24.99 (4.97) 25.16 (5.62) Z= 3.39, p < 0.001a

Normal weight, N (%) 1030 (58.49%) 716 (56.82%) χ2= 8.88, p= 0.012

Overweight, N (%) 486 (27.60%) 322 (25.56%)

Obese, N (%) 245 (13.91%) 222 (17.62%)

Sex, N (%) female 885 (50.26%) 437 (34.68%) χ2= 71.75, p < 0.001

Treatment at time of scanning, N (%)

Unmedicated – 98 (8.49%) –

Atypical antipsychotics – 722 (62.51%) –

Typical antipsychotics – 259 (22.42%) –

Atypical and typical antipsychotics – 76 (6.58%) –

Antipsychotic dose, chlorpromazine eq. (mg) mean (SD) – 454.23 (952.51) –

Illness duration years, mean (SD) – 7.01 (11.24) –

PANSS (Positive), mean (SD) – 14.39 (32.98) –

PANSS (Negative), mean (SD) – 16 (33.15) –

PANSS (Total), mean (SD) – 57.58 (37.76) –

SAPS, mean (SD) – 20.91 (15.61) –

SANS, mean (SD) – 15.26 (13.1) –

aModel coefficients obtained from model controlling for a random effect of site. PANSS Positive and Negative Syndrome Scale, SAPS Scale for the Assessment of
Positive Symptoms, SANS Scale for the Assessment of Negative Symptoms
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DISCUSSION
In this study, BMI was additively associated with structure of many
of the same brain regions as schizophrenia, but the cortical and
subcortical alterations in schizophrenia were more widespread
and pronounced. Both BMI and schizophrenia were primarily
associated with changes in cortical thickness, with fewer correlates
in surface area. Whereas across all significant regions, BMI was
negatively associated with cortical thickness, the significant
associations between BMI and surface area or subcortical volumes
were positive. The statistical effect of BMI on brain structure was
linear in all regions, thus it would be most pronounced in people
with obesity, but also manifest in overweight individuals. Lastly,
the brain correlates of obesity were replicated against a previous
large study [30] and closely resembled neurostructural changes in
MDD [31].
The main focus of this study was to investigate how patterns of

BMI related brain alterations overlapped with brain changes in

schizophrenia. BMI was additively associated with lower cortical
thickness in regions which were also thinner in schizophrenia. These
included anterior cingulate, temporal pole, and key parts of frontal
lobe, that is areas which are considered integral to neuroanatomy of
major psychiatric disorders. This is in keeping with previous studies
which also demonstrated additive effects of obesity and psychiatric
disorders on brain structure [20, 23, 25, 26, 32]. We would expect
changes in the regions associated with both conditions to be
inflated in studies which did not control for BMI. Consequently,
brain alterations in schizophrenia in some of these key regions may
be lower than we anticipated. In addition, we would expect these
regions to show greater heterogeneity, as they are in part related to
the varying presence of obesity. Indeed, some of the regions
associated with both BMI and schizophrenia were also the same
regions, which showed increased variability in schizophrenia, i.e.,
putamen and thalamus [5]. Finally, clinicians could expect that
individuals with schizophrenia and obesity will show more

Fig. 1 Associations between BMI or diagnosis and brain structure. Standardized coefficients (β) and 95% CI of BMI and diagnosis factor
effects on the thickness and surface area of cortical regions, and volume of subcortical regions. Filled markers indicate significant effects
(α= 0.05).
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pronounced brain alterations than people with only one of these
conditions. This could be of clinical relevance as more pronounced
brain alterations in the above described regions are associated with
worse clinical outcomes [21, 22].
Only BMI, but not schizophrenia was associated with thinner

entorhinal cortex. Thus, it is possible that findings of thinner
entorhinal cortex in schizophrenia from previous studies [33, 34]
were related to the uncontrolled presence of obesity. In contrast,
schizophrenia was uniquely associated with 23 regions that did
not show associations with BMI, see Fig. 1. Thus, previously
reported associations between schizophrenia and thinner cortex
in these regions should be robust and not confounded by obesity.
Importantly, this large study showed no interaction between
diagnosis of schizophrenia and BMI in their relationship to brain
structure. This is in keeping with other large studies in BD [35] or
major depressive disorders [30, 36].
Interestingly, both schizophrenia and BMI were primarily

associated with cortical thickness, rather than surface area. Indeed
previous large studies also found no [37] or less pronounced/
inconsistent [3, 30] associations between obesity or schizophrenia
and surface area. Also, these findings fit with studies suggesting that
cortical thickness is the more plastic of the two indices and one
which is usually associated with external factors [29]. This may also
suggest that the observed cortical changes are a consequence of
obesity or schizophrenia, rather than representing genetic risk for
these conditions. There is a range of mechanisms through which
obesity could affect brain structure, including effects of adipokines,
oxidative stress, systemic inflammation, insulin resistance/diabetes,
hypertension or dyslipidemia [16, 38–43].
We found positive associations between BMI and subcortical

volumes, especially in the thalamus, amygdala and putamen. This
is consistent with a number of previous studies for amygdala
[18, 30, 32, 38, 44, 45], thalamus and putamen [30, 46–50].
Interestingly several studies found the opposite, i.e., associations
between obesity and a smaller thalamus or putamen [17, 51],
including data from the UK Biobank [18, 44, 52]. These studies
typically included older individuals – the average age in our study
was 32 years, whereas it was 49 [17], 62 [18] and 77 [51] years in
the other studies. It is possible that whereas later in life, the
smaller subcortical volumes represent consequences of obesity
and related cardiovascular or metabolic issues [51], earlier in life,
the larger volumes may represent predispositions for obesity
[32, 53]. Indeed, putamen is a part of the brain’s dopaminergic
reward system that influences a wide range of motivated
behaviors including eating [54], while the amygdala is involved
in cue triggered learning and Pavlovian conditioning to hedonic
food [55] and in appetitive behavior [56, 57]. Obese individuals

show altered neural response towards food-stimuli in regions
including amygdala and striatum [58] and this response correlated
with BMI [59, 60]. Therefore, the larger volumes of these regions in
people with higher BMI may represent risk factors for obesity.
One intriguing question pertains to the role obesity plays in the

effects of antipsychotics on brain structure [20, 61]. In our study,
BMI remained significantly associated with lower thickness of
cortical regions even when we controlled for antipsychotic dose,
while the dose of antipsychotics was not significantly associated
with brain structure. As the vast majority of individuals were on
antipsychotic medications, we could not compare medication
naïve or even unmedicated versus medicated individuals. There-
fore, we cannot adequately test whether there is an association
between antipsychotics and brain structure even when controlling
for obesity. However, in our study, the statistical effect of obesity
was stronger than that of antipsychotic dose at the time of
scanning.
These findings could help explain the marked overlap among

major psychiatric disorders in brain imaging alterations [62, 63].
Perhaps this overlap is related to the high rates of obesity, which are
present across these disorders. Furthermore, one could expect that
the effects of obesity will become relatively more prominent when
the effects of the psychiatric illness are relatively smaller. In other
words, the impact of obesity on brain changes will be largest in a
condition with fewest brain alteration and smallest in conditions
which themselves present with pronounced brain changes. In the
present study, the patterns of obesity-related alterations resembled
brain changes in MDD, which tend to be relatively small and
circumscribed, but not those found in BD or schizophrenia, which
are usually much more pronounced and diffuse. We could expect
that unlike in schizophrenia, controlling for obesity could markedly
modify the brain alterations seemingly associated with MDD.
With 3021 individuals, this is the largest study investigating

associations between schizophrenia, BMI and brain structure, and
one of only 2 such studies [25, 26]. We benefited from the significant
methodological refinements and harmonization in the ENIGMA
study and from access to a highly generalizable, multi-site sample of
individuals with schizophrenia from around the world, thus
representing a broad spectrum of individuals with this disorder.
Our findings replicate many of the previous findings, which were
separately reported in schizophrenia or obesity, but for the first time
analyzed these statistical effects jointly. The large sample size
allowed us to investigate interactions among variables, which could
not be conclusively studied in smaller, less powered studies.
The cross-sectional nature of our study does not allow us to

discern the direction of the association, as brain alterations may
predate or result from obesity. While we did not have access to

Table 2. Partial effects (partial r) of BMI and antipsychotic dose on cortical thickness and subcortical volume, where significant for either (α= 0.05).

BMI Antipsychotic dose

Region n r p r p

Thickness Banks STS 701 −0.114 0.011 −0.082 0.234

Caudal middle frontal 731 −0.112 0.011 −0.046 0.341

Inferior parietal 728 −0.098 0.026 −0.047 0.341

Lateral occipital 733 −0.124 0.011 −0.039 0.425

Paracentral 732 −0.110 0.011 −0.085 0.234

Precentral 692 −0.123 0.011 −0.094 0.234

Precuneus 731 −0.112 0.011 −0.078 0.234

Rostral anterior cingulate 728 −0.121 0.011 −0.046 0.341

Superior frontal 733 −0.098 0.026 −0.056 0.289

Superior parietal 730 −0.116 0.011 −0.058 0.270

Transverse temporal 738 −0.122 0.011 −0.064 0.259

Volume Amygdala 732 0.116 0.015 −0.008 0.834
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other anthropometric or metabolic markers, BMI is the most
frequently used measure in similar studies [18, 19, 30, 36, 44] and
thus the use of BMI allowed for a more direct comparison with
previous results. Dose of medication at the time of testing is a
relatively noisy measure, which does not capture the duration of
treatment, cumulative exposure, or compliance. Moreover, as our
study was not randomized, analyses pertaining to medications
could be confounded by individual variability. Cross-diagnostic
comparisons would be better addressed by a separate set of
analyses in truly cross diagnostic samples, which will be the focus
of future ENIGMA studies, pending harmonization of samples.

CONCLUSIONS
To conclude, we confirmed widespread associations between BMI
and brain structure. Almost all of the brain regions, which were
associated with BMI were also associated with schizophrenia.
Therefore, individuals with both obesity and schizophrenia will
likely show more pronounced brain alterations than people with
only one of these conditions. The regional statistical effects of
obesity were most widespread in cortical thickness, with fewer
correlates in subcortical volumes or surface area. The BMI related
brain alterations closely matched brain changes reported in previous
studies of obesity. Interestingly, they also resembled brain altera-
tions previously reported in MDD, but not BD or schizophrenia,
suggesting that the impact of obesity may be more pronounced in
conditions which themselves present with relatively smaller or more
localized changes or are more heterogeneous. In keeping with this,
less than half of the regions which were associated with
schizophrenia in this study, were also associated with BMI. Obesity
appears to be a relevant factor which could account for hetero-
geneity of brain imaging findings and for differences in brain
imaging related psychiatric outcomes among people with schizo-
phrenia, but also other psychiatric disorders. Future studies
should investigate whether obesity is a modifiable risk factor for
brain alterations in schizophrenia or other psychiatric disorders and
whether obesitogenic effects of antipsychotic medications con-
tribute to their associations with brain structure.
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