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Regression Approaches for Microarray Data Analysis

Mark R. Segal,1 Kam D. Dahlquist,2 and Bruce R. Conklin2

1 Department of Epidemiology and Biostatistics,

University of California, San Francisco, CA 94143-0560

2 Gladstone Institute of Cardiovascular Disease and Cardiovascular Research Institute, UCSF

Abstract

A variety of new procedures have been devised to handle the two sample comparison (e.g., tumor

versus normal tissue) of gene expression values as measured with microarrays. Such new methods

are required in part because of some defining characteristics of microarray-based studies: (i) the very

large number of genes contributing expression measures which far exceeds the number of samples

(observations) available, and (ii) the fact that by virtue of pathway/network relationships, the gene

expression measures tend to be highly correlated. These concerns are exacerbated in the regression

setting, where the objective is to relate gene expression, simultaneously for multiple genes, to some

external outcome or phenotype. Correspondingly, several methods have been recently proposed for

addressing these issues. We briefly critique some of these methods prior to a detailed evaluation of

gene harvesting. This reveals that gene harvesting, without additional constraints, can yield artifac-

tual solutions. Results obtained employing such constraints motivate the use of regularized regression

procedures such as the lasso, least angle regression, and support vector machines. Model selection

and solution multiplicity issues are also discussed. The methods are evaluated using a microarray-

based study of cardiomyopathy in transgenic mice.

Key words: cardiomyopathy, covariance inflation criterion, gene harvesting, lasso, least angle regres-

sion, microarray, model selection, support vector machine.



1 Introduction

Much has been written on the potential use of DNA microarrays in studying the relationship between

phenotype and gene expression profiles on a whole-genome scale. Early attention was focussed on

categoric phenotypes; for example differing cancer classes (Golubet al., 1999) for which classifica-

tion / discrimination methods were employed (Dudoitet al., 2002). More recently, however, there

has been investigation of continuous (Li and Hong, 2001) or survival (Hastieet al., 2001a) pheno-

types for which a regression framework is appropriate. The need to develop regression approaches

for the microarray setting derives principally from the “largep, smalln” problem (Westet al., 2001)

whereby the number (p) of available and potentially interesting predictors (which we will loosely

refer to as genes but are actually individual probe sets on the array that target full-length cDNAs

or ESTs) vastly exceeds the number (n) of samples. An additional consideration is that, by virtue

of pathway and gene network relationships, there will likely be strong and complex correlations

between expression levels of various genes across samples.

We start by giving a very brief overview of some recent proposals for tackling these issues, highlight-

ing shortcomings. Subsequently, we describe the dataset that will be used throughout to illustrate

methods. This features microarray-based measures of gene expression and an attendant outcome

used in a study of dilated cardiomyopathy in transgenic mice (Redfernet al., 2000). We then pro-

ceed, in Section 2, to a detailed evaluation of a promising new technique, gene harvesting. Again,

some deficiencies are identified and improvements examined. These serve to motivate the use of

the lasso (Tibshirani, 1996), least angle regression (Efronet al., 2002), and support vector machines

(Brown et al., 2000), described in Section 3, as alternate regression tools for microarray studies. All

these methods have “tuning parameters”, the determination of which is crucial for model fit and in-

terpretation. Such model selection issues are addressed in Section 4. Section 5 provides concluding

discussion.
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1.1 Some Microarray Regression Approaches

As mentioned, the challenges of pursuing regression analyses with microarray data have spawned

several new methodologic approaches. Here we provide a brief overview of a selection of these.

We note that separate consideration of continuous phenotypes and associated regression procedures

is warranted even though some of the classification methods already employed for categoric (espe-

cially binary) phenotypes are generalizations of these procedures. There are important differences in

how the bias-variance tradeoff operates for classification problems using 0-1 loss as compared with

regression problems using squared error loss; see Hastieet al. (2001b). Nonetheless, some concerns

(e.g., the cost of selection/adaptive procedures) will be common irrespective of loss as noted below.

Westet al. (2001) develop a Bayesian regression framework customized to phenotype - gene expres-

sion association studies in the microarray context. They argue for allowing all genes to contribute to

regression models, as opposed to applying pre-filtering methods that yield small gene subsets, and

thereby mitigate the “largep, smalln” problem. The cited difficulty with such strategies, as based on

univariate (individual gene) association summaries, is that genes whose expression patterns jointly

relate to phenotype may be eliminated. Accordingly, Westet al. (2001) effect analyses by employing

a singular value decomposition (SVD) of the full matrix of expression measurements and pursuing

regression on the resultant latent factor variables. These latent variables (“supergenes”) provide for

dimension reduction and summarize patterns of covariation among the original genes. Via the SVD it

is possible to map the standard linear regression formulation on the original genes to an equivalent re-

gression on the latent factors. While the approach emphasizes careful, informative prior specification

with attendant development of new classes of structured priors, there are some drawbacks to SVD

based regression that cannot be overcome by the Bayesian framework. These result from the fact that

the latent factors are derived independently of the outcome or phenotype. So, in settings such as the

study described below, where there are several different phenotypes associated with the disease, the

same latent factors would be employed for each. Further, as with principal component regression,

variation explained by the leading latent factors may not correlate with phenotypic variation (Hastie

et al., 2001b).
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Li and Hong (2001) take a different approach to dimension reduction. In pursuing microarray re-

gression they employ a Rasch model but with preliminary gene clustering. Since the clustering is

performed independent of phenotype the same concerns as above pertain: the same clusters will be

used irrespective of phenotype and within cluster variation may not correlate with phenotypic varia-

tion. Furthermore, results will be sensitive to the clustering algorithm and distance measure used, as

we subsequently illustrate for the related gene harvesting procedure.

Zhanget al. (2001) use tree-structured (or recursive partitioning) techniques with gene expression

data from a colon cancer study. While the application is classification (tumor vs normal tissue) rather

than regression, important issues regarding degrees of freedom or effective numbers of parameters

emerge that deserve further attention. Tree methods are highly adaptive and greedy: for each node

of the tree the best cut-point (expression level) of the best covariate (gene) is determined so as to

optimize homogeneity of the resultant daughter nodes. In order to allay attendant concerns with

overfitting, Breimanet al. (1984) employ cross-validation (CV) to pick appropriate tree size. Indeed,

CV is used for this purpose in a multitude of settings. However, on account of the largep (6500

reduced by filtering out low expression genes to 2000), smalln (62) setting, Zhanget al. (2001) use

a very limited form of cross validation. Here the tree topology is fixed – the number and identity of

genes and the sequence in which they are used is locked – and all that is subject to cross-validation is

the expression level cut-point for a given gene. A point of reference is provided by the “generalized

degrees of freedom” (gdf) construct of Ye (1998) which accounts for adaptivity. For regression tree

procedures, Ye finds that the cost of a single split inp = 10 dimensional noise is� 15 degrees of

freedom. With the covariate dimensions encountered in microarray studies it becomes evident that

very few, if any, splits will withstand cross-validation. Indeed, this is the case for the colon data

where, even for the reduced gene set (p = 2000), CV supports only one split. We expand on these

concerns below, utilizing a straightforward way to compute effective numbers of parameters analo-

gous to gdf (Section 2), as well as commenting on properties of cross-validation in the microarray

setting (Section 4).

In view of these limitations with the above methods we chose to further explore the new and promis-

ing gene harvesting technique, described in Section 2.
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1.2 Cardiomyopathy Data

The microarray data are from a transgenic mouse model of dilated cardiomyopathy (Redfernet al.,

2000). The mice overexpress a G protein-coupled receptor, designated Ro1, that is a mutated form

of the human kappa opioid receptor and that signals through the Gi pathway. Expression of Ro1 is

controlled temporally and spatially through the use of an inducible expression system (Redfernet

al., 1999). When the receptor is overexpressed in the hearts of adult mice, the mice develop a lethal

dilated cardiomyopathy that has many hallmarks of the human disease such as chamber dilation, left

ventricular conduction delay, systolic dysfunction, and fibrosis. When expression of the receptor is

turned off, the mice recover. The cardiomyopathy is due to hyperactive signaling of the receptor

because treatment of the mice with a receptor antagonist or with pertussis toxin (which blocks Gi

signaling) reverses certain phenotypes associated with the disease. To determine which changes in

gene expression were due to the hyperactive signaling of Ro1 and led to cardiomyopathy in these

mice, Affymetrix Mu6500 arrays were used. Labeled cRNA was isolated from the ventricles of

thirty mice and hybridized one heart per set of arrays as described in Redfernet al. (2000). The

thirty mice were divided into four groups. The control group was comprised of eight mice that were

treated exactly the same as the eight weeks experimental group except that they did not have the Ro1

transgene. A group of six transgenic mice expressed Ro1 for two weeks, which is approximately the

amount of time required to reach maximal expression of Ro1 (Redfernet al., 1999). These mice did

not show symptoms of disease. A group of nine transgenic mice expressed Ro1 for eight weeks and

exhibited cardiomyopathy symptoms. The recovery group of seven transgenic mice expressed Ro1

for eight weeks before expression was turned off for four weeks. In subsequent graphics we label

these groups as “C”, “2”, “8”, and “R” respectively.

The Ro1 transgene is based on the human kappa opioid receptor. A probe set that targets the mouse

kappa opioid receptor occurs on the Mu6500 array. This probe set cross-hybridizes to the Ro1 trans-

gene and can be used as a measure of Ro1 expression, although the contribution of endogenous

mouse kappa opioid receptor to the measured expression level cannot be ruled out. To determine

which gene expression changes were due to the expression of the Ro1 transgene, we want to find

genes that correlate (positively or negatively) with the Ro1 expression profile as displayed in Figure

1. Genes that “explain” this expression profile are potential candidates to provide additional markers,
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therapeutic targets, and clues to the mechanism of disease.

***** Figure 1 near here *****

Average difference values for gene expression were obtained using the Affymetrix GeneChip 3.1

software. As discussed in Section 4, there are numerous preprocessing steps and approaches to the

extraction of expression summaries. The results that follow utilize standardized average differences

(mean 0, variance 1) since such standardization is imposed for some of the methods considered

subsequently (lasso, least angle regression).

2 Gene Harvesting

Gene harvesting was developed by Hastieet al. (2001a) to explicitly tackle the challenges posed by

regression in the microrarray context. The central strategy is to initially cluster genes via hierarchical

clustering, and then to consider the average expression profiles from all of the clusters in the resulting

dendrogram as potential (an additionalp�1) covariates for the regression modeling. This modeling

is effected by use of a forward stepwise algorithm with a prescribed number of terms. The number of

terms actually retained is determined by cross-validation; this number constitutes the most important

‘tuning parameter’ of the procedure. Provision is also made for between-gene interactions and non-

linear effects.

The authors’ claim two advantages for this approach. Firstly, because of the familiarity of hierarchi-

cal clustering (e.g., Eisenet al. 1998) inunsupervisedanalyses of microarray expression data, the

usage of clusters as covariates will be convenient for interpretation. Secondly, by using clusters as

covariates, selection of correlated sets of genes is favored, which in turn potentially reduces overfit-

ting. Implicit in this motivation is that regression procedures that yield lists of individual genes are

deficient as there will ‘always be a story’ linking an isolated gene to outcome. Ostensibly, credence

is gained by finding groups of functionally related genes that are linked to outcome. However, as

we demonstrate by way of application to the cardiomyopathy data, not only are these advantages not
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always realized, but harvesting can also give rise to artifactual results. We note that the abovemen-

tioned concerns re use of derived (here cluster average) summaries not capturing outcome variation,

and/or being fixed across differing outcomes, are mitigated by retention of the original genes as

covariates in addition to the derived cluster average covariates.

Before presenting results we give a brief overview of the gene harvesting algorithm. For the car-

diomyopathy study, available data consists of then� p matrix of gene expression valuesX = [xi j ]

wherexi j is the expression level of thejth gene (j = 1; : : : ; p= 6319) for theith mouse (i = 1; : : : ;n=

30). Each mouse also provides an outcome (Ro1) measureyi . A hierarchical clustering algorithm

is applied to the expression matrix and, for each of the resulting clustersck;k = 1; : : : ;2p�1, the

average expression profile ¯xck = (x̄1;ck; x̄2;ck; : : : ; x̄n;ck) wherex̄i;ck = 1=jckj∑ j2ck
xi j is obtained. Note

that we have included the individual genes (the tips/leaves of the dendrogram) as clusters (of size 1)

in this formulation – their average expression profile coinciding with the individual gene profile.

This set of 2p�1 average expression profiles constitutes the covariate set (C ). A forward stepwise

regression is performed as follows. Initially, the only term in the model (M ) is the constant function

1; i.e., an intercept term. At each subsequent stage candidates for inclusion consist of all products

between a term inM and a term inC . The term chosen for inclusion is that which most improves

the fit as measured here by the residual sum of squares (RSS, see below). The process continues

until some prespecified maximum number of terms,m, have been added to the model. The number

of terms retained is subsequently determined by cross-validation. Hastieet al. (2001a) restrict to

second order interaction terms; i.e., product terms are limited to pairwise products. This is partly

motivated by interpretational considerations and borrows from the multivariate additive regression

spline (MARS) methodology of Friedman (1991).

The gene harvesting model for continuous response is then

ŷi = β0 �1+ ∑
k2S1

βkx̄i;ck + ∑
k;k02S2

βk;k0 x̄i;ckx̄i;ck0
: (1)

HereS1 constitutes the set of clusters that enter singly whileS2 is the set of clusters that enter as

product terms. So,m= jS1j+ jS2j. The coefficientsβk;βk;k0 are obtained by minimizing the residual
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sum of squares,

RSS(βk;βk;k0) =
n

∑
i=1

(yi � ŷi)
2: (2)

Alternative loss functions to RSS are used for more general outcome types; for example, partial log-

likelihood is used in conjunction with censored survival time outcomes. Further details on general

outcome types and other aspects and applications of the gene harvesting algorithm are provided by

Hastieet al. (2001a). Connections with the forward selection scheme of Keles¸ et al. (2002) are

indicated in section 4.

***** Table 1 near here *****

Table 1 provides results of applying gene harvesting to the cardiomyopathy data withm= 6. In

Table 1(a) the hierarchical clustering was performed using average linkage (as used by Eisenet al.

(1998) and often termed UPGMA), while in Table 1(b) single linkage was used. In both instances

the distance metric was Euclidean distance. We note that for single linkage, hierarchical clustering is

invariant under monotone changes of the distance metric so that, for example, identical results would

be obtained using correlation distance. While this property does not hold for average linkage, results

using correlation distance were similar.

Immediately striking is the dramatic differences in gene harvesting results according to type of hi-

erarchical clustering employed. This is compounded by further examination of the first, large (687

gene) cluster selected under average linkage. None of the genes contained in this cluster are chosen

under single linkage. Single linkage, tends to select much smaller clusters, primarily singletons. In-

deed, average linkage has arguably been too successful in selecting large clusters – it is problematic

to characterize or infer relationships amongst a group of 687 genes! We note that these results were

obtained without biasing the procedure to select large clusters as is advocated.

However, more consequential problems emerge when we pursue model selection. Figure 2 displays

cross-validated and training residual variances for the average linkage results. Not only do the cross-

validation results indicate that the best harvesting model (solid curve) only includes an intercept term

(i.e., m= 0), but that this is far superior to all other models. Now while it is the case that cross-

validation is highly variable in this setting (as reflected by standard errors which are not shown for
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clarity; see Section 4), this is nonetheless a disturbing result. The face value interpretation is that

none of the original 6319 genes or the 6318 gene clusters ispredictiveof Ro1. This conclusion is at

odds with previous experiments and analysis that shows that the cardiomyopathy phenotype is due

to expression of the Ro1 transgene and that the expression of known markers of cardiomyopathy are

up-regulated in the sick mice (Redfernet al., 2000).

***** Figure 2 near here *****

Figure 2 also displays cross-validated residual variances when the gene harvesting procedure is re-

stricted to just employing the original genes (dotted curve for which corresponding standard errors

are given). Now the results do withstand cross-validation to the extent that one term is retained under

a “one standard error rule”, i.e., the model with one term has minimum residual variance and no com-

peting model has residual variance within one standard error of this minimum value; see Breimanet

al. (1984) for the basis of such rules. More importantly, cross-validated residual variances under the

restricted approach are appreciably smaller than under the full gene harvesting procedure. We next

examine the reasons for this poor performance of gene harvesting.

A putative reason for the poorer performance of full gene harvesting is the expanded search space

used in the forward stepwise selection that results from the addition of the 6318 gene cluster average

profiles as covariates. One way of assessing this is through assessments of model complexity. In

section 1.1 we referred to generalized degrees of freedom (Ye, 1998) that provide one such assess-

ment. Here, we employ a related measure, effective number of parameters (enp, which we will also

refer to as degrees of freedom) as derived from the covariance inflation criterion (CIC) (Tibshirani

and Knight, 1999). Both measures are designed to capture thecostof adaptive (here the forward

stepwise selection) methods. They differ primarily in whether simulation (Ye, 1998) or permutation

(Tibshirani and Knight, 1999) is employed.

These costs are considerable. For the full gene harvesting procedure the effective number of param-

eters for the inclusion of 1 through 5 terms are approximately 14, 18, 22, 25 and 27 respectively. It

is immediate that, for a sample size ofn= 30, at most one or two terms is reasonable. Interestingly,

similarenpvalues are obtained when we restrict to just using single rather than product terms, or just
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using individual genes rather than genes and clusters. These findings can be understood in light of

Figure 3 which concentrates onenpfor selecting just one term. What is varied is the number of genes

used in the harvesting approach. Filtering of genes was done in two ways, both blind to association

with Ro1 outcome: genes were retained at random or genes were retained in order of their variation

– the smaller gene sets contain the most variable genes. Here, results were invariant to retention

scheme since we are applying harvesting with standardized expression values. What is notable from

Figure 3 is the slow rate of change inenp for large changes in proportion of genes retained above

30%. In reducing from the complete data set (p= 6319) to a 50% sample (p= 3160) we only gain

about 0.5 degrees of freedom, while reduction to a 30% sample (p= 1896) buys about 2 degrees of

freedom. It is this slow rate of change that accounts for the comparability ofenpvalues using full

harvesting or just individual genes for the entire dataset. The rate of change is rapid for small (<

10%) proportions of genes retained, but the costs are still considerable relative to sample size. For

example, selection of one term using a 1% sample (p= 63) costs 6.4 degrees of freedom.

***** Figures 3,4,5,6 Table 2 near here*****

While such determination ofenphelps calibrate costs of adaptive procedures, and so can inform

model size in then� p setting, the fact thatenpvalues were similar for harvesting using clusters and

singleton genes, whereas cross-validation displays substantial differences (Figure 2) prompts further

investigation. Additional scrutiny of first term selected in the full harvesting procedure – the 687 gene

cluster – is revealing. The heat map for this cluster is presented in Figure 4. A seemingly coherent

collection of expression profiles, characterized by reduced values for the mice in the eight week

group, constitutes the cluster. However, if we examine the actual correlations between the 687 genes

in the cluster and the average expression profile for the cluster, the coherence is not so impressive.

Figure 5a is a histogram of these 687 correlations. We note that 28 (4%) of the correlations are

negative and more than 50% are less than 0.5. An alternate view of cluster coherence can be obtained

by examining the scores (essentially squaredt-statistics) of the 687 genes when they are individually

regressed against Ro1. The results are presented in Figure 5b. The number of genes displaying no

association with Ro1 is striking: 33% havet-statistics< 1 and approximately 75% havet-statistics

< 2. Even the maximal individual squaredt-statistic (13.94) is far removed from the score for the

average expression profile (22.4).
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What has occurred is the following. The hierarchical clustering procedure has yielded a sizable

cluster whoseaverageexpression profilehappensto be strongly associated with Ro1. This is despite

the bulk of the cluster members (genes) exhibiting little or no association with Ro1. In view of this

artifact, it is not surprising that no terms are selected on cross-validating and that the cross-validated

residual variances are so large.

It is possible to constrain the harvesting procedure to mitigate against this behavior. In particular,

by only allowing clusters meeting coherence criteria to be selected, these artifacts are avoided. As

illustrated above, coherence can be captured by individual member genes being sufficiently correlated

with the cluster average profile, and/or the individual gene squaredt-statistics being sufficiently close

to the squaredt-statistic for the cluster average profile.

Applying such a constrained harvesting algorithm with a correlation threshold of 0.3 (i.e., only clus-

ters for which each individual member gene had a correlation of� 0:3 with the cluster average profile

were eligible for selection) produced the following interesting results. The term chosen first is an 8

gene cluster, itemized in Table 2 and depicted via a heat map in Figure 6. This was the only term

to be retained under cross-validation. The striking feature of the heat map is the appreciable down-

regulation (red) of all genes for the nine mice in the eight week (induced cardiomyopathy) group

when Ro1 expression is elevated. The constituent genes admit the following interpretation.

Lipoprotein lipase, ATP synthase gamma chain, and ATP synthase coupling factor 6 encode pro-

teins involved in energy production for the cell. Lipoprotein lipase is the enzyme that cleaves fatty

acids from triacylglycerol so that they can be further utilized in the fatty acid degradation path-

way, a major source of energy in the cardiomyocyte. ATP synthase gamma chain and ATP synthase

coupling factor 6 are subunits of the ATP synthase complex of the electron transport chain in the

mitochondria. Myoglobin stores and delivers oxygen in muscle which is needed to generate ATP in

the mitochondria. The down-regulation of delta-aminolevulinate dehydratase is potentially related

to the down-regulation of the ATP synthase complex genes above because it catalyzes the second

step in the biosynthesis of heme, a cofactor required by several proteins in the electron transport

chain. Elongation factor 1 alpha 2 (Eef1a2) is a translation factor required for protein synthesis. The

down-regulation of Eef1a2 is also consistent with the down-regulation of genes involved in energy
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production since protein synthesis is one of the most energy intensive processes in the cell. That is,

if energy production is decreased, down-regulating protein synthesis is a typical and effective cell

response to conserve energy. The functions of Skd3 and translationally-controlled tumor protein are

unknown. In summary, several of the genes in this cluster are consistent with the down-regulation of

energy production during the induced cardiomyopathy.

The tendency under constrained harvesting is to select singleton genes. This was evident for a wide

range of constraint thresholds, providing the correlation between the cluster average expression pro-

file and individual genes in the cluster was 0.5. If, under such (appropriate) restriction, harvesting

is going to reduce to selecting singleton genes then it becomes pertinent to consider alternate gene

selection schemes in view of the recognized limitations of forward selection strategies. Accordingly,

we next examine the utility of lasso, least angle regression and support vector machines for regression

in microarray gene expression settings.

3 Regularized Regression Approaches

As illustrated in the context of gene harvesting, the combination ofp� n and adaptive regression

procedures does not mix well. While the flexibility of adaptive procedures is necessary to enable

gene selection, additional constraints are needed to overcome costs/variability inherent in such ap-

proaches. Here we consider some regression methods that impose constraints by way of penal-

ties/regularization. Indeed, even for classification approaches to microarray data such regularization

is often applied, albeit implicitly (e.g., Dudoitet al., 2002).

3.1 Lasso

The lasso (least absolute shrinkage and selector operator) was proposed by Tibshirani (1996). The

lasso combines the good features of ridge regression and subset regression procedures, which in turn

were developed to overcome deficiencies with ordinary (OLS) least squares regression estimates.

There are two primary shortcomings ascribed to OLS. Firstly,prediction accuracyis affected by
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the fact that OLS estimates, while enjoying low bias, frequently have large variance. Prediction

accuracy can often be improved by shrinking or zeroing select coefficients. Secondly,interpretation

is complicated by retention of large numbers of covariates. It is generally preferable to isolate a

smaller subset of covariates that have the strongest effects. However, it is important in the microarray

context to remain mindful of the fact that there will likely be many alternative such subsets having

comparable prediction accuracies in view of the anticipated between-gene correlations.

Ridge regression (Hoerl and Kennard, 1970) achieves improved prediction accuracy via shrinkage.

For simplicity, consider centered data (so we can ignore the intercept term) and the usual linear

predictorµ= Xβ = (∑p
j=1β j xi j ). Instead of minimizing just the usual residual sum of squares as per

OLS, RSS(β) = jjy�µjj2 = ∑n
i=1(yi �∑p

j=1β j xi j )
2, ridge regression achieves coefficient shrinkage

by constraining their size:

min
β

n

∑
i=1

(yi �
p

∑
j=1

β j xi j )
2 subject to

p

∑
j=1

β2
j � t: (3)

An equivalent formulation is afforded byL2 penalized regression:

min
β

n

∑
i=1

(yi �
p

∑
j=1

β j xi j )
2+λ

p

∑
j=1

β2
j ; (4)

there being a one to one correspondence betweent in (3) andλ in (4). We note here that ridge

regression coincides with one version of support vector machine regression, considered in section

3.3.

The difficulty, acute in the array setting, with ridge regression is that all coefficients are retained.

Tibshirani (1996) demonstrates how replacing theL2 penalty in (4) with anL1 penalty

min
β

n

∑
i=1

(yi �
p

∑
j=1

β j xi j )
2 subject to

p

∑
j=1

jβ j j � t: (5)

results in some of the coefficients being exactly zero. The resultant estimates define the lasso esti-

mates. Again, there is an equivalent penalized version:

min
β

n

∑
i=1

(yi �
p

∑
j=1

β j xi j )
2+λ

p

∑
j=1

jβ j j; (6)

By varying t in (5) we obtain a continuous form of subset regression. This overcomes the inherent

variability in subset regression due to its discreteness arising since covariates are either retained or
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discarded. It is recommended thatt be determined by cross-validation. Thus, the lasso seeks to

simultaneously capture the good properties of ridge and subset regression. Hastieet al. (2001b)

contains extensive discussion.

For the microarray setting implementation issues are forefront. The original algorithm proposed by

Tibshirani (1996) does not handle thep> n case and is consequently inapplicable. This limitation,

along with efficiency concerns, motivated Osborneet al. (2000) to regard the lasso as a convex pro-

gramming problem and to devise an algorithm based on homotopy methods. While the objectives

of handlingp> n and improving efficiency were realized, the algorithm, at least as implemented in

Splus (available fromhttp://lib.stat.cmu.edu/S/lasso2 ), remains problematic for microarray

studies. When applied to the Ro1 cardiomyopathy dataset run times on a Sun Microsystems E420R

server with four 450MHz UltraSPARC-II processors and 4GB memory user time (as provided by

unix.time() ) for a sequence of 30 bounds (t values) was 47 minutes. However, getting to this run

required considerable trial and error to determine an appropriate range of bounds since specifica-

tion of bounds that are too large produces errors. Furthermore, attempts to pursue model selection

(picking a specifict or λ) based on cross-validation failed due to insufficient memory.

3.2 Least Angle Regression

The development of least angle regression (LARS) (Efronet al., 2002), which can readily be spe-

cialized to provide all lasso solutions in a highly efficient fashion, represents a major breakthrough.

LARS is a less greedy version of standard forward selection schemes. The simple yet elegant manner

in which LARS can be adapted to yield lasso estimates as well as detailed description of properties of

both procedures, degrees of freedom, and attendant algorithms are provided by Efronet al. (2002).

Code can be obtained fromhttp://www-stat.stanford.edu/˜hastie/Papers .

***** Figure 7 Tables 3,4 near here *****

Application of both LARS and the LARS version of the lasso to the Ro1 study yielded the following

results. The user time for 30 bounds for LARS was 0.5 minutes and for lasso was 0.7 minutes! Since
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results coincide through 18 steps, presentation is for LARS only. A plot of coefficient profiles is

given in Figure 7. Using the built-in cross-validation function and applying a “1-SE” rule suggests

that 5 terms be retained. The corresponding genes are given in Table 3.

Each of these genes must be interpreted individually because they do not constitute a “cluster” as per

clusters extracted by gene harvesting. Each of these genes is up-regulated in response to Ro1 induced

cardiomyopathy. Ribophorin II is a subunit of the oligosaccharyltransferase complex in the endoplas-

mic reticulum that glycosylates proteins in the secretory pathway. Heat shock 70 kD protein 8 is a

chaperone involved in protein folding in the cytoplasm. CD98 heavy chain is part of a heterodimer

that makes up the L-type amino acid transporter in the plasma membrane. The Lon protease homolog

is a mitochondrial enzyme that may be important for the folding and degradation of proteins in the

mitochondrion. None of these four genes has been previously implicated in cardiomyopathy. How-

ever, the final gene in this list, fibronectin 1, is a structural component of the extracellular matrix that

is part of the fibrotic response to cardiomyopathy in humans and the Ro1 expressing mice (Redfern

et al., 2000).

According to the prescription given in Efronet al. (2002), this costs roughly 5 degrees of freedom:

degrees of freedom� number of terms (steps). However, care is needed in making comparisons with

harvesting degrees of freedom for two reasons. Firstly, both the empiric and theoretic setting for the

LARS prescription hadn> p. Secondly, the CIC determination requires an (external) estimate ofσ̂2.

So, we applied CIC to LARS with the sameσ̂2 – and the prescription continued to hold.

3.3 Support Vector Machines

Support vector machines (SVMs) have been used for classification purposes in the microarray setting

(Brownet al., 2000). Regression modalities for SVMs are described in Cristianini and Shawe-Taylor

(2000) and briefly overviewed here.

Given a set of basis functionsfφmg
M
1 (obtained via a kernel as described below) and a corresponding

regression function (linear predictor)f (xi) = ∑M
m=1βmφm(xi)+ β0 wherexi 2 Rp is the expression
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vector for theith mouse, SVM obtains coefficient (β) estimates via

min
β

n

∑
i=1

Lε (yi � f (xi))+
λ
2
k β k2 : (7)

HereLε designatesε insensitive loss whereby we ignore errors of absolute size less thanε. Thus,

for example,Lε
1(yi � f (xi)) = max(0; jyi � f (xi)j� ε). Since, as detailed below, we will takeε = 0,

and use ofL0
2 loss coincides with ridge regression, we restrict attention toL1 loss. For such a loss

function the equivalent primal optimization problem, following the introduction of slack variables

ξi ;ξ�i is

min
β;ξ;ξ�

n

∑
i=1

(ξi +ξ�i )+
λ
2
k β k2 subject to yi � f (xi)� ε+ξi ; f (xi)�yi � ε+ξ�i ; ξi ;ξ�i � 0:

The corresponding dual problem is readily solved:

min
α;α�

1
2
(α�α�)TQ(α�α�)+ ε

n

∑
i=1

(αi +α�

i )�
n

∑
i=1

yi(αi �α�

i ) (8)

subject to
n

∑
i=1

(αi �α�

i ) = 0; 0� αi ;α�

i � 1=λ:

HereQi j = ∑M
m=1φm(xi)φm(x j) = hφm(xi);φm(x j)i � K(xi ;x j). The solution is

f̂ (x) =
n

∑
i=1

(α̂�

i � α̂i)K(xi ;x)+β0: (9)

The fact that (8) and (9) involveφ(x) only through inner products as given by thekernel, K, confers

huge computational benefit. This is because all that needs to be stipulated is the kernel, the individual

basis functionsφ() are not required. Accordingly, it is possible to simply yet greatly enrich the

underlying basis as illustrated by popular kernels includingdth degree polynomial: K(x;y) = (1+

hx;yi)d; radial basis: K(x;y) = exp(�jjx�yjj2=c).

However, the added flexibility afforded by such basis expansion is typically going to be of limited

utility in the microarray setting since already we havep� n. That is, while it may be conceptually

appealing to include selectdth order between-gene interactions via a polynomial kernel, the gains

from fitting all such terms with smalln and interpretational objectives are unclear. For classification

problems in the microarray setting there have been corresponding calls for feature (basis) selection

in using SVMs (Guyonet al., 2002; Lee and Lee, 2002). Of course, feature selection is central to

gene harvesting and lars/lasso.
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Use ofε> 0 results in only a subset ofα̂�

i � α̂i being non-zero. The associatedith data point is termed

asupport vector. Again, for classification problems, numerous examples demonstrate the advantages

of obtaining sparse solutions wherein only data points close to the decision boundary (the support

vectors) are used to define the boundary. However, whenp� n and for regression problems, such

sparsity inn is not desirable.

Accordingly, our application of SVMs to the cardiomyopathy data, focuses onε = 0 and emphasizes

linear kernels. We did investigate using quadratic kernels, but even with an extensive grid search for

λ, no models withstood cross-validation. Similarly, Guyonet al., (2002) restrict to linear kernels for

microarray classification. For a linear kernel (φ(x) = x) we recover gene specific coefficients via

β̂ =
n

∑
i=1

(α̂�

i � α̂i)xi : (10)

Again, λ was determined using grid search combined with CV. Examination of theβ̂ distribution

from (10) reveals outlying/extreme genes as presented in Table 4.

Given a total ofp = 6319, there is clearly considerable overlap with lars/lasso selections; three

genes are common to both lists. The functions of the five new genes found with the SVM approach

are described below, again keeping in mind that the genes are not a “cluster” and must be interpreted

individually. Interferon-related developmental regulator 1 (Ifrd1) may be involved in myoblast differ-

entiation (Guardavaccaroet al., 1995) and up-regulated in an inflammatory response due to ischemia-

reperfusion injury from cardiopulmonary bypass in a neonatal lamb model (Nelsonet al., 2002). Its

up-regulation in the Ro1 expressing mice could indicate a common response pathway for ischemia-

reperfusion injury and cardiomyopathy. Cytidine 5’-triphosphate synthase catalyzes the final step in

the production of the nucleotide cytidine triphosphate (CTP) and is also involved in phosphadidyl-

choline metabolism (Kent and Carman, 1999). Secretory granule neuroendocrine protein 1, 7B2 is

involved in regulating pituitary hormone secretion and has been previously shown to be expressed

only in neuroendocrine cells (Westphalet al., 1999). Holocytochrome c synthetase links heme to

cytochrome c, a protein involved in the electron transport chain. Its down-regulation is consistent

with the down-regulation of delta-aminolevulinate dehydratase found in the gene harvesting cluster.

Ankyrin 1 is a structural protein involved in anchoring the cytoskeleton to the plasma membrane. Its

down-regulation is potentially related to gene expression changes in other cytoskeletal components
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seen in the Ro1 expressing mice (Redfernet al., 2000). None of these genes has been previously

implicated in cardiomyopathy, although Ifrd1, holocytochrome c synthetase, and ankyrin 1 are the

most likely of the group to be related to the phenotype of the Ro1 mice based on their previously

described functions.

4 Model Selection Issues

The problem of variable selection in the context of microrarray regression is of crucial importance

– identification of gene expression changes associated with phenotypes of interest being a primary

objective of microarray studies. However, the distinguishing characteristics of such studies (p �

n, correlated gene expression) makes such selection inherently difficult. Here we discuss the two

principal means for effecting gene (variable) selection, criterion-based and prediction error based,

from the microrarray regression perspective. Throughout we continue to assume squared error (L2)

loss. The question of multiple solutions (variable sets) is also addressed.

A variety of model selection criteria exist, including Akaike Information Criterion (AIC) (Akaike,

1973) which is equivalent to Mallows (1973)Cp under the usual Gaussian model, Bayesian Informa-

tion Criterion (BIC) (Schwartz, 1979), and the Covariance Information (CIC) (Tibshirani and Knight,

1999). Common to all approaches is (i) penalization of resubstitution or training error estimates, and

(ii) the need to estimateσ2, the residual (error) variance. The penalization in (i) seeks to compen-

sate for training error optimism, so as to recover unbiased estimates of prediction error. Despite

differing derivations, the approaches primarily differ in the degree of penalization. To the extent that

the criteria involve/allow estimation of “degrees of freedom” analogs, especially for greedy/adaptive

procedures, this provides useful additional information. In particular, as illustrated in the context of

gene harvesting, degree of freedom estimates were helpful in judging appropriate model size in the

face of smalln, and similarly for tree-structured methods (see section 1.1).

However, estimatingσ2 is problematic. The frequent recommendation of basing estimates on a full

model (e.g., Tibshirani and Knight, 1999) will yield̂σ2 = 0 whenp> n. This eliminates the penalty

term in the above criteria, reducing them to (useless) resubstitution error measures. General strategies
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for specifying “nearly full” models in order to alleviate this difficulty are elusive. One possibility,

specific to LARS/lasso is to employ the largest model such that all coefficient profiles are monotone.

The logic here is that departures from monotonicity result from between gene (variable) correlation,

which we seek to avoid in parsimonious model descriptions. This is clearly an ad hoc and non-

generalizable prescription. Furthermore, such prescriptions are consequential in that it is absolute

(rather than relative) values of the respective criteria that are used to determine model size. Therefore,

direct measures of prediction error, such as provided by cross-validation are to be preferred.

The merits of basing model selection on prediction error determinations have been recently and

convincingly advanced (e.g., Breiman, 2001a). But, CV can also be problematic in thep� n setting,

especially whenn is small. The difficulties largely pertain to the variability of CV estimates of

prediction error. These were showcased for leave-one-out (LOO) CV by Kimet al. (2002). In

order to circumvent this variability concern (and secondarily to reduce computation),K-fold CV

is advocated (Hastieet al., 2001b). Here the data is partitioned intoK roughly equal sized samples,

model building utilizesK�1 of these, validation (i.e., computation of prediction error) the remaining

(withheld) sample with cycling and aggregation over all (K) such possibilities. However, withn= 30

as in the Ro1 dataset, the popular choice of 10-fold CV amounts to leave-three-out, and prediction

error estimates remain highly variable. Use of smallerK and or test/split sample approaches are

limiting with respect to model building given largep, all the more so for adaptive methods.

One promising refinement, pertinent to gene harvesting but more widely applicable, is the forward

selection with Monte Carlo CV (FSCV) approach proposed by Keles¸ et al. (2002). Their regression

model resembles the gene harvesting regression scheme (1) applied to individual genes (rather than

clusters) with one other important distinction. Rather than basing model selection (number of terms)

on CV applied to an a priori determined series of nested models, FSCV embeds cross-validation into

the selection procedure. This is accomplished as follows. Data is partitioned into test and training

sets. Using the training data, coefficients (β̂ j ) are obtained for all genes (k= 1; : : : ; p) by minimizing

RSS (2). However, unlike standard forward selection or gene harvesting, the gene selected for entry

is not that achieving minimal RSS on the training data. Instead, RSS is evaluated using the test data

and the corresponding best gene included. To accommodate variation introduced by sample splitting,

the entire procedure is repeatedK times and results synthesized. While FSCV provides test sample
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validation on a per step basis, it clearly does not overcome the variability of CV error estimates.

The distinguishing attributes of microarray data (p� n, correlated expression) makes the existence of

so-called “Rashomon Effects” (Breiman, 2001a) – many competing distinct models with comparably

good performance – a foregone conclusion. Indeed, gene harvesting was partially motivated from this

viewpoint: rather than eliciting multiple models, each containing an instance from a set of correlated

genes, perform a priori clustering of genes so that such a set emerges from a single run.

There are several approaches to extracting multiple solutions. These include perturbing data, modi-

fying criteria/algorithms and extending obtained solutions. Data perturbation can be pursued in two

distinct ways: the raw input values themselves can be modified, and/or some operator (e.g., filtering,

resampling) can be applied to a given set of inputs. With microarray expression data there are a

multitude of specifications and approaches that determine actual input data values, even after com-

pletion of the experiment. For spotted two-color arrays, background correction (e.g., Kooperberget

al., 2002), normalization, and “unfolding” (Goryachevet al., 2001) can be applied. For Affymetrix

arrays several algorithms exist for deriving expression values including Affymetrix GeneChip 3.1-4.0

software (used here), Affymetrix MAS 5.0, and dChip (Li and Wong, 2001), which involves model-

fitting across probes in the gene set to derive expression values. Further, often related, processing

concerns thresholding/truncating extreme expression measurements, scaling (logs, standardized as

here) and filtering (e.g., elimination of genes not meeting variation criteria). Imputation or other

handling of missing data provides another means whereby alternate data versions are realized. Illus-

tration of some of these aspects for a selection of public microarray datasets is provided by Dudoitet

al. (2002).

It should be noted that there are no singly best options/specifications for any of the perturbation

schemes. So, by selective choice from amongst these processing possibilities, a variety of alternate

data realizations can be obtained. Then, application of a given regression method with fixed spec-

ifications to each dataset will yield a range of models. Conversely, focusing on just a single data

version, but changing tuning parameters, optimization criteria, starting values, estimation methods

and/or other components of the technique will also yield a range of models.

To illustrate the breadth of possibilities we make concrete some of the possibilities for gene harvest-
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ing. As already demonstrated, even within the hierarchical clustering world, the choice of algorithm

(linkage type) is consequential. There are several possibilities for distance metric. A tuning parame-

ter biasing toward selection of larger clusters is provided. The regression scheme can accommodate

differing interaction orders, and include non-linear terms. Selection of appropriate number of terms

by cross-validation requires specification of fold number and standard error multiplier.

Finally, having obtained a particular solution (gene set) it is possible to generate multiple solutions

in post hoc fashion by selecting/enumerating from genes that are similar to those in the chosen set.

Here similarity could be based on correlation, functional class, pathway or annotation.

A rare example of proffering multiple solution sets in the microarray (classification) context was

provided by Kimet al. (2002). Indeed, exhaustive evaluation of all 2 gene classifiers (using a variant

of penalized discriminant analysis) was undertaken in contrast with the greedy forward selection

approach of gene harvesting. A simple genetic algorithm was employed to search for larger gene sets.

However, this 2 gene limit pertained even with substantial computing power, more refined genetic

algorithms were seemingly prohibitive and optimization of the tuning (penalty/spread) parameter was

not attempted.

It is evident that with the current state of microarray technology and study dimensions differing data

processing and/or modeling approaches can give very different results. This is not necessarily bad

– rather such results can be viewed from a “sensitivity analysis” perspective. The real difficulty lies

in making judicious choices among the myriad processing/analysis possibilities. Ultimately, it is

the biology that matters. For the Ro1 study we are most interested in extending selected genes to

biological pathways. For example, the observed coordinated down-regulation of genes in Fatty Acid

Degradation, Electron Transport chain, and heme biosynthesis will lead us to further examine these

pathways. Finally, as is widely recognized, microarray results need to be validated experimentally

by another complimentary method – as stand-alone experiments they can’t prove anything.
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5 Discussion

In this paper we have considered regression methods for relating gene expression profiles to contin-

uous phenotypes. Evaluation of a recently proposed method, gene harvesting (Hastieet al., 2001a),

revealed that results were sensitive to the clustering algorithm employed and, more importantly, sub-

ject to artifact wherein heterogeneous gene clusters whose average expression profile happened to

correlate with phenotype would be inappropriately deemed important. Correcting this behavior by

constraining the harvesting approach to only select homogenous clusters produced an algorithm that

tended to select singleton genes. However, the eight gene cluster chosen under particular correlation

constraints, was highly interpretable.

Another recent development, the LARS algorithm (Efronet al., 2002), offers improvements on the

forward selection strategy as used in gene harvesting that are especially pertinent to the microarray

setting. While it would be straightforward to augment the candidate covariate (gene) pool submitted

to LARS with cluster average profiles, the above experience with harvesting suggests this will add lit-

tle. Similarly, basis expansion akin to that of support vector machines could also be pursued. Again,

however, as transpired with SVMs, this is unlikely to yield better prediction and/or interpretation.

The microarray setting, where already we havep� n, mandates stringent regularization as opposed

to basis expansion; see Hastieet al. (2001b).

By shrinking the size of regression coefficients, LARS (and lasso) provide less greedy versions of

forward selection. This is important in the microarray setting where the typically small sample sizes

curtail the usefulness of greedy procedures. While SVM also shrinks coefficients, it retains the entire

coefficient vector (lengthp) whereas LARS zeroes out all but at mostn which is interpretationally

advantageous. That we observed overlap between genes selected by LARS and SVM is likely due to

a combination of these genes being most correlated with Ro1 and criteria similarity (apparent from

dual problems) between the methods. The fact that LARS is also computationally highly efficient

and has built-in cross-validation schemes for model size determination make it a frontline technique

for regression analysis of microarray studies.

Interpretation and selection concerns warrant further attention. Analogous to issues surrounding
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fold change and significance inadequacy for selecting differentially expressed genes (e.g., Newtonet

al., 2001), so to in the regression setting is it necessary to consider expression levels and variation.

Given that preprocessing to standardize expression is frequently employed (Dudoitet al., 2002; Lee

and Lee, 2002) there is the possibility of purely correlation based procedures, such as LARS, to select

genes whose expression level is below the noise level but whose variation correlates with phenotype.

Conversely, investigators are typically not interested in the usual regression interpretation of coeffi-

cients. Rather, it is selection and perhaps ranking of genes associated with phenotype that matters. In

this regard application of methods such as random forests (Breiman, 2001b) might prove valuable. In

view of this, retreating from multivariate regression approaches to assessment of univariate (individ-

ual gene) regressions is purposeful. Tusheret al. (2001) devise methods and software that facilitate

this and which provide protection against multiple testing concerns via control of false discovery

rates. Nonetheless, as we have demonstrated, application of the regression methods presented elicits

genes of biologic relevance. Further, there are additional potentially important genes amongst the

novel (with respect to cardiomyopathy) genes extracted.
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Table 1. Ro1 Gene Harvesting Results.

Step Node Parent Score Size

1 6295 0 22.40 687

2 1380 6295 19.67 6

3 663 0 15.62 2

4 3374 663 10.69 3

5 1702 0 12.92 2

6 6268 663 11.27 83

(a) Average linkage.

Step Node Parent Score Size

1 g3655 0 21.97 1

2 2050 g3655 20.62 3

3 g900 g3655 16.91 1

4 g1324 g3655 16.01 1

5 g1105 g3655 24.34 1

6 g230 g3655 12.44 1

(b) Single linkage.



Table 2. Constrained Harvesting Selected Cluster.

Mu6500 Probe Set GenBank Symbol Description

Msa.909.0 M60847 Lpl lipoprotein lipase

Msa.33808.0 AA114811 - EST homologous to ATP synthase gamma chain

Msa.2424.0 X13752 Alad delta-aminolevulinate dehydratase

Msa.2412.0 X06407 Tpt1 translationally-controlled tumor protein 1

Msa.22491.0 AA036584 - EST homologous to ATP synthase coupling factor 6

Msa.2037.0 X04405 Mb myoglobin

Msa.1923.0 L26479 Eef1a2 eukaryotic translation elongation factor 1 alpha 2

Msa.1435.0 U09874 Skd3 suppressor of K+ transport defect 3



Table 3. Lars / Lasso Selected Genes.

Mu6500 Probe Set GenBank Symbol Description

Msa.2877.0 D31717 Rpn2 ribophorin II

Msa.778.0i U73744 Hspa8 heat shock 70kD protein 8

Msa.2134.0 U25708 - CD98 heavy chain

Msa.26025.0 AA061310 - EST homologous to lon protease homolog, mitochondr ial

Msa.657.0 M18194 Fn1 fibronectin 1



Table 4. SVM Selected Genes.

Mu6500 Probe Set GenBank Symbol Description

Msa.799.0 V00756 Ifrd1 interferon-related developmental regulator 1

Msa.778.0i U73744 Hspa8 heat shock 70kD protein 8

Msa.2972.0 U49350 Ctps cytidine 5’-triphosphate synthase

Msa.2134.0 U25708 - CD98 heavy chain

Msa.2138.0 X15830 Sgne1 secretory granule neuroendocrine protein 1, 7B 2 protein

Msa.3227.0 U36788 Hccs holocytochrome c synthetase

Msa.433.0 X69063 Ank1 ankyrin 1, erythroid

Msa.2877.0 D31717 Rpn2 ribophorin II
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