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As a preview to the conference I first make a brief account of the methods that are used by theorists
in the context of Kaon physics. I then make two modest observations. First, that looking at non-
Kaon physics may shed light on Kaon physics. As a case in point I argue that one can empirically
find analogues of the ∆I = 1/2 rule in both D and B decays to two pseudoscalars. And second,
that while in tests of fundamental principles the scale of putative new physics is often unknown a
priori, there are some cases where it is known. As an example I discuss tests of Lorentz invariance
and argue that, in the context of Doubly Special Relativity, the K0− K̄0 mass difference is already
sensitive to Planck scale effects.
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1. Introduction

After more than half a century since the discovery of the Kaon there remain many interesting
and difficult questions facing theorists. Why is this so? Why is Kaon theory hard? There is little
question that QCD is responsible for the underlying dynamics. So it may be instructive to review
how progress has been made in solving QCD dynamics:

1. At very short distance or time scales the interaction is very weak. This is a manifestation
of asymptotic freedom. For processes that involve very short time scales compared to the typical
hadronization time, ∼ 10−25 s, theorists may reliably use perturbation theory. For example, since
the lifetime of the top quark is much shorter than the confinement scale we use perturbation theory
to reliably compute its production rate, its width and inclusive decay branching fractions.

2. When several time scales are involved in a process one can frequently factorize an ampli-
tude into (a convolution of) short and long distance/time scale terms. The short distance “hard”
terms are computable perturbatively and are process dependent. The long distance terms are not
amenable to treatment via perturbation theory, but are universal in the sense that they are common
to many different processes. This universality allows theorists to relate processes even without be-
ing able to compute the long distance contributions to the amplitudes. Examples abound. In deep
inelastic scattering one factorizes production rates into long distance parton distribution functions
and hard scattering partonic cross sections. SCET and HQET are effective field theories based on
the factorization of heavy hadron amplitudes into a long distance jet and soft functions (SCET) or
Isgur-Wise functions (HQET) and hard kernels. Even in weak interactions the effective Fermi-like
theory is a factorization into short distance Wilson coefficients and long distance matrix elements
of operators.

The reason K-physics is hard is that all energy scales are soft (there are no short time scales).
Neither perturbation theory nor factorization are useful. The latter has a double problem: not only
is there no hard amplitude but the variety of processes is small so the universality of would-be long
distance factorized terms would be of little use.

It is no surprise that the tools we use for K-theory are different. It is through a combination of
symmetry arguments, lattice simulations of QCD and chiral Lagrangians that we have some handle
on this problem. These are tightly inter-related. Chiral Lagrangians are, of course, a practical
implementation of soft pion theorems that are based on symmetry. And lattice calculations profit
from the formulation in terms of chiral Lagrangians, just as the results of lattice calculations inform
the chiral Lagrangian formulation.

Let’s look at a couple of examples of this symbiotic relation, first of symmetry and lattice.
Description of K`3 decays require knowledge of form factors f+,0 defined by

〈π(p′)|V µ |K(p)〉= f+(q2)(p+ p′− m2
K−m2

π

q2 q)µ + f0(q2)
m2

K−m2
π

q2 qµ , (1.1)

where V µ is a vector current, q= p− p′ and from kinematics f+(0)= f0(0). Now, SU(3) symmetry
gives f+(q2) = f0(q2) and f+(0) = 1. If nature is close to the symmetry limit, measurement of the
spectrum of K`3 decay leads then to a precise determination of the Cabibbo angle. It is therefore
important to determine deviations from the symmetry limit prediction f+(0) = 1. The Ademollo-
Gatto theorem shows that if δ is the small parameter that characterizes the departures from the
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symmetry limit, say δ ∼ 20% for SU(3), then deviations linear in δ from this limit for f+(0) are of
order δ 2: f+(0) = 1+ 0 · δ +O(δ 2) [1]. While | f+(0)− 1| . δ 2 ∼ 4% is very good, particularly
given the small effort required, it is today not good enough, given the experimental precision with
which these decays are measured. For further progress we turn to lattice computations. This give a
remarkably precise determination, f+(0) = 0.9667±0.0023±0.0033 [2]. Note not only that this
is consistent with expectations from the Ademollo-Gatto theorem but also that the computation
benefits from it: it is a determination of 4% corrections with 10% accuracy!

Now for an example involving chiral Lagrangians. ε ′/ε , that characterizes CP-violation in
direct K→ ππ decays, is smaller than naively expected because a cancellation of competing QCD
and electroweak penguin contributions [3]. We pointed out a long time ago that it is possible that
this accidental cancellation is absent in direct CP-violation in K → πππ decays [4]. A recent
re-analysis gives[5]

Re
(
ε
′/ε
)
=−(1.88±1.0)ImG8− (0.38±0.13)Im(e2GE) (1.2)

102
∆g = (0.7±0.1)ImG8− (0.07±0.02)Im(e2GE) (1.3)

where ∆g is the slope asymmetry, with the slope defined as in

|AK+→3π(s1,s2,s3)|2

|AK+→3π(s0,s0,s0)|2
= 1+gy+O(y2,x2), x≡ s1− s2

m2
π

, y≡ s3− s0

m2
π

. (1.4)

Here G8 and GE characterize the QCD and electroweak penguin contributions in the chiral La-
grangian. I have omitted terms in ∆g from higher derivative counterterms to the chiral Lagrangian
that do not contribute to ε ′/ε . In principle a precise measurement of the 3-body decay spectrum, or
simulations of QCD on the lattice, can determine several independent combinations of coefficients
in the chiral Lagrangian and hence predict ε ′/ε and ∆g.

So while the popular perturbative or factorization methods of QCD are not directly applicable
to Kaon physics, we do have powerful tools at our disposal. And that’s good news since K physics
offers unique opportunities: (i) it is clean, e.g., K → ππ vs K → πππ (ii) high statistics, e.g.,
4× 109 K+ → π+π+π− at NA48/2, (iii) it offers fundamental tests, e.g., of T -violation, CPT
violation, Quantum Mechanics (coherence), (iv) strongly constraints the parameters of the SM and
tests the consistency of the CKM model, its accounting of CP-violation and universality, and (v) it
provides exquisite indirect tests of New Physics, e.g., in K→ πνν .

In the rest of this conference (or now, proceedings volume) I look forward to learn much more
about the state of the art of all this. But in the rest of this talk I advance a couple of original
thoughts.

2. ∆I = 1/2 rule revisited

The first modest proposal is this: perhaps we can learn about dynamics of kaons by looking
outside the realm of K-physics, like looking under the lamppost. In particular, we may either learn
from, or challenge what we think of as good understanding, by thinking about D or B mesons.

Case in point: the ∆I = 1/2 rule, that states that empirically the amplitude for K→ ππ with
pions in an I = 0 state is enhanced relative the I = 2 state:

ReA0

ReA2
= 22.5 .

3



P
o
S
(
K
A
O
N
1
3
)
0
0
2

Theory opening Talk Benjamín Grinstein

We have no good theoretical explanation for this. The lattice is making great strides towards re-
producing this number; see, e.g., Ref. [6]. But is this producing understanding of the mechanism
that produces the large number? Lattice theorists believe it does [7], and I am not about to criticize
those arguments. Instead I will challenge them. The basis for this is that the latticist’s explanation
is, by her own account, very specific to Kaon decay, and she will therefore not expect to see such
an enhancement in the decay of other mesons, like the D or B-mesons.

Really? Let’s put that to the test.1 Consider first D0 → K+K−/π+π−. Assuming SU(3)-
symmetry one finds for the amplitudes[8]

A (D0→ K+K−) = (2T +E−S)Σ+ 1
2(3T +2G+F−E)∆ (2.1)

A (D0→ π
+

π
−) =−(2T +E−S)Σ+ 1

2(3T +2G+F−E)∆ (2.2)

where Σ ≡ 1
2(V

∗
csVus−V ∗cdVud) and ∆ ≡ 1

2(V
∗
csVus +V ∗cdVud). S, E and F are the invariant matrix

elements between a D mesons and a meson pair in an octet of the 6̄, 15 and 3 components of the
weak Hamiltonian, respectively, G of the 3 to a singlet pair and T of the 15 to a meson pair in the
27. Note that Σ≈ λ = sinθC, while |∆| ∼ λ 5, so that |∆|/Σ∼ 10−3. Neglecting ∆ one would have
Γ(D0→ K+K−) = Γ(D0→ π+π−) in the SU(3) limit. Experimentally Γ(D0→ K+K−)/Γ(D0→
π+π−) ≈ 3 requires both the Σ and ∆ terms in the amplitude to contribute with similar strengths.
Barring accidental cancellations this means that the matrix elements G and F are significantly
enhanced. Since ∆ has a large phase, we predicted significant CP-violation in these decays [9].

Of course, SU(3)-breaking can play a significant role. Additional contributions to the ampli-
tudes, suppressed by δ (SU(3)-breaking) but not by ∆ can enter in distinct combinations that may
help explain Γ(D0→ K+K−)/Γ(D0→ π+π−)≈ 3 without such a large enhancement of G and F .
Fitting to the now observed, surprisingly large, CP-asymmetries in these decays, in addition to the
decay rates, including effects linear in δ , it is found that F and G still are enhanced, but “only” by
a factor of between 10 and 50 [10]. The enhancement in F and G is similar to that of the ∆I = 1/2
rule in that it appears in matrix elements of the smallest SU(3)-representation of the Hamiltonian.
In this case it is 3 (as opposed to the 6̄ and 15), while for the ∆I = 1/2 rule the dominant piece is
from the I = 1/2 Hamiltonian (as opposed to the I = 3/2 one).

We are conducting an investigation of similar effects in B decays, in particular B→ Kπ [11].
Assuming isospin, the Hamiltonian is either I = 0 or I = 1 and the final Kπ is either an I = 1

2 or 3
2

state. Denote invariant matrix elements by

〈2|1|B〉= Pb,〈2|1′|B〉= Pa,〈2|3|B〉= T,〈4|3|B〉= S. (2.3)

We have split the singlet contribution into Pb which appears from the tree level Hamiltonian and Pa

which arises from a one loop penguin. This is so that we may keep track of the different combina-
tion of CKM matrix elements that arises at one loop. A fit to both CP-conserving and CP-violating
observables gives a marked enhancement of the singlet contributions. The (preliminary!) best fit
gives Pa/Pb ' 12, Pa/S ' 17, Pa/T ' 48. The fit includes a parameter x that measures the weight
of the annihilation contribution relative to all others; the expectation is that x ∼ αs

8π

∣∣∣ V ∗tbVts
V ∗ubVus

∣∣∣ ≈ 0.25
and the fit value is very close to this. It is apparent that also in B decays there is an enhancement of
the low isospin contribution relative the higher isospin ones!

1To be sure, my work on amplitude enhancement in B decays was not prompted by these new lattice results on the
∆I = 1/2 rule. In fact, much of it preceded it.
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3. CPT/QM-like bounds

Kaon physics is a good place to test the validity of some of our most cherished principles. One
may check, for example, whether CPT is a good symmetry [12]. We believe it is because of the
CPT theorem that states that any local, unitary QFT is invariant under CPT. The assumptions of the
CPT theorem are not satisfied by theories of Quantum Gravity, like string theory or loop-QG, that
are non-local. Alternatively, black holes do not carry discrete charge, erasing the CPT quantum
number of stuff that falls into them. However, it is known that CPT is conserved in these. So while
testing for CPT is interesting, we do not know a priori what is the scale of new physics associated
with the putative violation of CPT.

A similar argument can be made about possible deviations from the axioms of Quantum Me-
chanics (QM) [13]. In QM pure states do not evolve into mixed states. Because of black holes
information loss Hawking proposed a generalization of QM which allows evolution of pure states
into to mixed ones [14]. Page showed that this leads to CPT violation [15]. The consensus now
seems to be, however, that pure states do not evolve into mixed ones in a quantum theory of grav-
ity. So again, testing the validity of QM does not give us a priori a scale associated with the
new physics. This is true also in some more ad hoc formulations of beyond-QM, like Weinberg’s
non-associative matrix QM [16] or Eberhard’s test of the existence of a unitary S-matrix [17].

My second modest proposal is that tests of the validity of Lorentz invariance can be associated
with a definite scale of new physics, namely, the Planck scale. And, moreover, that in some cases
tests from Kaon physics are as sharp as the more conventional ones form interferometry. The latter
are based on the extension of the QED part of the SM by a Lorentz violating term, as follows [18]:

L =−1
4 FµνFµν − 1

4 kµνλσ FµνFλσ . (3.1)

Here k is a set of non-dimensional constants, organized as a tensor but inert under Lorentz transfor-
mations, that characterize the violations of Lorentz symmetry. These describe propagation of EM
waves in an anisotropic medium:(

~D
~H

)
=

(
1+κDE κDB

κHE 1+κHB

)(
~E
~B

)
(3.2)

with (κDE)
jk = −2(k)0 j0k, (κHB)

jk = 1
2 ε jpqεkrs(k)pqrs and (κDB)

jk = −(κHE)
k j = −2(k)0 jpqε jpq.

Some linear combinations of these, that produce bi-refringence, are bound at some ridiculously
low level, 10−32 or so. Beautiful experiments using a modern version of the Michelson-Morley
interferometer place bounds on some combination of the anisotropic medium parameters that do
not produce bi-refringence of order of a few parts in 10−18 [19, 20].

What may be the origin of Lorentz violation, and what is the scale associated with it? There are
many proposals. Doubly Special Relativity (DSR) poses that in addition to the speed of light being
boost invariant there is an invariant length scale, the Planck Length, or equivalently an invariant
energy, the Planck mass. In non-commutative spacetime theory the position operator is taken to
satisfy [xµ ,xν ] = θ µν . The dimensional parameter θ µν sets the scale of Lorentz symmetry violation
and is taken to be the appropriate power of the Planck Length. And so on with many others, like
rainbow metric, κ-Minkowski space-time, Hopf-algebras, space-time foam, etc.
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I will concentrate on one example, namely, DSR. For a (non-unique) implementation of DSR
you construct a non-linear realization of the Lorentz group. That is, consider a map F : P→P

from the space of physical four-momentum P = {(p0,~p)} to a fictitious, but linear space P =

{(π0,~π)}. Then define the Lorentz transformation on physical states, in terms of the familiar linear
Lorentz transformation Λ on the fictitious states, by p′ = F−1(ΛF(p)). Taking now a map such
that F(pP) = 0 (or infinity), where pP is a special momentum such as p0 = κ , then this special
momentum will remain boost invariant. For example one may have

E ′ = a(cE + sp1), p′1 = a(sE + cp1), p′2 = ap2, p′3 = ap3 (3.3)

where a−1 = 1+κ−1[(c−1)E + sp1], c = coshξ and s = sinhξ . This gives the dispersion relation

E2−~p2 = m2(1−E/κ)2. (3.4)

At high energy this gives

E ≈ p+
m2

p
− 1

2
E2

κ
(3.5)

which can also be taken as a parametrization of a wide class of implementations of DSR. You
cannot fail to notice that this gives an energy dependent speed of light! This leads, for example, to
energy dependent time delays in arrival of signals from Gamma-Ray-Bursts (GRB), ∆t ≈ (∆E/κ)L.
Analysis of GRB data puts a bound κ > 1.3×1018 GeV≈ 0.1MPlanck [21].

What is remarkable is that Kaon physics places a similar bound. Kaon physics is sensitive to
the Planck scale! To see this we really need a QFT of DSR. We don’t have this. Instead we consider
the generalized Klein-Gordon equation based on the dispersion relation (3.4) [22]. The energies
are given by

E =
−m2/κ±

√
(1−m2/κ2)~p2 +m2

1−m2/κ2 (3.6)

A non-relativistic expansion allows us to find the mass of the particle and hole, interpreted as the
anti-particle (the two signs in (3.6)):

m± =
m

1±m/κ
. (3.7)

The best bound on particle-antiparticle mass difference ∆m is from Kaon physics. It gives

κ >
2m2

(∆m/m)
≈ 1.1×1018 GeV. (3.8)

Coincidentally this is the same bound as that from GRB described above.

4. Conclusions

You may find this talk far from what you expected for an opening talk for this conference.
You may have expected perspective, the field in re(pre)view. But this is a special year. The higgs
was discovered, but nothing else, and except for few pesky but inconclusive deviations —like the
Tevatron’s tt̄-FB asymmetry and g− 2 of the muon — it looks like the SM is in good shape.
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But Kaon physicists knew this all along. More generally, flavor physicists knew this all along.
Generic bounds on new physics (NP) place the presumed scale of NP well outside the reach of the
LHC. In particular CP-violation in kaon mixing, parametrized by a local four-fermion interaction
characterized by a NP scale Λ gives a generic bound Λ > 104 TeV. Even with Minimal Flavor
Violation the bound is a hefty Λ > 10 TeV. The importance of new K-tests of the standard paradigm
cannot be overstated nor is the importance of improved precision in classical tests/measurements
on Kaon physics. Looking forward to a fruitful and exciting conference!
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