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Abstract 

Human adults share the ability to approximate large quantities 
without counting with newborn infants and non-human species. 
This ability is supported by the Approximate Number System 
(ANS) - a primitive and domain-specific cognitive system that 
supports noisy numerical decisions. How does the ANS support 
active exploratory decisions? Using a numerical comparison 
task, we found that the amount of active information seeking 
does not simply increase as the decision becomes more difficult. 
Instead, there seems to be an inverted U-shaped relationship 
between trial difficulty and how much one chooses to seek 
information. Additionally, this effect is not modulated by 
participants’ performance, suggesting that participants’ 
exploratory decisions based on ANS representations are driven 
by the utility of information seeking actions. 

 

 Keywords: Information Seeking; Active Learning; 
Approximate Number System; Decision Making 

 

Introduction 
How the mind processes sensory data and interprets the 

physical world is the hallmark question in cognitive science. 
However, the data we receive from the physical world is not 
readily interpretable. Rather than passively absorb all the 
information that is available, humans and animals actively 
explore and selectively attend to aspects of the world 
(Gottlieb, Oudeyer, Lopes, & Baranes, 2013). This kind of 
active exploration and selective attention is essential to 
effective learning and proper cognitive functioning. What 
determines when we want to explore and to what we choose 
to attend? 

It has been widely demonstrated that observers, humans 
and animals alike, are drawn to novel and surprising events, 
which is often explained by a motivation to decrease errors 
in prediction (Loewenstein, 1994; Schultz & Dickinson, 
2000). According to Loewenstein, an observer’s desire to 
learn about a specific topic is driven by a discrepancy 
between the observer’s existing knowledge and what they 
would like to know. Consistent with this account, infants as 
young as 10 months old can form expectations about object 
behavior, and explore more when these expectations are 
violated (Stahl & Feigenson, 2015). Relatedly, school-age 
and preschool children prefer to play with toys whose 
functionality are ambiguous or unexpected (Bonawitz, van 
Schijndel, Friel, & Schulz, 2012; Schulz & Bonawitz, 
2007). This kind of prediction errors cannot only be 

mathematically defined, but has also been decoded from 
neuronal activities (Bromberg-Martin & Hikosaka, 2011).  

In addition to novelty and surprise, humans and animals 
are also drawn to more complex stimuli or more difficult 
situations (Berlyne, 1966). For example, when confined in a 
minimally-stimulated space, adults prefer to produce light 
patterns that are the most diverse and unpredictable (Jones, 
Wilkinson, Braden, 1961). In another experiment, when 
probed about their curiosity about facts related to different 
animal species, adult participants were more curious about 
facts that they knew less about (Berlyne, 1954). These 
phenomena, that exploration is driven by novelty, surprise, 
and complexity, are consistent with the information 
processing account that defines information gain by 
uncertainty (Berlyne, 1960). 

However, this tendency to be drawn to situations with 
maximum uncertainty (and to reduce it through learning 
actions) seems counterproductive in many cases. In 
particular, when the gap between one’s current epistemic 
state and the information provided by the environment is too 
big, actions of learning and exploration can yield little 
benefit. For example, no matter how much effort a reader 
puts into staring at some foreign words without knowing the 
language or having access to a dictionary, the reader would 
still have no clue what the words mean.  

Instead of linearly increasing exploratory actions as 
uncertainty increases, numerous studies have demonstrated 
a trade-off between the cost and benefit of information 
seeking actions (Coenen, Nelson, & Gureckis, 2018). When 
reading and rating contentful questions, such as “what 
instrument was invented to sound like human singing,” 
adult participants’ rated level of curiosity was the highest 
for questions that they had intermediate levels of 
confidence, and their level of curiosity was the lowest for 
questions in which they either had extremely low 
confidence or extremely high confidence (Kang et al., 
2009). In a different exploratory situation, where each task 
option was initially hidden from participants, participants’ 
exploratory decisions also followed a similar U-shaped 
pattern - they explored the most when the task was 
moderately difficulty, and explored less when the task was 
either too easy or too hard (Baranes, Oudeyer, & Gottlieb, 
2014).   

Consistent with these results, the field of developmental 
robotics suggests that exploration is based on dynamic 
changes in the rate of learning (Gottlieb, Oudeyer, Lopes, & 
Baranes, 2013; Oudeyer, Kaplan, & Hafner, 2007). Robots 
with this rate-based learning system can efficiently learn 
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skills in high dimensions without being distracted by 
activities that are either well learnt or unlearnable (Baranes 
& Oudeyer, 2013; Pape et al., 2012). Exploration increases 
as the rate of information increases. In cases when there is 
very low certainty (or high uncertainty), any particular 
action may produce new information, but if the problem 
space is complex enough, then additional information may 
not produce significant shifts in belief weights -- thus highly 
complex environments may not produce information that 
supports learning rates. Instead, learning rate may be highest 
in the Goldilock’s spot (Kidd, Piantadosi, & Aslin, 2012), in 
which any particular action produces information to support 
a steeper learning rate. This predicts that, rather than a direct 
linear relationship, exploration should be lowest at both 
extremely low and extremely high levels of uncertainty, and 
exploration should be the highest at an intermediate levels, 
where information has the highest rate of return.  

Results from infants’ preference for object complexity are 
consistent with this account. Seven- and 8-month-old 
infants’ probability of looking at an event was the lowest 
when looking at either highly predictable or highly 
surprising content (Kidd, Piantadosi, & Aslin, 2012; 2014; 
Piantadosi, Kidd, & Aslin,  2014; see also Pelz & Kidd, in 
prep). These results suggest that infants are able to direct 
their attention to maintain an intermediate rate of 
information absorption. It is possible that this kind of 
attentional mechanism is in place to prevent infants, who 
arguably have the most to learn and the least resources, from 
wasting cognitive resources on either overly predictable or 
overly unpredictable information.  

One open question is whether adults reveal such trade-
offs in active exploratory decision making situations.  It is 
possible that this kind of balance between cognitive 
resource and exploration is unique to childhood. Another 
open question is whether such trade-offs are unique to novel 
learning environments or tasks that require higher-level 
conceptual reasoning, such as deciding what questions to 
ask or which route to take in a novel environment. When 
performing familiar activities using acquired skills, one may 
not need to adjust exploration based on uncertainty. 
Alternatively, the expected information gain from 
exploratory actions may explain information seeking 
behavior beyond these contexts.  

To address these questions, the current study uses adults’ 
exploratory decisions using a primitive cognitive system as 
a case study to test the relationship between problem 
difficulty and adults’ exploratory decisions. Upon seeing 20 
dots and 10 dots, without counting, we can immediately tell 
which array has more dots. This ability to automatically and 
effortlessly discriminate large numerosities is supported by 
the Approximate Number System (ANS;  Dehaene, 1997), 
which produces noisy and ratio-dependent representations in 

human adults (Halberda, Ly, Wilmer, Naiman, & Germine, 
2012), newborn infants (Izard, Sann, Spelke, & Streri, 
2009), as well as non-human species (Cantlon, Platt, & 
Brannon, 2009; Dehaene, Dehaene-Lambertz, & Cohen, 
1998). With ANS representations, discriminating 20 dots 
from 10 is just as easy as discriminating 40 from 20 (a ratio 
of 2), but both are easier than discriminating 15 from 10 (a 
ratio of 1.5). The discriminability of numerosities is 
determined by the numerical ratio, instead of set size, non-
numerical dimensions (such as size of individual dots). In 
other words, the Approximate Number System strictly 
obeys Weber’s Law (Dehaene, 2003). This well-established 
law allows us clean control over the difficulty and 
uncertainty of the trials - the less discriminable the trials 
(the closer the ratio), the more uncertainty. Additionally, 
infants and adults are able to maintain multiple numerical 
representations at once (Feigenson, 2008; Zosh, Halberda, 
& Feigenson, 2011).  

This intuitive and automatic cognitive system provides a 
case study for testing the scope of the expected information 
gain account - whether adults’ decision making using the 
intuitive and automatic numerical representations also 
demonstrate a cost and benefit trade-off of information 
seeking actions. It has been recently suggested that adults 
and children are sensitive to their internal confidence in 
numerical decisions (Baer, Gill, & Odic, 2018; Halberda & 
Odic, 2015), and numerical precision can be influenced by 
the order of trial difficulty (Odic, Hock, & Halberda, 2014; 
Wang, Libertus, & Feigenson, 2018; Wang, Odic, Halberda, 
& Feigenson, 2016). It is possible that this sensitivity to 
internal confidence or uncertainty drives adults’ exploratory 
decisions in a way that balances the cost and benefit of 
information seeking actions. On the other hand, 
neuroimaging studies revealed that the encoding of ANS 
signals are extremely rapid - as fast as 180ms in the bilateral 
occipital-parietal sites (Hyde & Spelke, 2009; Park, 
DeWind, Wordoff, & Brannon, 2015). It is possible that this 
automatic encoding of numerical information leaves little 
room for improvement from exploratory actions, and hence 
adults may show no cost-benefit tradeoff in their 
exploratory decisions in a numerical task. 

 To test this, we designed a nonverbal numerical 
comparison task with four alternative forced choices. This 
design ensures that the numerical representations can be 
maintained in adults’ working memory (i.e., about four 
items; Epelboim & Suppes, 2001; Luck & Vogel, 1997). On 
the other hand, a four-alternative-forced-choice paradigm 
lowers the chance level to 25%, which increases the 
performance gap between random guessing and effortful 
performance by 25% compared to two-alternative-forced 
choice tasks (which has a 50% chance level), potentially 
providing more utility for information seeking actions. 
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Figure 1: Schematic of the experimental procedure. 
 
 
To further reduce random guessing, we also offered 

participants a small reward bonus depending on their 
performance. Participants can choose to see any one of 
four large arrays of dots, each for only 200ms which is 
too brief a window to count the dots. The key difference 
from traditional numerical comparison tasks is that 
participants are given the option to re-explore each array 
as many times as they would like before deciding the 
largest array.  Participants then decide when they are 
ready to choose the array with the largest numerosity. 
Numerical comparison tasks allow us to systematically 
quantify and vary uncertainty and the difficulty of the task 
by changing the ratio between the numerosities.  

If exploration is driven by the utility of information 
seeking actions, we would expect to see an inverted U-
shaped relation between trial difficulty and the amount of 
exploratory actions. Alternatively, if exploration is driven 
by performance or error rate, then we should expect 
participants to explore most in trials in which the 
difficulty of the trials is the highest. Such an account 
would reveal information seeking to be linearly related to 
trial difficulty. Finally, if adults are not sensitive to the 
uncertainty of the trials, then exploration should not vary 
with the complexity of the trials. 

 

Method 
Participants Forty-two adults were recruited online 
through Amazon Mechanical Turk. 

 
Stimuli Stimuli consisted of series of arrays containing 
collections of blue, red, yellow, and cyan dots on a grey 
background. During all the trials, three of the four arrays 
always contained the same number of dots (in different 
layout and configuration), and the fourth array differed 
from the remaining three with variable ratios. Difficulty 
was manipulated by changing the ratio between the 
largest number and the remaining number. Ratios varied 
between 1 (i.e., all four arrays were the same; the correct 
answer was pre-determined and randomly generated) and 
2 (i.e., the larger number was twofold the smaller 
number), with at least 6 trials of each ratio. There were a 
total of 128 trials a participant could possibly complete.  

 
Procedure After reading the instructions, each participant 
received an untimed practice session with eight practice 
trials. Participants then completed a timed test session 
where they had five minutes to complete as many trials 
correctly as possible. Participants were compensated 
based on how many trials they answered correctly during 
the test trials. Each trial started with four empty boxes 
outlined with distinct colors and paired with a reminding 
message about which key to press to “flip” the box and 
reveal the dots.  

200ms

200ms

… …

Flipping phase

200ms

200ms

Decision phase

Correct!

press spacebar
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Figure 2: Average accuracy as a function of ratio (larger/ smaller). Error bars represent confidence interval of the mean.  
 

After each keypress, dots appear for 200ms in the chosen 
box. For example, pressing the “R” key showed blue dots 
in the blue box, and pressing “U” showed red dots in the 
red box (Figure 1). During the flipping phase, the 
participant could press the spacebar to indicate that they 
were ready to move onto the decision phase at any point. 
Once the participant had moved to the decision phase, 
they were prompted to press a key to indicate which box 
contained the most dots. Feedback was provided after 
each trial. Participants on average completed 37.67 test 
trials (SD = 21.80).   

Results 
We first examined participants’ accuracy in the 

decision phase. On average, participants performed 
correctly 62% of the time, well above chance (25%; 
binomial exact test p< .001).  

We then averaged each participants’ performance for 
each ratio to analyze the effect of ratio on accuracy. If 
participants used the ANS to solve the task, their 
performance should show the ratio-dependent signature of 

the ANS. Alternatively, it is possible that participants 
were able to count or maintain more precise 
representation of the numerical arrays after seeing them 
multiple times. As shown in Figure 2, participants’ 
accuracy increases significantly as the ratio becomes 
easier. A log-linear regression model predicting accuracy 
using ratio explains over 72% of the variance, beta 
= .86,  t = 6.54, p < .001, suggesting that participants 
primarily relied on ANS representations in the current 
numerical comparison task, even when they could receive 
additional information about the numerical stimuli. 
Consistent with previous research on adults’ ANS 
precision, participants’ accuracy on the task plateaued at 
about 1.5 ratio (Halberda & Feigenson, 2008).  

The central question of the current study is how the 
difficulty of numerical decisions impacts people’s 
information seeking. To test this, we examined the 
relationship between ratio and the number of boxes 
participants flipped before the decision phase.  

.
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Figure 3: Average number of boxes flipped before decision as a function of ratio (larger/ smaller). Error bars represent 
confidence interval of the mean.  
 

 
Figure 4: Average number of boxes flipped before decision as a function of accuracy. Error bars represent confidence 

interval of the mean.  
 
 

 
 
As shown in Figure 3, overall, participants sought more 

additional information when the trials were more difficult. 
However, instead of a simple linear increase in number of 
flips as the ratio decreases, there is an inverted U-shaped 
relationship between ratio and flips when the ratio was 
between 1 and 1.25. Indeed, it is precisely in this range 
that participants steeply shift from near chance 
performance to near ceiling performance. This supports 

the claim that exploration is driven by expected 
information gain.  

To test for a quadratic trend of ratio on number of flips, 
or an inverted U-shaped relationship between exploration 
and numerical ratio, we ran a model using both linear and 
quadratic ratio terms. This revealed a significant effect for 
both ratio (beta = -1.08, t = -3.49, p < .001) and ratio-
squared (beta = .91,  t = 2.91, p = .004). However, we 
found no relationship between average accuracy and the 
number of boxes flipped before decision (Figure 4). This 
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suggests that, rather than perceived performance or 
general motivation, participants’ expected information 
gain drives their information seeking. 

Conclusions 
The current study investigated the relationship between 

the difficulty of numerical decisions and exploratory 
decisions. We found that adults’ active search for 
additional information was the highest for trials with 
intermediate difficulty, and the lowest when the trials 
were either too easy or impossibly hard. Moreover, 
exploration has no clear relationship with numerical 
performance. These results suggest that numerical 
difficulty drives adults’ exploratory decisions, showing a 
trade-off between cost of exploratory action and expected 
benefit from exploration.  

Previous research has shown that infants seem to prefer 
an intermediate flow of information when exploring the 
environment (Kidd et al., 2012), and adults in novel or 
complex exploratory tasks explore the most when the task 
is at intermediate level of uncertainty (Kang et al., 2009; 
Baranes et al., 2014). These results have been taken to 
suggest that in learning and exploration, the observer have 
a tendency to optimize the cost of action and the gained 
information (Coenen et al., 2018). The current results 
extends this literature by suggesting that adults remain 
motivated to show such trade-off in their exploratory 
decisions even when using the primitive Approximate 
Number representations that have been active since 
infancy. 

These results are consistent with both the idea that 
adults can balance the cost and benefit of exploratory 
actions, and that the rate of information gain drives 
exploratory behavior adults’ numerical decision making. 
One possibility is that adults were making immediate 
decisions about whether to explore more solely based on 
the difficulty of each trial. Alternatively, it is possible that 
adults were dynamically adapting their exploratory 
decisions based on observed performance change, or their 
observed rate of learning, from previous explorations. 
Future research exploring the benefit of the exploratory 
actions, such as performance change with and without 
exploration, will help clarify the mechanisms by which 
adults make their exploratory decisions. 

Where does this ability to dynamically adapt 
exploration to our own uncertainty come from? The 
similar U-shaped pattern in infants’ attention suggests that 
infants are able to respond to probabilistic uncertainty in 
the environment (e.g. Kidd et al., 2012). However, it is 
possible that the ability to monitor the uncertainty in 
one’s cognitive representations, such as numerical 
precision, may require more advanced metacognitive 
skills. Alternatively, infants may already come equipped 
with implicit representations of their uncertainty in 
numerical decisions. Recent work suggests that infants as 
young as 6 months old perform differently in a numerical 
change detection task as as the order of trial difficulty 

changes (Wang, Libertus, & Feigenson, 2018). It remains 
to be tested whether infants can adapt their exploratory 
behavior when using Approximate Number 
representations, and whether their exploration has the 
same kind of relationship with trial difficulty. 

Another important question raised by the current study 
is whether active information seeking boosts numerical 
precision. In general, we found no relationship between 
overall accuracy and information seeking. It is possible 
that seeing the dot arrays more does not actually 
significantly impact people’s accuracy at making 
numerical decisions. On the other hand, it remains 
possible that more complex interactions exist between 
information seeking and numerical precision. Future work 
examining the difference between people’s numerical 
accuracy with and without information seeking will help 
test these possibilities. 
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