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Abstract
Numerical Methods for Reaction Diffusion Systems in High Spatial Dimensions

DISSERTATION

By

Dongyong Wang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2014

Professor Qing Nie, Chair

Reaction diffusion equations are widely used to model biological phenomena and in some

situation, the spatial dimension can be much larger. Numerical efficiently solving high-

dimensional reaction-diffusion equations is a huge challenge. To solve the high-dimensional

equation, the “curse of dimensions” has to be dealt with. Also, an efficiently time integration

method is needed to solve the afterwords time dependent problem. The sparse grid technique

can deal with the problem, and the semi-implicit integration factor method can handles the

second one. The combination of two methods will be an efficient method to solve high-

dimensional reaction-diffusion equations.

In Chapter 2 we present one application of reaction-diffusion equations. In Chapter 3 we

study the hair follicle cycle. In Chapter 4 we present an numerical method to solve high-

dimensional PDE systems on regular grids. The method is numerically tested to be efficient.

In Chapter 5, we present how to combine the sparse grid with semi-implicit integration

x



factor method, finally construct a new method to solve high-dimensional reaction-diffusion

equations efficiently.

xi



Chapter 1

Introduction

In biology, reaction-diffusion equations are widely used. For example, the morphogen gradi-

ent, which is a key factor in embryo development, is believed to be formed by the diffusion

process. Also, it can describe the the population density in certain region, e.g. diffusive

logistic equation. In these applications, the spatial dimension of the equation is usually less

or equal to three. When the stochastic behavior of a bio-chemical network is concerned,

the Fokker-Planck equation may be used to calculate the probability density function of the

network, and its spatial dimension can be much larger.

Due to the more interests on stochasticity, how to efficiently solve reaction-diffusion

equations, especially for high dimensions, becomes important. There are two major chal-

lenges for the problem. The first is the “curse of dimensions” for high dimensional problems.

When dimension becomes larger, the number of the unknown of the equation is huge so

that store and manipulate these unknowns can be too expensive and unaffordable, if tradi-

tional methods are applied. The second challenge is solving the afterwords time dependent

problem. It can be ineffective if some improper time integration methods are used.

The first challenge can be overcame by the sparse grid method. The sparse grid
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method largely decrease the number of knowns for high dimensions, with the trade off that

lower the accuracy. The afterword time dependent problem can be solved by a series of

semi-implicit integration factor method, which is proved to be efficient, no matter in high

dimensions or not. Combination of the two methods can leads to an efficient method to solve

high dimensional reaction-diffusion equations.

This thesis consists four topics. In Chapter 2, we study a reaction-diffusion system

that model the morphogen gradient. We mainly focus on the robustness of the morphogen

gradient. In Chapter 3, we apply a cell lineage model to study the hair follicle system. We

present some hypotheses that can be key factors for hair follicle cyclic growth. The robustness

of the system is also discussed. In Chapter 4, we construct an efficient numerical method

to solve high dimensional PDE systems on regular grids. The unknown of the equation

is represented as high-dimensional array, and the differential operators can have compact

representation. In Chapter 5, we construct the semi-implicit integration factor method on

the sparse grid. Numerical tests show that our new method is more efficient than some

existing ones.
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Chapter 2

Robustness of Morphogen Gradients

With “Bucket Brigade” Transport

Through Membrane-Associated

Non-Receptors

NOTE: This chapter was done in collaboration with Jinzhi Lei, You Song, Qing Nie and

Frederic Y.M. Wan and was published in [2].

2.1 Introduction

At some stages of embryonic development, signaling protein molecules known as Morphogens

(ligands) are synthesized at some specific localized site. Some of them may disperse from

their production site, bind to cell receptors along the way, and result in different receptor

occupancies at different cell locations. The spatial concentration gradient of morphogen-
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receptor complexes (signaling gradients) induces spatially graded differences in cell signaling.

The differential cell signaling in turn gives rise to different gene expressions. This fact leads

cells in different locations to go through different cell lineages, finally reach different stable

cell fates, which is essential for tissue patterns and organs during development.

In general, it is important for a developing biological organism to form appropriate

morphogen gradients that appear at a proper time and proper place and are robust with

respect to perturbations in system architecture, environmental changes, or signaling noise.

As conflicting biochemical processes and strategies may be required to attain precision and

robustness, the delineation of how both characteristics can be achieved in biological devel-

opment remains a challenge in systems biology [3]. Different mechanisms and processes

involved in the formation of different morphogen gradients are either known or have been

proposed [4, 5, 6, 7, 8, 9, 10, 11, 12]. One process that remains indispensible is the transport

of morphogens away from their localized source.

A number of models have been proposed for morphogen transport; most are based

on diffusion of morphogen molecules and their interactions with non-signaling extracellular

molecules [13, 6, 14, 15, 9, 11, 16, 17]. It has been argued that diffusion alone may not

be a reliable mechanism as the resulting gradients are sensitive to substantial changes in

system parameters, leading to a signaling gradient that is no longer biologically useful [3,

18, 19]. Many additional mechanisms such as transcytosis, dynamin-mediated endocytosis,

feedback control and regulations by membrane-associated non-receptors have been suggested

for achieving robustness [20, 13, 6, 1, 18].

Regulations by non-signaling receptor (or non-receptor for short) such as heparan

sulfate proteoglycans (HSPG) in morphogen movement are observed in many experiments

[21, 4, 5, 22, 8, 23], and the effects of the presence of non-receptors on the existence

and characteristics of the steady-state signaling morphogen gradients have been studied

in [24, 25, 1, 18]. From these studies, the desired robustness with respected to substantial

4



perturbations of morphogen synthesis rate is seen to be achievable through two different

mechanisms including regulations of non-receptors:

Mechanism 1 Substantial (reversible) binding of slowly turned over morphogen molecules

with membrane-bound non-receptors with the resulting non-signaling (morphogen)

complexes degrading at a sufficiently rapid rate [18].

Mechanism 2 Fast binding of rapidly turned over free morphogen molecules with non-

receptors so that the non-signaling complexes move downstream through a “bucket

brigade” process [1].

Mathematical analysis of the effectiveness of these two robustness mechanisms have

been carried out in [1, 18] based on reaction-diffusion models with only one diffusion term

in either free or non-signaling bound-morphogens. These one diffusion models however are

biologically incomplete because it is possible to have both types of transport. Models with

two diffusions have been developed and studied in [25, 26, 27] with the numerical simulations

carried out in [25] suggesting that Mechanism 2 continuous to ensure robustness if the free

morphogen degradation is large enough.

We study numerically a model of morphogen gradient formation with both diffusion

of free morphogens and the movement of non-signaling morphogen complexes through a

“bucket brigade” process to provide some evidence for the previous numerical simulation

study in [25]. The model here (corresponding to the Dpp gradient in the wing imaginal disc)

is unrelated to, and conceptually different from those of [26, 27] where the non-receptors are

freely diffusing (Sog) molecules.

5



2.2 Model equations

We refer the mathematical model in [25, 1], which was based on the formation of morphogen

gradient in Drosophila wing imaginal discs regulated by the glypican members of heparan

sulfate proteoglycans [5]. The model involves concentration of free ligands [L], receptors [R],

ligand-receptor complexes [LR], non-receptors [N], and ligand-non-receptor complexes [LN].

Distributions of various morphogen concentrations in the wing imaginal discare assumed

to be sufficiently uniform in two directions (except possibly for boundaryers) to change

only along the antero-posterior axis. The anterior and posterior compartments are taken to

be sufficiently symmetric so that we can focus on the posterior compartment that spans the

range −d0 ≤ X ≤ Xmax with a narrow region of ligand synthesis at −d0 ≤ X ≤ 0. Diffusions

of both [L] and [LN] are allowed; other main reactions include binding and unbinding of

ligand to receptors and non-receptors, degradation of ligands, receptors and the ligand-

receptor complexes. The total concentration of non-receptor binding sites is abundant and

assumed to be a constant N0. Therefore, the resulting reaction-diffusion equations is (see [1]

for an expanded discussion of the DLN term):

∂[L]

∂T
= DL

∂2[L]

∂X2
− kon[L] [R] + koff [LR] (2.1)

− jon[L] (N0 − [LN]) + joff [LN]− δL[L] + V (X)

∂[R]

∂T
= ωR([LR])− kon[L] [R] + koff [LR]− δR[R] (2.2)

∂[LR]

∂T
= kon[L] [R]− koff [LR]− δLR[LR] (2.3)

∂[LN]

∂T
= DLN

∂2[LN]

∂X2
+ jon[L] (N0 − [LN])− joff [LN], (2.4)

6



where X ∈ (−d0, Xmax). The production rate of ligands is given in terms of the Heaviside

unit step function H(z):

V (X) = v0H(−X), H(z) ≡

 0 (z < 0)

1 (0 < z)
(2.5)

where v0 is a constant ligand synthesis rate in the production region −d0 ≤ X < 0. The

boundary of the region is specified by X = Xmax. The receptor synthesis rate is assumed to

depend only on [LR] and not on X and T explicitly.

Assumed symmetry at the border X = −d0 requires the no flux conditions:

∂[L]

∂X
= 0,

∂[LN]

∂X
= 0 at X = −d0. (2.6)

The edge X = Xmax is taken to be a sink for all diffusive elements so

[L] = [LN] = 0 at X = Xmax. (2.7)

With V (X) discontinuous at X = 0, we stipulate the continuity of [L], [LN] and the partial

derivatives ∂[L]/∂X, ∂[LN]/∂X at X = 0, consistent with the Eq. (2.1) requiring ∂2[L]/∂X2

to have only a simple jump discontinuity at X = 0.

Before the onset of ligand production ([L] = 0), there is no ligand concentration of

any kind so that

[L] = [LR] = [LN] = 0, (−d0 < X < Xmax, T ≤ 0). (2.8)

The receptors are expected to be in a steady-state prior to the onset of ligand production,

so that

∂[R]

∂T
= 0.

7



This implies

T = 0 : [R] = ωR(0)/δR ≡ R0 (2.9)

where R0 is the concentration of unbound receptors at the steady-state prior to the onset of

ligand production.

The conditions Eq. (2.1-2.9) define an initial-boundary value problem (IBVP) for

morphogen gradient formation. The model in [1] corresponding to the special case with

DL = 0. With DL 6= 0 herein, the corresponding mathematical problem becomes more

difficult to analyze and requires a new approach.

Similar to [1], we introduce the following non-dimensional quantities:

l =
[L]

joffN0/δL

, r =
[R]

R0

, u =
[LR]

R0konjoffN0/(δLδLR)
, w =

[LN]

N0

, (2.10)

t = δLT, x =
X + d0

Xmax + d0

, d =
d0

(Xmax + d0)
, ωR = δRR0k(u), (2.11)

ε =
jonN0

δL

, λ2 =
joff(Xmax + d0)2

DLN

, δr =
δR

δL

, δu =
δLR

δL

, (2.12)

α =
koff

δLR

, γ =
konR0

jonN0

, µ =
konjoffN0

δRδL

, η =
v0jon

δLjoff

, (2.13)

θl =
DL

(Xmax + d0)2δL

, θw =
DLN

(Xmax + d0)2δL

. (2.14)

Here k(u) is the normalized receptor synthesis rate satisfying k(0) = 1. The normalized

ligand production rate is given by

v(x) = (η/ε)H(d− x).

Here η is the effective production rate which is important for our discussion below.
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Using the above non-dimensional variables, Eq. (2.1- 2.4) become

∂l

∂t
= θl

∂2l

∂x2
− (l − w)− ε (l(1− w)− γ(αu− lr)) + v(x) (2.15)

∂r

∂t
= δr (µ(αu− lr) + (k(u)− r)) (2.16)

∂u

∂t
= −δu((α + 1)u− lr) (2.17)

∂w

∂t
= θw

(
∂2w

∂x2
− λ2(w − εl(1− w))

)
, (2.18)

with initial conditions

l = u = w = 0, r = 1, (t = 0, 0 ≤ x ≤ 1) (2.19)

and boundary conditions

∂l

∂x

∣∣∣∣
x=0

=
∂w

∂x

∣∣∣∣
x=0

= l|x=1 = w|x=1 = 0, (t ≥ 0) (2.20)

2.3 Numerical methods for the steady state

The existence, uniqueness and stability of the biologically acceptable gradients of Eq. (2.15-

2.20) have been established in [2]. Here we consider the robustness of the corresponding

signaling gradient when ligand production rate is changed. We focus on the dependence

of the signaling gradient on the ligand production rate characterized by the dimensionless

constant η. Denoting the dimensionless signaling concentration by u(x; η), we characterize

the robustness of the signaling gradient with respect to changes in ligand production rate

by a robustness index R(η, η′), defined as the relative change of the signaling gradient when
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the parameter η is changed to η′:

R(η, η′) =
1

∆η/η

1

1− d

∫ 1

d

∆ū(x)

ū(x; η)
dx (2.21)

where

∆η = |η − η′|, ∆ū(x) = |ū(x; η)− ū(x; η′)|. (2.22)

Evidently, the smaller the value of R, the more robust is the signaling gradient. We adopt

R < 0.2 for acceptable robustness as in [18].

When both ε and θl, by reasonable approximation, the robustness of the system can

be derived and analyzed, as in [2]. It is shown that at this situation, when η is large, the

system has good robustness. For general cases when either ε or θl is not small, such analytic

methods may not be applied, since the analytic calculation of the robustness R is difficult.

Here we perform numerical simulations to study the robustness for such situations.

To study the robustness Eq. (2.21), we first need to compute the signaling gradient

u(x; η) in Eq. (2.15)-2.20). Some methods may be applied to directly solve the steady state

[28]. To avoid solving the large non-linear system, we apply the semi-implicit integration

factor method (IIF) [29] to solve the time dependent problem, and wait until the system

reach the steady state. The second order IIF method for the reaction-diffusion system:

u(x, t) = ∆u+ f(u), (2.23)

is:

un+1 = eD∆t

(
un +

∆t

2
f(un)

)
+

∆t

2
f(un+1), (2.24)

where un is the spatial discretization of u(x, t) at time t = n∆t, and matrix D is the

discretized form of the Laplacian ∆, in this case a tridiagonal matrix. After computing the

signaling concentration, R(η, η′) is calculated based on a quadrature rule.
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For deferent pair of ε (range from 10−4 to 10−2) and θl (range from 10−2 to 1) and

different value of η, we compute the robustness index R and find the η value, as a function

of (ε, θl) so that R = 0.2. The result is given in Fig. 2.1(b).
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Figure 2.1: Direct numerical simulations for robustness of morphogen gradient. (a) Profiles
of u(x) at the steady-state for two morphogen production rates. Parameters used are referred
to [1]: d = 0.06, λ = 5.0, γ = 0.8, µ = 0.6, α = 0.1, ε = 0.01, θl = 4.0 × 10−4, and η = 5
(circle dots) or η = 10 (solid line). The feedback function is k(u) = 1

1+(u/1.2)2 . (b) Contour

plot of η (values shown on the lines) as a function of (ε, θl) so that the robustness R = 0.2.
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Chapter 3

Cell lineage model on hair cyclic

behavior

NOTE: This chapter was done in collaboration with Qixuan Wang, Qing Nie, Xing Dai and

Briana Lee and the manuscript is under preparation.

3.1 Introduction

Hair follicle is an approximately cylindrical mini-organ from which hairs are formed. It

is unique to mammals in that it is the only organ being able to undergo cyclic transfor-

mations through the mammalian entire lifetime. Hair follicle cycle consists of three main

phases: anagen, an active regeneration phase during which massive epithelial cell prolifer-

ation happens; catagen, a phase of rapid, apoptosis-driven organ involution; and telogen,

a relative quiescence phase during which the follicle awaits entering the following anagen

[30, 31, 32, 33].

The stem cells are mainly localized in the bulge region of a hair follicle, which marks
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the lower end of the permanent portion of the hair follicle and is the source of cells for

HF renewal. Stem cells are slow cycling. Upon the induction of anagen, HF stem cells

located in the bulge region actively proliferate in response to messages from the dermal

papilla (DP), and the daughter transient amplifying cells migrate to the secondary hair

germ (sHG),which is considered an extension of the bulge present only during telogen [34, 35].

During anagen the bulge stem cells produce excessive diversity of daughter cell lineages in

the downward direction, resulting in the descending outer root sheath (ORS) and provides

the penetration of the hair follicle into deep dermis. During mature anagen, the ORS-driven

downward growth of the HF is complete, mitotic activity is evident in the bulge region

[36, 37], yet we still observe active downward migration of bulge-derived cells along the

ORS [38]. During catagen, matrix keratinocytes are considered to play an important role in

the HF involution. These cells originate from the bulge cells and are transient amplifying

cells, thus have only a limited proliferative potential. During catagen, the matrix cells cease

proliferation and undergo extensive apoptosis, which drives the upward movement of DP. At

the end of catagen, matrix cells are almost completely eliminated, hair germ cells emerge,

and DP returns to its initial position. Through telogen, the bulge, hair germ and DP stay

in proximity.

Up to date, the fundamental mechanism underlying the follicle clock remains unclear.

Recently, genetic studies show that several molecular pathways becoming activated in dif-

ferent hair follicle phases. Macro-environmental bone morphogenetic protein (BMP) ligands

and Wnt antagonists act collectively to keep hair follicle stem cells in a quiescent state [39].

Another study shows that both Fgf18 and BMP6 slow keratinocyte growth without induc-

ing terminal differentiation, indicating that such signals favor bulge stem cells in a quiescent

state [40]. The correlation between hair follicle phases and various molecular pathway ac-

tivities leads to the hypothesis that genetic interaction among various molecular pathways

automatically result in the cyclic hair follicle growth dynamics.
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In this chapter we develop a cell-lineage model for hair follicle, in which we consider

three main types of cells: stem cells, transient amplifying cells (TA) and terminally differ-

entiated cells (TD). We study various of feedback controls and pin point some reasonable

mechanisms that produce periodicity, and explore how different feedbacks affect the dynam-

ics of the whole hair follicle system. First, we find that while many feedbacks fail a cyclic

growth dynamics, certain feedbacks are crucial in regulating a cyclic hair follicle growth

dynamics. Second, we study the robustness of some feedbacks to internal white noise. More-

over, we find that dynamics regulated by different feedbacks has its featured timescales,

and a combination of various feedback permits flexibility of timescales of the follicle growth

dynamics.

3.2 Three-stage cell lineage model

Consider the cell lineage model in Figure 3.1 which contains three stages: the stem cell (SC),

transient amplifying cells (TA) and thermally differentiated cells (TD). Each SC cell has a

probability of p0 to replicate itself, and a probability of 1 − p0 to differentiate to two TA

cells. The cell division rate of SC cell is denote as v0. Each TA cell has a probability of p1 to

replicate itself, and a probability of 1− p1 to differentiate to two TD cells. The cell division

rate of TA cell is denote as v1. For TD cell, its degradation rate is denoted as d0. Using

[.] to denote the population of each type of cell, the cell lineage model is described by the

following ODE system:

d[SC]

dt
= (2p0 − 1)v0[SC]

d[TA]

dt
= 2(1− p0)v0[SC] + (2p1 − 1)v1[TA]

d[TD]

dt
= 2(1− p1)v1[TA]− d0[TD]

(3.1)
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We study feedbacks that marked in Figure 3.1 with black or red arrows. Here the arrow-

headed line denotes the positive feedback and bar-headed line denotes the negative feedback.

For simplicity, the strengthen of the feedback is the function of the corresponding cell pop-

ulation. For example, the positive feedback on p1 from TD cell is p1([TD]) where p1(.) is a

mono-increasing function.

3.2.1 Negative feedback from TD cell to p1 leads to periodicity

If only this feedback exists, to ensure that SC cell not extinct or go infinity, p0 must be 0.

Also, we suppose the feedback takes the following Hill function:

p1([TD]) =
p1

1 + ([TD]/EC50)n
. (3.2)

Thus we can study the following ODE system with two unknowns instead of Eq. (3.1):

d[TA]

dt
= c+

(
2p1

1 + [TD]n
− 1

)
[TA]

d[TD]

dt
= 2

(
1− p1

1 + [TD]n

)
[TA]− d[TD].

(3.3)

For above, the following dimensionless process has been applied:

t→ v1t, c→ v0

v1

[SC]
EC50

, d→ v1d,

[TA]→ [TA]
EC50

, [TD]→ [TD]
EC50

.
(3.4)

By parameter search, we can find regions that generate periodicity. For example, when

n = 3, the regions that a stable periodic solution exists is shown in Figure 3.2, for different

values of p1. We can see that, larger proliferation probability makes the system easier to

get periodic solution. Mathematically, the stable periodic solution exists since the system is

bounded, and contains one unstable node. From Poincare-Bendixson theorem, the system
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has a stable limit cycle.

We also learn the parameters that affect the length of the period. By increasing the

value of p1, we found that the period becomes longer and longer, and approaches to the real

hair follicle cycle length. The results are shown in Figure 3.3.

In a similar way, we state that the negative feedback from TA cell to the proliferation

probability of SC cell can also generate periodicity.

3.2.2 Positive feedback from TD cell to v1 leads to periodicity

Consider the following ODE system with two unknowns:

dx1

dt
= X1(x1, x2),

dx2

dt
= X2(x1, x2). (3.5)

Suppose the system has one critical point (x∗1, x
∗
2), then near the critical point, the linearized

ODE system is:

d

dt

(
x1

x2

)
= A

(
x1

x2

)
, (3.6)

where

A =

∂X1

∂x1

∂X1

∂x2

∂X2

∂x1

∂X2

∂x2


∣∣∣∣∣∣∣
(x∗1,x

∗
2)

(3.7)

Then if the following conditions are satisfied, Eq. (3.5) has a stable periodic solution:

(i) The system is bounded, which means either x1 or x2 cannot go infinity.

(ii) The following inequality holds:

det(A) > 0, trace(A) > 0. (3.8)
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This is part of the Poincare-Bendixson theorem and we use this theorem to find the conditions

for a periodic solution. Assume the feedback is of the following form:

v1([TD]) = v1

(
s+

([TD]/EC50)n

1 + ([TD]/EC50)n

)
(3.9)

Then after dimensionless process, we study the following system:

d[TA]

dt
= c−

(
s+

[TD]n

1 + [TD]n

)
[TA]

d[TD]

dt
= a

(
s+

[TD]n

1 + [TD]n

)
[TA]− d[TD],

(3.10)

where a = 2(1− p1)/(1− 2p1) ∈ [2,∞), since for this case, to prevent the excessive number

of TA cell, p1 < 1/2. The only critical point for the system is:

[TA]∗ =
c (1 + (ac/d)n)

(ac/d)n + s+ (ac/d)ns
, [TD] =

ac

d
. (3.11)

Then to fulfill the condition (ii), we have the following sufficient condition that leads to the

existence of a stable periodic solution:

1 + d+ s+
dns

s+ (ac/d)n(1 + s)
<

1 + dn

1 + (ac/d)n
, p1 < 1/2. (3.12)

3.2.3 Feedbacks that cannot generate periodic patterns

By check the trace and the determinant of the linearized matrix around the critical point,

we state that the following feedbacks alone cannot generate stable periodic patterns:

(i) Positive feedback from TD cell to p1.

(ii) negative feedback from TD cell to v1.
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(iii) negative/positive feedback from TD cell to v0.

(iv) negative/positive feedback from TA cell to v1.

We’ll study the negative feedback from TD cell to p0 in Section 3.4, and this feedback

gives the periodic patterns.

3.3 Robustness of the periodic patterns

In this section we study the robustness of the periodic patterns with respect to internal

noise. In the ODE description of the cell lineage model, Eq. (3.1), we dismiss the stochastic

behavior of the system. Actually, when a cell divide, it divide with some probability, while

ODE system only model its statistical behavior. Let’s say that at certain time, p0 = 0.7,

in ODE system, exact 70 percent of the dividing SC cells will proliferate and 30 percent of

them will differentiate.

However, in reality, it is entire possible that 71 percent, or even more dividing SC

cells will proliferate, since the SC cells divide with some probabilities. When the cell number

is large enough, the stochastic behavior can be neglect. But when the cell number is relative

small, the stochastic behavior may affect the periodic patterns: alter the period, change the

amplitude, or even destroy the periodic patterns. In previous section we mainly studied

two feedbacks that generate periodicity: negative feedback on proliferation probability, or

positive feedback on cell cycle rate. Two schemes will react to noise differently.

The Gillespie algorithm [41] is used to study the stochastic behavior of the cell lineage

in this chapter. The core idea is that once a cell divide, we generate a random number to

indicate whether it proliferates or differentiates. We run the simulation long enough so that

the system goes multiple cycles, and plot the phase portrait in Figure 3.4. We can see that
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the negative feedback on proliferation probability is more robust to noise (Figure 3.4(a)),

and the noise destroys the periodic pattern comes from the positive feedback on cell cycle

rate (Figure 3.4(b)).

This can be explained by the following: the stochasticity of the cell lineage mainly

comes from the proliferation probability. Once the cell is more determined to do one thing

than another (p1 is close to 0 or 1), the system is less stochastic. For the negative feedback

control, when the TD cell population is high, TA cells are more likely to differentiate, and vice

versa. While for the positive feedback control on cell cycle rate, the proliferation probability

is constant, less than 0.5, and cannot be too small. Thus the system is not robust to the

noise.

3.4 Mechanisms to prolong the length of the period

For humans and mouses, the hair follicle cycle length can be very long: from months to

years. Within normal parameter ranges, the cell lineages in Section 3.2 cannot have such

long period. In this section we give some mechanisms that efficiently prolong the period of

the cyclic patterns.

3.4.1 Combination of feedbacks: An excitable system

In Section 3.2, we study the cell lineage model with only one feedback. We have shown

that the negative feedback on proliferation probability, or positive feedback on cell cycle

rate could generate periodicity. In this section we study the cell lineage model with two

feedbacks. We show that the new system can be an excitable system.

The cell lineage model we study here is shown in Figure 3.5. Besides the negative
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feedback on proliferation probability, which leads to periodic behavior, another positive

feedback from TA cell to its proliferation probability is added. We assume the feedback

takes the Hill-function type, so the ODE system for the cell lineage is (Since p0 = 0.5, the

population of stem cell remains constant):

d[TA]

dT
= (1− 2p0)v0[SC] +

(
2b([TA]/K1)n

r1 + ([TA]/K1)n + r2([TD]/K2)m
− 1

)
v1[TA]

d[TD]

dT
= 2

(
1− b([TA]/K1)n

r1 + ([TA]/K1)n + r2([TD]/K2)m

)
v1[TA]− d∗[TD]

(3.13)

With the following dimensionless process:

x = [TA]/K1, Y = [TD]/K2, T = tv1, d = d∗/v1,

K = K1/K2, c = (1− 2p0)v0[SC]/(v1K1),

(3.14)

The ODE system becomes:

dX

dt
= c+

(
2bXn

r +Xn + Y m
− 1

)
X,

dY

dt
= 2K

(
1− bXn

r +Xn + Y m

)
X − dY.

(3.15)

With the parameter: n = 1,m = 2, b = 1, r = 0.05, d = 0.8 and K = 0.1, when parameter

c increases, the phase portrait is given in Figure 3.6(a) (c = 0.0026) and Figure 3.6(b)

(c = 0.01). When c is small, the system has three critical point: one stable node, one

unstable node and a saddle point. When c increases, the stable node and the saddle point

will approach to each other, finally reach each other and disappear. Then the system only

left one unstable node, thus a periodic solution with long period exists, as in Figure 3.6(c).
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3.4.2 Multi-stage cell lineage model

In this section we present a mechanism to prolong the period by adding multiple middle

stages to the cell lineages, as in Figure 3.7. Numerical simulation shows that when the more

the middle stage presents, the longer the period is, as in Figure 3.8.
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Figure 3.1: A three-stage cell lineage model with interested feedbacks
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Figure 3.2: Parametric region that Eq. (3.3) has a stable periodic solution (marked as
yellow) for p1 = 0.8 and p1 = 0.95.
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Figure 3.3: The relationship between p1 and the period of the cycle. (a) As p1 increases, the
period becomes longer. (b) For relative small p1, the period is short. (c) For larger p1, the
period is long.
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(a) The phase portrait for the negative feedback on proliferation probability. The periodic
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periodic pattern is somehow ruined.

SC	   TD	  TA	  

p0 = 0.5

v0 = const v1

p1

d

Figure 3.5: Three stage cell lineage model with two feedbacks: (i) A negative feedback from
TD cell to TA cell’s proliferation probability; (ii) A positive feedback from TA cell to its
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Chapter 4

Array-representation Integration

Factor Method for High-dimensional

Systems

NOTE: This chapter was done in collaboration with Lei Zhang and Qing Nie and was

published in [42].

4.1 Summary

High order spatial derivatives and stiff reactions often introduce severe temporal stability

constraints on the time step in numerical methods. Implicit integration factor (IIF) method,

which treats diffusion exactly and reaction implicitly, provides excellent stability properties

with good efficiency by decoupling the treatment of reactions and diffusions. One major

challenge for IIF is the storage and calculation of the potential dense exponential matrices of

the sparse discretization matrices resulted from the linear differential operators. Motivated
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by a compact representation for IIF (cIIF) for Laplacian operators in two and three dimen-

sions, we introduce an array-representation technique for efficient handling of exponential

matrices from a general linear differential operator that may include cross-derivatives and

non-constant diffusion coefficients. In this approach, exponentials are only needed for ma-

trices of small size that depend only on the order of derivatives and number of discretization

points, independent of the size of spatial dimensions. This method is particularly advanta-

geous for high dimensional systems, and it can be easily incorporated with IIF to preserve the

excellent stability of IIF. Implementation and direct simulations of the array-representation

compact IIF (AcIIF) on systems, such as Fokker-Planck equations in three and four di-

mensions and chemical master equations, in addition to reaction-diffusion equations, show

efficiency, accuracy, and robustness of the new method. Such array-presentation based on

methods may have broad applications for simulating other complex systems involving high-

dimensional data.

4.2 Introduction

In the previous chapter, we discussed the noise effects on the hair follicle system. There,

we used a Gillespie algorithm [43] to simulate multiple samples of the cell lineage model,

and got some statistical behaviors. Alternative approach is to make some assumptions and

approximations on the copy number of each cell, then derive the following Fokker-Planck

equation (aka Kolmogorov backward equations)[44]:

∂tu(x, t) =
n∑

i,j=1

∂xi(Dij(u,x)∂xju(x, t)) + F (u,x), (4.1)

The unknown functions u(x, t) is the probability density function and once we solve for it,

we get all the statistical information about the system. In general, for above equation, n is

the spatial dimension and x = {x1, ..., xn}. A non-linear term F (u,x) is often interpreted as
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a reaction term. Coefficients Dij can be either constants or functions of u and x. In mor-

phogen formation model, the function u(x, t) usually represents concentrations of physical or

biological species with reactions among them, for which n is usually 2 or 3. In Fokker-Planck

equation, n can be much larger.

Spatial discretization for partial differential equations of higher spatial dimensions

(even for n = 3) often requires large, sometimes prohibitive, data storage and management as

well as expensive CPU time at a fixed time point. In addition, temporal discretization, which

strongly depends on the stiffness of reactions and treatment of the high order derivatives

(e.g. the diffusion term), may lead to severe stability conditions that require very small time

steps, resulting in excessive computational cost.

Integration factor (IF) or exponential time differencing (ETD) methods are effective

approaches to deal with temporal stability constraints associated with high order derivatives

[45, 46, 47]. By treating linear operators of the highest order derivative exactly, IF or ETD

methods are able to achieve excellent temporal stability [45, 48, 49]. To deal with additional

stability constraints from stiff reactions, a class of semi-implicit integration factor (IIF)

methods [50] were developed for implicit treatment of the stiff reactions. In the IIF approach,

the diffusion term is solved exactly like the IF method while the nonlinear equations resulted

from the implicit treatment of reactions is decoupled from the diffusion term to avoid solving

large nonlinear systems involving both diffusions and reactions, such as in a standard implicit

method for reaction-diffusion equations. IIF methods have a great stability property with

its second order scheme being linearly unconditionally stable.

In IF or ETD type of methods, the dominant computational cost arises from the

storage and calculation of exponentials of matrices resulting from discretization of the linear

differential operators in the PDEs. To deal with this difficulty, compact representation of the

discretization matrices was introduced in the context of IIF method [51]. In compact implicit

integration factor method (cIIF), the discretized solutions are represented in a matrix form
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rather than a vector while the discretized diffusion operator are represented in matrices of

much smaller size than the standard matrices for IIF while preserving the stability property

of the IIF. For two or three dimensions, cIIF is significantly more efficient in both storage

and CPU cost. In addition, cIIF method is robust in its implementation and integration with

other spatial and temporal algorithms. It can handle general curvilinear coordinates as well

as combine with adaptive mesh refinements in a straightforward fashion [52]. One can also

apply cIIF to stiff reactions and diffusions while using other specialized hyperbolic solvers

(e.g WENO methods [53, 54]) for convection terms to solve reaction-diffusion-convection

equations efficiently [55]).

One alternative approach for IF (or ETD) methods to avoid storage of the expo-

nentials of large matrices is to use Krylov subspace method to compute the multiplication

between the vector and the exponentials of matrices without explicitly forming the matrices

[56, 57]. The advantage of applying Krylov subspace method is that it can handle compli-

cated diffusion operators, e.g. diffusion coefficients are spatial functions or elliptic operators

contains cross derivatives, while cIIF in previous studies [51] can only handle systems of con-

stant diffusion coefficients and Laplacian operators restricted to two and three dimensions.

In contrast to cIIF, in which exponentials of matrices are pre-calculated only once and stored

for repeated usages at each time step of the temporal updating, the Krylov subspace method

needs to be carried out at each time step, leading to a significant increase in CPU time.

In this chapter, we introduce an array representation for the linear differential op-

erators that may contain non-constant diffusion coefficients as well as cross-derivatives in

two, three or higher dimensions. This array-representation approach is based on the idea of

compact Implicit Integration Factor (cIIF), that is, when discretizing the terms with partial

derivatives, regard the unknown solution as a vector with index connected to corresponding

variables, while keeping other indexes fixed with unrelated variables. This new approach

yields several discretization matrices of a small size that depend only on the number of
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derivatives in the continuous operators and the number of spatial discretization points in the

direction of each derivative, in contrast to IF (or ETD) that requires exponentials of matri-

ces whose size depend on the number of dimensions. In particular, the array representation

can be incorporated into IIF to maintain the nice stability property of IIF as well as the

implicit local treatment of the reactions decoupled from the diffusions. Like IIF, the second

order array-representation (compact) implicit integration method (AcIIF) is A-stable. An

operator splitting technique is incorporated into AcIIF for certain differential operators, re-

sulting in non-commutable operations between discretization matrices. The AcIIF method

is an extension of cIIF method that is able to deal with cross derivatives and non-constant

diffusion coefficients in addition to other applications.

To study the accuracy and efficiency of AcIIF, we implement AcIIF methods and

compare it with several other existing methods for both two and three dimensional reaction-

diffusion equations. In addition, we apply AcIIF to solve Fokker-Planck equations in three

and four dimensions. To demonstrate other applications of the array representation, we also

use this approach to directly solve chemical master equations. In CMEs, the structure of the

rate matrix for a reaction containing k species of molecules is very similar to the discretization

matrix for a k-th order partial differential equation with cross derivatives. The overall direct

simulations show the excellent properties of AcIIF and its distinct advantage in high spatial

dimensions.
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4.3 Array-representation (compact) Implicit Integra-

tion Factor Method (AcIIF)

4.3.1 Array representation for reaction-diffusion systems in three

dimension without cross derivatives

To illustrate the array-representation approach, we first consider three-dimensional reaction-

diffusion equations without cross-derivatives and with constant diffusion coefficients and

periodic boundary conditions:

ut(x, y, z, t) = D∆u(x, y, z, t) + f(u(x, y, z, t)), (4.2)

where (x, y, z) ∈ Ω = {0 < x, y, z < l}. Let Nx, Ny, Nz be the number of spatial grid points

in each spatial direction and hx, hy, hz be the grid size, respectively. Denote Uk1,k2,k3 as

the approximated solution of u at the grid point (k1hx, k2hy, k3hz). The approximation of

D∂2/∂x2 using the second order central difference discretization can be written in terms of

multi-dimensional arrays, U = (Uk1,k2,k3), through a linear mapping Lx,

(LxU)k1,k2,k3 :=
D

h2
x

(Uk1+1,k2,k3 − 2Uk1,k2,k3 + Uk1−1,k2,k3) (4.3)

where 1 ≤ k1 ≤ Nx, 1 ≤ k2 ≤ Ny, and 1 ≤ k3 ≤ Nz. Similarly, using Ly and Lz to represent

the approximations D∂2/∂y2 and D∂2/∂z2, respectively, Eq. (4.2) is approximated by

dU

dt
= LxU + LyU + LzU + f(U). (4.4)

Multiplying the integration factor, e(Lx+Ly+Lz)t, to both sides and integrating from tn to

tn+1, two adjacent discretized temporal points, we derive a class of semi-implicit integration
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factor methods (IIF) after approximating the integral [50]. For example, the second order

IIF takes the form

Un+1 − ∆t

2
f(Un+1) = e(Lx+Ly+Lz)∆t(Un +

∆t

2
f(Un)) (4.5)

where Un ≈ U at time point tn.

In a typical representation of the linear differential operator, the matrix (Lx + Ly +

Lz)∆t has a size of NxNyNz×NxNyNz. Although the matrix itself is sparse, its exponential

is usually not, leading to prohibitive storage and computing cost for any fine spatial meshes.

Next, we decompose this matrix into small matrices based on an array representation.

If one defines a vector by fixing the last two indices, k2, k3, of the the three-dimensional

array U ,

U(:, k2, k3) = (U1,k2,k3 , U2,k2,k3 , ..., UNx,k2,k3)T , (4.6)

Then the three dimensional array U , can be treated as the collection of all such one dimen-

sional vector on a two-dimensional array, with all k2, k3 going through from 1 to Ny and

from 1 to Nz, respectively. We present this collection using symbol
⊗

, with the super index

indicates that this collection is along xi axis, then we have:

U =
⊗

1 ≤ k2 ≤ Ny

1 ≤ k3 ≤ Nz

U(:, k2, k3). (4.7)

33



Next, we define a Nx ×Nx matrix Mx = D/h2
xWNx×Nx , where

WN×N =



−2 1 0 ... 1

1 −2 1 ... 0

0 1 −2 1 ...

... ... ... ... ...

1 0 ... 1 −2


N×N

. (4.8)

Then, MxU(:, k2, k3) represents the vector and matrix multiplication for any fixed pair of

k2, k3. Using this approach, the linear mapping Lx in the array representation becomes,

LxU =
⊗

1 ≤ k2 ≤ Ny

1 ≤ k3 ≤ Nz

MxU(:, k2, k3). (4.9)

Consequently, the exponential of Lx in the array representation takes the following form,

eLxU =
⊗

1 ≤ k2 ≤ Ny

1 ≤ k3 ≤ Nz

eMxU(:, k2, k3), (4.10)

as induced from the relation,

(Lx)mU =
⊗

1 ≤ k2 ≤ Ny

1 ≤ k3 ≤ Nz

(Mx)
mU(:, k2, k3),∀m ∈ N+. (4.11)

Applying the definition of linear mapping exponential yields Eq. (4.10).
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Clearly, Ly and Lz have similar array representations,

LyU =
⊗

1 ≤ k1 ≤ Nx

1 ≤ k3 ≤ Nz

MyU(k1, :, k3), LzU =
⊗

1 ≤ k1 ≤ Nx

1 ≤ k2 ≤ Ny

MzU(k1, k2, :), (4.12)

where My = D/h2
yWNy×Ny and Mz = D/h2

zWNz×Nz .

Using the array representations, one can easily show that the three linear mappings

Lx,Ly and Lz commute with each other, i.e.,

LaLbU = LbLaU, for a, b ∈ {x, y, z} . (4.13)

This commuting property results in

eLx+Ly+LzU = eLxeLyeLzU. (4.14)

Direct application of Eq. (4.14) to Eq. (4.5) results in the following second order

array-representation Implicit Integration Factor (AcIIF) method:

Algorithm 1 Second order AcIIF (AcIIF2)

Un+1 − ∆t

2
f(Un+1) =

⊗
1 ≤ k2 ≤ Ny

1 ≤ k3 ≤ Nz

eMx∆t


⊗

1 ≤ k1 ≤ Nx

1 ≤ k3 ≤ Nz

eMy∆t


⊗

1 ≤ k1 ≤ Nx

1 ≤ k2 ≤ Ny

eMz∆tV (k1, k2, :)


(k1, :, k3)


(:, k2, k3),

(4.15)
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where V = Un + ∆t/2f(Un).

Previously, a compact IIF (cIIF) was derived in a different fashion in two spatial

dimensional systems by treating unknowns as a matrix, then the action of Lx is like a left

product to the matrix and Ly is as its right product. And in three spatial dimensional

cases, in addition to the left and right multiplications, a middle multiplication represents

Lz[51]. One major advantage of both cIIF and AcIIF methods that one only needs to

compute the exponentials of Mx,My and Mz, which are much smaller matrices (only about

N ×N), in comparison to standard IF or ETD methods [58, 59], for which the exponential

e(Lx+Ly+Lz)∆t of dimension of NxNyNz ×NxNyNz are needed. Clearly, cIIF and AcIIF have

significant savings in both CPU cost and storage, in particular, for equations in three or

higher dimensions.

For the systems without cross-derivatives (e.g. Eq. (4.15)), the second order AcIIF

(4.2) is equivalent to the second order cIIF method [51]. As it will be shown next, the

advantage of AcIIF lies in its potential applications to reaction-diffusion systems with cross

derivatives and non-constant diffusion coefficients for which cIIF is unable to achieve.

4.3.2 AcIIF method for three-dimensional reaction-diffusion sys-

tems with cross derivatives

Consider the reaction-diffusion equations with second order cross derivatives:

ut =

(
a1

∂2

∂x2
+ 2b1

∂2

∂x∂y
+ c1

∂2

∂y2

)
u+

(
a2

∂2

∂x2
+ 2b2

∂2

∂x∂z
+ c2

∂2

∂z2

)
u

+

(
a3
∂2

∂y2
+ 2b3

∂2

∂y∂z
+ c3

∂2

∂z2

)
u+ f(u),

(4.16)

in a cube, {(x, y, z) : 0 < x, y, z < l}, with periodic boundary conditions, satisfying the

conditions aici > b2
i , for i = 1, 2, 3. Applying a standard second order central difference
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approximation to a1
∂2

∂x2 + 2b1
∂2

∂x∂y
+ c1

∂2

∂y2 , one obtains its approximation, denoted by Lxy, as

the following

(LxyU)k1,k2,k3
=
a1

h2
x

(Uk1+1,k2,k3 − 2Uk1,k2,k3 + Uk1−1,k2,k3)

2b1

4hxhy
(Uk1+1,k2+1,k3 + Uk1−1,k2−1,k3 − Uk1+1,k2−1,k3 − Uk1−1,k2+1,k3)

+
c1

h2
y

(Uk1,k2+1,k3 − 2Uk1,k2,k3 + Uk1,k2−1,k3) .

(4.17)

Using similar definitions for Lyz and Lxz, the spatial approximation of Eq. (4.16) becomes

dU

dt
= (Lxz + Lxy + Lyz)U + f(U). (4.18)

To derive the array representation of the operator Lxy, we first fix k3 in U(:, :, k3)

that represents a NxNy ×NxNy matrix. Collect all these two dimensional matrices along a

vector leads to:

U =
⊗

1≤k3≤Nz

U(:, :, k3). (4.19)

Define a linear mapping, Axy, from a matrix space consisting of all Nx×Ny matrices to itself

as follows:

(AxyM)i,j =
2b1

4hxhy
(Mi+1,j+1 +Mi−1,j−1 −Mi−1,j+1 −Mi+1,j−1)

+
a1

h2
x

(Mi+1,j − 2Mi,j +Mi−1,j) +
c1

h2
y

(Mi,j+1 − 2Mi,j +Mi,j−1) .

(4.20)

Then, the array representation of Lxy, in terms of Axy, and its exponential become

LxyU =
⊗

1≤k3≤Nz

AxyU(:, :, k3), eLxyU =
⊗

1≤k3≤Nz

eAxyU(:, :, k3). (4.21)

Similarly, the array representation for Lyz and Lxz may be written in terms of Ayz and Axz,

respectively.
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As long as Lxy, Lyz and Lxz commute with each other, applying Eq. (4.5) using the

array representation to Eq. (4.18) leads to the following algorithm:

Algorithm 2 AcIIF2 for reaction-diffusion systems with cross derivatives

Un+1 − ∆t

2
f(Un+1) =

⊗
1≤k1≤Nx

eAyz∆t

 ⊗
1≤k2≤Ny

eAxz∆t

( ⊗
1≤k3≤Nz

eAxy∆tV (:, :, k3)

)
(:, k2, :)

 (k1, :, :),
(4.22)

where V = Un + ∆t/2f(Un).

In this algorithm, the exponential of Axy is a NxNy × NxNy matrix, in comparison

to Lxy that is a NxNyNz × NxNyNz matrix. Thus applying array representation leads to

significant saving.

Cross derivatives may affect the commutable property of the discretized operators,

resulting in the questions: under what conditions, Lxy, Lyz and Lxz can commute with

each other and what to do with the algorithms if the commuting property doesn’t hold. In

Section 3, we will give a sufficient condition for the commuting property. Alternatively, we

next introduce a splitting technique to deal with the cases without such commuting property.

4.3.3 AcIIF method for reaction-diffusion systems with non-constant

diffusion coefficients

When the diffusion coefficients in Eq. (4.16) are functions in space, minor modification is

needed for the three discretization operators Lxy, Lyz, Lxz in array representations. Be-

cause each of the three operators depends on the other spatial dimension, we introduce a

super index for Axy to represent the operator at difference value of z = k3hz for the array
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representation of Lxy:

LxyU =
⊗

1≤k3≤Nz

Ak3
xyU(:, :, k3) (4.23)

Similarly, the array representation of Lyz and Lxz can be written in terms of Ak1
yz and Ak2

xz.

As a result, the three operators can no longer commute with each other. Notice that

e(Lxy+Lyz+Lxz)∆t = eLxy∆teLxz∆teLyz∆t +O(∆t2), (4.24)

the algorithm for Eq. (4.22) for this general case becomes only first order in time.

The order of accuracy can be improved by using a Strang splitting scheme to ap-

proximate e(Lxy+Lyz+Lxz)∆t. In the Strang splitting method, two linear operators L1 and L2

defined on the same linear space have the following property [60]:

e(L1+L2)∆t = eL1∆t/2eL2∆teL1∆t/2 +R(∆t), (4.25)

where

R(∆t) = (L2L2
1d+ L2

1L2 + 4L2L1L2 − 2L1L2L1 − 2L1L2
2 − 2L2

2L1)∆t3/24. (4.26)

For multiple linear operators, L1,L2, ...Lm, the Strang splitting method can be extended to

the following by induction:

e
∑m

i=1 Li∆t =
m∏
i=1

eLi∆t/2
1∏

i=m

eLi∆t/2 +O(∆t3). (4.27)

Now, applying Strang splitting to Eq. (4.5) leads to a second order method in both time

and space:

Un+1 − ∆t

2
F (Un+1) = e

∆t
2
Lxye

∆t
2
Lxze∆tLyze

∆t
2
Lxze

∆t
2
Lxy
(
Un +

∆t

2
F (Un)

)
. (4.28)
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Consequently, the array representation for solving Eq. (4.16) with non-constant diffusion

coefficients leads to

Algorithm 3 AcIIF2 for system (4.16)

V = Un +
∆t

2
f(Un),

V ∗ =

⊗
1≤k1≤Nx

eA
k1
yz∆t

 ⊗
1≤k2≤Ny

eA
k2
xz∆t/2

( ⊗
1≤k3≤Nz

eA
k3
xy∆t/2V (:, :, k3)

)
(:, k2, :)

 (k1, ; , :),

Un+1 − f(Un+1) =
⊗

1≤k3≤Nz

eA
k3
xy∆t/2

 ⊗
1≤k2≤Ny

eA
k2
xz∆t/2V ∗(:, k2, :)

 (:, :, k3).

(4.29)

Operator splitting leads to twice as many exponential-matrix and vector multiplica-

tion compared to the non-splitting case in Algorithm 2. Therefore, it is important to use

appropriate order of splitting if a subset of operators can commute with each other to im-

prove computational efficiency. For instance, for three operators Li, i = 1, 2, 3 where L1 and

L2 can commute, however, L3 cannot, one may have two different kinds of splittings:

e(L1+L2+L3)∆t = eL3∆t/2eL2∆teL1∆teL3∆t/2 +O(∆3t) (4.30)

and

e(L1+L2+L3)∆t = eL1∆t/2eL2∆t/2eL3∆teL2∆t/2eL1∆t/2 +O(∆3t). (4.31)

Clearly, the splitting in Eq. (4.30) computes one fewer exponential matrix and vector mul-

tiplication than the splitting in Eq. (4.31).
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4.3.4 AcIIF method for high dimensional reaction-diffusion sys-

tems

We next extend AcIIF to the reaction-diffusion equation in d spatial dimensions with d ≥ 3:

ut =
∑

1≤i<j≤d

Lxixju+ f(u) 0 < xi < 1 (4.32)

where

Lxixj := aij
∂2

∂x2
i

+ 2bij
∂2

∂xi∂xj
+ cij

∂2

∂x2
i

, 1 ≤ i < j ≤ d, (4.33)

and we assume that diffusion coefficients, aij, bij and cij are spatial functions that satisfy the

elliptical conditions:

aij > 0, cij > 0, aijcij > b2
ij. (4.34)

We also assume that the boundary conditions for the system are periodic.

Similar to the three dimensional case, in each direction xi, there are Nxi grid points

with the grid size of hxi . We use a Nx1×Nx2×...Nxd d-dimensional array U = (Uk1,k2,...,kd), 1 ≤

ki ≤ Nxi , i = 1, 2, ..., d to represent the solution, and Lxixj to represent the discretized

operator of Lxixj , 1 ≤ i < j ≤ d. Next, we denote U |(kr),r 6=i,j
xi,xj

as the matrix derived from U

by fixing the dimensional index kr, r 6= i, j. Thus, the array representation of Lxixj becomes

LxixjU =
⊗

1 ≤ kr ≤ Nxr

r 6= i, j

A(kr),r 6=i,j
xixj

U |(kr),r 6=i,j
xi,xj

(4.35)

where A(kr),r 6=i,j
xixj are linear mappings from the matrix space with all Nxi × Nxj matrices to

itself and is similarly defined in the three-dimensional case.

If Lxixj commute with each other, we are able to directly apply array representation
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to the IIF2 method to obtain a second order AcIIF method for solving Eq. (4.32):

Un+1 − ∆t

2
F (Un+1) =⊗

1 ≤ kr ≤ Nxr

r 6= 1, 2

eA
(kr),r 6=1,2
x1x2

∆t
⊗

1 ≤ kr ≤ Nxr

r 6= 1, 3

eA
(kr),r 6=1,3
x1x3

∆t...
⊗

1 ≤ kr ≤ Nxr

r 6= d− 1, d

eA
(kr),r 6=d−1,d
xd−1xd

∆tV.
(4.36)

If Lxixj are not commutable, we apply Strang splitting and array representation to obtain

the second order AcIIF method:

Un+1 − ∆t

2
F (Un+1) =

⊗
1 ≤ kr ≤ Nxr

r 6= 1, 2

eA
(kr),r 6=1,2
x1x2

∆t/2...
⊗

1 ≤ kr ≤ Nxr

r 6= d− 1, d

eA
(kr),r 6=d−1,d
xd−1xd

∆t/2

⊗
1 ≤ kr ≤ Nxr

r 6= d− 1, d

eA
(kr),r 6=d−1,d
xd−1xd

∆t/2...
⊗

1 ≤ kr ≤ Nxr

r 6= 1, 2

eA
(kr),r 6=1,2
x1x2

∆t/2V,

(4.37)

where V = Un + ∆t/2F (Un) and 1 ≤ kr ≤ Nxr , r = 1, 2, ..., d.

4.3.5 A sufficient condition for operator commuting

As evident in Strang splitting, proper choice of the order of operators Eq. (4.29) will decrease

the computational cost, which can be improved if commuting operators can be found. Now,

we give a sufficient condition for commutable operators.

Proposition 1 All linear operators Lxixj , 1 ≤ i < j ≤ d commute with each other if the

system in Eq. (4.32) satisfies:

(1) the diffusion coefficients are constant,
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(2) the boundary conditions are periodic along each direction.

proof With a given basis, the linear operator Lxixj for the central difference dis-

cretization are N1N2...Nd ×N1N2...Nd matrices in the following form,



m1 m2 ... mN−1 mN

mN m1 m2 ... mN−1

mN−1 mN m1 ... mN−2

... ... ... ... ...

m2 m3 ... mN m1


(4.38)

where N = N1N2...Nd and mi, i = 1, 2, ..., N are real. Let two matrices A = (ai)N×N and

B = (bi)N×N both take the form of Eq. (4.38). One can show directly that

(AB)ij =
N∑
k=1

ak−i+2bj−k+1 =
N∑
s=1

bs−i+2aj−s+1 = (BA)ij, ∀i, j, (4.39)

because ai±N = ai, bj±N = bj for ∀i, j where s = j + i− k − 1. Q.E.D

This shows that Strang splitting is unnecessary for constant diffusion coefficients in

high spatial dimension and Algorithm 2 is applicable for such reaction-diffusion equations.

4.4 Stability analysis, higher-order methods, and com-

putational costs

Next, we study the linear stability of second order AcIIF methods, derive a third method,

and discuss the computational costs of the methods.

43



4.4.1 Stability analysis

Based on linear stability analyses in [50] and [51], we claim that the second order AcIIF

methods, Eq. (4.36) and Eq. (4.37), are asymptotically stable for the case of F (U) = dU

and Lxixju = −cu, where d < 0 and c > 0 correspond to stable reactions and elliptic

operators. For such a linear case, one has

un+1 = e−c∆t
(
un +

d∆t

2
un
)

+
d∆t

2
un+1. (4.40)

Assuming un = einθ, we obtain

eiθ = e−c∆t
(

1 +
1

2
λ

)
+

1

2
λeiθ, (4.41)

where λ = d∆t has a real part λr and imaginary part λi, leading to

λr =
2(1− e−2c∆t)

(1− e−c∆t)2 + 2(1 + cos θ)e−c∆t
,

λi =
4(sin θ)ce−c∆t

(1− e−c∆t)2 + 2(1 + cos θ)e−c∆t
,

(4.42)

since c > 0 and λr > 0 for 0 ≤ θ ≤ 2π. Then, the second order AcIIF is A-stable since the

stability region includes the complex plane for all λ with λr < 0.

If we apply AcIIF methods Eq. (4.36) and Eq. (4.37) to Fokker-Planck equations or

chemical master equations, where in each the operator Lxixj defines a Markov process,

dU

dt
= LxixjU, (4.43)

then we claim that AcIIF methods Eq. (4.36) and Eq. (4.37) are still A-stable.

In order to show the A-stability, we prove that, under certain norm,
∥∥eLxixj ∆t

∥∥ ≤ 1

holds for any ∆t > 0 for such Lxixj . Then, each Lxixj can be treated as elliptic operators
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and the remaining proof goes through Eq. (4.40) to Eq. (4.42). Since Eq. (4.43) defines a

Markov process, the total probability of all states,
∑
U(∆t) =

∑
eLxixj ∆tU(0), maintains a

value of 1 for any time step, when U(0) is a proper probability distribution, i.e. U(0) > 0

for each compartment and
∑
U(0) = 1. Using the maximum norm ||.||1 and defining the

corresponding linear operator norm, we first prove that for any U with U > 0,

||eLxixj ∆tU ||1 =
∑∣∣∣∣eLxixj ∆t

(
U∑
U

)∣∣∣∣∑U = ||U ||1. (4.44)

Then, for U = U+ − U− where U+ is with all positive compartments of U ,

∥∥eLxixj ∆t
∥∥ = max

U 6=0

||eLxixj ∆tU ||1
||U ||1

= max
U 6=0

∥∥eLxixj ∆tU+ − eLxixj ∆tU−
∥∥∑

|U |

≤ max
U 6=0

(
||eLxixj ∆tU+||1∑

|U |
+
||eLxixj ∆tU−||1∑

|U |

)
= 1.

(4.45)

Next, we can replace each Lxixj in the Fokker-Planck equation or the chemical master equa-

tion by a negative scalar and the proof of A-stability for Eq. (4.36) and Eq. (4.37) for these

two cases is done.

4.4.2 High order AcIIF method

If discretization operators are commutable, higher order (in time) AcIIF methods can be

derived from the IIF method in a similar manner. For example, the third order IIF scheme

[50] has the form:

Un+1 = eL∆tUn + ∆t

(
5

12
F (Un+1) +

2

3
eL∆tF (Un)− 1

12
e2L∆tF (Un−1)

)
(4.46)
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where L =
∑

i,j Lxixj . If all Lxixj ,∀i, j commute with each other, we then obtain

eLU =
∏

1≤i<j≤d

eLxixjU. (4.47)

If all discretized operators Lxixj commute with each other, applying the array representation

leads to the third order AcIIF method:

Algorithm 4 (Third order AcIIF method)

Un+1 − 5∆t

12
F (Un+1) =

⊗
(kr),r 6=1,2

eAx1x2∆t...
⊗

(kr),r 6=d−1,d

eAxd−1xd
∆tV1

−
⊗

(kr),r 6=1,2

e2Ax1,x2∆t...
⊗

(kr),r 6=d−1,d

e2Axd−1xd
∆tV2

(4.48)

V1 = Un +
2∆t

3
F (Un), V2 =

∆t

12
F (Un−1) (4.49)

where 1 ≤ kr ≤ Nr, r = 1, 2, ..., d.

In the case that some Lxixj are not commutable, the splitting techniques may be

applied to this subset of operators to achieve high order accuracy. However, since the for-

mulation becomes much more tedious and complicated, we omit them here.

Remarks on higher order derivatives: The array representation can also be

extended for equations with operators that contain high order and cross derivatives, such as

those in the following form

∂m

∂xi1∂xi2 ...∂xim
. (4.50)

Similarly, the second order central difference approximation in the multi-dimensional array

U representation results in the discretization linear operator Lxi1 ,xi2 ,...,xim of the following

46



compact form,

Lxi1 ,xi2 ,...,ximU =
⊗

1≤kr≤Nr,r 6=i1,i2,...,im

Axi1xi2 ...xim U |(kr),r 6=i1,i2,...,im
xi1 ,xi2 ,...,xim

(4.51)

where U |(kr),r 6=i1,i2,...,im
xi1 ,xi2 ,...,xim

is a m-dimensional array by fixing the index kr, r 6= i1, i2, ..., im of

U and Axi1xi2 ...xim , resulting from the central difference approximation, represents a linear

mapping from m-dimensional array linear space to itself.

4.4.3 Computational cost

For stiff reaction-diffusion equations, the size of the time step usually dictates the overall cost

of the temporal updating method. For an A-stable method such as AcIIF and IIF, the cost

mainly results from the formation of the exponential-matrix and the corresponding vector-

matrix multiplication during each time step. In array representation, small matrices of size

in Ni×Ni for the Laplacian operator or NiNj×NiNj when the second order cross derivatives

are presented in contrast to IIF in which the exponential of a N1N2...Nd×N1N2...Nd matrix

is required. The advantage of AcIIF becomes more prominent for three or higher dimensional

systems.

For a d-spatial dimensional case (d ≥ 3) with second order cross derivatives, the

computational cost for manipulating the exponential matrices in IIF is O((N1N2...Nd)
2), or

O(N2d) for Ni = N, i = 1, 2, ..., d, while the corresponding cost for AcIIF is

∑
1≤i<j≤d

O((NiNj)
2)
N1N2...Nd

NiNj

. (4.52)

For the case of non-constant coefficients in diffusion, it is O(d2Nd+2) when Ni = N, i =

1, 2, ..., d. For example, a six-dimensional system requires calculating an exponential of

matrix with an approximated size of 108 × 108 when N = 20, in contrast to the AcIIF
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method that only needs exponentials of matrices of a size of 400× 400.

Because the exponential-matrices are small in AcIIF, one may pre-calculate the expo-

nential matrices once and store them during the calculations. An alternative approach, which

is particularly useful for matrices with sizes exceeding the memory size, is to compute the

exponential-matrix vector multiplication without explicit formation of the matrices through,

for example, the Krylov subspace method [56, 61, 62]. In the direct simulations shown in

the next section, we implement Padé approximation, which has a computational cost of

O(N2) (both in storage and time) to compute a matrix exponential of N × N matrix [63],

for reaction-diffusion equations with or without cross-derivatives in three dimensions, and

we use Krylov subspace method for the Fokker-Planck equations in three or four dimensions

and chemical master equations.

4.4.4 Array representation for Chemical Master Equations

Chemical master equations (CME) is a system of first-order ordinary differential equations

for stochastic description of the time evolution of a network of biochemical reactions [64].

The solution of the system yields the probability density vector at discrete states of the bio-

chemical network in time. The system is typically stiff and it can have many components

and states, presenting difficulties for numerical methods and simulations [65, 66]. As seen

below, the array representation provides a convenient approach to decompose the large rate

matrix into smaller matrices for efficient usage of integration factor methods that can best

deal with stiffness in the system.

If a given chemical reaction system consists of of dmolecular species, namelyX1, X2, ..., Xd,

with maximal copy numbers of N1, N2, ..., Nd, respectively, then the system has Ntot =

N1N2...Nd possible states, for which a vector x = (x1, x2, ..., xd) denotes each state. The
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R− th reaction takes the form

Rr : wr1X1 + wr2X2 + ...+ wrdXd → vr1X1 + vr2X2 + ...+ vrdXd, (4.53)

where vri and wri , for every i and r, are non-negative integers and the system contains R

number of reactions. The reaction rate at state x is ar(x) = ar(x1, x2, ..., xd) and the vector

αr = (vr1 − wr1, vr2 − wr2, ..., vrd − wrd) (4.54)

denotes the change of copy number of the molecular species after the r− th reaction occurs

once.

In array representation, one can use an N1 × N2... × Nd d-dimensional array U to

denote the probability density function, and each component of U , Ux, as the probability

density at state x, which can be written as

Ux(t) = Prob[X1 = x1, X2 = x2, ..., Xd = xd, at time t]. (4.55)

Define the linear mapping Lr,

(LrU)x = ar(x− αr)Ux−αr(t)− ar(x)Ux. (4.56)

The CME for the probability density functions becomes

U̇(t) =
R∑
r=1

LrU(t). (4.57)

To introduce the array representation for Lr, we let ir1, i
r
2, ..., i

r
mr

denote the indices of

non-zero entries in αr. Using the same notation as in Eq. (4.51), U |(xj),j 6=ir1,ir2,...,irmr
Xir1

,Xir2
,...,Xirmr

denotes a
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mr-dimensional array by fixing indexes xj, j 6= ir1, i
r
2, ..., i

r
mr

. Then, one obtains

U =
⊗

1 ≤ xj ≤ Nj

j 6= ir1, ..., i
r
mr

U |(xj),j 6=ir1,ir2,...,irmr
Xir1

,Xir2
,...,Xirmr

. (4.58)

Define the linear mapping A(xj),,j 6=ir1,ir2,...,irmr
Xir1

,Xir2
,...,Xirmr

on mr-dimensional array V as

(A(xj),,j 6=ir1,ir2,...,irmr
Xir1

,Xir2
,...,Xirmr

V )(xi),i∈ir1,ir2,...,irmr

= ar(x− αr)V(xi−αr
i ),i∈ir1,ir2,...,irmr

− ar(x)V(xi),i∈ir1,ir2,...,irmr
.

(4.59)

Then the array representation of Lr becomes

LrU =
⊗

1 ≤ xj ≤ Nj

j 6= ir1, i
r
2, ..., i

r
mr

A(xj),j 6=ir1,ir2,...,irmr
Xi1

,Xi2
,...,Ximr

U |(xj),j 6=ir1,ir2,...,irmr
Xi1

,...,Ximr
. (4.60)

For typical systems, each Lr, r = 1, 2, ..., R cannot commute with one another, thus

the Strang splitting method is applied to approximate the solution, resulting in a second

order integration factor method (AcIIF2) for CME Eq. (4.57):

Un+1 =
R∏
r=1

eLr∆t/2

1∏
r=R

eLr∆t/2Un, (4.61)

where Un denotes the probability density functions at time tn = n∆t.

The exponential of Lr can be written in terms of the exponentials of A(xj),j 6=ir1,ir2,...,irmr
Xi1

,Xi2
,...,Ximr

.

If the reaction Rr only affects copy numbers of a few species, implying mr is small, the

calculation of the latter exponential is much more efficient than computing the original

one. In other words, the array representation saves storage and CPU time for the system
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containing many molecular species while each reaction only affects the copy number of a

small portion of species.

4.5 Numerical simulations

To explore various applications of the AcIIF methods (Eq. (4.36) and Eq. (4.37)), we

apply the second order AcIIF methods to five different systems: three-dimensional reaction-

diffusion equations with constant diffusion coefficients or spatially-dependent diffusion con-

stants; three- and four-dimensional Fokker-Planck equations; and chemical master equations

arising from a biological application.

4.5.1 Three-dimensional reaction-diffusion equation with constant

diffusion coefficients

We first apply AcIIF method Eq. (4.36) to the following reaction-diffusion equation

ut = (0.1uxx − 0.15uxy + 0.1uyy) + (0.1uxx + 0.2uxz + 0.2uzz)

+ (0.2uyy + 0.15uyz + 0.1uzz) + 0.8u,

(4.62)

where x, y, z ∈ (0, 2π) with periodic boundary conditions. With the initial condition u(x, y, z, 0) =

sin(x+ y + z), the equation has the exact solution u(x, y, z, t) = e−0.2t sin(x+ y + z).

Based on the result from Subsection 4.3.5, for this case, the corresponding linear

operators Lxy,Lyz and Lxz can commute with each other. Thus, Eq. (4.36) is a second order

scheme in both time and space. We first compare the second order array-representation

compact IIF with the standard IIF, both in second order. Because both methods are A-

stable, we choose ∆t = 1/N = hx/2π where Nx = Ny = Nz = N and ∆t = 1/N = hx/2π,
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and simulation results are evaluated at t = 1. As seen in Table 4.1, both methods clearly

show second order accuracy with similar sizes of errors as N increases, as one may expect

from the analysis of both methods. On the other hand, we observe the CPU time for both

methods to achieve the same accuracy is much larger in IIF than in AcIIF, because the

exponential matrices in IIF have much larger size than AcIIF. When N becomes 32, IIF

fails to compute as the size for matrix exponential becomes exceedingly large, leading to a

lack of sufficient memory in a Matlab implementation on typical personal computers (4GB).

Even in a cluster where computing a 323× 323 matrix exponential is possible, the CPU time

needed will be about 2 hours, and computation of a 643×643 matrix exponential takes more

than a day. On the other hand, AcIIF runs normally with good accuracy, showing clear

advantages in handling larger grid numbers for convergence of solutions.

4.5.2 Three-dimensional diffusion reaction system with non-constant

diffusion coefficients

To test the case with non-commutable differential operators, we consider the following

reaction-diffusion equations with non-constant coefficients:

ut = (0.5uxx − 0.5 sin(x+ y)uxy + 0.5uyy) + (0.5uxx − 1/3 cos yuxz + 1/3uzz)

+ (1 + cosx) (0.5uyy − 0.5uyz + 1/3uzz)) + f(x, y, z, u),

(4.63)

where x, y, z ∈ (0, 2π) with periodic boundary conditions. With the initial condition u(x, y, z, 0) =

sin(x+ y+ z), the equation has the exact solution u(x, y, z, t) = e−0.2t sin(x+ y+ z). Similar

to the previous case, we choose Nx = Ny = Nz = N , grid size hx = hy = hz = 2π/N ,

∆t = 1/N , and t = 1 as the temporal point for evaluating the method.

In this non-commutable case, we need to compute N number of array-representation

operators for each of Lxy,Lxz and Lyz. For example, to compute eLyz , we need the following
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calculations

Akxyz ∼ (1 + cos((kx − 1)hx)((0.5(·)yy − 0.5(·)yz + 1/3(·)zz),

eLyz =
⊗
kx

Akxyz U |
kx
yz

(4.64)

for kx = 1, 2, ..., N . In the commutable case, we only compute and save three of the exponen-

tial matrices of size N2×N2, in contrast to 3N of exponential matrices of the same size. As

a result, the non-commutable case takes significantly more CPU time than the commutable

case as seen in Table 4.1 and Table 4.2. However, compared to the standard IIF method,

AcIIF is still significantly much faster.

The order of accuracy for both AcIIF2 and IIF2 remain second order, as seen in Table

4.2. However, the error for the non-commutable case is larger than the commutable case

at the same spatial and temporal resolutions, which is likely due to the splitting error in

time. Similar to the constant diffusion case, IIF2 fails to run due to the memory problem

for relatively larger N .

4.5.3 Three- and four- dimensional Fokker-Planck equations

The Fokker-Planck equation (FPE) describes the time evolution of the probability density

function of stochastic systems [44]. The generalized FPE usually takes the following form

∂p(x, t)

∂t
= −

R∑
r=1

{
N∑
i

nri
∂

∂xi

(
qr(x, t)−

1

2

N∑
j=1

nrj
∂qr(x, t)

∂xj

)}
. (4.65)

Here, in the case of bio-chemical reactions, R denotes the total number of chemical reactions

involved in the system, N denotes the total number of different species participating the

reactions, xj denotes the copy number of j-th reactant, and nri denotes the change of copy

number of reactant i when the r-th reaction occurs once. p(x, t) represents the probability

density of the system at the state x = (x1, x2, ..., xN) (x ∈ RN+) and time t. In addition, we
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define

qr(x, t) = wr(x, t)p(x, t), (4.66)

where wr(x, t) is the reaction propensity function for r-th reaction at state x. For example,

for the following bio-chemical reactions,

X
k1[X]−−−→ Y,X + Y

k2[X][Y ]−−−−−→ Z,Ø
k3−→ Z, (4.67)

we have n1 = (−1, 1, 0), n2 = (−1,−1, 1), n3 = (0, 0, 1) and

w1(x, y, z, t) = k1x,w2(x, y, z, t) = k2xy, w3(x, y, z, t) = k3z. (4.68)

In general, FPE is a N -dimensional convection-diffusion equations with non-constant

diffusive coefficients and second order cross derivatives. Because the system may be stiff,

implicit temporal methods, such as Crank-Nicolson method [67], which requires solving

nonlinear systems of large size at each time step, are often needed. While directly apply

IIF method, the calculation of the huge matrix exponential is unaffordable in the high

dimensional case. AcIIF, which has the good stability like Crank-Nicolson, is a better choice

in solving FPE than IIF method as it divides the entire discretization matrix into multiple

small pieces by the array-representation technique.

To apply AcIIF to FPE, we first study a three-dimensional case in which there are

two metabolites and one enzyme, which is also studied in [67]. The reactions are:

Ø
k1−→ A Ø

k2−→ B

A+B
k3−→ Ø

A
k4−→ Ø B

k5−→ Ø

Ø
k6−→ EA EA

k7−→ Ø

(4.69)
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The corresponding propensity rates are given as

k1 = kA[EA]
1+[A]/KI

k2 = kB k3 = k[A][B]

k4 = µ[A] k5 = µ[B] k6 =
kEA

1+[A]/KR
k7 = µ[EA]

(4.70)

where kA = 0.3s−1, kB = 2s−1, KI = 30, k = 0.001s−1, µ = 0.004s−1, KR = 30 and kEA
=

1s−1 [67].

The computational domain for this system is chosen to be Ωh = [0, 100] × [0, 100] ×

[0, 45], which is large enough such that the probability of [A] > 100, [B] > 100, [EA] > 45

is sufficiently small, implying that the domain covers nearly all the possible states of the

chemical reactions. After discretizing the FPE using second order central differences, we

represent the density function by a three-dimensional array U(t) to represent the density

function. Each component Ui1,i2,i3(t) denotes the probability density for system at time t

and state [A] = i1, [B] = i2, [EA] = i3. There are seven reactions, thus, in FPE Eq. (4.65),

corresponding to R = 7. For r−th reaction, the corresponding discretized operator, denoted

by Lr, becomes

Lr =
N∑
i

nri
∂

∂xi

(
qr(x, t) +

1

2

N∑
j=1

nrj
∂qr(x, t)

∂xj

)
. (4.71)

Because Lr contains no cross derivatives for r 6= 3, we can use the array representation

presented in Subsection 4.3.1. On the other hand, L3 contains a cross derivative ∂2/∂[A]∂[B],

we use the array representation presented in Subsection 4.3.3. By direct application of AcIIF

(Eq (4.37) based on splitting technique), we obtain an overall second order method. In

particular, some of the reactions can be grouped into one matrix to reduce the number of

splittings and number of calculations of exponential matrices, such as R1 and R4, which

both have ∂2/∂[A]2 and ∂/∂[A] in Eq. (4.71).

To study the performance of AcIIF2, we also implement the second order Runge

Kutta (RK2) method for a comparison. The error of solution in the maximal norm is based
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on a simulation result from the finest “spatial” grid (NA = NB = 200, NEA
= 120) and

finest time step (∆t = 5 × 10−3). The initial condition for each simulation is a Gaussian

distribution centered at point (30, 40, 20) with standard derivation
√

30.

First, we observe in Table 4.3 that a much smaller ∆t is required for RK2 to converge

compared to AcIIF2 due to the fact that the reactions are stiff, requiring small ∆t, for non

A-stable methods such as RK2. Interestingly, AcIIF2 can reach the same overall error level

as RK2 using a much larger time step for the same-sized “spatial” mesh, indicating that the

numerical error for solving this FPE is likely dominated by spatial discretization. Thus, a

large time step is sufficient for A-stable methods, such as IIF, while small time steps are still

required for RK2 due to its stability constraints. In each time step RK2 is more efficient

than AcIIF2; however, AcIIF2, which requires fewer time steps for a given t, still outperforms

RK2 significantly in this case. We also plot the numerical results in Figure 4.1, where a grid

with NA = NB = 60 and NEA
= 30 and time step ∆t = 1s are used.

Next, we add another enzyme EB that synthesizes metabolite B in the same way

that EA synthesizes A in the three-dimensional system Eq. (4.69). This extension leads to

a four-dimensional FPE of four molecular species [A], [B], [EA] and [EB] [67],

Ø

kA·eA
1+a/KI−−−−→ A Ø

kB ·eB
1+b/KI−−−−→ B

A+B
k2·a·b−−−→ Ø

A
µ·a−→ Ø B

µ·b−→ Ø

Ø

kEA
1+a/KR−−−−→ EA EA

µ·eA−−→ Ø

Ø

kEB
1+b/KR−−−−→ EB EB

µ·eB−−→ Ø

(4.72)

where kA = kB = 0.3s−1, k2 = 0.001s−1, KI = 60, µ = 0.002s−1, kEA
= kEB

= 0.02s−1 and

KR = 30.

The computational domain is chosen to be [0, 80] × [0, 80] × [0, 30] × [0, 30] that
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contains nearly all possible states of the system. We choose zero Dirichlet boundary condi-

tions with the initial condition as a Gaussian distribution centering at (30, 40, 15, 12) with

a standard deviation
√

40. There are nine reactions in the system, corresponding to nine

array-representation operators. Based on commutability of the operators, we group some of

them similar to the three dimensional case to increase the overall computational efficiency.

One interesting observation is that that as the fourth dimension grid number NEB
increases,

the CPU time for increases only linearly, as seen in Table 4.4. For this set of simulations, we

fix the other three grid numbers: NA = NB = NEA
= 10, and keep doubling NEB

from 4 to

32. IIF method computes the entire matrix exponential, thus its CPU time will increase by a

fourth folder. While AcIIF only compute small matrix exponential, its CPU time will linearly

depends on NEB
. Finally, we plot the numerical results for NA = NB = 40, NEA

= NEB
= 20

and time step ∆t = 1, in Figure (4.2).

4.5.4 An application to Chemical Master Equations

The Chemical Master Equation (CME ) describes the time evolution of the probability

density function. In CME, each reaction on the probability density evolution may be consid-

ered as diffusion-like operators with cross derivatives. Thus, AcIIF can be applied to solve

such equations. We consider a family of proteins X with different conformational types

X1, X2, ..., Xd. Two conformational types Xi and Xi+1 can conform to each other through

an enzyme E. Suppose that during reactions, no new protein is created; the enzyme is

abundant so that one can treat the quantity of the enzyme as a constant; and intermediate

products are extremely unstable. As a result, the entire system consists of the following

bio-chemical reactions:

X1

k+
1→ X2

k+
2→ X3...

k+
d−1→ Xd

X1

k−1← X2

k−2← X3...
k−d−1← Xd

(4.73)
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for which the total copy number of the protein X is a constant,

X1 +X2 + ...+Xd = N (4.74)

For simplicity, x = (x1, x2, ..., xd) denotes each state where 0 ≤ xi ≤ N, i = 1, 2, ..., d

(although some of the states cannot be reached). In particular, the reaction

Xi

k+
i→ Xi+1 (4.75)

defines a linear mapping on probability density function in CMEs, with the following array

representation,

A(xj),j 6=i,i+1
Xi,Xi+1

Mm,n = −k+
1 mMm,n + k+

1 (m+ 1)Mm+1,n−1 (4.76)

where M is a 2-dimensional array. Other reactions can be treated in a similar way.

For a protein family with d conformational types and N total number of copies,

the direct calculation of exponential of the linear mapping requires the exponentiation of a

Nd×Nd matrix. However, in the array representation, only N2×N2 matrices’ exponentials

are required to be calculated. More saving in both storage and CPU time result in using the

array representation when the number of species d gets larger.

To demonstrate this through direct simulations, we implement a second order array-

representation integration factor method as well as the second order Runge-Kutta (a standard

temporal integrator for CMEs) for the case of N = 30 and d = 3. The initial distribution

of the molecules is set to be P (X1 = 30) = 1, that is, initially all molecules take the

conformational type X1. We choose rate coefficients k+
1 = k−2 = 1, k−1 = 2, k+

2 = 3 and we

compute the solution up to t = 3 using different ∆t. The maximal error of the solution is

estimated based on an “exact” solution computed using a very small time step by RK2.
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First, the second order accuracy of AcIIF2 method is clearly observed in Table 4.5.

As expected, RK2 requires a very small time step due to its stability constraint in contrast

to AcIIF’s stable and good accuracy, even at a time step as large as ∆t = 1/4. As ∆t

decreases significantly (e.g. ∆t ≤ 1/128), RK2 becomes stable and converges as seen in

Table 4.5. At the same size of time step, we observe AcIIF2 and RK2 has similar size of

errors. Of course, using the same size of time step, RK2 takes less CPU time and storage

than AIF2, with both achieving similar accuracy. However, if moderately high accuracy

(e.g. 10−4 for this particular system) is sufficient, AIF2 shows its advantage. In particular,

as the number of species increases or the rate constants become more stiff, a combination of

the array representation and the integration factor method becomes even more attractive in

achieving both efficiency and accuracy.

4.6 Discussions and Conclusions

Higher order spatial derivatives and reactions of drastically different time scales demand

temporal schemes of the generous stability constraint. Implicit integration factor methods,

which solve exactly the linear operator of higher order spatial derivatives along with an

implicit treatment of the stiff reactions, are effective approaches for such types of different

equations. One unique computational challenge associated with such methods is the handling

of exponentials of matrices. Here, we have introduced a new array representation for the

discretization matrices of the linear differential operators. Because of such representation,

computing exponentials of large matrices is reduced to the calculation of exponentials of

matrices of significantly smaller sizes. The saving and advantages for array representations

in both storage and CPU time escalate as the dimension of the system increases. In addition,

this approach can be directly combined with the implicit integration method for an overall

efficient method (termed as AcIIF) of excellent temporal stability.
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Due to its advantage for high dimensions and stiff reactions, such an approach is par-

ticularly appropriate for solving reaction-diffusion equations and other diffusion-like equa-

tions, such as Fokker-Planck equations. Our direct implementation and testing of the second

order AcIIF, which is linearly absolute stable, has demonstrated its advantages compared

to some existing approaches. Interestingly, such array representation can also be applied to

chemical master equations, ODE systems of large size that often is stiff. The computational

efficiency for such applications become most evident for biochemical networks of a large

number of species with each reaction in the system affecting only few species.

Although the array representation has been presented only in the context of compact

implicit integration factor methods, the approach can easily be applied to other integration

factor or exponential difference methods. Other type of equations of higher order derivatives,

(e.g. Cahn-Hilliard equations [68] of fourth order derivatives) in addition to reaction-diffusion

equations and Fokker-Planck equations may also be handled using the array representation

for better efficiency. To better deal with high spatial dimensions, one can incorporate the

sparse grid [69] into the array-representation technique. The flexibility of such representation

allows either direct calculation of the exponentials of matrices or using Krylov subspace for

computing their exponential matrix-vector multiplications for saving in storages. Overall,

the array representation along with integration factor methods provides an efficient approach

for solving a wide range of problems arising from biological and physical applications.
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Error in L∞ Accuracy order CPU time

N AcIIF2 IIF2 AcIIF2 IIF2 AcIIF2 IIF2

8 0.0672 0.0672 - - 0.05s 0.34s

16 0.0169 0.0169 1.99 1.99 0.15s 30.5s

32 0.0042 - 2.01 - 5.13s -

64 0.0011 - 1.93 - 246s -

Table 4.1: A comparison between the second order array-representation compact IIF method
(AcIIF2 in Eq. (4.36)) and IIF2 method. The symbol “-” denotes insufficient memory in
calculation of the exponential matrix.

Error in L∞ Accuracy order CPU time

N AcIIF2 IIF2 AcIIF2 IIF2 AcIIF2 IIF2

8 0.2744 0.2754 - - 0.29s 1.35s

16 0.0675 0.0678 2.02 2.02 2.2s 155s

32 0.0169 - 2.00 - 133s -

Table 4.2: A comparison between AcIIF2 method (Eq. (4.37)) and IIF2 for the case of
non-constant diffusion coefficients.
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AcIIF2/RK2

Grids

(NA, NB, NEA
) ∆t Error in L∞ CPU time RK2 unstable when

(25,25,15) 5/0.2 2.6× 10−4/2.6× 10−4 17.6s/71.2s ∆t ≥ 0.3

(40,40,24) 5/0.15 1.3× 10−4/1.4× 10−4 35.3s/182.5s ∆t ≥ 0.2

(50,50,30) 5/0.1 8.6× 10−5/9.1× 10−5 65.5s/470.2s ∆t ≥ 0.15

Table 4.3: A comparison between the second order AcIIF and Runge-Kutta (RK2) for the
three-dimensional FPE (4.69) at t = 30.

NEB
4 8 16 32

CPU time(s) 5.6 8.3 14.5 32.6

Table 4.4: The CPU time for different grid numbers of the fourth dimension of the FPE.
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AcIIF2 RK2

∆t error order of acc error order of acc

1/4 7.95× 10−4 - unstable

1/8 1.96× 10−4 2.02 unstable

1/16 4.89× 10−5 2.00 unstable

1/32 1.22× 10−5 2.00 unstable

1/64 3.06× 10−6 2.00 unstable

1/128 7.64× 10−7 2.00 3.74× 10−7 -

1/256 1.91× 10−7 2.00 9.30× 10−7 2.01

Table 4.5: A comparison between the second order array-representation compact integration
factor method (AcIIF2) and Runge-Kutta (RK2) methods for simulating CMEs.

Figure 4.1: Numerical solution of system (4.69) using AcIIF2. Temporal discretization is
set by the time step ∆t = 1s, and the simulation is ran up to time t = 50s. (a) Shows the
initial distribution of molecular species A and B, which are Gaussian distributions centered
at (A,B) = (30, 40). (b) The distribution of molecular species A and B at t = 50s. (c) The
contour plot of initial and final distributions. The dotted black line connects the centers of
the solutions of the rate equations of system (4.69).
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Figure 4.2: Numerical solution of system (4.72) using AcIIF2. Temporal discretization is
set by the time step ∆t = 1s, and the simulation is ran up to time t = 35s. (a) The
distribution of molecular species A and B at t = 35s. (b) The contour plot of initial and
final distributions of molecular species A and B. The dotted black line connects the centers
of the solutions of the rate equations of system (4.72). (c) The distribution of molecular
species EA and EB at t = 35s. (d) The contour plot of initial and final distributions of
molecular species EA and EB. The dotted black line connects the centers of the solutions of
the rate equations of system (4.72).
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Chapter 5

Semi-implicit Integration Factor

Methods on Sparse Grid

NOTE: This chapter was done in collaboration with Qing Nie and the was submitted in

2014.

5.1 Summary

In order to solve the multi-dimensional partial differential equations, the curse of dimen-

sionality has to be dealt with. Application of sparse grid technique as spatial discretization

method can handle this problem, however, how to deal with afterwords time integration

problem efficiently is still a challenge. High order spatial derivatives and stiff reactions often

introduce extreme temporal stability constraints, forcing people to choose very small time

step, or adopt implicit algorithms. Semi-implicit integration factor method (IIF) handles

diffusion exactly and reaction implicitly, thus provides good stability properties as well as

excellent numerical efficiency for low dimensional cases. Meanwhile, array-representation
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compact semi-implicit integration factor method (AcIIF) are developed to significantly de-

cease the time and storage cost of computing the matrix exponentials in IIF method on

uniform grids, which is efficient for multi dimensional situations. In this chapter we con-

struct the AcIIF method on several sparse grid spatial discretization techniques (sparse grid

finite element scheme, sparse grid finite difference scheme, and a sparse grid combination

technique). Our new methods are particularly advantageous for high dimensional systems

and are theoretically and numerically proved to be correct and efficient. In addition, a diffu-

sive logistic equation and a Fokker-Planck equation, both driven by real biological problems,

are solved by new methods. These examples suggest the broad applications of new methods

on high-dimensional systems.

5.2 Introduction

Consider the following generalized reaction-diffusion system:

∂u(x, t)

∂t
= Pu(x, t) + f(u(x, t)),x = (x1, ..., xd) ∈ (0, 1)d, t ∈ [0, T ], (5.1)

where P is an elliptic partial operator respect to space x. This equation has multiple

applications. For instance, the formation of the morphogen gradient in the development

of embroy is modeled by a reaction-diffusion equation[11], where P is a Laplacian ∆x. Or

the stochastic behavior of a gene network is described by the Fokker-Planck equation [44],

where P denotes a second order partial differential operator containing cross derivatives.

In finance, the Black-Scholes equation takes the similar form to price the options under

several risk factors [70]. While in population genetics this equation is applied to model the

site-frequency spectrum [71].

Numerically solving the equation in high-dimensional situation can be a huge chal-
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lenge. This is mainly because of two reasons. First, people may confront the “curse of

dimensions”, that is, to achieve an accuracy of the order O(Nα
x ) (for example, α = 2 for a

second order center difference scheme), O(Nd
x) number of uniform grids are needed. The stor-

age and manipulation of these grids can be expensive and unaffordable in high-dimensional

situations. For example, when solving an equation with fifty spatial dimensions (d = 50),

even the spatial resolution is set to be small (Nx = 2), the number of total unknown, which

need to be stored and updated at every time step, is 250. It would take approximately 109

GB of memory to save them if each digit is in double precision.

Second, after space discretization, how to deal with the afterwords time integration

problem efficiently can be difficult. High order spatial derivatives (Laplacians, cross deriva-

tives etc.) and stiff reactions may result severe constrains on time step. For explicit methods,

e.g. Runge-Kutta method and Euler method, the time step has to be small enough to meet

the stability needs, thus increase the total time cost. For implicit methods (Crank-Nicolson

method, implicit Euler etc.), although the time step can be larger, a huge non-linear system

needs to be solved at each time step.

To handle the first issue, sparse grid is proved to be an efficient technique[72]. Instead

of uniform grids, sparse grid can achieve an accuracy of O(logNd−1/N2), with O(N logNd−1)

number of grids, thus break the “curse of dimensions”. The simplest sparse grid approach

starts from the 1-dimensional piecewise linear hierarchical basis, which is then extended to

the general piecewise d-linear hierarchal basis by a tensor product construction [73, 72].

Then other (polynomial) hierarchical bases are developed[74, 75, 76]

Several sparse grid discretization techniques are developed to solve partial differential

equations. Some of them are listed in the following. The first one is the sparse grid finite

element method and Galerkin technique [77, 78], which is based on piecewise linear finite

elements and weak formula. The second technique of the discretization PDEs is the sparse

grid finite differences scheme[79], which is based on the one dimensional second order center
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difference, and the adaptivity of this method is also developed[79]. Another discretization

method is so called sparse grid combination technique [80], which is to solve the PDEs

on different grids, then combines all the results. Other discretization scheme based on

sparse grid are also developed, e.g. finite volume method [81] and the spectral method

[82, 69]. These methods have multiple applications, such as option price model [83] and

elliptic problem [69].

For the second issue, dealing with the time integration problem, if on the uniform

grid, integration factor (IF) and exponential time differencing (ETD) methods are effective

to handle temporal stability constrains raised by high order spatial derivatives [45, 46, 47].

The IF and ETD methods deal with linear operators of the highest order derivative exactly,

hence can achieve good temporal stabilities [48, 49, 45]. Besides, a class of semi-implicit

integration factor (IIF) methods were developed for implicit treatment of the stiff reactions

[50], aiming on relief the stability constraints come from stiff reactions. In the IIF method,

the diffusion term is solved exactly while the nonlinear equations resulted from the implicit

treatment of reactions is decoupled from the diffusion term, thus avoid solving huge nonlinear

systems in each time step, which is unlike and more efficient than other implicit methods.

The second order IIF method is proved to be linearly unconditionally stable.

On uniform grid, the dominant computational cost in IIF method is the storage and

calculation of exponentials of matrices from discretization of the linear differential operators

in the PDEs. To overcome this issue, compact representation [51, 52] and array represen-

tation [42] of the discretization matrices was introduced in the context of IIF method. The

compact representation works for Laplacian or bi-Laplacian, which does not include cross

derivatives, and array representation can be applied general elliptical cases. In both com-

pact implicit integration factor method (cIIF) and array-representation implicit integration

factor method (acIIF), the discretized solutions are represented in multi-dimensional array

rather than a vector, and the discretized diffusion operator are represented in matrices of
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much smaller size than the standard matrices used in IIF. Also, both methods preserve the

stability property of the IIF method. In addition, cIIF method can handle general curvi-

linear coordinates as well as combine with adaptive mesh refinements [52]. One can also

apply cIIF to stiff reactions and diffusion while using other specialized hyperbolic solvers

(e.g. WENO methods [53, 54]) for convection term to solve reaction-diffusion-convection

equations efficiently [55].

Since their efficiency on time integration problem, in this chapter we propose to

construct the IIF and acIIF method on sparse grid. To deal with a PDE system, we first

apply one of the sparse grid discretization technique to discretize the system in space, then

deal with the afterword ODE system with the IIF and acIIF methods. Here we introduce the

IIF and acIIF methods on three of the sparse grid discretization schemes: (i) finite element

scheme; (ii) finite difference scheme; and (iii) sparse grid combination technique. Also,

numerical tests are presented to show the correctness, efficiency and broad applications of

our new methods.

This chapter is organized as below: in Section 5.3 we present some backgrounds of

sparse grid interpolation; in Section 5.4, we construct the IIF method on sparse grid finite

element scheme and Galerkin techniques; in Section 5.5, we construct the AcIIF method

on the sparse grid finite difference scheme; in Section 5.6, we states that application of

AcIIF method on each subproblem required by sparse grid combination technique is com-

putationally efficient, and this approach works well when cross derivatives and non-constant

diffusion coefficients are in the system; in Section 5.7, we present some numerical results to

demonstrate the correctness, efficiency, and applications of our methods.
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5.3 Introduction to sparse grid interpolation

NOTE: This section introduces some backgrounds about sparse grid, and all the materials

are refer to [72]. Let ϕk,j(x) be the following piecewise linear hat function:

ϕk,j(x) =

1− 2k+1
∣∣x− 2j−1

2k+1

∣∣ , x ∈ [ (j−1)
2k

, j
2k

],

0, otherwise
(5.2)

And a tensor product leads to the following hierarchical basis:

φk,j(x) =
d∏
i=1

ϕki,jj(xi), (5.3)

where k = (k1, k2, ..., kd), j = (j1, j2, ..., jd) and x = (x1, x2, ..., xd) ∈ (0, 1)d. For a smooth

function g(x), x ∈ (0, 1)d vanishes outside the domain, if g is smooth enough, then for fixed

Nx = 2K , we have:

g(x) =
∑

k1 + ...+ kd ≤ K,

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

%k,jφk,j(x) +O

(
logNd−1

x

N2
x

)
. (5.4)

Note that to reach the accuracy of O(logNd−1
x /N2

x), based on above, there are O(logNd−1
x Nx

basis functions, and the “Curse of dimensions” is beaten. Also note that to get all the

coefficients of the above equation, %k,j, the function value at the following point are needed:

gk,j := g

(
2j1 − 1

2k1+1
, ...,

2jd − 1

2kd+1

)
. (5.5)

Also, note that

gk,j 6= %k,j. (5.6)
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The value gk,j is called the nodal value of the function, while the value %k,j is called the

hierarchical value of the function. Usually a transformation between two value are needed

when applying sparse grid. Figure 5.1 shows a two dimensional sparse grid for Nx = 24.

5.4 Semi-implicit integration factor method (IIF) with

sparse grid finite element scheme

In this section we solve the following reaction-diffusion system while the spatial differential

operator is the Laplacian.

∂u

∂t
(x, t) = ∆xu(x, t) + f(u), x = (x1, ..., xd) ∈ (0, 1)d. (5.7)

For the purpose of simplicity, a zero-Dirichlet boundary condition is applied on u.

5.4.1 Weak formula under sparse grid finite element scheme

Fix Nx = 2K , approximate the unknown u by:

u(x, t) ≈
∑

k1 + ...+ kd ≤ K

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

vk,j(t)φk,j(x), (5.8)

and define the inner product of two functions ψ1(x) and ψ2(x):

< ψ1(x), ψ2(x) >:=

∫
(0,1)d

ψ1(x)ψ2(x)dx. (5.9)
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Put Eq. (5.8) into Eq. (5.7), and make the inner product on both sides with φk,mathbfj(x),

for all possible k and j. This leads to the following weak formula on the sparse grid:

∑
k1 + ...+ kd ≤ K

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

< φk,j, φk,j >
dvk,j(t)

dt

=
∑

k1 + ...+ kd ≤ K

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

< ∆xφk,j, φk,j > vk,j(t)

+
∑

k1 + ...+ kd ≤ K

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

< φk,j, φk,j > fk,j(t)

(5.10)

where fk,j(t) is the nodal value of function f(u(x, t)):

f(u(x, t)) ≈
∑

k1 + ...+ kd ≤ K

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

fk,j(t)φk,j(x). (5.11)

Note that both < φk,j, φk,j > and < ∆xφk,j, φk,j > can be exactly calculated since the piece

wise linear function are used. By form the following two matrices:

M =
(
< φk,j, φk,j >

)
, D =

(
< ∆xφk,j, φk,j >

)
, (5.12)

and let vector V (t) = (vk,j(t)) and F (t) = (fk,j(t)) denote the hierarchical value of unknown

function and reactions, the following time dependent problem is left to be solved:

M
dV

dt
= D · V +M · F, or

dV

dt
= (M−1D)V + F. (5.13)
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Directly apply the IIF method to the above equation, we construct the following second

order (in time) IIF method with sparse grid finite element scheme (IIF2-SG-FEM):

V (tn+1) = eM
−1D∆t

(
V (tn) +

∆t

2
F (tn)

)
+

∆t

2
F (tn+1). (5.14)

Note that since the nodal value is not equal the hierarchical value, the above non-linear

system cannot be solved locally. Next we’ll introduce an order to solve above equation.

Following that order, only localized non-linear system needs to be solved. This is the one

major advantage of the IIF method.

5.4.2 Solving non linear system Eq. (5.14)

To solve Eq. (5.14), we first solve the hierarchical value of k = (0, ..., 0) and j = (1, ..., 1).

Note that at this point, the nodal value equals the hierarchical value so we directly solve the

following:

u(
1

2
, ...,

1

2
, tn+1) = L(0,...,0),(1,...,1) +

∆t

2
f(u(

1

2
, ...,

1

2
, tn+1)), (5.15)

where Lk,j is the computational result of eM
−1D∆t

(
V (tn) + ∆t

2
F (tn)

)
at corresponding loca-

tion. And

v(0,...,0),(1,...,1)(tn+1) = u(
1

2
, ...,

1

2
, tn+1). (5.16)

The we solve the hierarchical value for k that k1 + k2 + ... + kd = 1. Note that there are

two ways to compute the nodal value of f at corresponding point: (i) from the hierarchical

value of f (left side of the below equation); and (ii) from the nodal value of u (right side of

the below equation).

fk,j + 0.5f(0,...,0),(0,...,0) = f(vk,j + 0.5v(0,...,0),(0,...,0)), k1 + ...+ kd = 1. (5.17)
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Since v(0,...,0),(0,...,0) is known, put this into Eq. (aciif-sg:eq:iif-fem):

vk,j(tn+1) = Lk,j+
∆t

2

(
f(vk,j + 0.5v(0,...,0),(0,...,0))− 0.5f(0,...,0),(0,...,0)

)
, k1 +...+kd = 1. (5.18)

Solve above localized non-linear system to get all hierarchical value vk,j(tn+1) such that

k1 + ...+ kd = 1.

Typically, after solving all vk,j (and corresponding fk,j) for which k1 + ... + kd < K,

then for k, k1 + ...+ kd = K, and let

xk,j :=

(
2j1 − 1

2k1+1
, ...,

2jd − 1

2kd+1

)
, (5.19)

then followed by two ways to compute the nodal value of f at point xk,j:

fk,j +
∑

k1 + ...+ kd ≤ K − 1

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

fk,jφk,j(xk,j) =

f


vk,j +

∑
k1 + ...+ kd ≤ K − 1

ki ≥ 0

∑
1 ≤ ji ≤ 2ki

i = 1, 2, ..., d

vk,jφk,j(xk,j)


.

(5.20)

Putting above equation into Eq. (5.14), we derive the local non-linear system for vk,j.
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5.4.3 Error estimation, computational cost and stability

The error of the IIF2-SG-FEM method comes from two parts: (i) the spatial discretization

by the sparse grid; and (ii) the second order (in time) IIF method as time integration. So

the overall error estimation is:

O

(
logNd−1

x

N2
x

)
+O(∆t2). (5.21)

The majority cost of the IIF2-SG-FEM method is the computation of the exponential of

M−1D∆t. Although it only needs to be computed once and then store for later use,

for large dimensions (d) and large spatial resolution (Nx), since the size of the matrix is

O(Nx logNd−1
x ), the cost may still be huge. Also, at each time step, we need to compute Eq.

(5.20) in order to get the local non-linear system. This may also takes some time. Later in

the chapter, we’ll discuss other methods that can reduce the size of the exponential matrix.

Since M is the mass matrix and D comes from the Laplacian operator, M−1D∆t

only contains non-negative eigenvalues, and the stability of IIF2-SG-FEM can be discussed

through a scalar case[50]. It is shown that IIF2-SG-FEM is A-stable if the reaction term is

linear.

5.5 Array-representation semi-implicit integration fac-

tor method (AcIIF) with the sparse grid finite dif-

ference method

In this section we construct the AcIIF with the sparse grid finite difference method to solve

Eq. (5.7). For the purpose of simplicity, all other conditions (spatial domain and boundary
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condition) remain the same as in Section 5.4.

5.5.1 An introduction to the sparse grid finite difference method

Let V (t) = (vk,j(t)) be the hierarchical value of unknown u and U(t) = (u(xk,j, t)) be

the nodal value. The nodal-hierarchical transformation can be achieved by a dimensional

splitting scheme [79]. Let H i be the (nodal to) hierarchical basis transformation along

direction xi [79], acts on U(t) as below: for all possible

ki := (k1, ..., ki−1, ·, ki+1, ..., kd), ji := (j1, ..., ji−1, ·, ji+1, ..., jd), (5.22)

do the one dimensional (nodal) to hierarchical transformation on vector Uki,ji(t), which is

a vector composed by elements of U(t) that fix ks, js, s 6= i and only vary ki and ji. The

(hierarchical to) nodal basis transformation along direction xi, M i, acts on V (t) in a very

similar way, instead of a one dimensional (hierarchical to) nodal transformation. The nodal-

hierarchical transformation is the composition of H i or M i:

H iM i = I, H1H2...HnU(t) = V (t), M1M2...MnV (t) = U(t). (5.23)

Define HI/{i} := H1...H i−1H i+1...Hn as the (nodal to) hierarchical basis transformation

along all direction except direction xi. Also define the finite difference operator Di acts on

any vector U(t) as: for all possible ki and ji, do the regular one dimensional center difference

on Uki,ji(t). The the finite difference scheme on sparse grid for ∂2/∂x2
i is (for fixed Nx = 2K)

H
−1

I/{i}DiHI/{i}U(t), with an error estimation:

O

(
logNd−1

x

N2
x

)
(5.24)
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Use this scheme in Eq. (5.7) gives the following ODE system:

dU

dt
(t) =

(∑
1≤i≤d

H
−1

I/{i}DiHI/{i}

)
U(t) + f(U(t)). (5.25)

Apply the second order IIF method, we obtain the following second order (in time) IIF with

sparse grid finite difference method (IIF2-SG-FD):

U(tn+1) = e

(∑
1≤i≤nH

−1
I/{i}DiHI/{i}

)
∆t

(
U(tn) +

∆t

2
f(U(tn))

)
+

∆t

2
f(U(tn+1)). (5.26)

In IIF2-SG-FD scheme, we need to compute and store the exponentials of a O(Nx logNd−1
x )×

O(Nx logNd−1
x ) matrix. When Nx and d are large, its computation is unaffordable.

5.5.2 AcIIF method with the sparse grid finite difference method

To reduce the size of the exponential matrix and related computational cost, we apply array

representation on U(t) and V (t), to decompose them to some smaller vectors [42]. Starting

from the hierarchical value V (t), for a fixed direction xi and ki, ji, varying ki and ji gives a

vector of T (ki, ji) elements, and denote as Vki,ji(t), where

T (ki, ji) =

kmax
i∑
s=0

2s = 2k
max
i +1 − 1, kmax

i = K − (k1 + ...+ kd) + ki. (5.27)

Let ki and ji go though all possible value, all such smaller vectors joint together will form

the original vector V (t), and we use the notation
⊗

to denote such relation:

V (t) =
⊗

ki,
∑

r 6=i kr ≤ K

ji, jr = 1, 2, ..., 2kr , r 6= i

Vki,ji(t). (5.28)
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Note that it is different than original array representation, where all the subarrays have the

same length [42]. Here different sub vectors Vki,ji(t) have different size T (ki, ji). But the size

is less than 2Nx − 1. With array representation, we can use smaller matrices to represent

the (hierarchical to) nodal transformation along direction xi, M i:

M iV (t) =
⊗

ki,
∑

r 6=i kr ≤ K

ji, jr = 1, 2, ..., 2kr , r 6= i

Mki,jiVki,ji(t), (5.29)

and the center difference scheme Di:

DiV (t) =
⊗

ki,
∑

r 6=i kr ≤ K

ji, jr = 1, 2, ..., 2kr , r 6= i

Dki,jiVki,ji(t). (5.30)

Mki,ji denotes the one dimensional (hierarchical to) nodal transformation, and Dki,ji is the

following tridiagonal matrix:

Dki,ji =
1

T(ki, ji)2



−2 1 0 ... 0

1 −2 1 ... 0

... ... ...

0 ... 0 −2 1


, (5.31)

and both are T (ki, ji)× T (ki, ji) matrices, which are at most (2Nx − 1)× (2Nx − 1). Define

Bki,ji = M−1
ki,ji

Dki,jiMki,ji , then under array representation, the exponential ofH
−1

I/{i}DiHI/{i}∆t
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is calculated as:

eM
−1
i DiM i∆tV (t) =

⊗
ki,
∑

r 6=i kr ≤ K

ji, jr = 1, 2, ..., 2kr , r 6= i

eBki,ji∆tVki,ji(t). (5.32)

If directly compute, the size of the matrix is logNd−1
x times greater than computed following

the right hand size. Then use array representation in IIF2-SG-FD to replace the process

of calculation of the exponential of the matrix, we construct the array-representation semi-

implicit integration factor method (AcIIF2-SG-FD):

(i) Transform from the nodal value
(
U(tn) + ∆t

2
f(U(tn))

)
to the hierarchical value W 1(t),

W 1(tn) = M

(
U(tn) +

∆t

2
f(U(tn))

)
, (5.33)

(ii) Adopt array representation to compute the exponential matrix and vector multiplication:

W 2(tn) =
⊗

k1,
∑

r 6=1 kr ≤ K

j1, jr = 1, 2, ..., 2kr , r 6= 1

eBk1,j1∆t


...

⊗
kd,
∑

r 6=d kr ≤ K

jd, jr = 1, 2, ..., 2kr , r 6= d

eBkd,jd
∆tW 1

kd,jd(tn)


k1,j1

,

(5.34)

(iii) Update the nodal value by solving the non-linear system, where M−1 is the (hierarchical

to) nodal value transformation:

U(tn+1) = M−1W 2(tn) +
∆t

2
f(U(tn+1)). (5.35)
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5.5.3 Error estimation, computational cost, stability and high or-

der (in time) method

The error estimation of IIF2-SG-FD and AcIIF2-SG-FD methods is the same as in Eq.

(5.21) since the error comes from two parts: (i) spatial discretization by a sparse grid finite

difference scheme; and (ii) IIF2/AcIIF2 as time integration.

In the IIF2-SG-FD method, the large matrix exponential still needs to be compute,

as the same as in the IIF2-SG-FEM method. While in the AcIIF2-SG-FD method, the com-

putation cost of the matrix exponential is significantly reduced, since we reduce the matrix

size by a vector of logNd−1
x . But we introduce the hierarchical-nodal transformation at each

time step. These transformation can be achieved in a fast way [69], so its computational

cost can be neglect compare to the calculation of matrix exponential.

In both IIF2-SG-FD and AcIIF2-SG-FD method, we all work with matrix with non-

positive eigenvalues, so its stability is the same as a scalar case. It is shown that for a scalar

case, for the linear reactions, the method is A-stable [50].

To spatial error is constrained by sparse grid, however, we can enhance the time

integration error by applying high order (in time) methods. For example, apply the third

order IIF method to Eq. (5.25) leads to the following IIF3-SG-FD method:

Utn+1 = eA∆tU(tn) + ∆t

(
5

12
f(U(tn)) +

2

3
eA∆tf(U(tn))− 1

12
e2A∆tf(U(tn−1))

)
, (5.36)

with error:

O(
logNd−1

x

N2
x

) +O(∆t3), (5.37)
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5.6 Cross derivatives and non-constant coefficients: AcIIF

with a sparse grid combination technique

In the previous section we mainly focus on the Laplacian differential operator. In this section,

we construct an efficient method to solve more general case, Eq. (5.1), where the spatial

partial differential operator P may contains cross derivatives and non-constant coefficients.

The method based on a sparse grid combination technique and the AcIIF method.

The sparse grid combination technique is another efficient way to deal with high

dimensional systems [80]. Instead of sparse grids that handle with irregular grids, the sparse

grid combination technique solves the PDE on different uniform grids, then combine each

result to get the final solution. One application of the sparse grid combination technique is

the option price model [83].

The sparse grid combination technique consists of two major steps:

Step 1: Fix the spatial resolution Nx = 2K , solve Eq. (1) on all the uniform grids

below:

(2k1 × 2k2 × ...× 2kd), K ≤ k1 + k2 + ...+ kd ≤ K + d− 1, ki ≥ 1, (5.38)

where 2ki is the grid number along direction xi. The results on each grid denotes as

wk1,...,ki(x, t).

Step 2: Combine all the results as following:

wK(x, t) =
K+d−1∑
m=K

(−1)d−1−m+K

 d− 1

m−K

 ∑
k1+k2+...+kn=m

w(k1,...,kn)(x, t). (5.39)
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If each individual solution wk1,...,ki(x, t) satisfies:

∥∥u(x, t)− w(k1,k2,...,kn)(x, t)
∥∥ =

n∑
i,j=1

O

(
1

ninj

)
, (5.40)

then the error of wK(x, t) to the accurate solution u(x, t) is [80]:

‖u(x, t)− wK(x, t)‖ = O

(
logNd−1

x

N2
x

)
. (5.41)

In the sparse grid combination technique, each subproblem contains Nx grids, and the over-

all solution can reach an error estimation like other sparse grid method. Besides, each

subproblem is independent to others, and this may lead to a straightforward implementa-

tion of parallel scheme. Suppose enough cores are given, then each core is in charge of one

subproblem, and then after get all solutions, put them together as Eq. (5.39).

Based on the Cannikin law, under parallel, the subproblem which takes the most CPU

time, matters to the overall efficiency. And how to solve each subproblem with less cost needs

to be discussed. If take some explicit methods such as RK2, due to the stability constrains,

the time step has to be ∆t ∼ ∆x2. Then for subproblems on grids for which ∃i such that

ki = K and kj = 1, j 6= i, the time step reaches the minimum, that is ∆t = 1/22K = 1/N2
x.

These problems take more time to be solved. If IIF method is used, the time step can always

remain the same, that is ∆t = 1/Nx, since its advantages on stability. However, computation

of the exponentials in IIF cost much more CPU time.

We propose to apply the AcIIF method [42] to solve each subproblem. The AcIIF

method is as stable as IIF method and moreover, significantly decrease the size of the ex-

ponential matrices, thus the total computational cost. With the AcIIF method, the time

step for each subproblem is all set to be ∆t = 1/Nx, to fulfill the error condition for each

subproblem Eq. (5.40).
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The detailed information about the AcIIF method is given in Chapter 4.

5.7 Numerical simulations

We present several numerical tests in this section.

5.7.1 A two dimensional non-linear reaction-diffusion system

We first implement the IIF2-SG-FEM method on the following non-linear reaction-diffusion

equation:

ut(x, y, t) =
1

2π2
(uxx(x, y, t) + uyy) + u(x, y, t)2 − e−2t sin2 πx sin2 πy, (5.42)

with a zero Dirichlet boundary condition and the initial condition below:

u(x, y, 0) = sin πx sin πy. (5.43)

The exact solution for the system is:

u(x, y, t) = e−t sinπx sin πy. (5.44)

Directly solve the weak formula Eq. (5.10) by some implicit methods (e.g. Crank-Nicolson)

will have to solve a large non-linear system since the presence of the nonlinear reaction

u(x, y, t)2. To make a comparison, we implement both the IIF2-SG-FEM method and the

RK2 to solve the weak formula. Numerical results show that in the IIF-SG-FEM, when the

time step ∆t = 1/Nx, the method is convergent and the error is consistent with analytical

result. While in the RK2 method, if time step ∆t = 1/N2
x , the method is convergent and
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the error is very similar to the one of the IIF2-SG-FEM method. And a larger time step

∆t = 1/Nx leads to instability. The error of the IIF2-SG-FEM method is plotted in Figure

5.2(a), which is consistent with the error estimation Eq. (5.21).

5.7.2 A three dimensional linear reaction-diffusion system

We implement the AcIIF2-SG-FD method on the following system:

ut(x, y, z, t) =
1

π2
(uzz + uyy + uzz) + (n− 1)u, (5.45)

with the initial condition

u(x, y, z, 0) = sinπx sinπy sin πz, (5.46)

and a zero Dirichlet boundary condition. The exact solution for the system is:

u(x, y, z, t) = e−t sin πx sin πy sin πz. (5.47)

The L∞ error with different spatial resolution is plotted in Figure 5.2(b). The time step is

step to be ∆t = 1/Nx and the result is consistent with the analysis.

To compare with other methods, we also implement the IIF2-SG-FD method as well

as the RK2 method with sparse grid finite difference. All the results are listed in Table

5.1. It is shown that the AcIIF2-SG-FD method performs much faster than the other two

methods. A detailed analysis shows that for the IIF2-SG-FD method, the most consuming

part is to calculate the matrix exponential and it ail take about 90 percent of the overall CPU

time. And in the AcIIF2-SG-FD method, this part of time consuming is largely decreased.

Also, when Nx = 128, the size of the exponential matrix is 7423× 7423 in the IIF2-SG-FD
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method. With a computer of 4GB memory, such computation is unaffordable and leads to

the out of memory error. For the same situation, the AcIIF2-SG-FD method only computes

the exponentials of less than 256× 256 matrices.

In the RK2 method with sparse grid finite difference, due to the stability constrains,

the time step has to be ∆t = 1/N2
x. And this small time step leads to much more integration

steps to reach the same final time. While a larger time step is chosen, the method is not

convergent.

5.7.3 A diffusive logistic equation

The diffusive logistic equation:

∂u

∂t
(x, t) = D∆xu+ gu− u2, x ∈ Ω, t > 0, (5.48)

describes the population density evolution. The unknown function u denote the population

density of a specie, with respect to time t and location x. The smooth function g defines the

birth rate of the specie, which may be positive or negative. Different methods are develop to

solve this type of equation [84]. We implement the AcIIF2-SG-FD method on the following

dimensional diffusive logistic equation:

(x, y, z) ∈ Ω = [0, 1]3, D =
1

3π2
, u(x, y, z, 0) = sin πx sin πy sin πz,

g(x, y, z, t) = e−t sin πx sinπy sin πz,

(5.49)

and a zero Dirichlet boundary condition for u(x, y, z, t). The exact solution for this system

is:

u(x, y, z, t) = e−t sin πx sin πy sin πz. (5.50)
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In our implementation, each local non-linear equation is solved by the Newton iteration

method, with a tolerance of 10−6. The error is plotted in Figure 5.3(a), which is consistent

with the analytic result. Also, the population density corresponding to location x and y is

plotted in Figure 5.3(b), here the spatial resolution Nx = 128, and t = 0.5, z = 0.5. It is

very similar to the exact result, which is e−0.5 sin πx sinπy.

To make a comparison, we also implement the RK2 method with sparse grid finite

difference. The CPU time for both methods are given in Table 5.2. The time step for RK2

is set to be 1/N2
x, due to stability constrains. The results show the numerical efficiency of

our method.

5.7.4 A three dimensional reaction-diffusion system with cross

derivatives

We implement AcIIF2 method with the sparse grid combination technique to the following

PDEs with cross derivatives:

ut = (0.1uxx−0.15uxy+0.1uyy)+(0.1uxx+0.2uxz+0.2uzz)+(0.2uyy+0.15uyz+0.1uzz)+0.3u

(5.51)

where x, y, z ∈ (0, 2π), and with a periodic boundary condition on u(x, y, z, t) and a initial

condition:

u(x, y, z, 0) = sin(x+ y + z). (5.52)

The exact solution for the system is

u(x, y, z, 0) = e−0.2t sin(x+ y + z). (5.53)
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The L∞ error is plotted in Figure 5.3(c), which is consistent with the analytical error esti-

mation. To demonstrate the supreme of apply the AcIIF method on each subproblem, we

list the CPU times for some subproblems with different methods in Table 5.3. As it shown,

the AcIIF method is always the fastest.

If the diffusive coefficient is not constant, then the pre calculation of matrix expo-

nential may not be efficient in the AcIIF2 method. At this moment, other approximations

of matrix exponential may be more suitable. For example, the Krylov subspace method

[57, 61]. We also studied this case in Chapter 4.

5.7.5 A four dimensional Fokker-Planck equation

We solve the Fokker-Planck equation with respect to the bio-chemical system (4.72) with

the AcIIF2 method and the sparse grid combination technique. All other coefficients are the

same as in Subsection 4.5.3.

To solve this FPE, first of all, the domain needs to be determined. We choose the

domain to be [0, 100] × [0, 100] × [0, 50] × [0, 50] such that the probability outside of this

domain can be neglect. A zero Dirichlet boundary condition is applied for the upper bound.

For lower one, the natural boundary is used. We start with a Gaussian distribution centering

at (30, 40, 15, 12) with a standard deviation of
√

40. There are nine reactions in the system

and for the acIIF method, we group these reactions as the following: the first to fifth reaction

denotes are grouped as one array-representation operator; the sixth and seventh are grouped

as one; and eighth and ninth are grouped as one.

To use a sparse grid combination techniques, first we set up a spatial resolution Nx =

2K , then this FPE is solved on every subproblems. To meet the accuracy requirement, in the

acIIF approach, we choose ∆t = 1/maxiNxi . We use multiple cores to run the simulation,

87



then combine all the results. We also implement RK2 to solve each problem and we found

that, to maintain the convergence, for certain subproblem (e.g. Nx1 = Nx2 = .... = Nxd−1
= 2

and Nd = 2K+1−d), the time step must be taken very small, and these problems spend much

more time than the acIIF approach.

We plot the density distribution in Figure 5.4. This density distribution is consistent

with the corresponding system.
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Figure 5.1: Sparse grid for Nx = 24.
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Figure 5.2: The spatial resolution versus L∞ error for numerical tests. (a) The log-log error
plot of the IIF2-SG-FEM on Eq. (5.42). The spatial resolution Nx = 8, 16, 32, 64, 128, the
time step ∆t = 1/Nx, and simulation ends at t = 1. (b) The log-log error plot of the
acIIF2-SG-FD on Eq. (5.45). The spatial resolution Nx = 8, 16, 32, 64, 128, the time step
∆t = 1/Nx, and simulation ends at t = 0.5.
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Figure 5.3: (a) The error plot of the AcIIF2-SG-FD method on the diffusive logistic Eq.
(5.49). The spatial resolution Nx ranges from 23 to 27, the time step ∆t = 1/Nx and
simulation ends at t = 0.5. (b) The populations density of Eq. (5.49) corresponding to
location parameter x and y. The spatial resolution Nx = 128, the time t = 0.5 and the
location parameter z = 0.5. (c) The error plot of the AcIIF2 method with the sparse grid
combination technique on Eq. (5.51) which contains cross derivatives. The spatial resolution
Nx ranges from 23 to 27, all the time steps for all subproblems are set to be ∆t = 1/Nx, and
simulation ends at t = 0.5.
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Figure 5.4: Numerical solution of system (4.72) using AcIIF2 with a sparse grid combination
technique. The final time step is chosen to be t = 45s and the spatial resolution is K = 15.
(a) The distribution of metabolite A and related enzyme EA at t = 45. (b) The contour
plot of initial distribution and final distribution of A and EA. The dotted black is the trace
of the center by solving the corresponding ODE system. (c) The distribution of metabolite
B and related enzyme EB at t = 45. (d) The contour plot of initial distribution and
final distribution of B and EB. The dotted black is the trace of the center by solving the
corresponding ODE system.
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acIIF2-SG-FD IIF2-SG-FD RK2 on SG-FD

Nx L∞ error CPU time L∞ error CPU time L∞ error CPU time

8 1.45× 10−2 0.07s 1.44× 10−2 0.03s 1.1× 10−2 0.02s

16 4.9× 10−3 0.3s 4.9× 10−3 0.4s 4.1× 10−3 0.39s

32 1.6× 10−3 1.7s 1.6× 10−3 8.7s 1.4× 10−3 8.5s

64 5.2× 10−4 12.8s 5.2× 10−4 166s 4.7× 10−4 190s

128 1.6× 10−4 114s Out of memory To long to get results

Table 5.1: The implementation of acIIF2-SG-FD, IIF2-SG-FD and RK2-SG-FD on Eq.
(5.45). In both acIIF2-SG-FD and IIF2-SG-FD methods, the time step is ∆t = 1/Nx. In
RK2-SG-FD, the time step is ∆t = 1/N2

x. All the simulations end at t = 0.5.

acIIF2-SG-FD RK2 on SG-FD

Nx L∞ error CPU time L∞ error CPU time

8 3.0× 10−3 0.08s 2.9× 10−3 0.02s

16 1.1× 10−3 0.32s 1.1× 10−3 0.4s

32 3.7× 10−4 2.0s 3.7× 10−4 8.6s

64 1.2× 10−4 16s 1.2× 10−4 194s

128 4.0× 10−5 161s Too long to get results

Table 5.2: The numerical results of acIIF2-SG-FD and RK2 on SG-FD for the three spatial
dimensional diffusive logistic equation Eq. (5.49). For the acIIF2-SG-FD method, the time
step is ∆t = 1/Nx and for the RK2 on SG-FD, the time step is ∆t = 1/N2

x due to the
constrains of stability. All the simulation ends at t = 0.5.
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(d,K) (Nx1 , ..., Nxd)
CPU time for acIIF on

matrix exponentials

CPU time for IIF on

matrix exponential

(3, 11) (22, 22, 27) 0.3s 3.5s

(3, 11) (23, 24, 24) 0.2s 5.4s

(3, 12) (22, 22, 28) 4.3s 51s

(3, 12) (24, 24, 24) 0.4s 24s

(4, 11) (22, 22, 22, 25) 0.05s 5.6s

(4, 12) (22, 22, 22, 26) 0.12s 68s

Table 5.3: The CPU time for the computation of all matrix exponentials in both the acIIF
and IIF methods. The time step is set to be ∆t = 1/maxiNxi to meet the error requirement
Eq. (5.40) for the sparse grid combination technique.
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