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Cross-linking immunoprecipitation (CLIP) has been used to profile the binding sites of

over 100 RNA binding proteins (RBPs). However computational pipelines, quality control metrics,

and downstream analyses needed to process CLIP data at scale have yet to be well defined. Here

we describe in detail the characterization of a single RBP, TAF15, which is known to be involved

in amyotrophic lateral sclerosis. We detail computational processing techniques, including

integration of RNA-seq, microarray splicing, RNA bind-n-seq (RBNS) and stability assays to

understand the function TAF15 in mouse and human brains. Next we describe how to scale

analyses from one RBP to many. We present our ENCODE eCLIP processing pipeline, enabling
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users to go from raw reads to significant, reproducible peaks, that can be directly compared against

ENCODE eCLIP experiments. In particular, we discuss processing steps designed to address

common artifacts, including quantifying unique RNA fragments bound by both unique genomic-

and repetitive element-mapped reads. Using manual quality annotation of 350 ENCODE eCLIP

experiments, we develop metrics for quality assessment of eCLIP experiments before and after

sequencing, including recommendations for library yield, number of unique fragments in library,

binding information, and biological reproducibility. In particular, we quantify the linkage between

sequencing depth and peak discovery, and derive methods for estimating sequencing depth based

on pre-sequencing metrics. Finally we provide recommendations for the integration of RBP

binding and RNA-seq experiments to generate splicing maps. These pipelines and QC metrics

enable large-scale processing and analysis of eCLIP data, and enable rigorous and standard

analysis of RBP binding data. Finally we describe results from analysis of additional RBPs that

illustrate the utility of studying the dynamics of RBP binding in different contexts. Specifically

we detail how understanding the location of UPF1 binding lead to a better understanding of the

mechanism of action for UPF1 in nonsense medicated decay. We also detail how information

on Musahi 2 binding improved understanding of the mechanism of haematopoietic stem cells

expansion.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

There are over 1,500 RNA binding proteins (RBPs) in the human genome [GHT14], RNA

binding proteins regulate all aspects of RNA metabolism, including splicing, polyadenelation,

stability, transport, and translation. Additionally they mediate other important interactions, con-

trolling the function of microRNAs, repetitive elements and other cellular processes [NBLTY15].

Unsurprisingly, RBPs regulate the normal cellular function in many different cell types. Critically

playing roles in cellular differentiation and immune response [Kim16, Lad16, KSK14]. Addi-

tionally dysfunction of RBPs or mutations in RPBs have been associated with neurodegenerative

disease [NBLTY15, BC16] and cancer [PBA17]. In this introduction I will briefly describe links

between RNA binding proteins and cellular function and dysfunction. Then review appropriate

experimental and computational methods used to understanding the binding dynamics of RNA

proteins. Finally I will review computational methods used to integrate hundreds of datasets

offering a prospective on how these methods can be used for RBPs, and discuss the importance of

quality control methods to underpin the accuracy of these findings. Detailed introductions for

each project can be found at the start of each individual chapter.
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1.2 OVERVIEW OF RBP FUNCTION

Splicing is one of the most well characterized direct functions of RBPs. The first ex-

periments assessing direct interaction of RBPs with RNA identified that RBPs directly regulate

alternative splicing [UJR+03, YCL+09]. RBPs regulate splicing in many ways, briefly RBPs can

bind near exons and promote exon inclusion or exclusion, binding or lack of binding in intronic

regions can promote cryptic splicing. Changes to 5 and 3 start sites, and intron retention has also

been observed. In addition to specific modulation of alternative exons core splicing machinery is

are also classified as RBPs, further demonstrating the need to better understand and characterize

the function of these proteins. The characterization of all splicing effects and RBPs effecting

splicing is a vast field, and has been well summarized in [FA14].

Localization of RNA to correct subcellular locations is also controlled by RBPs. RBPs

have been implicated in nuclear and cytoplasmic retention, and shuttling proteins in both directions

between the nucleus and the cytoplasm [BB14]. Of special interest are the SR proteins, previously

thought to be purely splicing factors, have also been implicated in the transport of RNA from the

nucleus to the cytoplasm [Jeo17].

Translation and translational control are important functions for RNA binding proteins.

The Ribosome is an RNA-protein complex, which binds to mRNAs, and as such falls in the field

of study. Additionally there are RBPs that modulate translation. FMRP is a known translational

repressor [DVZ+11], binding and slowing the rate of translation of target mRNAs. Conversely

RBPs can also promote translation, eIF3, under stress conditions can work in conjunction with

m6a writers bind and promote translation of specific RNAs [MPZ+15].

Stability is regulated by RBPs through both direct interactions, and indirect actors. A well

characterized method of regulation is the nonsense mediated decay (NMD) pathway, where UPF1

and co-factors recognize that a transcript hasnt fully been translated, and target those transcripts

degradation [KJ12]. Additionally the microRNA processing and decay pathway by definition is
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regulated by RNA binding proteins, plays a major role in the degradation of specific regulated

targets. [JT06].

Cleavage and Polyadenylation occurs after transcription, and core group of approximately

20 CSPF proteins to process each transcript. In addition to this basic processing there are a number

of alternative polyadenylation factors the can fine tune aspects of this process [SM00, EUA13]. It

is important to note that both the length of the polyA tail, and the location of polyadenylation can

be regulated by RBPs.

RNA editing and modification is just beginning to be explored. Currently two main RNA

modifications have been studied. A to I editing which is edited by the ADAR family [Nis16], and

m6a modification, which are regulated by a group of m6a readers, writers and erasers [LPK17].

Both these modifications can corporate with other RBPs to regulate RNA metabolism. We have

only just begun to scratch the surface of RBPs that read and write RNA modifications. To date

over 100 RNA modifications have been discovered, and most of their functions have yet to be

described [CCR+11].

1.3 RBPs IN DISEASE

RBPs have been associated with neurodegenerative diseases [NBLTY15]. Of special

interest to this dissertation are RBPs involved in amyotrophic lateral sclerosis (ALS). ALS is a

deadly neurodegenerative disease characterized by progressive death of motor neurons.

First, mutations in TDP-43 (Tardbp), an RBP, were found to be associated with ALS

[AHA+06]. TDP-43 is normally localized to the nucleus and regulates both normal and cryptic

splicing [PLTH+11, LPTW15]. Cytoplasmic aggregations of TDP-43 are a hallmark of ALS

[BB12]). Because of this dual dysregulation of splicing, and potential cytotoxicity of cytoplasmic

aggregations it has yet to be determined if the death of motor neurons is caused by loss of splicing

function or gain of toxicity in the cytoplasmic aggregates.
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Causative mutations have also been found in FUS/TLS [VRH+09]. Characterization of

FUS/TLS revealed that the RBP also in the nucleus, in ALS it is localized into cytoplasmic

aggregates, and loss of function of FUS/TLS also causes splicing changes [LTPC10].

FUS/TLS is part of the FET family of proteins, FUS/TLS, EWS and TAF15. As a result

it was through that the rest of the FET family might play a role in ALS. TAF15 was discovered

as a potential cause of ALS in a yeast screen [CHS+11]. Mutations in TAF15 in ALS patients

were also discovered [TVL+11]. The characterization of functional effects of TAF15 have been

less conclusive. TAF15 may regulate splicing changes [IMA+13, HLR+11], although analysis in

relevant human cell lines has been inconclusive [KPV+16].

It should be noted that the majority of ALS cases are now explained by a hexanucleotide

expansion in C9ORF72 [RMW+11, DHMB+11], mutations in this protein still led to cytoplasmic

aggregates of RBPs, leaving open the question of loss or gain of function issues for FUS, TAF15

or TDP-43, or some other effect of C9ORF72.

1.4 METHODS TO IDENTIFY RBP BINDING

A low throughput way to identify RBP binding is an EMSA assay. This is good validation,

but does not address the issue of identifying binding sites at scale, or in normal folded context.

To address the problem of identifying RBP motifs in a high throughput manner array and high

throughput sequencing approaches were applied.

The first such approach was RNACompete [RKC+09, RKC+13], which used a microarray

hybridization method to identify RBPs that bound preferentially to specific sequences. This

approach was used to catalogue the binding specificities of over 205 different RBPs, and helped

initially classify common RBP motifs and diversity.

An alternative approach, RNA bind-n-seq (RBNS), was developed to take advantage of

high throughput sequencing approaches [LRJ+14]. In this approach an the RNA binding domain
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of a protein of interest is cloned, combined with a purification tag, incubated with random RNA

sequences, purified to obtain preferentially bound RNA sequences and sequenced. This approach

has since been used understand the binding preferences of the IMP family [CVP+16], TAF15 and

FUS [KPV+16], hnRNPA2B1 [MPV+16], PPR10 [MRM+17], the Musashi family [KLL+14].

Additionally large-scale integrative analysis of RBNS data has also been performed [DFA+17].

RIP and RIP-seq were initially developed to enable broad understanding of RBP-mRNA

interactions. Because there is no fragmentation step in RIP-seq, it is impossible to determine the

specific binding sites for a specific RBP, however it is possible to determine general mRNA targets

of a specific RBP [TCLK00, KKF06]. A strength of RIP-seq is that that it is semi- quantitative,

allowing for the estimation of binding strength of a RBP to a mRNA [LPM+15]. Due to a lack

of crosslinking, lysis of RIP-seq experiments may lead to issues with re-association of an RBP

to an incorrect RNA [MS04] formaldehyde crosslinking followed by RIP-seq has allowed for

an increase in spatial resolution in RIP-seq, allowing more accurate identification of RBP-RNA

interactions [HKT+16]. Recently DO-RIP-seq has been developed, which optimized the digestion

conditions for RIP-seq allowing for even higher spatial resolution, and accurate quantification of

the strength of RBP binding than has been previously reported [NFBK17].

To address the issue of spatial resolution in RIP-seq, and allow for the identification

of the specific location of RBP-RNA interaction, CLIP-seq (or HITS-CLIP) was developed

[UJR+03]. CLIP-seq UV-crosslinks RBPs to RNAs before fragmentation, removing the issue

of post-lysis reassocation, and also allows for an understanding of the specific binding tar-

gets of an RBP. CLIP-seq has been widely applied to understand the binding profiles of many

RBPs, including RBFOX2 [YCL+09], the hnRNP family [HVA+12], FUS, TAF15 and TDP43

[LTPH+12, KPV+16, PLTH+11], and many others. Although CLIP has been successful in

helping understand the genome-wide function of RNA binding proteins, significant technical

challenges remained. CLIP suffers from low cross-linking efficiency, and low complexity libraries.

Both of which limit the ability for a new biology to be discovered.
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PAR-CLIP was developed due to the low crosslinking efficiency of RBPs under standard

crosslinking conditions. PAR-CLIP incorporates a nucleoside analog and crosslinks as a different

wave length than regular CLIP [HLB+10]. While this approach has significant advantages

in terms of crosslinking efficiency, and library recovery, it suffers due to the inclusion of the

nucleoside analog, limiting the protocol to use only in in-vitro settings. Additionally the analog

itself is an analog to uracil which makes PAR-CLIP only work on RBPs that bind in proximity to

a U on the genome.

iCLIP was developed to try to fix the issue of low library complexity in CLIP-seq

[KZR+10]. It pioneered two experimental improvements. First, traditional CLIP-seq uses two

ligations to attach the 5 and 3 illumina adapters. iCLIP performs circular ligation followed by

restriction to reduce the number of ligations steps to one. Additionally to address the sill present

issue of low library complexity a unique molecular identifier (UMI) is attached to each read to

unambiguously identify the origin of each read sequenced. As a result of these improvements

iCLIP reads tend to stop at the direct site where an RBP interacts with RNA. In CLIP reverse

transcription is performed after the ligation of the two adapters and the RT tends to fall off at

the crosslinking site. Even when successful there are frequently deletions or mutations at the

crosslinking site. Although it is estimated RT after CLIP crosslinking yields approximately 15%

of initial bound fragments. Because the 5 end of the read in iCLIP should be where the RT falls

off (at the adduct site) iCLIP allows for the identification of the exact location of RBP-RNA

interactions.

Although iCLIP and PAR-CLIP address the original CLIP protocols shortcomings, there

were still issues with library efficiency, amazingly even with iCLIP improvements often times

libraries needed to be amplified more than 20 PCR cycles to get an appropriate library concen-

tration. To address this, two new approaches were recently developed. Infared-CLIP (ir-CLIP)

[ZFS+16], which increases the speed of the traditional CLIP protocol, while allowing for recov-

ery of a more complex library, and enhanced-CLIP (eCLIP ) [VPS+16], which adjusts ligations
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conditions to allow for the recovery of a more complex library than previously observed. In

addition to increasing library complexity eCLIP introduced a sized matched input, which allows

improved normalization and increased signal when identifying peaks compared to CLIP alone.

Interestingly, unlike in ChIP-seq, IgG as an input control works poorly. IgG eCLIP

libraries are low complexity, and uninformative with regards to identification of significant peaks

[VNGB+17]. Where as a size matched input control significant improves the ability of eCLIP to

identify true positive peaks (Van Nostrand et al. 2016)

In addition to improvements in CLIP efficiency, there have been two attempts to adapt

CLIP to identify RNA-RNA interactions, CLASH [GFM+14, HKDT13], CLEAR-CLIP [MSL+15].

These methods have succeeded in identifying miRNA-mRNA interacting partners mediated by

Ago, however, they have a very low efficiency. Containing only thousands of reads (out of

millions sequenced) that support these those observations. Interestingly more recent attempts

have identified these same interactions in c elegans using unmodified iCLIP with similar efficiency

[BLH+16].

1.5 CLIP COMPUTATIONAL METHODS

Concurrent with the development of experimental methods to better identify RBP-RNA

interactions computational methods have also been developed to improve the ability to gain

information from CLIP-seq experiments. Here I briefly review key computational improvements

to the CLIP field.

1.5.1 UNIQUE MOLECULAR IDENTIFIERS (UMIs)

UMIs for CLIP were initially developed in coordination with iCLIP [KZR+10]. Initial

approaches to identifying unique molecules were simple. Collapsing reads if they contained the

exact same UMI. This approach contains drawbacks due to the inability to identify reads that are
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identical, but have different UMIs due to errors during PCR or during sequencing. Because unique

molecules sometimes have more than 1000 reads assigned to a signal molecule, and Illumina

sequencing error rates are on average 0.5% this can be a significant issue. To address this attempts

were made to model mutation rates and intelligently collapse UMIs that were close to each other,

using an expectation maximization approach. [DVZ+11]. More recently simple graph based

approaches have been applied to detect close UMIs and collapse them [SHS17]. Although these

approaches were first developed to address short comings with CLIP-seq data UMIs have more

recently seen broader application to RNA-seq, specifically single-cell sequencing approaches

[IZJ+14].

1.5.2 PEAK FINDING TOOLS

In addition to removing technical noise, a main objective in CLIP-seq analysis is to

identify sites of enriched binding, known as clusters or peaks. Although similar in method to

ChIP-seq peak finding techniques such as MACS or GPS/GEM [ZRS+08, GPA+10], CLIP-seq

peak calling approaches need to be customized for the protocol due to, a lack of input controls,

strand specificity of the protocol, and additional need to control for variation in coverage between

intronic and exon regions of a gene.

Initial CLIP-seq methods contained so few reads that complicated methods were not

needed. Indeed two of the first CLIP-seq papers simply counted reads in regions, compared to a

random background across the gene, and calculated significance [UJR+03, YCL+09]. A small

improvements on this approach were formalized in a general CLIP analysis tool kit [AGVB+11].

For vanilla CLIP it was observed that RT over the crosslinking adduct often times leads

base skipping during RT. This observation was used to increase the confidence in regular CLIP-seq

experiments by calling peaks on Crosslinking induced mutations (CIMS) [ZD11].

PAR-CLIP also has telltale signs true UV crosslinking occurred, also known as a diagnostic

event. In the case of PAR-CLIP the nucleoside used converts T-¿C during sequencing, Areas
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where this transition were observed to more frequently than background were assumed to be

crosslinking sites [CGM+11]. Further refining this method waveR [SSS+12] was developed.

waveR applies a mixture model to regions of potential peaks, to determine the rate of T-¿C

mutations is likely to come from a normal mutational process or is indicative of RBP binding.

This approach for PAR-CLIP has high spatial resolution, but relies on T-¿C transitions, so is not

generally applicable to other CLIP experiments.

miCLIP [WCK+14], again builds upon the mixture model developed in waveR, but

generalizes its approach to be generally useful for all CLIP-seq type experiments. It does this by

solving the peak detection problem as an hidden markov model, calling regions as either bound

or not bound based on their relative enrichment within the genome. Then for each base within a

bound region an analysis of mutational frequency can be optionally applied to identify direct sites

of RBP-RNA interaction.

Another way to generalize this approach is to combine this idea of detecting diagnostic

events Piranah created a more general framework that takes in any type of diagnostic event,

and used a zero-truncated negative binomial distribution to identify sites of significant binding

[UBSB+12]. Although this approach is general, it creates a background distribution across

the entire genome rather than specifically for each RNA family, which, given different gene

expression levels of RNAs creates a large number of false positives.

Other groups have developed methods to identify peaks based on edge detection ap-

proaches [LKC+12], although this approach has not been widely adapted.

Finally there has been one attempt to identify differential RBP binding between two

experiments or conditions. dCLIP [WGB+14], does this by extending the HMM approach used

by miCLIP to identify bound regions. It defines an HMM with three states, enriched in experiment

1 over experiment 2, equally enriched, or enriched in experiment 2 over experiment 1.

9



1.5.3 MOTIF CALLING

A main question after peak calling for CLIP-seq is what sequence does the RBP frequently

bind. Unlike peak calling standard approaches are appropriate to apply in this situation. CLIP-seq

peaks may be analyzed using HOMER, MEME or other motif finding algorithms [HBS+10,

Bai11, Boe16]. Unfortunately RBPs tend to have highly degenerate motifs and short motifs,

especially relative to highly specific motifs identified in ChIP-seq [KAS+07, DFA+17].

Although motif finding has been difficult, incorporating structural information into ap-

proaches has allowed for a better understanding of RBP binding. For example it was discovered

that sequence motifs were more easily detectable from RIP-seq experiments when accessibility of

punitive regions was taken into account [LQLM10]. RBPs may frequently bind both sequence

and structure motifs simultaneously. For example LIN28 only binds a GGAGA sequence motif

embedded within a short hairpin [WHK+12]. Few attempts have been made to identify these

structural motifs at a wide scale.

RNAContext [KRC+10], was developed to be used with RNA affinity approaches. It

combines secondary structure and primary sequence information in an expanded PWM model to

identify potential structural motifs.

GraphProt [MLCB14] extended this approach by using CLIP-seq data to help identify

structural motifs, instead of just RNA affinity data. GraphProt takes confident CLIP-seq peaks

and applies a graphical model to cluster and identify common sequence and structural motifs near

the RBP binding site.

Zagros [BSPSU15]. Also attempts to predict sequence and structural motifs, adds in the

concept of diagnostic events to further refine its spatial resolution. It uses traditional motif finding

algorithms to identify enriched sequences, but extends the idea of a sequence to the structure of

the RBP as well.

These approaches have had limited success perhaps due to low quality of input data (all

approaches listed were evaluated using CLIP-seq, not eCLIP or irCLIP data), structural motif
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identification is still an active field and should continue to be pursued. Although RNA-structure

predictions are accurate for small structures, predictions of secondary structures for molecules

as large as mRNAs is still inaccurate. The advent of structural sequencing [LMT+11, FZS+16,

SLA+14] may further allow for the identification of accurate RBP secondary structure motifs.

1.5.4 SPLICING MAPS

RBP binding information is can also be integrated with other data sources to provide

hints as to the mechanism of RBP regulation. Commonly RBP binding or motif information

is visualized with splicing changes [WU11]. Original splicing maps were made visualizing

motif presence overlaid with an estimate (either via micro arrays or RNA-seq) of alternative

splicing changes [UJR+03, YCL+09]. As CLIP-seq methods improved direct CLIP-seq peaks

were overlaid with splicing changes for more direct splicing regulation information [KZR+10,

HVA+12, KPV+16]. Recently due to additional background normalization techniques we have

started to create splicing maps using normalized read density, rather than peaks (Pratt et. al 2017,

In Submission).

1.5.5 CLIP PIPELINES

CLIP analysis is complicated, requiring detailed knowledge of adapter trimming, specific

mapping parameters, custom PCR duplicate removal and specialized peak calling methods (as

reviewed above), to perform correctly. As a result pipelines have been written to take users from

raw fastq files to mapped and analyzed peaks with minimal difficulty.

PIPE-CLIP [CYK+14] is an online server that takes in raw fastq data and outputs pro-

cessed peaks. Although it is inflexible in terms of customization it effectively provides high

quality peaks.

There are two other pipelines that must be run locally that also provide similar services.
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CLIPSeqTools [MANM16], is a comprehensive, flexable toolkit that allows for automated calling

of peaks. In addition it provides some data analysis and visualization options after peaks have

been called.

Conversely CLIP Toolkit (CTK) [SQWVZ17], also provides a unified structure to go

from fastqs to called peaks, but does not include downstream analysis. It wraps one of the more

successful peak calling algorithms (CIMS analysis), and provides a new peak and valley finding

algorithm that is accurate on datasets where CIMS cannot be performed.

1.5.6 CLIP-SEQ DATABASES

Finally there have been databases constructed to catalogue and uniformly process all

previously published CLIP-seq datasets. Structured archival and re-analysis of large public

datasets is sorely needed for many fields, including CLIP. Quick re-analysis of existing data

allows for quick checks to see if a user show follow up on a hypothesis, and extensive re-analysis

allows for novel biological inferences to be made. For example a re-analysis of all RNA-seq

data on GEO identified the theoretical maximum number splice junctions in the human genome

[NJF+16]. Structured re-analysis of ChIP-seq data has allowed for the identification of functional

segments of the genome, defined by combinations of histone marks and binding of transcription

factors [HBW+12, EK12a].

CLIPZ [KRZ11] mixes database archiving of public data, while allowing users to upload

and analyze their own results. StarBase [LLZ+14, YLS+11] was primarily developed to under-

stand miRNA-RBP interactions, and support integrated analysis of different types of transcriptome

sequencing data such as CLIP-seq, CLASH, and Degradome-seq. Its individual datasets, and data

access however enable a wide range of queries to the database.
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1.6 INTEGRATIVE INSIGHTS INTERESTING TO THE RBP

FIELD

While the information gained by integrating data and bioinformatics approaches from

many different RBPs into one study is only now being seen [VGBW+17], we can understand

the direction of the field by looking at the ChIP-seq field, which has been performing integrative

analysis for many years to understand the effects of transcription factors and histone modifi-

cations in development and disease [HSH+07, PTSC+12]. The ChIP-seq field has performed

many additional analyses of health and disease, to date the largest integrative analysis has been

performed by the ENCODE project [BSD+07, FGG+04, DKA+12].

Of special interest to the RBP field, the ENCODE project initially characterized the

binding motifs of 119 transcription factors in human cell lines [WZI+12, AANL12, WWC+12].

These methods to analyze single TFs are generally applicable to the RBP field, and while there

has not been rigorous cross-application of these methods yet, we expect a rigorous re-analysis of

eCLIP RBPs for motifs to occur soon.

In addition to characterization of single transcription factors the ENCODE project allowed

for the characterization of functional groups of histone modifications. Two separate approaches,

Segway and chromHMM [HBW+12, EK12b], have been used to perform semi-supervised

clustering on histone modifications. Segway did this by training a Bayesian network, while

chromHMM trained a hidden markov model to understand different chromatin states. Both

approaches are effective, with Segway having slightly higher spatial resolution. Other differences

in the two methods can be found in [HEW+13]. These methods have since been widely applied,

underpinning many approaches used to impute missing data and reduce the number of ChIP-seq

experiments needed to be performed in the future [EK15].

Finally of interest to future efforts for the ENCODE RBP project integration of TF binding

and SNP data has been used to predict functional, disease causing variants. The addition of RBP
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binding information into these systems may help elucidate the effects of SNPs not previously

seen as functional [WK12].

1.7 QUALITY CONTROL

Underpinning all the above methods is stringent quality control metrics employed by

the ENCODE project. Without high quality data underpinning everything, the results would

have been much harder to interpret. The ENCODE TF and histone group summarized their

experimental and computational quality control metrics in a single paper [LMK+12]. On the

experimental side they proposed stringent antibody validation.

They also proposed stringent standards for the how replicates should be handled, and the

number of experimental replicates (2) needed to have confidence in the results of an experiment.

Computationally they developed 4 metrics to determine if an experiment has failed.

First they look at RSC and NSC, metrics to validate that sequence reads are evenly distributed

between the positive and negative strands of the genome, especially near RBP binding sites.

Next they observe the fraction of reads in peaks (FRiP), effectively confirming that the majority

of information is concentrated in punitive peak locations. Finally they use an IDR [LBHB11]

based method to access the reproducibility of biological replicates using two metrics, Rescue

Ratio, which verifies that two biological replicates have approximately the same set of peaks,

and self-consistency ratio, which verifies that two biological replicates have approximately the

same number of peaks. If all these metrics pass then an experiment passes ENCODE quality

control, and if it fails then it is not submitted for public use or internal analysis. Re-analysis of all

published ChIP-seq data using these quality control metrics has indicated that over 20% of public

data is of low quality [MKPW14], further enforcing the need for standards in high throughput

sequencing datasets.

In addition others have proposed their own analogous ChIP-seq quality control metrics
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[KTP08], and importantly have tried to estimate the required number of sequenced reads needed

to obtain a high quality ChIP-seq experiment [JLH+14].

The RBP field has proposed and catalogued similar experimental quality control metrics

[SZB+16]. However computational quality control metrics are lacking. So far there have only

been two papers directly addressing questions of computational in CLIP-seq data. Both papers

review all possible approaches to CLIP-seq analysis, but provides no strong recommendations as

to the ideal processing pipeline, and neither provide strong pass / fail metrics or an understanding

on what makes a high quality CLIP-seq dataset [LZM+15, WXC+15].
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Chapter 2

Distinct and shared functions of

ALS-associated proteins TDP-43, FUS and

TAF15 revealed by multisystem analyses

2.1 ABSTRACT

The RNA binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis

(ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we

integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to 4,900

RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding

patterns in introns, are enriched in 3 untranslated regions, and alter genes distinct from TDP-43.

However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human

neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-

derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and

FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but

contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent
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and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism.

2.2 INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive degen-

eration of motor neurons in the motor cortex, brainstem, and spinal cord. Although the precise

pathogenesis of ALS remains unknown, aberrant RNA processing appears to be an important

contributing factor. The RNA binding protein (RBP) TAR DNA-binding protein 43 (TDP-43) was

initially recognized as a major constituent of pathological ubiquitinated protein aggregates in brain

and spinal cord tissue of patients with sporadic ALS (sALS)[AHA+06, NSK+06]. Dominant mu-

tations in TDP-43 were subsequently identified in ALS patients[CRG+09, DVK+09, DGC+09,

KSV+08, LRH+09, RZB+08] with evidence that these mutations were indeed causative of ALS

pathogenesis[SBT+08]. Shortly thereafter, mutations in the gene encoding another RBP, fused in

sarcoma (FUS, also known as translocated in liposarcoma or TLS), were identified in a subset of

patients with familial ALS (fALS) and sALS[VRH+09, KBL+09]. Although mutations in FUS

and TDP-43 are present in only a small fraction of ALS cases, abnormal activity of FUS and

TDP-43 is observed in a large fraction of ALS cases.

The discovery of mutations in the genes encoding TDP-43 and FUS received much

attention as these proteins have strikingly similar protein domain architectures[LTPC10]. This

motivated a search for more structurally similar RBPs as candidate ALS genes and as a result,

mutations in TATA box binding protein (TBP)-associated factor 15 (TAF15) were identified in

patients with sALS and fALS[CHS+11, TVL+11]. FUS and TAF15 belong to the FET family of

hnRNP proteins, which includes Ewing sarcoma breakpoint region 1 (EWSR1). As the protein

structure of TAF15 is similar to that of FUS and TDP-4313, it was predicted that TAF15 would

be functionally similar to these RBPs. Similar to FUS and TDP-43 , TAF15 is predominantly

localized to the nucleus but shuttles to and from the cytoplasm, participates in transcription, is

17



thought to affect alternative splicing, and has been found to form cytoplasmic inclusions in all

FUS-FTLD subtypes and in some sALS patient tissues[CHS+11, IMA+13, NBD+11].

Another commonality among TDP-43, FUS, and TAF15 is that the vast majority of ALS-

associated mutations identified in the genes encoding these RBPs are found in their C-terminal Gly-

rich domains. An emerging hypothesis is that mutations within the Gly-rich region of these RBPs

promote their pathological aggregation[VSN+13, GCZ+11]. Aggregation of FUS, TDP-43, and

TAF15 proteins is often accompanied by loss of their nuclear localization, yet it is unclear whether

protein aggregation or mislocalization to the cytoplasm is the initiating pathogenic event[SCP14].

In efforts to investigate the normal nuclear function of these RBPs, comprehensive RNA binding

maps of TDP-43, FUS, and TAF15 in the normal mouse[REB+12, LTPH+12, PLTH+11] or

human[IMA+13] central nervous system (CNS) have been determined. These studies revealed

global roles for TDP-43, FUS, and TAF15 in alternative splicing and motif specificities for

TDP-43 and FUS in the CNS. Furthermore, loss of TDP-43 or FUS expression affects the RNA

levels of genes containing long introns[REB+12, LTPH+12, PLTH+11]. Our understanding of

FUS, TDP-43, and TAF15 function in RNA processing has primarily come from examining

these proteins individually and under different conditions, making comparisons difficult. This

approach has limited our understanding of how the activities of these RBPs may converge on

common pathways or act in parallel. A systematic comparison of FUS, TDP-43, and TAF15 to

determine their shared and unique functions in mature and developing neurons would be valuable

in understanding their contribution to development and ultimately disease.

Here we identify 4,873 RNA targets of TAF15 in mouse brain that reveal a TAF15 binding

motif. Expanding on our previous studies[LTPH+12, PLTH+11], we find that FUS and TAF15

exhibit similar global RNA interaction profiles in vivo, but affect a strikingly small subset of

common genes. Unexpectedly, TAF15 influences a small fraction of alternative splicing events

compared to TDP-43 and FUS in the mouse CNS. In human neural progenitor cells, we find that

TAF15 and FUS affect the stability of distinct mRNA populations, many of which are bound
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by TAF15 and FUS. Depletion of TAF15, FUS, and TDP-43 in human induced pluripotent

stem cell (iPSC)-derived motor neurons also affects different genes. Subsets of TAF15 and

FUS-regulated mRNAs, including ALS associated genes, are also differentially expressed in

spinal cord motor neurons dissected from sALS patients and iPSC-derived motor neurons from

ALS patients harboring a R521G mutation in FUS. Taken together, these findings uncover points

of functional convergence and divergence of FUS, TAF15 and TDP-43.

2.3 RESULTS

2.3.1 TAF15 binds RNAs enriched for GGUAAGU motifs in vivo

To identify in vivo RNA substrates recognized by TAF15, we performed CLIP (cross-

linking immunoprecipitation)-seq in whole brain tissue from adult mice using a commercially

available antibody that specifically recognizes the N-terminus of the TAF15 protein. We isolated

RNA from low and high molecular weight TAF15 protein-RNA complexes (Fig. 1a, bands A

and B, respectively) and converted the RNA into sequencing libraries for transcript identification.

No protein-RNA complexes were immunoprecipitated when using non-specific IgG or in the

absence of UV crosslinking (Supplementary Fig. 1a). Interactions between TAF15 and FUS have

previously been detected[TGE+13, SLQ+15]. Therefore we tested whether TAF15 and FUS

interact post cell lysis. Uniquely tagged versions of TAF15 and FUS proteins were expressed

separately in HEK293T cells, and upon mixing lysates from these cell lines, we found that V5-

tagged TAF15 immunoprecipitates Myc-tagged FUS (Supplementary Fig. 1b, lane 10) and vice

versa (Supplementary Fig. 1b, lane 14). This demonstrated that TAF15 and FUS can physically

associate post cell lysis. For our TAF15 CLIP-seq experiments, the use of UV crosslinked

cells and highly stringent lysis and wash conditions prevented co-immunoprecipitation of FUS

(Supplementary Fig. 1a) and TDP-43 (Supplementary Fig. 1c) with TAF15, ensuring that FUS-

RNA and TDP-43-RNA complexes were not inadvertently recovered. Given the high overlap in
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sequence similarity between the TAF15 target RNAs isolated from the low (band A) and high

(band B) molecular weight complexes (Supplementary Fig. 1d), the libraries were combined

(Fig. 1b and Supplementary Fig. 1e), resulting in 5.9 million non-redundant sequenced reads that

mapped to 13,633 annotated protein-coding pre-mRNAs having more than 10 reads (5,128,815

reads, 85.8%), non-coding genes (139,382 reads, 2.3%), and intergenic regions (706,897 reads,

11.8%) in the mouse genome (mm9).

Using a published cluster-finding algorithm[PLTH+11], we identified 47,138 TAF15

binding clusters in 4,873 genes. We applied the HOMER algorithm to these clusters to discover

in vivo TAF15 binding motifs. The consensus motif GGUAAGU was statistically significantly

enriched in TAF15 clusters (Fig. 1c, p¡10-535). Interestingly, this motif is similar to the 5 splice

site sequence, GURAGU[SS87], however enrichment of this motif in both the coding sequence

and the 3UTR provided evidence that we did not inadvertently extract the 5 splice site sequence

within introns. Distribution analysis also illustrated that the TAF15 motif is enriched within the

center of the CLIP clusters in the transcriptome (Fig. 1d) and also within 3UTRs (Fig. 1e). We

searched for the TAF15 motif in clustered reads from published FUS21 and TDP-4322 CLIP-seq

experiments and observed that the TAF15 motif was also enriched in transcriptome-wide FUS

CLIP clusters and, to a lesser extent, in TDP-43 CLIP clusters residing in 3UTRs (Figs. 1d and

1e). We conclude that TAF15 interacts with binding sites enriched for a GGUAAGU motif within

thousands of genes in vivo.

2.3.2 RNA Bind-n-Seq reveals TAF15 binding to GGUA motif in vitro

To characterize the in vitro sequence specificity of TAF15, we applied RNA Bind-n-Seq

(RBNS)[LRJ+14] to recombinant TAF15 and as a comparison, to recombinant FUS protein.

Briefly, truncated forms of recombinant TAF15 or FUS containing both the RNA recognition

motif and zinc finger domain (amino acids 204-415 for TAF15 and amino acids 235-481 for

FUS) were incubated with an RNA pool consisting of random 20mer RNAs flanked by short
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Figure 2.1: Figure 1. CLIP-seq reveals that TAF15 binds GGUAAGU motifs in the mouse
brain (a) Autoradiograph of TAF15 protein-RNA complexes from the mouse brain immunopre-
cipitated with an antibody against TAF15 (left panel). RNA residing in the regions outlined by
the red boxes was recovered for sequencing. TAF15-RNA complexes migrated at the expected
size and were efficiently recovered because little protein remained in post-immunoprecipitation
lysate (right panel, middle lane). (b) Flow-chart illustrating CLIP-seq reads analyzed to define
TAF15 clusters. (c) De novo sequence motifs enriched above background within the transcrip-
tome or specific genic regions with associated binomial p values. (d) Positional distribution
of the TAF15 motif GGUAAGU within TAF15 (red), FUS (green), or TDP-43 (purple) CLIP
clusters. Inset graph shows the percent enrichment of the TAF15 motif GGUAAGU within
TAF15 targets (Target) or within the transcriptome (Background). (e) Positional distribution
analysis of the TAF15 motif GGUAAGU as in (d) but specifically within CLIP clusters residing
in 3UTRs. Inset graph shows the percent enrichment of the TAF15 motif GGUAAGU within
the 3UTRs of TAF15 targets (Target) or within the 3UTRs of the transcriptome (Background).

primers used to add adapters for high-throughput sequencing (Fig. 2a). For FUS, this truncated

region was previously shown to exhibit high affinity for RNA[YZK+15]. Complementary to in

vivo interactions identified by CLIP-seq, this method evaluates TAF15 and FUS independently

of its in vivo complex-interaction with RNA. For TAF15, RBNS discovered degenerate G-rich

and GU-rich motifs and notably an (A/G)GGUA motif that resembled the GGUAAGU motif

that was identified in vivo by CLIP (Fig. 2b). In fact, the shared GGUA 4mer was significantly

enriched in hexamers that were overrepresented in both RBNS and TAF15 CLIP-derived clusters

relative to the appropriate control backgrounds (Fig. 2c). Additionally, the same GGUA motif

was enriched in the TAF15 clusters located within 3UTRs of target genes (Supplementary Fig.

2a). RBNS applied to FUS domains identified a similar degenerate G-rich motif, a GC-rich
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Figure 2.2: Supplementary Figure 1. CLIP-seq for TAF15 in the mouse brain (a) Western
blot to validate that FUS is not co-immunoprecipitated by TAF15 using an anti-TAF15 antibody
from mouse brain tissue that was (+) or was not (-) subjected to UV crosslinking (XL). IgG
antibody served as a negative control. The asterisk corresponds to a non-specific band. (b)
Post-lysis interaction by ectopically expressed TAF15 and FUS. Cell lysates from HEK293T
cells expressing an empty control plasmid (white), V5-tagged TAF15 (blue), Myc-tagged FUS
(yellow), or both TAF15-V5 and FUS-Myc (green) were mixed in various paired combinations
as indicated. Mixed lysates were used for immunoprecipitation with IgG, anti-V5, or anti-
Myc antibodies and immunoprecipitated proteins were analyzed by Western blot for V5 and
Myc expression. (c) Co-immunoprecipitation in mouse brain tissue that was subjected to UV
crosslinking using two different anti-FUS, an anti-TAF15, or IgG control antibodies. Antibodies
were either produced in mouse (M) or rabbit (R). (d) Venn diagram showing the overlap in CLIP
peaks between the A and B TAF15-RNA complexes. (e) Flow-chart showing the breakdown of
sequence reads for the A and B TAF15-RNA complexes.

motif, and a GGUGG motif (bottom motif in Fig. 2d) that resembled motifs identified in

published in vivo CLIP studies[REB+12, LTPH+12]. A similar evaluation of the GUGG 4mer

(or GGUG, not shown) confirmed enrichment within FUS in vivo CLIP-seq-derived clusters in

the transcriptome (Fig. 2e) and in 3UTRs (Supplementary Fig. 2b). Interestingly, we found

that the distribution of the GUGG 4mer was also enriched in the hexamers derived from the

TAF15 RBNS experiment (Supplementary Fig. 2c). Similarly, the GGUA 4mer was enriched

in the FUS hexamers (Supplementary Fig. 2d). Although both of these motifs were found at

a lower level of significance in the hexamers derived from experiments interrogating the other
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protein, our results suggest that TAF15 and FUS share some affinity with each others motifs.

It is noteworthy that the affinities of TAF15 and FUS to k-mers containing GGUA and GGUG,

although significantly different from background, is relatively weak compared to previously

studied RBPs such as RBFOX2, MBNL1, and CELF126. We conclude that TAF15 interacts

with a previously undiscovered GGUA core motif within significantly enriched clusters in vivo.

Importantly, our results demonstrate that the interactions of FUS and TAF15 with their RNA

binding sites can occur independently of co-factor associations.

2.3.3 TAF15 interacts with many FUS RNA targets

Like FUS and TDP-43, TAF15 clusters were predominantly found within introns (Sup-

plementary Fig. 3a), consistent with previously published results in HEK293 cells[HLR+11],

mouse neurons, and human brain tissue[IMA+13]. As intronic regions account for a substantial

proportion of nucleotides in transcribed RNA, this distribution was expected and similar to other

predominantly nuclear-localized RBPs such as RBFOX1 and NOVA1 (Supplementary Fig. 3a).

Unlike TDP-43, we found that TAF15 and FUS binding was significantly enriched in the 3UTR,

akin to RBFOX1 and NOVA1 that also have proposed 3 end formation roles[WSL+08, LMF+08]

(Fig. 3a). To illustrate this, the 3UTR of the neurobeachin (Nbea) transcript, encoding a protein

involved in synaptic function and autism[ORJ+12], is enriched for TAF15 and FUS binding (Fig.

3b). FUS had a similar binding profile as TAF15, whereas TDP-43 bound an intronic region

upstream of the penultimate exon, but with no cluster in the 3UTR (Fig. 3b).

We found that targets of RBFOX1 and NOVA1 do not overlap with TAF15 target genes

(Supplementary Fig. 3b). In contrast, the majority of FUS (98%) and TDP-43 (86%) target RNAs

were also TAF15 targets (Fig. 3c). For genes that were targets of both TAF15 and FUS, 38% had

at least one binding site that overlapped between TAF15 and FUS (Supplementary Fig. 3c). Our

results indicate that TAF15 and FUS bind to the same genes with close proximity, consistent with

our findings that the GUGG motif preferred by FUS was enriched in TAF15 CLIP clusters and the
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GGUA motif preferred by TAF15 was also enriched in FUS CLIP clusters (Supplementary Figs.

2c and 2d). TAF15 also exhibited a saw-tooth like pattern of deposition within genes containing

long introns, such as the glutamate receptor delta-1 subunit precursor gene (Grid1), similar to

FUS, but dissimilar to TDP-43[LTPH+12] (Fig. 3d). We conclude that TAF15 and FUS binding

are enriched in the 3UTRs of target genes and both harbor the same saw-tooth like profiles in

long introns.

2.3.4 Distinct roles of TAF15, FUS, and TDP-43 on gene expression

To identify TAF15-regulated RNAs, single-stranded antisense oligonucleotides (ASOs)

complementary to TAF15 RNA or non-targeting control ASOs (Control) were delivered into the

adult mouse striatum. TAF15 mRNA and protein were depleted by at least 90% in mice treated

with TAF15-targeting ASOs (Fig. 3e). RNA extracted from striata of three mice was subjected to

strand-specific RNA-seq library generation and sequencing. On average, 24.8 million reads were

obtained for each library, of which 86% mapped to the mouse genome (mm9). We identified 194

and 91 genes (Supplementary Data 1) that were significantly (p¡0.05) downregulated (Fig. 3f) and

upregulated (Fig. 3g), respectively, when TAF15 protein was depleted. To examine overlapping

and unique effects of TAF15, FUS, and TDP-43 on RNA expression, we re-analyzed RNA-seq

datasets in which FUS and TDP-43 were depleted from the mouse striatum in the same manner

as TAF15[LTPH+12, PLTH+11]. Although Fus and Tdp-43 expression remained unchanged

upon TAF15 depletion, Taf15 mRNA level appears to be slightly increased upon FUS depletion

(Supplementary Fig. 3d). Similar to FUS and TDP-4321, we found that genes downregulated

by loss of TAF15 exhibited exceptionally long introns (Supplementary Fig. 3e). Despite this

similar trend in regulation, there was a poor overlap between the differentially regulated genes

such that by our conservative re-analysis, only 8 genes (including Park2, Nrxn1, and Kcnip4)

were commonly downregulated (Fig. 3f) and no genes were commonly upregulated (Fig. 3g). To

distinguish between direct and indirect effects of RBP binding on gene expression, we measured
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the fraction of affected genes that were directly bound as determined by CLIP-seq. A significantly

higher proportion of genes downregulated upon TAF15 or TDP-43 loss were direct targets of

that RBP (Fig. 3h). Closer examination revealed that this association remains significant for the

subset of downregulated genes that exhibited TAF15 (and to some extent TDP-43) binding in the

3UTR (Supplementary Fig. 3f). In support of this result, genes that were downregulated upon

TAF15 loss were more likely to contain the TAF15 GGUAA motif in their 3UTRs or introns

(Supplementary Fig. 3g). Genes that were upregulated or were unaffected upon loss of FUS,

TAF15, or TDP-43 were generally not binding targets (Figs. 3i and 3j). Thus, we conclude that

although FUS, TAF15, and TDP-43 bind many of the same targets, only a small fraction of genes

are similarly affected by loss of each of the three RBPs.

2.3.5 TAF15 has a marginal role in alternative splicing

Using splicing-sensitive microarrays, we detected 182 alternative splicing (AS) events

that were altered upon TAF15 depletion in mouse striatum (Fig. 4a). Although TAF15, TDP-43,

and FUS proteins were reduced to similar levels, we observed fewer TAF15-dependent splicing

events (n=187) compared with the number of splicing events altered by loss of FUS (n=327)

or TDP-43 (n=690) (Supplementary Data 2). There was little overlap in AS events altered by

loss of TAF15, FUS, or TDP-43 (Fig. 4b and Supplementary Fig. 4a). This suggests that,

despite their high similarity in domain architecture and documented interactions with splicing

factors[JPV+09, YCY+12], FUS and TAF15 have distinct impacts on AS.

An AS event altered by TAF15 is exon 5 of the glycerophosphocholine phosphodiesterase

1 gene (GPCPD1; Fig. 4c), which was included upon TAF15 knockdown and harbors binding

sites for TAF15 and FUS downstream of the 5 flanking exon (indicated by an arrow). Another

example, exon 24 in the calcium-activated potassium channel subunit alpha-1 gene (Kcnma1;

Fig. 4d), was also included upon TAF15 loss and contained nearby TAF15 and FUS binding sites

(indicated by an arrow). Although TDP-43 binding sites were present near these exons, they were
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distinct from TAF15 and FUS binding sites (Figs. 4c and 4d). A previous study reported that

knockdown of TAF15 promoted the exclusion of exon 19 of the N-Methyl-D-Aspartate Receptor

Subunit NR1 (Grin1) gene in mouse neurons15. TAF15 and FUS (but not TDP-43) binding sites

were present proximal to this exon, but depletion of TAF15 did not cause a statistically significant

change (p=0.106) in the exclusion of exon 19 of Grin1 in the mouse striatum (Supplementary Fig.

4b). This does not appear to be due to differences in tissue specificity as depletion of TAF15 in the

mouse brain or spinal cord (Supplementary Fig. 4c) also had no significant effect on Grin1 exon

19 splicing (Supplementary Fig. 4d). We conclude that in contrast to our and others previous

findings with FUS and TDP-43[REB+12, LTPH+12, PLTH+11, TCR+11] and a study regarding

TAF1515, TAF15 alters the splicing of a relatively small subset of genes, of which the majority

(70%) are distinct from those regulated by either FUS or TDP-43.

2.3.6 TAF15 and FUS affect mRNA stability in neural progenitors

To evaluate the role of TAF15 in early neuronal development, we used human neural

progenitor cells (NPCs) differentiated from iPSCs in which TAF15 protein levels and, for com-

parison, FUS protein levels, were individually depleted by lentiviral shRNAs (Figs. 5a and 5b).

As TAF15 has a relatively minor role in AS, we investigated a potential role for TAF15 in RNA

stability. NPCs were treated with the transcriptional inhibitor Actinomycin D for varying times

after which total RNA was collected and prepared for RNA-seq libraries (Fig. 5a). Half-life

measurements were determined from a regression-based analyses of gene expression assuming

first order decay kinetics. For each shRNA treatment, the median value for the coefficient of

determination (R2) describing the log-linear fit across the time course for each gene, across all

genes, was 0.54; this value was significantly higher (p 0, by Kolgomorov-Smirnov two-tailed

test) than the value (0.12) obtained by randomly shuffling the expression values for each time

point within each gene (Fig. 5c, Supplementary Fig. 5a and 5b). To minimize false positives,

we evaluated genes for which the R2 value was greater than 0.6. We identified 299 and 330
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genes that were highly stabilized (increased half-life), as well as 132 and 44 genes that were

highly destabilized (decreased half-life) upon loss of TAF15 and FUS, respectively (Fig. 5d,

Supplementary Data 3).

We arbitrarily selected mRNAs that were most stabilized or destabilized by loss of

TAF15 (marked by asterisks in Fig. 5e) and performed RNA immunoprecipitation followed by

quantitative RT-PCR to determine whether these mRNAs were directly bound by TAF15 and FUS.

TAF15 bound to most mRNAs (4 of 5) that were stabilized upon loss of TAF15 (URB1, SNX9,

CLN8, SMURF2; Fig. 5f), of which URB1, CLN8 and SMURF2 also exhibited FUS interactions.

Additionally, TAF15 bound to most mRNAs (4 of 5) that were destabilized upon loss of TAF15

(ATXN7L3B, PRKRIR, RAPGEF1, CGGBP1; Fig. 5g). Notably, FUS bound to all these mRNAs

(including TCERG1), but FUS depletion did not appear to have an effect on mRNA stability of

these transcripts (Fig. 5e, Supplementary Data 4). ANAX2 and TIAL1, whose mRNAs were

unaltered by TAF15 loss, were also examined for TAF15 and FUS binding (Supplementary Fig.

5c). A gene ontology (GO) analysis of genes affected at the mRNA stability level upon TAF15

knockdown revealed statistical enrichment for genes implicated in DNA-dependent transcription

control (p¡10-26) (Supplementary Data 5). An example of TAF15 mRNA turnover target involved

in transcriptional control and also neurological diseases is the CGG binding protein 1 (CGGBP1),

which binds to CGG repeats in the promoter of the fragile X mental retardation 1 (FMR1) gene

resulting in reduced expression[MHDN+00]. We conclude that TAF15 and FUS control mRNA

turnover in NPCs of distinct mRNA substrates.

2.3.7 TAF15 and FUS affect different genes in human motor neurons

To discover the molecular events modulated by loss of TAF15, FUS and TDP-43 in an

ALS-relevant cell-type, we generated motor neurons (MNs) from wild-type human iPSCs using a

directed differentiation protocol[CFP+09]. Briefly, a combination of SMAD signaling inhibitors,

Noggin, and the ALK5 inhibitor SB431542 was used to yield a population of cells enriched
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for HB9, ISLET1, and TUJ1 (neuron-specific class III)-positive MNs with a minor fraction

of OLIG2-positive oligodendrocytes (Figs. 6a and 6b). We subjected the MNs to lentivirus-

packaged shRNAs targeting TAF15, FUS, or TDP-43. As our in vivo findings indicated that

TAF15 and FUS binds to similar RNA substrates, we also simultaneously depleted FUS and

TAF15. Mature RNA and protein levels (Figs. 6c, 6d and Supplementary Fig. 6a) of the targeted

RBPs were significantly reduced and TAF15 and FUS protein levels did not exhibit reproducible

changes (either up or down) in FUS and TAF15 depletions, respectively (Supplementary Fig. 6a).

Reduction of TAF15, FUS, or TDP-43 alone or in combination (TAF15 and FUS) in iPSC-derived

MNs did not cause noticeable changes in cell morphology or death. We generated RNA-seq data

from these cells, obtaining an average of 32.4 million uniquely mapped reads.

Similar to our in vivo depletion studies, we observed a minor overlap in the genes down-

regulated (61 genes) or upregulated (6 genes) upon loss of all three RBPs (Fig. 6e, Supplementary

Data 6). In contrast to our findings in the adult mouse striatum, introns within downregulated

genes affected by loss of TAF15 and FUS in MNs were not significantly longer than upregulated

or unaffected genes (data not shown). Expectedly, 76% and 85% of the genes in the FUS-only

and TAF15-only knockdown experiments were also downregulated in the double knockdown.

However, we found that a subset of genes (n=144) were downregulated only upon combined

loss of TAF15 and FUS in human MNs (Fig. 6f), indicating a potential redundancy between

TAF15 and FUS in controlling gene expression. These genes that were downregulated upon

combined TAF15 and FUS loss were enriched for GO terms reflecting extracellular cellular matrix

composition, cell proliferation, wound healing, and cytokine activity.

2.3.8 Genes affected by RBP loss are similar to ALS-linked FUS mutant

To investigate if the molecular changes observed upon loss of FUS, TAF15, or both

proteins were relevant to ALS pathogenesis, we obtained fibroblasts from two ALS patients

with the causative R521G mutation in FUS. The fibroblasts were reprogrammed into iPSCs and
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subjected to cellular, molecular, and genetic characterization to confirm that they are pluripotent

(Supplementary Fig. 6b), exhibit a normal karyotype, and harbor the presence or absence of the

mutation at nucleotide position 1561 (Supplementary Fig. 6c). Three individual clones from

two FUS R521G patient-derived iPSC lines (two clones were from one line) and two control

iPSCs (from healthy, age-matched non-mutant individuals) were directly differentiated to MNs.

RNA isolated from these cells were subjected to RNA-seq library preparation and sequencing

to obtain an average of 20 million reads, of which 90% mapped uniquely to the human genome

(hg19). To ensure that the differentiation process yielded MNs at similar stages of differentiation

and similar subtypes of cells, we compared expression of a panel consisting of genes represent-

ing housekeeping, astrocyte, oligodendrocytes, neural precursor, and neuronal subtypes. The

similarities in expression profiles among the MN cell lines confirmed that differentiation of the

iPSC lines were consistent and hence enabled downstream comparative analysis (Supplementary

Fig. 6d). We identified 901 downregulated and 805 upregulated (Supplementary Data 7) genes

that were differentially affected in the FUS R521G MNs compared to wild-type control MNs.

Interestingly, although the majority of mutant-dependent gene expression changes were unique,

there existed statistically significant overlaps in the genes downregulated in the FUS R521G MNs

(relative to control) with genes downregulated upon loss of FUS (p¡10-9) or TAF15 (p¡10-3) (Fig.

6g). Importantly, this overlap increased in number when we compared the genes affected by

simultaneous depletion of both FUS and TAF15 (p¡10-22) (Fig. 6g). In contrast, we observed no

significant overlap in genes upregulated by any condition (Fig. 6g). Overall, these findings are

consistent with our observations that FUS and TAF15 are redundant in their effects on molecular

targets and implies a partial loss of molecular function by the FUS R521G mutation.

2.3.9 Downregulated genes correlate with a sALS RNA signature

To obtain insights into whether the genes affected by loss of ALS-associated RBPs

resemble disease-specific RNA signatures, we turned to a RNA-seq dataset generated from
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laser-capture microdissected (LCM) spinal cord samples from sALS patients who had bulbar

or arm onset of disease that was caudally progressing and thus had abundant residual MNs in

the lumbar region at the time of death[BHV+16]. The RNA-seq dataset consisted of samples

from 13 sALS and 9 control patients. 3,876 genes were significantly differentially regulated,

of which 71% and 29% were upregulated and downregulated, respectively, in the sALS patient

compared to normal samples (Supplementary Data 8). The differentially expressed genes were

effectively able to separate the disease patients from the control patients (Supplementary Fig.

6e). Next, we tested the hypothesis that ALS RBP-mediated RNA changes resemble the RNA

signature that distinguishes sALS and normal samples. For all the comparisons performed,

we observed a significant overlap (p¡0.05, hypergeometric test) in genes that were upregulated

in sALS samples and downregulated in FUS, TAF15, TDP-43, or FUS and TAF15 double

knockdowns (Supplementary Fig. 6f). We also observed a significant inverse correlation of

significantly changing genes between sALS samples and FUS, TDP-43, or FUS and TAF15

double knockdowns (Fig. 6h, R2 between -0.14 and -0.32, p¡0.05), but not between sALS

samples and the FUS R521G mutant MNs (Supplementary Fig. 6g). Despite the divergent sets of

regulated genes whose mRNA levels are dependent on ALS-associated RBPs, we found that 2,747

genes were upregulated in sALS patient samples. Unlike in vitro differentiated MNs, the sALS

patient samples represent more mature MNs at a late stage of disease progression. Our findings

indicate that in late stage sALS patient samples with TDP-43 pathology37, a subset of genes

that are separable from those found in ALS iPSC-derived FUS R521G MNs, are abnormally

higher compared to control patients. Among the commonly differentially regulated genes between

knockdown and sALS samples GO terms for extracellular space and matrix organization were

statistically enriched (p¡0.01).
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2.4 DISCUSSION

Genetic and clinical evidence strongly supports causative roles for FUS, TDP-43 and

TAF15 in ALS. Here, we identify common and unique pathways normally controlled by these

proteins utilizing diverse in vitro and in vivo neuronal systems (Supplementary Fig. 7). In

the adult mouse brain, we identified TAF15 binding sites within 4,900 RNA substrates, and a

GGUAAGU TAF15 binding motif not reported in previous studies[IMA+13, HLR+11]. We used

RNA Bind-n-Seq technology to confirm a GGUA motif that was enriched within in vivo TAF15

binding sites. Together, we conclude that TAF15 and FUS can interact with their RNA motifs

within in vivo RNA substrates without requiring complex co-factor associations. Overall, the RNA

binding pattern of TAF15 resembled that of FUS, but was distinct from TDP-43, even when all

three RBPs targeted the same genes. TAF15 and FUS exhibited sawtooth-like binding patterns on

long introns, a pattern reminiscent of co-transcriptional splicing[AZH+11]. Genes downregulated

upon loss of either TAF15 or FUS contained exceptionally longer introns. Additionally, TAF15

and FUS binding sites were also over-represented within 3UTRs, possibly reflecting 3 end

processing functions such as RNA turnover, transport, and translation. Upregulation of genes

upon FUS and TAF15 loss is likely a secondary effect as these genes are generally not targets.

Lastly, unlike TDP-43 and FUS, loss of TAF15 appeared to have a minor impact on alternative

splicing in the adult mouse brain.

In models of early human neuronal development, we identified that TAF15 and FUS

affected the mRNA turnover of distinct subsets of RNA targets in human neuronal progenitor

cells. Furthermore, loss of FUS, TAF15 or TDP-43 in human MNs derived from the same cells

resulted in distinct changes in gene expression for each RBP. Additionally, simultaneous depletion

of FUS and TAF15 resulted in the downregulation of hundreds of additional genes. FUS and

TAF15 have been shown to interact with each other[TGE+13, SLQ+15] (Supplementary Fig.

1b) as well as other common proteins such as RNA Pol II[SEP+12, KKX+13], spliceosome
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machinery[SLQ+15, JPV+09, YCY+12], and transcription factors[BLH+96]. One possibility

is that if FUS is unable to recruit regulatory factors to an RNA target, this function may be

compensated for by TAF15.

To gain insight into disease, we compared the results of our loss-of-function studies to

two models of ALS. The first model is MNs from ALS patients carrying the pathogenic FUS

R521G mutation. Expression of FUS R521G from the mouse MAPT locus has been recently

reported to cause neuronal toxicity in neurons of mice[SLL+16]. Previously, FUS R521G was

also associated with a partial loss-of-function in RNA regulation in mouse spinal cords[STK+14].

We did observe a small yet significant overlap in genes downregulated upon loss of TAF15, FUS,

or both proteins and genes altered by FUS R521G. This overlapping set of genes may reflect

the partial loss-of-function properties of FUS R521G43. As mRNAs downregulated upon loss

of these RBPs in mouse brain are often direct binding targets of those RBPs, we speculate that

the FUS R521G mutation, which causes cytoplasmic FUS mislocalization, resembles a partial

loss-of-function of the RBPs in a model of early development. Nevertheless, the majority of

expression changes caused by FUS R521G were mutant-specific such that they did not overlap

with genes altered by loss of TAF15, FUS, or both proteins. One interpretation is that these

FUS R521G-specific gene changes may contribute the pathological, gain-of-function activities of

mutant FUS that was observed to cause motor neuron dysfunction in mice[SLL+16].

To model late stage ALS disease we utilized RNA-seq data obtained from spinal cord

samples collected post-mortem by laser-capture microdissection from sALS patients. These

samples harbored ubiquinated TDP-43 cytoplasmic inclusions and were from patients with no

mutations in known ALS causative genes, including FUS, TDP-43 or TAF15. Intriguingly, our

comparisons of RNA signatures revealed an inverse correlation in a separate set of genes that were

upregulated in the sALS samples but were downregulated upon loss of ALS-associated RBPs in

in vitro derived MNs. This indicates that these genes, whose levels are normally dependent and

maintained by FUS, TAF15, and TDP-43, are aberrantly higher in late-stage ALS. A possible

32



mechanism for gene upregulation is the breakdown of negative feedback loops as is observed

for the effect of TDP-43 on its own expression[BB11, PLTH+12]. We did not, however, observe

a difference in TDP-43 mRNA levels between sALS and control neurons. Another plausible

scenario is that in late stages of the disease, cytoplasmic inclusions of TDP-43 lead to stabilization

of trapped, cytoplasmic RNA targets. Future studies to identify the mislocalized RNA targets in

cytoplasmic bodies that are protected from degradation, such as stress granules, may yield further

insight into disease-relevant targets at late stages in the disease.

In summary, our study delineates convergent and divergent RNA processing functions of

ALS-associated FUS, TAF15, and TDP-43 in normal and disease settings. Our comprehensive

results shed light on multiple and distinct pathways by which these RBPs regulate gene expression

in diverse neuronal systems and provide a framework for how they relate to ALS and other

neurodegenerative diseases.

2.5 METHODS

2.5.1 Injections of ASO in mice

Sterotaxtic injections of ASO complementary to TAF15 were performed in eight-week

old female C57Bl/b mice to deplete TAF15. ASOs were delivered specifically to the striatum or

brain/spinal cord by intrastriatal (12.5 g) or intracerebroventricular injection (300 g), respectively,

as described previously[LTPH+12, RCN+14]. Female mice were regularly monitored for 14 days

until sacrificed and the tissues were harvested and frozen in TRIzol (Invitrogen). Control mice

received a control ASO without any known target in the mouse genome under the same conditions.

The ASOs were phosphorothioate gapmers with sequences as follows (capitalized nucleotides

containing 2-O-(2-methoxy)ethyl modifications): GGTCTcctccatagcTGCCT (TAF15; brain and

striatum), TGGCAatattttacaACGCA (TAF15; spinal cord), CTCAGTAACATTGACACCAC

(Control). All procedures were performed using a protocol approved by the Institutional Animal
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Care and Use Committee of Ionis Pharmaceuticals and the University of California at San Diego.

2.5.2 Generation of neural precursor cells and motor neurons

Human induced pluripotent stem cells (iPSCs) derived from dermal fibroblasts cells of

a healthy individual (RRN08) were induced into neural precursor cells using a pan-neuronal

protocol as previously described21. Briefly, stem cells were grown on Matrigel-coated plates

(BD) in mTeSR1 growth media (Stem Cell Technologies). Stem cell colonies were grown on ultra

low-attachment plates in DMEM/F12 + GlutaMAX supplemented with N2 and FGF-2 (20 ng/ml).

After one week, neural rosettes were manually picked, replated, and maintained in DMEM/F12 +

GlutaMAX supplemented with N2, B27, and FGF-2 (20 ng/ml).

2.5.3 Generation of human motor neurons

Human motor neurons used in the shRNA knockdown experiments were differentiated

from iPSCs (CVB) using a protocol modified from Chambers et al.36. Briefly, human iPSCs

were maintained in hEB Media (Knockout D-MEM + 10% Knockout Serum Replacement (Life

Technologies) + 10% Plasmanate (Biocare) + GlutaMAX + NEAA (Life Technologies) and

supplemented with 10 M SB431542 and 1 M Dorsomorphin dihydrochloride (Tocris) on feeder-

free dishes. Cells were maintained in SB431542 and Dorsomorphin until day 18 of differentiation.

On days 4, 5, and 6 of differentiation, hEB media was mixed with N2 Base media (D-MEM/F12 +

GlutaMAX, 1% N2 Supplement + 4.5 mM D-Glucose, 0.05 mM Ascorbic Acid (Sigma)) at a ratio

of 70:30, 50:50, and 50:50, respectively. On days 7 and 8 of differentiation, cells were maintained

in 50:50 combination of hEB media and maturation media (D-MEM/F12 + GlutaMAX, 2%

N2 Supplement, 4% B27 Serum-Free Supplement (Invitrogen), 9.0 mM D-Glucose, 0.1 mM

Ascorbic Acid (Sigma)) supplemented with 2 ng/mL each of ciliary neurotrophic factor (CNTF),

brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF)
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(Peprotech). From day 7 to day 22 of differentiation, cells were treated with 200 nM Smoothened

Agonist (SAG; EMD Biosciences) and 1.5 M Retinoic Acid (RA; Sigma). On day 18, cells

were dissociated using Accutase, and transferred to dishes coated with Poly-D-Lysine (Sigma) +

Laminin (Life Technologies) and maintained in maturation media supplemented with RA and

SAG. On day 22, cells were maintained in maturation media containing 2 M DAPT (Tocris).

On day 26, cells were maintained in maturation media only. Throughout the differentiation

protocol media was changed daily. The identity and purity of motor neurons were analyzed by

immunofluorescence for markers of stem cells, motor neurons, astrocytes, and glial cells.

2.5.4 Generation of motor neurons from fibroblast-derived iPSCs

Adult human primary fibroblasts were obtained by Franca Cambia, Edward Kasarskis,

and Haining Zhu (University of Kentucky). Informed consent was obtained from all subjects

before sample collection. The use of patient fibroblasts for research was approved by the Uni-

versity of Kentucky Institutional Review Board (IRB 05-0265). Briefly, adult human primary

fibroblasts were cultured at 37C and 5% CO2 in DMEM supplemented with 10% FBS, NEAA,

and L-glutamine. To generate iPS cells, control and ALS patient fibroblasts were transduced

with CytoTune iPS Sendai Reprogramming Kit, as described in manufacturers protocol (Invit-

rogen). Colonies were manually passaged onto Matrigel-coated plates and grown in mTeSR1

growth media. After several passages, colonies were expanded using Accutase (Innovative Cell

Technologies) and grown as a monolayer prior to differentiation. Motor neuron differentiation

was performed as described above with the following modifications: CHIR99021 (Tocris) was

added at 4 m until day 7 and the cells were either fixed for immunostaining or harvested for RNA

in TRIzol (Life Technologies) 35 days post neural induction. Three ALS patient lines GY6.2,

GY7.3, and GY7.6 are referred to as FUS R521G Line 1, Line 2 and Line 3 respectively, and two

wild-type sibling control lines KIN1ALS17.3 and KIN1ALS17.4 are referred to as WT sibling

control Line 1 and Line 2, respectively.
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2.5.5 Lentiviral infections and transfections

Lentiviral shRNA constructs (Open Biosystems) complementary to human TAF-15

(TRCN0000020140, TRCN0000020141 or TRCN0000020143,), human FUS/TLS (TRCN0000010450,

TRCN0000039824, or TRCN0000039825), and human TDP-43 (TRCN0000016038) in the

pLKO.1 vector system were used to produce lentivirus as previously described[YCL+09]. Virus

produced from a pLKO.1 construct containing a control sequence was used as the control. At

60-70% confluency, NPCs were infected with virus (MOI=3) for 24 hours, followed by a complete

media change and further incubation for 72 hours until cells were either collected and frozen

in TRIzol (Invitrogen) or pelleted and frozen in liquid nitrogen for RNA and protein analysis,

respectively. For lentiviral infection of motor neurons, media containing virus (MOI=5) was

added to cells on day 28 of the motor neuron differentiation protocol. After 24 hours, a complete

media change was performed and cells incubated for an additional 48 hours. A second round of

infection, similar to the first, began on day 31. On day 34 of MN differentiation, correspond-

ing to a six-day exposure period to shRNA expression, cells were either collected and frozen

in TRIzol (Invitrogen) or pelleted and frozen in liquid nitrogen for RNA and protein analysis,

respectively. For transfection of HEK293T cells, cells were plated in DMEM high glucose media

(Life Technologies) supplemented with 10% FBS. Cells were transfected with plasmid expressing

human FUS-Myc cloned into pcDNA5 or TAF15-V5 cloned into pEF5-DEST using FuGENE 6

(Promega) according to the manufacturers protocol for 24 hours and then harvested for protein

analysis.

2.5.6 CLIP-seq library preparation and sequencing

Brains from 8-week-old female C57Bl/6 mice were rapidly dissociated by forcing the

tissue through a cell strainer with a pore size of 100 m (BD Falcon) before ultraviolet crosslinking.

CLIP-seq libraries were constructed as previously described47 using 10 g of a polyclonal antibody
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against TAF15 (300A 308, Bethyl Laboratories). Libraries were subjected to sequencing on a

HiSeq2000 platform for 50 cycles. For each CLIP-seq library, the brain of one mouse was used.

2.5.7 Computational analysis of CLIP-seq experiments

CLIP-seq alignment and peak calling were performed as previously described21. Briefly,

reads with the sequencing adapter or homopolymeric runs were trimmed and then mapped to the

repeat-masked mouse genome (mm9) using Bowtie (version 0.12.2) with parameters q p 4 e 100

a m 10 beststrata. Reads that were flagged as PCR duplicates were removed. Significant clusters

of reads were identified using a Poisson distribution with two different frequencies to determine a

p-value. First, a transcriptome-wide frequency was calculated by dividing the total length of all

pre-mRNAs by the total number of CLIP reads mapping to the whole pre-mRNA transcriptome.

Second, a gene-specific frequency was calculated by dividing the size of the gene-specific pre-

mRNA by the total number of CLIP reads mapping to that gene-specific pre-mRNA. A significant

cluster was annotated if it had sufficient reads to exceed a Bonferroni-corrected p¡10e-4 using

both frequencies against the Poisson distribution

2.5.8 De novo motif analysis

Motif analysis was performed as previously described[LGM+13]. Briefly, HOMER[HBS+10]

was used to call de novo motifs using the command findMotifs.pl ¡foreground¿ fasta ¡outloc¿

-nofacts p 4 rna S 20 len 5,6,7,8,9 noconvert nogo fasta ¡background¿. Where foreground was a

fasta sequences taken from all called clusters, or all called clusters in a specific transcriptome

region and background was randomly located clusters within the same genic regions as predicted

TAF15 clusters.
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2.5.9 Peak Annotations

Transcriptome regions and gene classes were defined using annotations found in GEN-

CODE version 17[HFG+12]. Depending on the analysis, clusters were either associated by the

GENCODE annotated 5UTR, 3UTR, exon, or intronic regions. If a cluster overlapped multiple

regions or a single part of a transcript was annotated as multiple regions, clusters were iteratively

assigned first as exon, then 3UTR, 5UTR, and finally as proximal or distal introns (as defined

as 500 bp or greater from an exon-intron boundary). Overlapping peaks were calculated using

bedtools[QH10, DPQ11].

2.5.10 Enrichment of peaks relative to region size

To compute the fold enrichment of peaks in a given region, the fraction of peaks in that

region was calculated as described above. The fractional region size was derived by dividing the

total number of base pairs in that region relative to the total number of base pairs in all regions.

Fold enrichment was computed using the equation log2 (FCLIP / Fregion).

2.5.11 Distance of peaks from motifs

Distance from peaks was computed by using the annotatePeaks function in HOMER[HBS+10]

with the arguments annotatePeaks.pl ¡peaks¿ mm9 -m ¡motif¿, -hist 10-size 1000 noann. Identifi-

cation of peaks and motifs were determined as described above.

2.5.12 RNA Bind-n-Seq (RBNS)

RBNS was performed as previously described26. Briefly, truncated reading frames of

FUS (amino acids 204-415) and TAF15 (amino acids 235-418), which contain all RNA binding

domains, were cloned downstream of a tandem GST-SBP tag into a modified pGex6p-1 vector

(GE). Truncated proteins were recombinantly expressed and purified via the GST tag, and used

38



for RBNS, which was performed at 5 concentrations (0 nM, 5 nM, 20 nM, 80 nM, and 320 nM)

with a pool of randomized 20mer RNAs, flanked by short primers. Preparation of the randomized

RNA pool and all reaction conditions were identical to previous descriptions[LRJ+14]. Further

computational analysis details can be found in Supplementary Methods.

2.5.13 RNA-seq library preparation, sequencing, and analysis

Total RNA was extracted from mouse tissues and human cells using TRIzol (Invitro-

gen) according to the manufacturers instructions. 0.5-3 g of total RNA was DNase treated and

subjected to poly(A) selection or Ribo-Zero treatment followed by library preparation using

TruSeq Stranded mRNA and Total RNA Sample Preparation Kit (Illumina). Barcoded libraries

were pooled at equal concentrations and sequenced on the HiSeq 2000 or HiSeq2500 platform

for 50 cycles. RNA-seq reads were trimmed of polyA tails, adapters, and low quality ends

using Cutadapt[Mar11] with parameters –match-read-wildcards –times 2 -e 0 -O 5 –quality-

cutoff’ 6 -m 18 -b TCGTATGCCGTCTTCTGCTTG -b ATCTCGTATGCCGTCTTCTGCTTG

-b CGACAGGTTCAGAGTTCTACAGTCCGACGATC -b TGGAATTCTCGGGTGCCAAGG

-b AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -b

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT. Reads were then

mapped against a database of repetitive elements derived from RepBase (version 18.05) using

Bowtie (version 1.0.0) with parameters -S -q -p 16 -e 100 -l 20[LTPS09]. Reads that did not

map to Repbase sequences were aligned to the hg19 human genome (UCSC assembly) using

STAR (version 2.3.0e)[DDS+13] with parameters –outSAMunmapped Within outFilterMultimap-

Nmax 10 outFilterMultimapScoreRange 1. Counts were calculated with featureCounts[LSS14]

and RPKMs were computed. Differential expression was calculated using DESeq2[LHA14],

individually pairing each knockdown experiments with their respective controls.
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2.5.14 Test of overlapping significance between gene sets

Genes from each differential expression experiment were considered significant if —log2

fold change— ¡ log2(1.5) and the adjusted p¡0.05. Significant genes between two sets were

overlapped and the total set of genes was defined as genes that were expressed (RPKM¿1) in

the corresponding control experiment. A hypergeometic test was performed to determine if the

overlap of two gene sets was statistically significant. Regression analysis was performed using

the scipy linear regression function on genes that were significantly differentially expressed in

both samples.

2.5.15 RT-PCR of splicing events

To validate alternative splicing events, RT-PCR (2427 amplification cycles) was carried

out using poly-Aselected and reverse transcribed (Superscript III, Invitrogen) cDNA from mice

(n=3) treated with either a control ASO or ASO targeting the indicated RBP. Isoform products

were visualized using the Agilent 2200 TapeStation System (Agilent Technologies) or on an

agarose gel and quantified using ImageJ to calculate ratios between inclusion and exclusion

products. Statistical significance in differences between control and ASO samples was calculated

by Students t test. Primer sequences are listed in Supplementary Data 9.

2.5.16 Quantitative RT-PCR

qRT-PCR was performed using Power SYBR Green Master Mix (Life Technologies) using

poly-Aselected and reverse transcribed (Superscript III, Invitrogen) cDNA on an iQ5 real-time

PCR detection system (Bio-Rad). For each biological replicate, qRT-PCR was carried out in

technical triplicates. GAPDH and Actin were used as reference genes for human and mouse

targets, respectively. Analysis was performed using the iQ5 optical system software (Bio-Rad;

version 2.1). Expression values were normalized to the reference gene and expression values were
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expressed as a fold-change relative to control samples. Inter-group differences were assessed by

two-tailed Student’s t test. Primer sequences were designed using Primer3 software[UCK+12] or

obtained from PrimerBank[WSWS12]. Primer sequences are listed in Supplementary Data 9.

2.5.17 RNA immunoprecipitation qPCR (RIP-qPCR)

NPCs were resuspended in lysis buffer (50 mM Tris pH 7.4,100 mM NaCl, 1% NP-

40, 0.1% SDS, 0.5% Sodium Deoxycholate) supplemented with 1x Protease Inhibitor cocktail

(Roche) and 80U of RNAse Inhibitor (Roche). Clarified lysates were pre-cleared with Protein G

agarose beads (Life Technologies). Aliquots of the supernatant (equivalent to 5% of supernatant)

were saved as input protein and RNA. The remainder of the supernatant was incubated with

10 g of antibody at 4C for 4 hours. The protein-RNA-antibody complex was precipitated by

incubation with Protein G magnetic beads overnight at 4C. Beads were washed twice with lysis

buffer and three times with wash buffer (5 mM Tris pH 7.5, 150 mM NaCl, 0.1% Triton X 100).

Ten percent of the bead slurry was reserved for Western blot analysis. The remaining bead slurry

was resuspended in TRIzol (Life Technologies) and RNA was extracted as per the manufacturers

instructions. Input and immunoprecipitated RNA was converted into cDNA and gene expression

was measured by qPCR. RIP-qPCR studies were performed in biological duplicates. Primer

sequences are listed in Supplementary Data 9.

2.5.18 Antibodies for Western blot analysis

The primary antibodies used are as follows: FUS/TLS (ProteinTech 1:1,000), FUS/TLS

(Santa Cruz Biotechnology, clone 4H11, sc-47711, 1:100), TAF15 (Bethyl Laboratories 300A-

308, 1:1,000), TDP-43 (Proteintech, 10782, 1:2,000), and GAPDH (Abcam, AB8245, 1:10,000).

Images have been cropped for presentation. Full size images are presented in Supplementary Fig.

8.
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2.5.19 Immunofluorescence

Cells were fixed in 4% paraformaldehyde for 20 min, washed 3 times in PBS, and

simultaneously blocked and permeabilized with 5% donkey serum and 0.1% Triton-X100 in PBS

for 1 hour at room temperature. Cells were then rinsed once in PBS and incubated with primary

antibody overnight at 4C. After 5 washes with PBS, secondary antibodies consisting of goat

anti-rabbit Alexa Fluor 488 and goat anti-mouse Alexa Fluor 555 (Life Technologies) were added

at a dilution of 1:1,000 for 2 hours at room temperature. Following incubation, the cells were

rinsed 3 times with PBS, and nuclei were labeled with 1 g/ml DAPI for 10 min. The following

primary antibodies were used: HB9 (1:100, DSHB), Islet1 (1:500, Santa Cruz Biotechnology),

Oct4 (1:500, Cell Signaling), Olig2 (1:500, Millipore), Sox2 (1:500, Cell Signaling), Tra1-60

(1:1000, Millipore), Tra1-81 (1:1000, Millipore), Tuj1 (1:500, Millipore).

2.5.20 RBNS Computational Analysis

RBNS analysis was performed as previously described[CVP+16]. Briefly, motif enrich-

ment (R) values were calculated for 6mers as the motif frequency in the RBP-selected pool over

the frequency in the input RNA library. R values were considered significant if they had a Z-score

2 (mean and standard deviation calculated over all 6mers). Values in Fig. 2 and Supplementary

Fig. 2 are for the protein concentration library with the highest overall enrichment (80 nM for

both proteins). RBNS datasets have been deposited at the ENCODE DCC under accession IDs

ENCSR936LOF for FUS and ENCSR827QYL for TAF15.

Motif logos were generated following an iterative procedure on the most enriched 6mer

library precipitated from the GST-SBP tagged protein: the most enriched 6mer was given a

weight equal to its enrichment over the input library (=R-1), and all occurrences of that 6mer

were masked in both the precipitated and input libraries. All enrichments were recalculated on

the masked read sets to obtain the most enriched remaining 6mer and its corresponding weight,
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with this process continuing until the R Z-score was less than 2. All 6mers determined from this

procedure were aligned to minimize mismatches to the most enriched 6mer, and a new motif was

generated if the number of mismatches was greater than 2. The frequencies of each nucleotide in

the position weight matrix, as well as the overall percentage of each motif, were determined from

the weights of the individual aligned 6mers that went into that motif.

For comparison with CLIP-seq data, RBNS enrichments were determined from the concen-

tration with the largest enrichment. For enrichment in CLIP-seq 6mers, FASTQ sequences were ex-

tracted from all clusters, and a matched number of random clusters from the same genomic region

(5UTR, exon, 3UTR, proximal introns, and distal introns). EMBOSS compseq was performed on

the real and background set, and a delta between real and background k-mers was calculated with

the equation: δkmer = fCLIP/NCLIP − fbackground/Nbackground)/
√

((1/NCLIP +1/Nbackground ∗g∗

(1− g))), for g = ( fCLIP + fbackground)/(NCLIP +Nbackground) where N is the number of times

the motif occurs in the set and f is observed frequency of the motif. To plot enrichment, all

6mers with the 4mer of interest were highlighted and a KDE plot was created for all 6mers. The

KolmogorovSmirnov two-tailed test determined statistical significance in differences between

distributions.

2.5.21 RNA stability analysis

NPCs were infected with virus as described above. 96 hours post infection, cells were

treated with Actinomycin D (10 g/mL) for the indicated times. Cells were washed with cold PBS

and harvested for RNA extraction using TRIzol (Life Technologies) or protein for Western blot

analysis. 1 g of total RNA was subjected to DNase treatment and poly(A) enrichment, and used

to prepare RNA-seq libraries as described above. To calculate RNA half-lives, RPKMs from each

experiment were calculated and decay rates were generated by fitting RPKMs for each gene to

a log-linear regression using the equation lnN(t) = lnN0 +−λt , where t is time and N(t) is the

RPKM at time t. Half-lives were derived from the decay rate using the equation t1/2 = ln(2)/ .
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Genes were included in the analysis if their decay rate was positive (i.e., RPKMs decreased over

time) and the linear regression line had a R2 fit greater than 0.6.

2.5.22 Correlation of gene expression to CLIP binding and motifs

Mouse brain CLIP-seq data for FUS and TDP-43 were previously described21,22. The

binding location of each peak was assigned using the peak annotation method as described above.

For each RBP, mouse brain CLIP-seq data and mouse striatum knockdown RNA-seq data was

used to classify genes into the following categories: target and regulated, non-target and regulated,

target and not regulated, and non-target and not regulated. A Fishers exact test was performed

determine if binding and regulation were significantly correlated. Motif analysis was performed

similarly, by determining if a TAF15 GGUAA or FUS GUGG motif was present in the 3UTRs or

introns of genes.

2.5.23 Splicing-sensitive microarray analysis

Total RNA from three individual control and TAF15 ASO-treated mice were prepared

for hybridization to splicing-sensitive microarrays (Affymetrix). Separation scores (Sep scores)

were generated as previously described[HVA+12]. For clustering of splicing events, a splicing

event was included in clustering if, for any of the three experiments, TAF15, FUS, or TDP-

43 knockdown was significantly (—Sep score—¿0.5, q-value¡0.05), differentially expressed.

Hierarchal clustering was performed using Seaborn/SciPy on the Sep scores for each splicing

event. Overlap analysis of splicing-sensitive microarray results and TAF15 mouse CLIP-seq data

was performed as previously described61.
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2.5.24 Gene ontology analysis

Significantly enriched gene ontology (GO) terms were identified using a hypergeometric

test that compared the number of genes that were either regulated (RNA-seq data) or bound

(CLIP-seq data) in each GO term to genes expressed (background) in each GO term. The

background gene set was defined as genes that were expressed (RPKM¿1) in the corresponding

control experiment.
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Figure 2.3: Figure 2. RNA Bind-n-Seq confirms enrichment for GGUA motifs in RNAs
that bind TAF15 in vitro (a) Experimental overview of RNA Bind-n-Seq (RBNS). Truncated
versions of TAF15 and FUS (highlighted in red and green, respectively) were tagged and
incubated at different concentrations with a diverse pool of RNA oligonucleotides flanked by
adapters. The tagged proteins were retrieved with streptavidin-coated beads and bound RNAs
were sequenced. Input RNA was sequenced in parallel to quantify the proportions of bound RNA
molecules. (b) RNA binding preferences for truncated TAF15 shown as motif logos made from
aligning RBNS 6mers weighted by their enrichments. Motif proportions were determined by
summing the enrichments of each motifs aligned 6mers. (c) Scatter plot correlating the percent
enrichment above background of 6mers in TAF15 mouse brain CLIP-seq vs. TAF15 RBNS R
Z-scores. Red dots represent all significant 6mers containing the GUAA motif. Histograms show
normalized distributions of 6mers containing (red) or not containing (black) the GUAA motif
in CLIP-seq (right) or RBNS (top). p values shown are computed by a Kolmogorov-Smirnov
statistic. (d) RNA binding preferences for truncated FUS as in (b). (e) Scatter plot and histogram
analyses are as described in (c) using FUS mouse brain CLIP-seq vs. FUS RBNS R Z-scores.
Green dots represent all significant 6mers containing the GUGG motif.
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Figure 2.4: Supplementary Figure 2. RNA Bind-n-Seq confirms enrichment for GGUA
motifs in RNAs that bind TAF15 in vitro (a) Scatter plot correlating the percent enrichment
above background of 6mers in TAF15 mouse brain CLIP-seq for peaks in the 3UTR vs. TAF15
RBNS R Z-scores. Red dots represent all significant 6mers containing the GGUA motif.
Histograms show normalized distributions of 6mers containing (red) or not containing (black)
the GGUA motif in CLIP-seq (right) or RBNS (top). p values shown are computed by a
Kolmogorov-Smirnov statistic. (b) Scatter plot as in (a) for 6mers in FUS mouse brain CLIP-seq
peaks residing only in the 3UTR vs. FUS RBNS R Z-scores. Green dots represent all significant
6mers containing the GUGG motif. (c) Scatter plot correlating the percent enrichment above
background of 6mers in TAF15 mouse brain CLIP-seq vs. TAF15 RBNS R Z-scores. Red dots
represent all significant 6mers containing the FUS GUGG motif. Histograms show normalized
distributions of 6mers containing (red) or not containing (black) the GUGG motif in CLIP-seq
(right) or RBNS (top). p values are shown. (d) Scatter plot as in (c) for 6mers in FUS mouse
brain CLIP-seq vs. FUS RBNS R values. Green dots represent all significant 6mers containing
the TAF15 GGUA motif.
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Figure 2.5: Figure 3. TAF15 and FUS exhibit similar RNA interaction profiles in the
mouse brain (a) Fold change in binding enrichment of TAF15, FUS, TDP-43, NOVA1 and
RBFOX1 after normalization to the average length of proximal introns (dark blue), distal introns
(light blue), exons (green), 5UTRs (purple) or 3UTRs (red). (b) An example of 3UTR binding
by TAF15 (red) and FUS (green) but not TDP-43 (purple) to Neurobeachin (Nbea) mRNA
(chr3:55,428,730-55,433,169) in the mouse brain. RNA-seq results showing expression of
Nbea is shown in blue. (c) Bar graph showing the percent of gene targets that are common
(black bars) or unique (white bars) to TAF15 and FUS, TDP-43, or both FUS and TDP-43. (d)
An example of intronic saw-tooth binding by TAF15 (red) and FUS (green) but not TDP-43
(purple) to the Glutamate receptor delta-1 subunit precursor (Grid1) mRNA (chr14:35,634,350-
36,071,292) in the mouse brain. RNA-seq results showing expression of Grid1 is shown in
blue. (e) Confirmation of reduced TAF15 expression in the mouse striatum by Western blot
analysis (left) and qPCR (right). Knockdown was achieved by intrastrial injection of ASOs
complementary to TAF15 or a non-murine/human gene (Control). Error bars represent standard
deviation. (f-g) Venn diagrams showing overlap of genes downregulated (f) and upregulated
(g) upon loss of TAF15, FUS, or TDP-43 in the mouse striatum. (h-j) Percent of genes that are
downregulated (h), upregulated (i), or unchanged (j) upon ASO-mediated knockdown of the
indicated RBP that has at least one binding site (Target, gray) or no binding sites (Non-target,
black) by that RBP. Asterisks denote significant difference between target and non-target genes
by Fishers exact test at p¡0.05.
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Figure 2.6: Supplementary Figure 3. TAF15 and FUS exhibit similar RNA interaction
in the mouse brain (a) Percent binding enrichment of TAF15, FUS, TDP-43, NOVA1 and
RBFOX1 in proximal intron (dark blue), distal intron (light blue), exon (green), 5UTR (purple)
or 3UTR (red) as compared to the observed percentage of nucleotides in the annotated tran-
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RBP that are either bound (Target, gray) or not bound (Non-target, black) by that RBP in the
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exact test. Error bars represent standard deviation.
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Figure 2.7: Figure 4. TAF15 influences alternative splicing for a small subset of tran-
scripts (a) Bar graph showing the number of alternative splicing events altered upon ASO-
mediated depletion of TDP-43, FUS, or TAF15 in the mouse striatum, as detected by splicing-
sensitive microarray analyses. (b) Heatmap of alternative cassette events in (a) altered by FUS,
TAF15, or TDP-43 depletion. Hierarchical clustering analysis was performed using separation
(Sep) scores. Higher Sep scores (red) indicate inclusion events and lower Sep scores (blue)
indicate exclusion events. (c) RT-PCR for exon 5 of glycerophosphocholine phosphodiesterase 1
(Gpcpd1) (chr2:132,382,646-132,390,412) to assess alternative splicing in TAF15 knockdown
samples compared to controls. Quantification of biological replicates is shown. Error bars
represent standard deviation. Binding of TAF15 (red), FUS (green), and TDP-43 (purple) in the
mouse brain is shown below. (d) RT-PCR of exon 24 in the potassium channel, calcium activated
large conductance subfamily M alpha, member 1 (Kcnma1) (chr14:24,149,961-24,156,401) to
assess alternative splicing in TAF15 knockdown samples compared to controls. Quantification
of biological replicates is shown. Error bars represent standard deviation. Binding of TAF15
(red), FUS (green), and TDP-43 (purple) in the mouse brain is shown below.
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Figure 2.8: Supplementary Figure 4. Effect of TAF15 depletion on alternative splicing (a)
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reduced TAF15 expression in the mouse brain or spinal cord by Western blot analysis (top)
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complementary to TAF15 or a non-murine/human gene (Control). (d) Splicing validation by
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cord compared to a Control ASO. Quantification of biological replicates is shown. Error bars
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Figure 5. 
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Figure 2.9: Figure 5. Loss of TAF15 or FUS affects mRNA stability in human neural
precursor cells (a) Schematic of workflow. (1) Human iPSCs were differentiated into neural
progenitor cells (NPCs) and stained for neuronal lineage markers DCX (left, green), NESTIN
(right, red), SOX2 (right, green) to confirm differentiation. Dapi (blue) was used to locate
nuclei. Scale bar: 25 m. (2) NPCs were infected with virus expressing shRNAs against
TAF15 or FUS and then treated with Actinomycin D for indicated duration. (3) Poly(A)-
selected RNA was converted into libraries for sequencing and sequencing reads were used to
calculate mRNA half-lives. (b) Validation of shRNA-mediated knockdown of FUS or TAF15
in NPCs by Western blot analysis. Representative Western blot is shown from one replicate
with quantifications from biological triplicate knockdown experiments. (c) For each gene, the
coefficient of determination (R2) reflecting the fit of the RPKM values to a log linear regression
was computed. The cumulative distribution functions of the R2 values for all genes in the TAF15
depletion experiment are depicted for real and shuffled values. (d) Table displaying the number
of mRNAs whose half-lives were destabilized, stabilized, or unchanged by depletion of TAF15
or FUS. Half-life changes, measured as log2 (knockdown/control), that were greater than 1 were
considered. (e) Heatmap of normalized RPKMs for stabilized and destabilized mRNAs upon
shRNA-mediated knockdown of TAF15 or FUS. RPKMs are normalized for each gene to its
RPKM at time 0. An asterisk indicates that the gene was examined for binding in (f). (f) RNA
immunoprecipitation was performed using antibodies against IgG (Control), TAF15 and FUS
in NPCs. The relative fold change compared to the IgG control for genes that are stabilized
by TAF15 loss, was determined by qPCR. Values are means standard deviation for biological
duplicates. Asterisk denotes a significant difference compared to IgG by Students t test where
**p¡0.005 and *p¡0.05. (g) RNA immunoprecipitation analysis as in (g) for mRNAs that were
destabilized upon TAF15 loss.
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Supplementary Figure 5
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Figure 2.10: Supplementary Figure 5. Transcriptome-wide analysis of mRNA decay upon
loss of TAF15 or FUS (a, b) For each gene, the coefficient of determination (R2) reflecting the
fit of the RPKM values to a log linear regression was computed. The cumulative distribution
functions of the R2 values for all genes in the FUS depletion and scrambled shRNA treated
experiments are depicted for real and shuffled values. (c) RNA immunoprecipitation was
performed using antibodies against IgG (Control), TAF15 and FUS in NPCs. The relative
fold change compared to the IgG control for ANAX2 and TIAL1, RNAs that are not altered
by TAF15 loss, was determined by qPCR. Values are means SD for biological duplicates.
Asterisk denotes a significant difference compared to IgG by Students t test where p¡0.05 and
n.s. indicates no significant difference.
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Figure 2.11: Figure 6. Comparison of motor neuron RNA signatures upon TAF15, FUS,
or TDP-43 loss to two models of ALS (a) Schematic of workflow to reprogram iPSCs and
differentiate into motor neurons (MNs). (b) Immunofluorescence of human iPSC-derived MNs
for motor neuron marker HB9 (green), post-mitotic neuronal marker TUJ1 (green), neural
stem cell marker ISLET1 (red), and oligodendrocyte marker OLIG2 (red). Dapi stain marks
cell nuclei (blue). Scale bar: 25 m. (c) qRT-PCR and (d) Western blot validation of shRNA-
mediated depletion of TAF15, FUS, and TDP-43 in MNs. Error bars represent standard deviation
from biological duplicate experiments. (e,f) Venn diagrams showing overlap of up- and down-
regulated genes in MNs upon depletion of TAF15, TDP-43, FUS or simultaneously, FUS and
TAF15 (FUS+TAF15). (g) Venn diagrams showing overlap of up- and down-regulated genes
between MNs with the FUS R521G mutation and knockdown of TAF15, FUS or FUS+TAF15.
Statistical significance was determined by a hypergeometric test using genes expressed in MNs
as background. (h) Scatter plots comparing gene expression changes (log2 RPKM) in MNs from
sALS patient samples compared to loss of TAF15, FUS, TDP43 or FUS+TAF15. Each quadrant
of a scatter plot shows genes (red dots) and gene counts (N, in red) that are significantly changing
in sALS and RBP depletion experiments. Genes from a randomly ordered comparison are also
shown (black dots) along with gene counts (N, in black). R2 and p values from linear regression
analyses of genes significantly changing in both sALS and RBP knockdown experiments are
shown.
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Figure 2.12: Supplementary Figure 6. Characterization of motor neuron model systems
of sALS (a). Densitometric quantification of Western blots in Fig. 6d. Asterisk denotes a
significant difference compared to control (scramble) shRNA by Students t test at p¡0.05. Error
bars represent standard deviation. (b) Immunofluorescence staining of ALS-patient and wild-
type (WT) sibling control iPSCs for pluripotency markers TRA1-60, OCT4, TRA1-81, and
SOX1. Dapi stain marks cell nuclei (blue). Scale bar = 100 m. (c) Sanger sequencing results
of iPSC lines in (b) showing the wild-type (c1561) or R521G mutation (c1561g) in the FUS
gene. (d) Heatmap comparing the expression in log2 RPKMs of 93-gene RNA signature of
glial, astrocyte, oligodendrocyte and neuronal subtype markers in HEK293T cells, iPSC-derived
human motor neurons (MNs) where TAF15, TDP-43, FUS, or both TAF15 and FUS have
been knocked down (KD) in WT cells, and iPSC-derived MNs from ALS-patient fibroblasts
harboring the FUS R521G mutation (FUS R521G) or the sibling control (FUS R521G Kin
Control) and a scrambled shRNA treated FUS R521G Kin control (Line 3). Low expression
is grey and high is purple. (e) Clustergram of log2 RPKMs from sALS patient samples (blue)
and control samples (red) used in the differential gene analysis. (f) Venn diagrams showing
overlap of genes upregulated in sALS patient samples and genes downregulated upon loss of
TAF15, FUS, TDP-43, or FUS+TAF15. P values were derived by hypergeometric test. (g)
Scatter plot comparing gene expression changes in log2RPKMs in MNs from sALS patient
samples compared to expression in FUS R521G mutants. Each quadrant of a scatter plot shows
genes (red dots) and gene counts (N, in red) that are significantly changing in sALS and RBP
depletion experiments. Genes from a randomly ordered comparison are also shown (black dots)
along with gene counts (N, in black). R2 and p values from linear regression analyses of genes
significantly changing in both sALS and RBP knockdown experiments are shown.
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Supplementary Figure 7
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of the ALS-associated RBPs TAF15, FUS, and TDP-43 through loss-of-function studies and
compare these findings to models of ALS. Genome-wide studies such as (2) CLIP-seq revealed
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Chapter 3

Guidelines and Best Practices for enhanced

CLIP experiments and analysis

3.1 ABSTRACT

Enhanced cross-linking immunoprecipitation (eCLIP) featuring a size-matched input

control has been recently applied to profile the binding sites of more than one hundred RNA

binding proteins (RBPs). However computational pipelines and quality control metrics needed to

process CLIP data at scale have yet to be well defined. Here, we describe our ENCODE eCLIP

processing pipeline (https://github.com/YeoLab/eclip), enabling users to go from raw reads to

processed peaks that are enriched above paired input, reproducible across biological replicates,

and can be directly compared against the public ENCODE eCLIP resource. In particular, we

discuss processing steps designed to address common artifacts, including properly quantifying

unique RNA fragments bound by both unique genomic- and repetitive element-mapped reads.

Using manual quality annotation of 350 ENCODE eCLIP experiments, we develop metrics for

quality assessment of eCLIP experiments prior to and after sequencing, including library yield,

number of unique fragments in the library, total binding relative information, and biological
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reproducibility. In particular, we quantify the commonly believed linkage between depth of

sequencing and peak discovery, and derive methods for estimating required sequencing depth

based on pre-sequencing metrics. Finally we provide recommendations for the common question

of integrating RBP binding information with RNA-seq to generate splicing maps representing

the positional effect of binding on alternative splicing. These pipelines and QC metrics enable

large-scale processing and analysis of eCLIP data, and will help to standardize rigorous analysis

of RBP binding data.

3.2 INTRODUCTION

RNA binding proteins (RBPs) are major factors in the post-transcriptional regulation of

gene expression. Recent estimates indicate that approximately 1,500 RBPs exist in the human

genome[RZB+08]. Collectively, these RBPs affect base modification, splicing, translation,

nuclear export, subcellular localization, and stability of messenger RNAs, as well as processing

of non-coding RNAs including microRNAs, ribosomal RNAs, and repetitive elements such

as retrotransposons [Bar04, HPCO+15, HPS+15, ZKT+13]. Manipulation of protein-RNA

interactions is important in many aspects of human development, underscored by the identification

of causal mutations in RBPs for diseases such as amyotrophic lateral sclerosis, fragile X syndrome,

and cancers including medulloblastoma and chronic lymphocytic leukemia [DVK+09, VPS+91,

PWA+12, WLW+11].

A critical first step in elucidating the function of RBPs is the identification of its RNA

targets in vivo. Approaches such as UV crosslinking and immunoprecipitation followed by se-

quencing (CLIP-seq or HITS-CLIP) have enabled the transcriptome-wide discovery of RBP-RNA

interactions at high resolution [WRV80, Gre79, UJR+03]. These protein-RNA maps can reveal

insights into the molecular roles of RBPs [YCL+09, UJR+03]. However, traditional CLIP-seq

suffers from low ligation and crosslinking efficiencies, leading to poor experimental success rates
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and low reproducibility [VPS+16]. Variants of CLIP have addressed this in many ways, including

increasing crosslinking efficiency with 4-thiouridine (PAR-CLIP) [HLB+10] and the incorpo-

ration of unique molecular identifiers (UMIs) to identify PCR duplicates (iCLIP) [KZR+10]).

Recently, enhanced CLIP (eCLIP) [VPS+16] and infrared-CLIP (ir-CLIP)[ZFS+16] describe

major improvements in the efficiency of generating sequencing libraries that led to dramatic

increases in experimental success. This improved efficiency has enabled the incorporation of a

paired size-matched input control experiment in eCLIP, which increases specificity in identifying

high-confidence binding sites [VPS+16]. This approach has opened the door to large-scale

profiling of RBP targets in vivo, enabling the ENCODE consortiums efforts to profile 126 RBPs

by eCLIP (Van Nostrand et al., in preparation).

With this considerable increase in the scale of eCLIP experimentation, there is a con-

comitant demand for improved methods to process eCLIP datasets and assess the quality of

eCLIP datasets in an automated and scalable manner. Due to the variation in methodologies

and low number of RBPs profiled in typical studies, current CLIP-seq quality control (QC) has

traditionally been performed on a case-by-case basis, looking at individual binding locations

[KZR+10, UJR+03], comparing results to known motifs [RKC+13, CKZ+11] or referring to

previously published binding sites or known functions for the same RBP [WVMY+14, ZKT+13].

Indeed, the first pass of quality scoring for ENCODE eCLIP datasets was performed by manual

inspection [VPS+16]. However, these methods cannot often be performed for previously unstud-

ied RBPs and do not scale, necessitating more structured metrics for the analysis of large-scale

eCLIP datasets.

A similar requirement for robust, scalable quality metrics led the Chromatin ImmunoPre-

cipitation followed by sequencing (ChIP-seq) field to create a set of guidelines for sequencing

depth, experimental design, and data quality. Including the use of Irreproducible Discovery Rate

(IDR) analysis to determine reproducibility between biological replicates and provide highly

confident and reproducible binding sites [LBHB11, KTP08, JLH+14]). These approaches were
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invaluable to standardizing the large-scale data generation performed as part of the ENCODE

project and have become useful tools for the genomics community at large [DKA+12, LMK+12].

Strikingly, a re-analysis of public ChIP-seq data using these standards found that 20% of published

datasets were of low quality, confirming the value of such metrics in increasing robustness and

reproducibility of trusted public datasets [MKPW14].

Here we describe the development and implementation of data quality metrics and stan-

dards for eCLIP experiments performed as part of the ENCODE consortium efforts (Fig. 1A).

Each of these datasets was manually assessed during data production, creating a reference set

of high- and low-quality eCLIP experiments for proper evaluation of derived metrics. First, we

developed experimental quality metrics to rigorously assay eCLIP experimental success prior to

sequencing. Next, we developed a uniform processing pipeline to analyze 350 eCLIP datasets and

evaluate the downstream effects of various processing choices [VPS+16]. Using these datasets,

we derived effective computational quality control metrics to aid in analysis decisions. Finally,

similarly to previous CLIP-seq pipelines [WXX14, ZD11, UBSB+12, AGVB+11, LGM+13,

CGM+11], we provide a portable set of eCLIP processing tools to reproduce data generated by

the ENCODE project, process data newly generated data, and create splicing maps of position-

dependent regulatory activities. These tools and metrics will serve as a reference for future

experiments within the ENCODE project and for the increasing number of other labs performing

eCLIP.

3.3 RESULTS

3.3.1 Experimental Quality Control Considerations

The generation of high-quality, reliable RBP-RNA interaction datasets requires careful

validation of two key experimental components: successful immunoprecipitation of the desired

RBP, and successful library generation and sequencing. For these two components, we developed
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recommended metrics that enable rigorous validation of experimental success.

First, eCLIP experiments require the successful immunoprecipitation of a RBP of interest.

This prerequisite requires the identification of a RBP-specific immunoprecipitation-grade anti-

body, which we previously addressed by screening over 700 antibodies to identify 438 IP-grade

antibodies against 365 RBPs in K562 cells [SZB+16]. However, when we performed eCLIP we

found that 18% (54 out of 302) IP-grade antibodies failed to successfully immunoprecipitate the

desired RBP in K562 cells (Supplemental Fig. S1A-B). This is perhaps unsurprising as eCLIP has

numerous on-bead enzymatic steps and additional wash steps. Nevertheless this indicates that it is

critical to perform an IP-western experiment as part of the standard eCLIP experimental protocol,

as successful IP during eCLIP is not a given based on successful IP with other protocols. As

such, we incorporated IP-western as a routine component of the eCLIP procedure, and IP-western

images are provided for each ENCODE eCLIP experiment as part of the antibody metadata

available at https://www.encodeproject.org.

A high-quality library is defined as one that is complex (i.e., it contains many unique RNA

fragments relative to PCR duplicated fragments or other artifacts) and is critical for a successful

eCLIP experiment. Thus, a quantitative metric for library complexity that can be applied prior

to sequencing enables rapid culling of poor quality experiments and could help guide a desired

sequencing depth by estimating an upper bound on the number of recovered RNA fragments. We

previously introduced the extrapolated CT (eCT) metric that estimates the number of PCR cycles

needed to obtain sufficient material for sequencing. This metric had appealing characteristics, as

it was RBP-specific, showed high correlation with PCR duplication rate, and could be directly

compared against eCLIP experiments performed with IgG isotype controls or antibodies in null

cell lines [VPS+16, VGBW+17].

However, we found that additional refinements were required to use eCT to derive

recommendations for the optimal depth of sequencing. Although the initial eCT calculation

assumed an idealized 2-fold amplification rate per PCR cycle, we observed that this rate is
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frequently lower in practice. To properly estimate PCR efficiency during eCLIP, we noted that

at our standard sequencing depths some experiments had saturated the discovery of unique

fragments, which enabled us to accurately estimate the total number of pre-PCR unique fragments

for these datasets. Using 6 datasets with a PCR duplication rate of greater than 90%, we observed

that the best fit between the number of observed unique fragments, and the estimated number of

unique fragments, occurred at a PCR efficiency of 1.84 (Supplemental Fig. S1C,D). We defined

an accurate-eCT (a-eCT) as the eCT calculated with 1.84-fold amplification per cycle instead of

2-fold.

To validate the a-eCT metric, we considered datasets that were beginning to saturate

(PCR duplication rate greater than 60%). We observed that a-eCT showed strong predictive

power for the number of unique RNA fragments observed (R2 = .48, p < 3.7e-38) (Fig. 1B),

an improvement on the prior eCT metric (MSE 0.16 vs 0.82), confirming that a-eCT provides a

robust estimate of library complexity (Supplemental Fig. S1E).

Next, we compared a-eCT against our manual annotation of experiment quality (Fig. 1A),

and observed that experiments that pass manual quality assessment have a significantly lower

a-eCT than experiments that failed manual quality assessment with mean a-eCTs of 13.2 vs

14.4 respectively (Fig. 1C, students t-test; p < 10-7). Low a-eCT (corresponding to a highly

complex library) did not always indicate high-quality eCLIP datasets, with failures due to poor

reproducibility, lack of significant binding signal, and other failure modes (further discussed

below). However, a high a-eCT value was a strong predictor of failure, typically due to a lack of

the required number of unique fragments to produce reproducible binding regions. To establish a

maximum a-eCT threshold beyond which data are unreliable, we observed that the mean a-eCT

for IgG control eCLIP experiments (which only pull down background RNA) was 19.6. With that

threshold applied, 18 out of 21 datasets with an a-eCT > 19.6 also independently failed manual

QC. In all datasets examined no successful experiment had an a-eCT ¿ 20.7, while there were still

9 experiments that did not pass manual quality control that had a higher a-eCT (Fig. 1C).
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In addition to providing a maximum cutoff for experiment quality, the strong predictive

power among saturated datasets suggests that a-eCT can be used to estimate the total number

of unique immunoprecipitated RNA fragments prior to sequencing (Fig. 1B). Considering all

RBPs profiled, we observed a wide range of unique fragments from nearly 2 billion estimated

for HNRNPU, to less than 320,000 for DROSHA (Fig. 1D). Thus, a-eCT can also be used to

help guide desired sequencing depth, as high sequencing depth for samples with high a-eCT is

essentially wasted sequencing of PCR duplicates (see further discussion below).

3.3.2 eCLIP Processing Pipeline

Processing of raw eCLIP sequencing data is complex, as adapter sequences, double-

adapter ligation products, retrotransposable elements and other multi-copy sequences, PCR

duplicates, and underlying differences in RNA abundances all contribute to false negatives and

false positives at both the read mapping and peak identification stages. To address these issues,

we developed a rigorous standard eCLIP processing and analysis pipeline (Fig. 2A) [VPS+16].

First, adapter sequences are aggressively trimmed to decrease potential false-negative

mapping and to remove reads <18nt in length, which typically retains 91% of sequenced reads

(Fig. 1B). We observed that if adapter trimming is not performed correctly, the remaining adapter

sequences often lead to mapping failures. To illustrate, 53% of eCLIP fragments for the RBP

RBFOX2 in HepG2 cells uniquely map to the genome if proper adapter trimming is performed,

but only 35% map if adapter trimming is not performed (Supplemental Fig. S2A).

Next, we considered repetitive elements and other multi-copy RNAs. These can represent

true RBP associations: for RPS11 an average of 80% of fragments mapped to repetitive elements

including 68% to the 18S rRNA, which is biologically consistent as RPS11 is a component of

the 40S ribosomal subunit [TDH+09]. However, we observed that inclusion of these fragments

in standard peak calling created significant artifacts, as these elements can have thousands of

degenerate copies throughout the genome that lead to spurious peaks. For example, TIA1 and

64



PTBP1 both bind the 3 UTR of the MYADM mRNA, with enriched fragment density observed

at a SINE element that is highly homologous to thousands of loci throughout the genome

(Fig. 2C). If repetitive element fragments are not removed this SINE element is detected as

a spurious peak between two authentic binding sites in both experiments (Fig. 2C). Thus, we

developed two approaches: a standard peak calling and analysis approach that removes repeat-

mapping fragments and only incorporates fragments that uniquely map to the genome, and

another pipeline that quantitatively measures mapping to multi-copy element families (see below)

(Fig. 2A). On average, 42% of fragments were removed due to repetitive element mapping, and

33% of sequenced fragments were uniquely mapped (with a standard deviation of 0.16 across

362 ENCODE eCLIP datasets passing manual quality control) (Fig. 2B). Although high, this

variability is largely due to RBPs that associate with specific multi-copy RNAs (although we

note that in cases of extremely low RNA yield, we have observed that bacterial RNA present

in nitrocellulose membranes can contribute to the lack of mapping to the human genome)

[VNGB+17].

After mapping, PCR duplicate fragments are removed (using UMIs incorporated in library

preparation prior to PCR amplification) to yield unique genomic fragments. An average of 66%

of unique genomic fragments remained after removal of PCR duplicates, although we observed

an extreme range from 99.5% of fragments remaining for hnRNPK in K562 cells to 4.6% of

fragments remaining for SF3B1 in K562 cells (Fig. 2B). We note that proper PCR duplicate

removal is essential, as the presence of PCR duplicate reads can lead to regions of artificially high

fragment coverage (often referred to as skyscrapers) that can be falsely identified as significant

peaks, as in the case of hnRNPC (Fig. 2D). Overall, on average of 22% of sequenced fragments

remained after removing reads that were too short, non-uniquely mapping or PCR duplicates (Fig.

2B).

As multi-copy signals are not captured with our standard pipeline we developed an

independent approach to quantify fragments that map to either multi-copy RNAs or unique
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genomic elements (Van Nostrand et al. in preparation). Datasets subjected to mapping to either

repetitive or unique segments of the genome retained an average of 73% of sequenced fragments

for all RBPs, and were highly consistent, ranging from 71% of sequenced fragments retained for

SF3B1 in K562 to 85% of sequenced fragments retained for CENPI in HepG2 (Fig. 2B). The

fraction of PCR duplicate removed fragments was highly variable, with an average of 46% of

sequenced fragments retained after duplicate removal (see further discussion below) (Fig. 2B).

In manual quality assessment of these datasets, we identify 25 experiments that did not pass

based on standard analysis but were deemed high quality due to significant association to specific

repetitive elements (Van Nostrand et al. in preparation).

Finally, significant peaks are identified using a two-step approach in which we first

identify clusters enriched relative to local background, followed by input normalization. Input

normalization is critical for the removal of common false-positive signals at abundant transcripts

and enriches for motifs as well as RBP-responsive targets [VPS+16]. Cluster identification

is performed using CLIPper, which uses spline-fitting to identify regions of enriched read

density relative to both unspliced and spliced transcript-level background [LGM+13]. Reverse

transcriptase enzymes will often terminate at the crosslinked nucleotide (due to amino acid

adducts that remain after proteinase K treatment), which can be utilized to map crosslink sites

with single-nucleotide resolution [KZR+10]. As such, CLIPper was run using only the second,

paired-end read in ENCODE eCLIP datasets, which is the read that begins at the putative site of

reverse transcription termination. This yielded an average of 142,360 clusters per dataset, with a

range from 647,011 clusters for hnRNPC in HepG2 to 1,910 clusters for SERBP1 in K562 (Fig.

2E). The read density within these regions is then compared in IP versus paired size-matched

input to identify significantly enriched peaks [VPS+16]. We observed that a significant fraction

(averaging 13%) of clusters are depleted in IP relative to size-matched input, matching previous

observations [VPS+16]. Applying a stringent threshold of requiring clusters to satisfy both

fold-enrichment 8 and p 10-3 significance in IP versus size-matched input yielded an average of
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7,146 high-confidence peaks, with a range from 48,173 peaks for PRPF8 in HepG2 to 43 peaks for

AUH in HepG2 (Fig. 2E). On average, 6% of clusters met this stringent threshold for enrichment

(Fig. 2F). While we find that filtered clusters frequently fail both thresholds (an average of 68%

of clusters fail to meet both the fold-enrichment and significance threshold) (Supplemental Fig.

S2B).

To identify reproducible and significantly enriched peaks across biological replicates, we

used a modified Irreproducible Discovery Rate (IDR) method (Supplemental Fig. S2C). IDR

requires that peaks are ranked by an appropriate metric, but we found undesirable results ranking

peaks by either significance (due to the dependence on underlying expression) or fold-enrichment

(due to the large variance of fold-enrichment when few reads are observed in input). Thus, we

adapted relative entropy to better estimate the strength of binding in IP relative to input by defining

the information content of a peak as pi ∗ log2
pi
qi
), where pi and qi are the fraction of total reads

in IP and input respectively that map to peaki. To confirm that this metric captures true binding

signal, we considered the RBFOX2 eCLIP datasets. We observed 14,595 reproducible clusters

when we ranked by fold enrichment, whereas 32,431 clusters were reproducible when we ranked

by information content (Fig. S2D). Given the increased number of reproducible clusters detected,

we used information content to perform standard IDR analysis to identify reproducibly bound

regions [LBHB11]. We then identified the set of non-overlapping peaks from both replicates

that maximized information content to define a final set of reproducibly enriched peaks that

corresponded to CLIPper-identified regions (see Methods). This method revealed that an average

of 53.1% of peaks were identified as significantly enriched in individual replicates, confirming

high reproducibility for most experiments (Fig. 2G).

3.3.3 Depth of sequencing does not significantly affect peak quality

How deeply to sequence a CLIP-seq dataset is a major consideration (particularly at

large scale), as samples must be sequenced sufficiently to robustly detect true binding signals
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while minimizing experimental cost. To develop recommendations for required sequencing

depth, we considered two questions: first, how does sequencing depth affect identification of true

binding sites, and second, how many reads are required to detect binding sites in any gene when

accounting for variability in gene expression.

First, we asked whether peaks discovered at deeper sequencing depths were still likely

to be biologically relevant. To do this we looked at RBFOX2, which is known to bind to the

GCAUG motif. Overall, we observed significant enrichment for RBFOX2 binding to its motif,

with 36% of RBFOX2 peaks overlapping the motif vs a mean of 6% of peaks overlapping the

motif in all other datasets (Supplemental Fig. S3A). We then down-sampled the unique genomic

fragments, re-called peaks, and asked how many peaks discovered at each down-sampling step

overlapped the RBFOX2 motif. We observed that peaks discovered using only 10% of unique

genomic fragments showed the highest motif overlap (38% on average), whereas peaks that were

only discovered when going from 90% to 100% of unique genomic fragments were less likely

to contain GCAUG (27% on average) (Fig. 3A). Although this suggests that signal to noise is

highest among the most abundantly covered peaks, we note that later discovered peaks were still

2.8- to 7.0-fold enriched above non-RBFOX2 datasets, indicating they still contain significant true

binding signal (Fig. 3A). Supporting this, we observed that conservation of later-discovered peaks

was similar to those discovered earlier with a mean phastcons conservation score of 0.136 versus

0.132 (Supplemental Fig. S3B). Considering an independent dataset, PRPF8, we observed similar

results when testing its known association with the 5 splice site: although peaks discovered at low

sequencing depth were less enriched for true signal, we continued to see significant true positive

signal throughout the range of down-sampling, indicating that it is true that deeper sequencing

allows for the continued discovery of high quality peaks (Supplemental Fig. S3C, D).

Second, we considered the identification of binding sites as a function of sequencing

depth. To explore if there was a correlation between sequencing depth and the discovery of peaks

in lowly expressed genes, we calculated the correlation between gene expression and the number
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of reads in each peak for RBFOX2. We observed that lowly expressed genes had fewer reads per

peak (as expected), whereas highly expressed genes displayed a large variation in the number of

reads per peak, with only a weak correlation overall for both RBFOX2 (R2 = .03) (Fig. 3B). All

other RBPs showed a similar week correlation (mean R2 = 0.24) (Supplemental Fig. S3E).

Next, we asked whether peaks at lowly expressed genes could be detected at standard

sequencing depths. Surprisingly, we found that lowly expressed genes (defined as those with

TPM < 1) need on average only 870,000 unique genomic fragments to allow for detection of a

peak in the gene, and this estimate was similar when varying the fraction of peaks required to be

discovered or TPM thresholds (Fig. 3C, Supplemental Fig. S3F-H). As ENCODE eCLIP datasets

have a mean sequencing depth of 4,509,000 unique genomic fragments, these results suggest

that an inability to detect peaks on lowly expressed genes is not a major concern in eCLIP data

sequenced to standard depths.

3.3.4 Saturation analysis suggests optimal sequencing depth

Our analysis above indicates that continued sequencing until fragment saturation can

recover true binding sites even at extremely high read depths. However, sequencing until fragment

saturation is not typically economically reasonable. Thus, we set out to quantify diminishing

returns upon deeper sequencing to identify the sequencing depth that optimally balances the

tradeoff between gaining additional binding information and increased sequencing depth for an

average eCLIP experiment (Fig. 4A).

First we developed a metric to quantify the diminishing returns of deeper sequencing in

eCLIP datasets. Considering the discovery of significant peaks, we queried how many peaks

were newly discovered when comparing peaks observed when 90% or 100% of fragments in a

dataset were used to identify peaks. We observed that 71% of experiments passing manual QC

saturated the discovery of significant peaks (defined as the discovery of fewer than 5% new peaks

in the above metric), suggesting that simple peak detection was saturating for most but not all
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high-quality datasets (Fig. 4B).

We next considered whether binding information by total information content was saturat-

ing even when peak discovery was not. Summing the total information content across all peaks,

we observed that information recovered saturated for 98% of manually accepted datasets (using

the same 5% or less discovery metric between 90% and 100% of fragments used to call peaks in

a dataset) (Fig. 4B). Thus, these results suggest that although additional peaks can be identified,

the vast majority of binding information is already captured. We next asked at what sequencing

depth total information content tends to saturate. We found that 90% of all eCLIP datasets that

passed manual quality assessment had saturated information discovery by 7.7M unique fragments

(corresponding to 4.1M unique genomic fragments) (Fig. 4C, Supplemental Fig. S4A).

Next, we developed a model to estimate the number of sequenced reads that would

typically be necessary to obtain the 7.7M suggested number of unique fragments. We observed

that an average of 8.9% and 4.7% of reads are lost during adapter trimming and mapping,

respectively (Fig. 2B). We also noted that when datasets are not near saturation (fraction usable

>90%) the PCR duplicate removal rate was on average 5.0% (Supplemental Fig. S4B). Thus,

in situations where there is a highly complex library, the number of unique fragments from

sequenced reads can be estimated as U = (1−P(a))(1−P(m))(1−P(d)) ∗ S, where U is the

number of unique fragments, S is the number of sequenced reads, and P(a), P(m), and P(d) are

the probabilities of losing a read due to adapter trimming, mapping and PCR duplicate removal,

respectively. This model works well when datasets have a low PCR duplication rate (fraction

usable >90%) (R2 = 0.91) (Supplemental Fig. S4C). However, because PCR duplicates often

account for a large fraction of fragments lost, this method performs poorly when taking saturated

datasets into account (R2 = .55) (Supplemental Fig. S4C).

To address this limitation, we modeled PCR duplicate removal. Considering a pre-

amplified library with E unique fragments PCR amplified to obtain a final library of 100 femto-

moles, we model the random sampling of individual reads as Poisson distributed. Specifically,
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the probability that a fragment is observed at least once can be calculated as P(≤ 1) = (1− e−λ),

where λ can be modeled as M
E where M represents the number mapped fragments and E rep-

resents the number of unique pre-amplified fragments (which can be estimated from a-eCT).

Thus, the number of unique fragments U obtained from M mapped reads can be estimated as

U = E(1− e−(M
E )) (Fig. 4D). This model predicted the actual number of unique fragments in

each dataset with generally high accuracy (Fig. 4E, R2 = .0.75). To further test this model, we

compared the estimated number of unique fragments against the observed number of unique

fragments identified in downsampling experiments as described above, and observed high cor-

respondence for most datasets (median R2 = 0.91) (Supplemental Fig. S4D). Thus, the Poisson

model provides a highly accurate estimate for unique fragments obtained that is independent of

sequencing and relies solely on the experimentally-obtained a-eCT.

Finally, merging the two above approaches allows us to back-calculate the number

of sequencing reads S necessary to observe 7.7M unique fragments S = −E ∗ ln(1−(U/E))
P(a)P(m) .

Using estimates for P(a), P(m) above yields final model S = −E ∗ ln1− 7,700,000
E

0.868 where E =
100 f m∗6.022∗108

molecules
f m

1.84aeCT (Fig. 4F). Considering the full range of a-eCT values, we observe that

10M fragments are sufficient for the majority of values, with slightly higher requirements for

a-eCT values between 12 and 15 (Fig. 4G). Above a-eCT of 15 (where there are fewer than 7.7M

estimated unique fragments in the pre-amplified library) we recommend targeting sequencing to

observe 90% of unique fragments (Fig. 4G, Supplemental Table S1). We find that the same depth

of sequencing has proven sufficient for size-matched input experiments as well.

3.3.5 Automated QC Metrics verify data quality

We next developed a set of quality control metrics for ENCODE eCLIP experiments to

assess the quality of individual datasets as well as the reproducibility across biological replicates

(Fig. 5A). We ultimately arrived at two metrics for individual datasets: a minimal unique fragment

cutoff, and a total information in peaks cutoff. To evaluate these metrics, we used manual quality
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assessment of datasets to define a reference set of high- and low-quality eCLIP datasets.

The number of unique fragments per dataset varies widely, depending on library com-

plexity and sequencing depth (as described above). We observed that a required number of

1.5M unique fragments maximized the predictive power for datasets passing manual quality

assessment (f-score = .86) (Supplemental Fig. S5A). Only 7 of 516 manually passed datasets

do not meet this threshold: two (TBRG4, PABPC4) are not yet saturated and thus could be

rescued by re-sequencing, whereas the 5 other datasets (one replicate of SLBP, two replicates

of SF3B1, and SUPV3L1) are already highly saturated, but were considered high quality due to

presence of signal at a small number of specific RNAs matching previous studies of these RBPs

(histones, the U2 snRNP, and mitochondrial RNA respectively) ([TTPMW06, HB94, BDH+13].

Conversely, 30 of 184 manually failed datasets do not meet the criteria (Fig. 5B). Thus, although

the classification power of this model is low (AUC = 0.61), datasets not meeting this threshold

were more than 16-fold more likely to fail manual quality assessment (Supplemental Fig. S5B).

Next, we considered a metric based on whether the dataset contained significant binding

signal. As described above, we observed that the relative information of a peak better captures

the binding information of peaks across genes with widely varying expression levels. Thus, to

validate that a dataset contains significant binding information, we calculated the sum of relative

information across all peaks in the dataset. We observed that this total information content score

maximized the f-score of manually annotated high- and low-quality datasets at a total information

content of .044 (f-score = .89) (Fig. 5C, Supplemental Fig. S5C). The information content model

was highly accurate (AUC = 0.75), accurately classifying 77% of ENCODE datasets with 0.48

specificity and 0.92 sensitivity (Supplemental Fig. S5D).

Next, we developed criteria to assay biological reproducibility, using two metrics based

upon the Irreproducible Discovery Rate (IDR) approach that has previously been used to assay

reproducibility of ChIP-seq peaks: reproducibility between real and pseudo-replicates (Rescue

Ratio) (Supplemental Fig. S5E) and confirmation that the number of reproducible peaks be-
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tween both replicates is similar (Self-Consistency Ratio) (Supplemental Fig. S5F) (Landt et al.

2012). We found that cutoffs previously used for ChIP-seq data could be similarly applied to

eCLIP [LMK+12], and observed that 81.4% of experiments have a passing rescue ratio of <2

(Supplemental Fig. S5G) and 70% of experiments have a passing self-constancy ratio of <2

(Supplemental Fig. S5H). 221 experiments pass both thresholds, while 89 are borderline (passing

one of the two thresholds), and 40 fail both thresholds (Supplemental Fig. S5I). Notably, these

IDR metrics have high specificity, as 180 out of 221 (79%) of experiments that meet unique

fragment and total information content cutoffs and were manually judged to be high quality

passed this IDR critera. In contrast, IDR detects potential false positives by correctly failing 9

out of 28 (32%) datasets that met read depth and information content metrics, but failed manual

inspection (Fig. 5D).

Finally, we combined these metrics into one overall automated quality call requiring that

each experiment passes minimum read and entropy cutoffs as well as either being classified as

passing or borderline based on IDR metrics (Fig. 5E). Overall our model accurately classified

83% of eCLIP datasets with a sensitivity of 0.84 and a specificity of 0.79 (Fig. 5F), better than

any individual classification scheme.

3.3.6 eCLIP Pipeline Implementation

We previously described the implementation of our eCLIP processing pipeline [VPS+16].

However, implementation of the pipeline is non-trivial, and difficult to reproduce in other compu-

tational environments. To address the problem we have made available a reference version of the

pipeline runs locally on a cluster through a pipeline definition in Common Workflow Language

(CWL). Our eCLIP processing pipeline handles fastq demultiplexing, PCR duplicate removal and

peak calling including input normalization (Fig. S6A). Additionally, we produce an automated

quality control report, describing the metrics developed throughout the paper. A major advantage

to this structure is to both simplify and standardize the definition of all associated metadata, which
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is now explicitly structured in a single input manifest. Key output files match those deposited at

the ENCODE Data Coordination Center, and include mapped reads (in compressed bam format),

and identified clusters and significant peaks (in bed format). Due to being created with CWL this

pipeline is highly portable, able to run on any mac or Linux installation with minimal effort.

3.3.7 Integration of eCLIP with RNA-seq to generate regulatory maps

Once direct binding sites are identified with eCLIP or related methods, it is common to

integrate this information with independent datasets (such as transcriptome profiling upon RBP

knockdown or over-expression) to gain insight into which interactions drive differential regulation

of the bound transcript. This has proven particularly insightful for regulation of splicing, where

RBP binding can cause either inclusion or exclusion of alternative exons depending on whether

binding occurs in the upstream or downstream intron [YCL+09]. This location-dependent splicing

regulation is often visualized as a splicing map, and the generation of splicing maps for different

RBPs has become an important visualization tool to provide mechanistic hints into the global

regulation of alternative splicing by RNA binding proteins. However, we observed that multiple

decision points regarding integration of eCLIP data into the splicing map, for example using either

read density or peaks (each of which can be normalized in various ways) can yield significantly

different maps [WU11, HVA+12]. The scale of data generated here enabled us to query the

effects of these choices across multiple datasets.

The first decision regards what events to consider in a splicing map. For visualization

purposes, only a meta event is shown - for example, cassette exon events (the most commonly

visualized splicing maps) are represented as a three exon region to show the upstream splice site,

the 5 and 3 splice sites of the cassette exon, and the downstream splice site, although analogous

approaches can be used to visualize alternative 5 and 3 splice sites or retained intron events

(Fig. 6A, top). A set of exons is then defined to build the map, typically based off of a set of

RBP-responsive events that show significant splicing alteration upon RBP knockdown or over-
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expression. In generating these sets of exons, we noted that it was common for splicing analysis

pipelines to identify overlapping alternative exons. However, if two or more skipped events

overlap at any position, these positions become susceptible to integrating the same CLIP signal

multiple times (Supplemental Fig. S7A). To avoid this, we conservatively group overlapping

events and select only those with the highest inclusion junction count. We found that standard

differential splicing analysis tools yielded an average of 20% overlapping events, indicating that

this can represent a significant artifact if not considered (Supplemental Fig. S7B).

Next, we explored options for incorporating eCLIP data. First, we considered splicing

maps built off of density of significantly enriched peaks [HVA+12]. These maps are typically

simplest to calculate, as peak density over the meta region is simply summed across all events. We

found that this approach yielded clear maps for RBPs such as RBFOX2 with a large number of

bound differential events (Supplemental Fig. S7C). However, the main drawback of this approach

is limited power, as the mean number of peaks covering a skipped exon region in a ENCODE

datasets is only 31 (Supplemental Fig. S7D). Indeed, for SRSF9, a map made using read density

shows enrichment at events excluded upon SRSF9 knockdown; however, because there are only 4

peaks overlapping skipped exon regions, peak based analysis shows no significant sites (Fig. 6A).

We hypothesized that incorporating read density instead of simply peak location could

improve splicing map power. Considering eCLIP data, we first noted that traditional splicing

maps built on iCLIP and CLIP data do not contain normalization against a paired input [KZR+10].

We observed that this approach could be applied to eCLIP data for RBPs such as HNRNPK

that already have high signal-to-noise, where the map showed a significant enrichment for

binding signal at exons included upon knockdown that recapitulates the general repressive role for

HNRNP proteins (Fig. 6B, Supplemental Fig. S7E). However, we noted that if one generated a

splicing map from input alone, there exists significant variation in binding density (with particular

enrichment of signal at exons in general) (Fig. 6C, Supplemental Fig. S7F), suggesting that input

normalization could improve signal-to-noise in identifying regions enriched above background.
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To explore input normalization within CLIP density maps, we applied two normalization

strategies: background subtraction and information content-based normalization (Fig. 6D).

Background subtraction first normalizes the binding density across each event, and then subtracts

the input density from a corresponding IP experiment. In this case, the binding profile at event

is weighted equally, resulting in a map that reflects the global shape of binding at the cost of

muting regions with signal from a small number of events (Fig. 6E, Supplemental Fig. S7G).

As an alternative approach, we calculated the relative information (in IP versus input) at each

position for each queried event. The distribution across all events is then used to create the

splicing map (using the mean and standard error calculated across all events for each position). As

relative information is dependent on abundance, in this approach more abundant binding events

will contribute more to the overall splicing map, events with high input, and low IP abundances

contribute less strongly to reduction in overall signal, which can be a desired property in some

cases (Fig. 6F, Supplemental Fig. S7H-J).

In both cases, we observed that individual highly abundant positions at single events could

dominate the composite signal. Manual inspection suggested that these often arise from miRNAs,

pseudogenes, and other multi-copy or highly abundant transcripts present within these intronic

regions. To address this, we performed outlier removal on the top and bottom 2.5% signal at

each position across the splicing map. For example, we observed a site of significant enrichment

approximately 250bp downstream of knockdown-excluded skipped exons for HNRNPC. However,

after removing a single outlier element, the HNRNPC splicing map shows primarily 3 splice site

and exonic signal at exons included upon knockdown, consistent with the splicing-repressive role

of HNRNP proteins (Fig. 6G, Supplemental Fig. S7K-L)

Finally we explore the utility of utilizing CLIP crosslink-diagnostic events that allow for

the detection of the exact theoretically crosslinking site [RHK+14, KZR+10]. For the previous

analyses, we calculated read density by including bases covered by the entire read. However,

reverse transcription often terminates at the site of protein-RNA crosslinking, which causes the
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5 end of reads to often correspond to the site of RBP-RNA interaction (with some variability

due to the positioning of available crosslinkable amino acids and bases within the binding site)

[KZR+10]. When we queried how using only the 5 end of reads could affect splicing map signal

and noise, we observed that the effect was heavily dependent on different RBPs. For some RBPs

such as U2AF2, we observed that the use of only the 5 end of reads provided significant clarity to

the splicing map by resolving binding to specific regions (for example, in U2AFC the intronic 3

splice site region is enriched as opposed part of the alternative exon) (Fig. 6H, Supplemental Fig.

S7M). However, for other RBPs such as RBFOX2 we observed that using 5 read ends yielded a

similar map, but with dramatically increased noise relative to using whole reads (Supplemental

Fig. S7N). Thus, these results suggest that this method can improve resolution for some RBPs

(particularly those with highly specific splice site-proximal binding), but that factors with broader

crosslinking and binding patterns may suffer unacceptable loss of signal.

3.4 CONCLUSION

The continuing refinement of methods to identify RNA binding protein binding sites

enabled large-scale profiling of targets for 350 RBPs by the ENCODE consortium. This com-

pendium of manually quality assessed datasets provided a unique opportunity to develop rigorous

quality metrics that can be applied in an automated fashion to assist in determining reliability

of eCLIP experiments, both for large-scale efforts as well as individual eCLIP experiments

performed by other groups.
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3.5 METHODS

3.5.1 Sequencing and data generation for eCLIP

eCLIP experiments were performed as previously described [VPS+16]. Datasets pass-

ing manual quality assessment were deposited at the ENCODE Data Coordination Center

(http://www.encodeproject.org) (Supplemental Table S2). Datasets that did not pass but were

important for this study are deposited at the Gene Expression Omnibus (accession pending).

3.5.2 eCLIP data processing and peak calling

An exact description of the eCLIP processing pipeline can be found on the ENCODE DCC

website (https://www.encodeproject.org/documents/dde0b66909094f8b946d3cb9f35a6c52/download/attachment/eCLIP analysisSOP v1.P.pdf).

Briefly inline barcodes are used to demultiplex datasets, these and unique molecular identifiers

(UMIs) are then removed and recorded using custom scripts. Reads are trimmed using cutadapt

(version 1.9), and then mapped against a database of repetitive elements (Repbase version 18.05)

using STAR (version 2.4). Reads not successfully mapped to repetitive elements are stringently

mapped to the human genome (hg19) using STAR. Finally PCR duplicates were removed using

a custom PCR duplicate removal script, and clusters were called using CLIPper (version 1.0).

Cluster significance was calculated against a paired input dataset, and significant peaks were

defined as clusters with a fold-enrichment 8 over input and p-value 0.001.

Repetitive element quantification was performed using a customized pipeline to identify

unique mapping to retrotransposable and other multi-copy element families (Van Nostrand et al.,

in preparation).

Unique fragments were defined as the number of PCR duplicate removed fragments

mapping uniquely to the human genome or to a repetitive element family. Unique genomic

fragments were defined as the number of PCR duplicate removed fragments uniquely mapping to

the human genome. PCR duplication rate was estimated as the fraction of unique fragments to
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mapped fragments.

For analysis of untrimmed datasets, reads were demultiplexed exactly as described in

the eCLIP standard operating procedure, they were then mapped directly to the human genome

without any additional processing steps. Percent mapped was reported via STAR mapping output.

For analyses with repetitive elements kept, adapter trimming was performed as normal.

Instead of mapping against (and discarding reads mapping to) the database of repetitive elements,

reads were immediately mapped to the human genome, and peak calling were performed as

previously described. Input normalization was performed using a paired input dataset that also

contained repetitive element reads.

For analyses with PCR duplicates kept, all processing, up to PCR duplicate removal was

performed as previously described to obtain mapped genomic fragments. Those fragments were

then visualized.

3.5.3 Identification of biologically reproducing peaks by IDR

Peaks reproducing across biological replicates were identified by a modification of the

Irreproducible Discovery Rate method [Li11] (Supplemental Fig. S2B). Information content

for each peak was calculated as I = pi ∗ log2(
pi
qi
), with pi and qi represent the fraction of total

reads in IP and input respectively that map within peak i. Peaks were then ranked by information

content, and processed with the IDR software (version 2.0.2) to identify reproducible regions at

an IDR threshold of <= 0.01. Next, CLIPper-identified clusters within these reproducible regions

were queried against both replicates to calculate fold-enrichment and significance in IP versus

input. Clusters were ranked by the geometric mean of fold-enrichment between replicates, and a

final set of reproducible peaks was identified as the set of non-overlapping CLIPper-identified

peaks meeting standard enrichment cutoffs (fold-enrichment >=8 and p-value <= 0.001) that

were highest ranked by fold-enrichment within each reproducible region.
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3.5.4 Estimation of unique fragments with a-eCT

PCR amplification can be modeled as F = I ∗ eCT , for the number of final molecules

yielded F , the number of initial molecules I, the number of performed PCR cycles CT , and

PCR efficiency per amplification cycle e. Library yield for eCLIP was initially described as

an estimated CT (eCT) required to obtain 100 femtomoles of library approximating e = 2:

eCT =CT − log2(
C f m

100 f m
) for measured library yield C (in femtomoles)(Van Nostrand et al. 2016).

Concentrations, PCR Cycle numbers and eCTs for all experiments used in this study can be

found in Supplemental Table S2. Concentrations, PCR cycle numbers and eCTs for control IgG

experiments were obtained from (Van Nostrand et al. 2017a).

To obtain an empirical estimate for e, experiments with a PCR duplication rate of >90%

were selected. Then a non-linear least squares curve fitting approach was applied to identify the e

that minimized the sum of squared error between estimated and observed fragments yielding ê =

1.84. Accurate-eCT (a-eCT) was the defined as: aeCT =CT − log1.84(
C f m

100 f m
)

Calculation of mean squared error was performed by comparing the a-eCT-estimated

versus observed number unique fragments in each sequencing experiment.

3.5.5 Peak identification dependence on sequencing depth

The relationship between peak detection and sequencing depth was analyzed by creating

pseudo-datasets by subsampling defined fractions of unique genomic fragments. A downsampled

series was created by subsampling 10% of reads, and then iteratively adding 10% additional

reads until all reads were used. Standard CLIPper cluster identification and input normalized

peak identification was performed on each downsampled dataset using the same (fully sequenced)

input control. Next, each significantly enriched peak identified in the full dataset was associated

with the smallest downsampling fraction it was discovered in. The minimum sequencing depth

needed to detect peaks in genes with a given TPM was defined as the number of unique genomic
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fragments in the downsampled dataset the peak was first discovered in. K562 and HepG2 total

RNA TPM values were obtained from ENCODE project accession numbers ENCFF286GLL and

ENCFF533XPJ respectively

To consider the correlation between gene expression and number of reads in peaks for

eCLIP, the number of reads in each peak was quantified and normalized by peak length. For each

gene only the peak with the largest number of reads was selected as representative, and other

peaks not considered, to avoid over-weighting large or highly-bound genes. Linear regression

comparing the log10(T PM) of the gene to the log10(normalizedreadcount) of the most highly

expressed peak was then calculated.

3.5.6 Motif or region presence near eCLIP peaks

To estimate specificity of peaks identified in the downsample series, motif presence (for

RBFOX2) and peak location (for PRPF8) were considered. For RBFOX2, a peak was considered

as containing a RBFOX2 motif if it overlapped a GCAUG 5-mer on the same strand as the

transcript. For PRPF8, a peak was considered properly located if it overlapped the 3 ends of

an exon in GENCODE (v19) (Harrow et al. 2012). For each fraction downsampled, the peaks

initially discovered in that fraction were overlapped with the feature of interest to calculate

specificity.

To consider sequence conservation within eCLIP peaks, the mean (mammalian) phastcons

score was calculated for each peak. Then peaks were grouped by fraction discovered, and the

mean conservation of each fraction was calculated. To estimate background conservation, peak

locations were shuffled while preserving the number of peaks found in 5 UTRs, CDS, 3 UTRs,

exons, proximal introns and distal introns, and the mean conservation was calculated. For all

RBFOX2 and PRPF8 analysis, downsampling and peak analysis was performed 10 times.
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3.5.7 Peak and information content saturation analysis

For saturation analysis, peaks were taken from the above downsampling series. For

each downsampling experiment, the fraction of all peaks or fraction of total information content

discovered up until the current fraction was calculated. Where total information content is defined

as the sum of the information content across all significant peaks.

Saturation was calculated using the equation
(Ni−N(i−i)

Total , where Ni is the number of peaks

or total information content recovered at downsampling fraction i. Total is the total number of

peaks or total information content in the full dataset.

3.5.8 Estimates of required reads

Experiments were defined as saturating when a 10% increase in reads used lead to a <5%

gain in total information. Because peak calling downsampling was performed on unique genomic

fragments, the number of unique fragments needed to saturate each dataset was estimated

by calculating the number of fragments downsampled if unique fragments had instead been

downsampled.

Experiments were rank ordered by read depth when saturated, and the number of unique

fragments in the dataset in the 90th percentile was used to estimate the number of unique fragments

needed to allow 90% of datasets to saturate.

Estimation of read loss due to adapter trimming and mapping Read loss due to adapter

trimming and mapping was modeled by calculating the mean fraction of reads lost during each

step. Specifically for mapping the fraction lost was calculated as the fraction of mapped fragments

from trimmed fragments.
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3.5.9 PCR duplication downsampling

Downsampling was performed as described above, however, pre-PCR duplicate mapped

fragments, rather than unique genomic fragments were used. The downsampled files were then

removed of PCR duplicates as in the main eCLIP processing pipeline and total reads before and

after downsampling were counted.

3.5.10 Poisson Modeling of PCR Saturation

For each dataset the relationship between mapped fragments and unique fragments was

modeled as a Poisson distribution. The probably that a single fragment was observed at least

once is modeled with the equation P(≤ 1) = 1− e−λ. Where λ is the mean number of times a

molecule is observed. λ is defined as λ = M
E . M is the number of mapped fragments and E is the

estimated number of unique fragments, as calculated by the a-eCT equation. To estimate the total

number of unique fragments (U) from mapped fragments we parameterize the previous equation

obtaining E(1− e(−
M
E )) =U .

3.5.11 Estimates of required reads to sequence

Estimation of number of sequenced reads needed to observe the required number of

unique fragments was performed by integrating the three previously described read loss models.

The final model to estimate usable reads from input reads is defined as S = −E ∗ ln(1−(U/E))
P(a)P(m) .

Where S is the number of reads to sequence, E is the number of estimated unique fragments in

the total experiment, U desired number of unique fragments, and P(a) and P(m) are the probably

of retaining reads after adapter trimming or mapping.

The naive sequencing depth model was calculated as described in the main text. Specif-

ically U = (1−P(a))(1−P(m))(1−P(d))∗S, where U is the number of unique fragments, S

is the sequenced reads, and P(a), P(m), and P(d) are the probabilities of losing a read due to
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adapter trimming, mapping or PCR duplicate removal, respectively.

3.5.12 Usable read and total information content cutoff calculations

An optimal unique fragment cutoff for all experiments was calculated by optimizing the

f-score. Because many deeply sequenced datasets failed manual QC, for model fitting, only

experiments < 1,000,000 reads uniquely genomic fragments were used. The minimum unique

fragment threshold was calculated by maximizing the f-score when setting a pass/fail threshold

on the number of unique fragments.

A threshold for total information content was developed first by calculating each exper-

iments total information content as previously described. For training all datasets passing the

minimum unique fragment cutoff were used. To identify an optimal total information content

cutoff the cutoff was calculated for all values between 0 and the largest total information content in

all experiments. The total information content cutoff that maximized the f-score was determined

to be the optimal threshold.

Usable read and total information content values for all datasets used to generated these

cutoffs can be found in Supplemental Table S3.

3.5.13 Rescue and Self-consistency Ratio

Rescue and Self-consistency Ratios were calculated as in [LMK+12]. To calculate the

rescue ratio, unique genomic fragments from both biological replicates were combined, shuffled,

and split into two pseudo-biological replicates. Peak calling and input normalization was then

performed. Peaks were ranked by information content and IDR was performed to determine

reproducible peaks in the pseudo replicates (Np). Additionally IDR was performed on the real

replicates and the number of reproducible peaks was counted (Nt). Rescue Ratio was calculated

as max(Np,Nt)
min(Np,Nt)

.
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To calculate self-consistency ratio, uniquely mapped reads from each replicate were

independently split into two sub replicates. Peak calling and input normalization were then

performed on each set of reads. Within each replicate IDR was performed on information content

ranked peaks to determine a reproducible set of peaks. The number of reproducible peaks was

then counted for replicate 1 (N1) and replicate 2 (N2). Self-consistancy ratio was calculated as
max(N1,N2)
min(N1,N2)

Self-consistency ratio and rescue ratio values for all datasets used in this study can be

found in Supplemental Table S3.

3.5.14 Identification of Alternatively Spliced Events

rMATS (version 3.2.1.beta) JunctionCountsOnly files were used to identify alternatively

spliced (AS) events. Significant AS events were defined as having a p-value > 0.05, FDR > 0.1

and > 0.05. Elimination of redundant splicing events was performed by identifying groups of

overlapping AS events and selecting the event with the highest inclusion junction count (IJC)

among the overlapped events using the bedtools (v2.26) command merge (-o collapse -c 4) and

pybedtools (v0.7.9). As a background control 2555 (HepG2) and 3148 (K562) unchanging

cassette exons, with 0.1 < < 0.9 in at least half of control RNA-seq datasets were selected.

3.5.15 Generation of splicing maps

RBP splicing maps were generated using one of four different methods. For every method

all information for significant splicing was extracted in windows near the exon/intron boundary;

maximally 50nt into each exon and maximally 300nt into each intron. For shorter exons (<100

nt) and introns (<600nt), information was only counted until the boundary of the neighboring

feature.

For peak binding splicing maps the number of peaks overlapping an AS event were simply
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summed. IP and input density splicing maps were calculated by computing the mean of the eCLIP

normalized (reads per million) read densities over each AS event.

For the background subtraction approach for each splicing event, read densities were first

normalized across all regions separately for IP and input, in order to equally weigh each event.

Per-position input probability densities were then subtracted from IP probability densities to

attain position-level enrichment or depletion.

For information content approach each splicing events read densities were normalized

by dividing the read depth by the total number of reads in a sample separately for IP and input.

Per-position entropy probabilities were calculated using the equation p(ip)∗ log2(
p(ip)

p(input)) where

p(ip) and p(input) are the per-position read probabilities at a given base.

To calculate mean normalized enrichment scores for background subtraction and infor-

mation content methods the mean score for each base was first calculated. Then each individual

event score at each base was normalized by the mean at each base.

3.5.16 Outlier removal

Outliers were moved on a base by base basis. For each base the highest (2.5%) and lowest

(2.5%) values were removed, and results were visualized

3.5.17 Alternative splicing map approaches

For peak coverage splicing maps the per-base peak coverage of each significant AS event

(included or excluded upon knockdown) was summed and reported.

5 end splicing maps were generated as background subtracted, outlier removed splicing

maps, with the exception that full read densities were replaced with just the read density at the 5

end of the R2 read for each read near an AS event.
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3.5.18 DATA ACCESS

Data passing ENCODE quality standards are available on the ENCODE DCC (encod-

edcc.org). Data not passing quality standards have been submitted to GEO (accession pending).

All datasets used in this study and their locations are listed in Supplemental Table S2.
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Figure 1. Estimation of unique RNA fragments recovered by a-eCT
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Figure 3.1: Figure 1. Estimation of unique RNA fragments recovered by a-eCT (A)
Schematic of standard ENCODE experiment including manual quality control. (B) Scatter
plot indicates accurate-eCT (a-eCT) (see Methods) versus unique fragments observed (includ-
ing non-PCR duplicate reads mapped either to unique genomic loci or repetitive elements, in
millions of reads mapped) for all ENCODE eCLIP experiments. Non-saturated (<60% PCR
duplicates) datasets are indicated in blue, and saturated (>60% PCR duplicates) datasets are
indicated in red. Dashed line indicates the number of unique molecules expected based on
a-eCT. (C) Points indicate the a-eCT value of all ENCODE eCLIP experiments, separated into
IgG controls (blue), datasets that failed manual quality assessment (red) and datasets passing
manual assessment (green). Dotted line indicates average a-eCT of IgG control experiments
(19.6). (D) Representative RBPs are listed along with their a-eCT and corresponding estimate
of the number of unique RNA molecules isolated in eCLIP. UTP3 (in red) did not pass quality
control metrics.
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Figure S1. Estimation of unique RNA fragments recovered by a-eCT
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Figure 3.2: Supplementary Figure 1. Estimation of unique RNA fragments recovered by
a-eCT (A-B) Example immunoprecipitation (IP) western blots for proteins (A) DCP1B and (B)
PES1 with successful IP using simplified conditions that exclude enzymatic library preparation
steps, but failed to IP during full eCLIP. (C) Plot indicates sum of squared error for varying PCR
efficiency when comparing true observed number of unique molecules to estimated number
of unique molecules for six highly saturated (>90% PCR duplicated) experiments. (D-E)
Scatter plot of estimated unique molecules at two estimates of PCR efficiency, 2 (red) and 1.84
(blue) versus unique fragments obtained after sequencing. Shown are (D) six highly saturated
(>90% PCR duplicated) experiments, or (E) 255 moderately saturated experiments (>60% PCR
duplicated).

89



B E

SINE

2 kb

Repetitive elements removed

MYADM

200

0

200

0

600

0

600

TI
A1

PT
BP

1

Peaks

Peaks

Peaks

Peaks

Repetitive elements kept

Repetitive elements removed

Repetitive elements kept

Read depth

60

0

C

Trimmed fragments

Mapped fragments

Unique fragments

Genomic fragments

Unique genomic

A

Adapter Trim

Remove
repetitive
elements

Map against 
repetitive
elements

Map Against
non-repetitive

genome

Merge
non-repetitive +
repetitive reads

PCR duplicate
removal

Genomic
Mapping Pipeline

Repetitive Element 
Mapping Pipeline 0.0

0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n 

re
ad

s 
re

m
ai

ni
ng

chr6
1 kb

142,757,000 142,759,000
GPR126

PCR duplicates kept

PCR duplicates removed

60

0
hn

R
N

PC

0
D

F

G

Figure 2. Development of the eCLIP processing pipeline

0 100,000
200,000

300,000
400,000

500,000
600,000

Clusters

0

10,000

20,000

30,000

40,000

50,000

Pe
ak

s

Sequenced
Reads

Trimmed
Reads

Repetitive Element
 Removed

Reads

Genomic
Fragments

Mapped
Fragments

Unique Genomic
Fragments

Repetitive Element
 Mapped
Reads

Unique
Fragments

fragments

P-Value < .001
Log2(FC) > 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

tio
n 

pe
ak

s 
re

ta
in

ed

Call Peaks Quantify Repetitive
Element Enrichment

0

5000

10000

15000

20000

25000

0 10000 20000 30000
Number of significantly
enriched peaks in Rep1

N
um

be
r o

f s
ig

ni
fic

an
tly

 e
nr

ic
he

d 
an

d 
re

pr
od

uc
ib

le
 (I

D
R

) p
ea

ks
 

Figure 3.3: Figure 2. Development of the eCLIP processing pipeline(A) Schematic of eCLIP
processing for both unique genomic mapping and repetitive element mapping. (B) Points indicate
the fraction of reads remaining after trimming (blue), mapping to either repetitive elements or
unique segments of the genome (green), PCR duplicate removal on both repetitive elements and
unique elements (red), mapping to only unique genomic elements (purple), and PCR duplicate
removal on only unique genomic elements (yellow) for all ENCODE eCLIP experiments. (C)
Effect of repetitive element masking on the gene MYADM. Tracks indicate raw read number
for TIA1 (HepG2) and PTBP1 (HepG2) eCLIP datasets. Significant (fold-enrichment 8 and
p-value 0.001) peaks are shown. SINE elements are derived from the RepeatMasker UCSC
Genome browser track. The highlighted area indicates a peak overlapping a SINE element that
is no longer detected after repetitive element removal. (D) Tracks indicate HNRNPC eCLIP
read density in HepG2 in GPR126 for (top) without and (bottom) with PCR duplicate removal.
Highlighted region represents skyscraper that is lost during PCR duplicate removal. (E) Scatter
plot of clusters versus significant peaks remaining after filtering (fold-enrichment 8 and p-value
0.001 in IP versus input). Histograms indicate cluster or peak distribution respectively. (F)
Points indicate fraction of clusters meeting the above thresholds for p-value and fold-enrichment.
(G) Plot indicates the number of significantly enriched peaks in replicate 1 of each eCLIP
experiment versus the number of enriched and reproducible peaks in the total experiment after
IDR analysis.
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Figure 3.4: Supplementary Figure 2. Development of the eCLIP processing pipeline (A)
Circles indicate fraction of reads effectively mapped in HepG2 RBFOX2 experiments if adapter
trimming is not performed (blue), or is correctly performed (green) (B) Points indicate fraction
of clusters removed due to specific filtering criteria, generally not enriched above input (red),
enriched, but fail to meet p-value and fold change cutoff (blue), fails to meet only fold change
cutoff (green) and fails to meet only p-value cutoff (purple) (C) Schematic of adaption of
Irreproducible Discovery Rate (IDR) analysis to identification of reproducible eCLIP peaks.
First, input-normalized clusters are identified separately for two biological replicates. Next, these
peaks are ranked by relative information content, defined as Ii = pi ∗ log2(

pi
qi
), for proportion

of IP reads within peak i represented by pi and fraction of input reads within the peak as qi.
Next, standard IDR analysis is performed on the ranked peak lists to identify reproducible
regions at IDR cutoff of 0.01. Next, we considered all CLIPper-identified subregions within
these IDR regions, and calculated the fold-enrichment in IP versus input for each subregion
in each replicate. Subregions were ranked by the geometric mean of fold-enrichment between
the two replicates, and the set of non-overlapping subregions that were significantly enriched
(p<0.001 in both replicates) with geometric mean of fold-enrichment 8 in both replicates were
obtained as the set of reproducible peaks. (D) Plot indicates each peak ranked by IDR score,
when IDR score is calculated by ranking peaks based on (blue) fold-enrichment above input or
(green) information content.
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unique genomic fragments for RBFOX2 in HepG2 and K562. Shown are RBFOX2 HepG2
replicate 1 (red) and replicate 2 (green), and RBFOX2 K562 replicate 1 (orange) and replicate 2
(blue). The dashed grey line indicates the mean fraction of GCAUG-containing peaks observed
across all released eCLIP datasets. (B) One point for each gene indicates the TPM (Transcripts
Per Million reads) of the gene (x-axis) and the number of reads (normalized by peak size) in the
peak with the highest number of reads for RBFOX2 in HepG2. Dashed line indicates simple
linear regression. (C) Joy plot indicates (top) the distribution of unique genomic fragment values
for released ENCODE eCLIP experiments, versus (bottom) the distribution of total eCLIP
unique genomic fragments in the downsampled subsample where the first peak was identified in
each gene, separated into
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Figure S3. Dependency of peak discovery on sequencing depth
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Figure 3.6: Supplementary Figure 3. Dependency of peak discovery on sequencing depth
(A) Points indicate fraction of significant peaks detected in between the 90% to 100% subsampled
fraction that contain a GCAUG motif for all RBPs except RBFOX2 (blue) versus RBFOX2
(green) or fraction of all RBFOX2 peaks that contain GCAUG motif (red) (B) Plot indicates
mean mammalian phastons conservation for all peaks newly discovered in each downsampled
subsample for RBFOX2 eCLIP in HepG2 replicate 1 (red) and replicate 2 (green) and K562
replicate 1 (orange) and replicate 2 (blue). (C-D) Downsampling analysis for PRPF8 eCLIP
in HepG2 replicate 1 (blue) and replicate 2 (green), and K562 replicate 1 (red) and replicate
2 (purple). (C) Plot indicates the fraction of peaks newly discovered in each downsampled
subsample that overlap the 5 splice site. The dashed grey line indicates mean fraction overlap
with 5 splice sites for all 179 non-PRPF8 released ENCODE datasets. (D) Lines indicate the
average conservation for newly discovered peaks at the indicated downsampling fraction. (E)
Points indicate the R2 (blue) and slope (green) for the linear regression between gene TPM and
maximum peak read density for all released ENCOE eCLIP experiments. Each point represents
an individual dataset as shown in Fig. 3B. (F) Density plot indicates the log10 number of
reads in experiment (y-axis) when a gene with a specific log10 TPM is first detected to contain
a peak (x-axis) for all released ENCODE eCLIP experiments. Green shading indicates the
number of genes detected for each bin of read depth and TPM combination. The shaded region
indicates number of reads needed to detect peaks when gene TPM < 1. (left) Curve indicates the
number of unique genomic fragments per released ENCODE eCLIP experiment. (G) Cumulative
distribution function plot indicates the number of reads needed to first detect peaks for the set of
genes in indicated bins separated by gene TPM: TPM < .01 (blue), .01 TPM < 1.0 (green),
1.0 TPM < 10.0 (red), 10.0 TPM < 100.0 (purple), 100.0 TPM (gold). (H) Plots indicate the
cumulative fraction of genes with peaks discovered at given experimental sequencing depth, for
the indicated cutoffs for peak enrichment in IP versus input (p-value .001 and fold-enrichment
8 (blue), p-value .01 and fold-enrichment 4 (green), p-value .05 and fold-enrichment 0 (red).
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Figure 4. eCLIP Sequencing Depth Recommendations
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Figure 3.7: Figure 4. eCLIP Sequencing Depth Recommendations (A) Schematic of method
used to estimate number of suggested reads for sequencing based on a-eCT calculation. (B)
Points indicate saturation rate for peak or total information content between the 90% retained and
100% (full dataset) subsampled fraction for all submitted ENCODE eCLIP experiments. Grey
dashed line is 5% saturation cutoff. (C) (right) Lines show percent of additional information
recovered when adding 10% additional reads for hnRNPC (red), RBFOX2 (blue), and QKI
(green) in HepG2. Dotted line indicates the saturation point at which less that 5% additional
information is gained. (left) Cumulative fraction plot indicates the distribution of unique
fragments when each eCLIP dataset reaches saturation. Colored points indicate depth of
sequencing when hnRNPC, RBFOX2 and QKI saturate. (D) Plot indicates the relationship
between mapped reads pre-PCR duplicate removal (x-axis) or unique fragments remaining
post-PCR duplicate removal (y-axis) for actual downsampling experiments (green) or modeled
using a Poisson estimate (red) for RBFOX2 in HepG2. (E) Scatter plot indicates observed versus
estimated usable reads using Poisson model for all eCLIP datasets. (F) Schematic indicates how
datasets with varying a-eCT values can be modeled to estimate required sequencing depth to
obtain 7.7 million unique molecules. (G) Plot of a-eCT versus estimated number of input reads
needed to obtain 7.7M unique molecules. For datasets with less than 7.7M estimated unique
fragments (a-eCT > 14.7), plot indicates the estimated number of reads to observe 90% of total
unique molecules (green).
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Figure S4. eCLIP Sequencing Depth Recommendations
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Figure 3.8: Supplementary Figure 4. eCLIP Sequencing Depth Recommendations (A)
Plot indicates the distribution of unique genomic fragments when each eCLIP dataset reaches
saturation. Colored points indicate depth of sequencing when hnRNPC, RBFOX2 and QKI
saturate. (B) Plot of fraction of unique fragments remaining after PCR duplicate removal
is performed on mapped fragments in datasets with PCR duplicate rate of <10% (C) Plot
indicates (x-axis) the actual number of unique fragments versus (y-axis) the estimated number of
unique reads using a nave read estimation model with static fragment loss estimates for adapter
trimming, mapping, and PCR duplicate removal. Shown are non-saturated (PCR duplication rate
< 10%, blue) and all other datasets (red). (D) Histogram indicates R2 fits for all experiments
using Poisson PCR duplicate read loss model (inset focuses R2 between 0 and 1).
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Figure 5. QC Guidelines for paired eCLIP experiments
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Figure 3.9: Figure 5. QC Guidelines for paired eCLIP experiments (A) Schematic of eCLIP
data quality standards. (B) Swarm plot indicates number of unique fragments observed in each
eCLIP dataset separated by failing (red) or passing (green) manual quality inspection. Dashed
line indicates 1.5 million read quality threshold that maximizes predictive power on manual
classification (Supplemental Fig. 5A), and inset indicates confusion matrix for this threshold
versus manual inspection. Three datasets judged to be high quality despite low unique fragment
number are indicated. (C) Similar swarm plot indicates the total information content across
all peaks in each eCLIP dataset that passes the unique fragment threshold in (B), separated by
failing (red) or passing (green) manual quality inspection. Dashed line indicates the information
content threshold that maximizes predictive power on manual classification (Supplemental Fig.
5C), and inset indicates confusion matrix for this threshold versus manual inspection. (D) Bar
chart indicates the count of all ENCODE experiments that pass or fail manual or automated
QC approaches, broken into three groups based on their IDR thresholding metric status: passed
(blue), borderline (green), and failed (red). (E) Schematic detailing final recommended quality
assessment decision flowchart. (F) Confusion matrix of final classification scheme versus
manual quality assessment.
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Figure S5. QC Guidelines for paired eCLIP experiments. 
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Figure 3.10: Supplementary Figure 5. QC Guidelines for paired eCLIP experiments (A)
Plot indicates f-score for classification of datasets relative to manual quality assessment based
on unique fragments present. Maximal classification of datasets was obtained at a cutoff of 1.5
million unique fragments. (B) ROC curve for classifying datasets based upon varying minimum
unique fragment thresholds. (C) Plot indicates f-score for classification of datasets based on
the total information content in all significantly enriched peaks. Only datasets passing the
unique fragment cutoff in (A) were considered. (D) ROC curve for classifying datasets based
upon varying total information in peak cutoff. (E) Schematic for calculation of Irreproducible
Discovery Rate rescue ratio. (F) Schematic for calculation of IDR self-consistency ratio. (G)
Bar plot indicates rescue ratio for all ENCODE eCLIP experiments. (H) Bar plot indicates
self-consistency ratio for all ENCODE eCLIP experiments. Dashed line indicates a cutoff of
2 previously used for ChIP-seq analysis. (I) Bars indicate the number of ENCODE eCLIP
experiments that either pass both rescue ratio and self-consistency ratio (pass, blue), passed just
one of the two tests (borderline, green) or failed both tests (fail, red).
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Figure S6. CWL Pipeline Design
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Figure 3.12: Figure 6. Considerations for design of splicing maps (A) (top) Schematic of
cassette exon splicing. (bottom) Comparison of splicing maps generated for SRSF9 (HepG2)
knockdown-excluded cassette exons based on peak (blue), background subtracted normalized
read (gold) or non-changing background read (black) density. Bars above plot indicate areas
of significant enrichment (by Mann-Whitney U test) above background when either peaks or
reads are used. (B) Splicing map for HNRNPK (HepG2) binding at knockdown-included (red)
or native (black) events generated from read density in IP. The region shown includes 300
nucleotides of intronic sequence upstream or downstream of the skipped exon, and 50bp of
exonic sequence on both the 5 and 3 sides. Boxes indicate regions discussed in the text. (C)
As in (B), but showing read density in input. (D) Schematic shows calculation of background
subtraction and entropy normalization methods. (top) For background subtraction, read coverage
is first normalized within each event by dividing each position by the total read coverage. Input
signal is then subtracted from IP signal to create a map for each event. Final splicing maps
represent the mean across all events. (bottom) Read density within events is first normalized for
overall sequencing depth. Then relative information is calculated at each position to yield an
event-level map. All events are then averaged to yield the final splicing map. (E) Similar to (B),
plot shows the background subtraction splicing map for hnRNPK. (F) Similar to (B), plot shows
the information content splicing map for hnRNPK. (G) Effect of removing outliers (defined as
the 2.5% of the top and bottom most enriched elements at each position). Plot indicates mean
information content normalized density before (dark red) and after (light red) removing outliers.
(H) (top) Schematic of whole read (orange) versus 5 end (green) read coverage. (bottom) plot
indicates U2F2 eCLIP mean background subtracted normalized read density at cassette exon 3
splice sites for U2AF2 knockdown-included events in HepG2.
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Figure S7. Considerations for design of splicing maps
E

F

I

H

RBFOX2 excluded upon knockdown 

-5
0 0

30
0

-20e-4

20e-4

Ba
ck

gr
ou

nd
su

bt
ra

ct
R

ea
d 

de
ns

ity

-3
00 0 50 -5
0 0

30
0

-3
00 0 50

-4e-4

4e-4 Background
subtract

5' read density

5’ end of read
5’ end of read

Whole read
Whole read

U2AF2 Knockdown

Included 
Excluded 

RBFOX2 knockdown

0

0.5

IP
 d

en
si

ty

0

0.5

In
pu

t d
en

si
ty

-4e-4

0

2e-4

Ba
ck

gr
ou

nd
su

bt
ra

ct
-5

0 0

30
0

-3e-07

0

6e-07

In
fo

rm
at

io
n

co
nt

en
t

-3
00 0 50 -5
0 0

30
0

-3
00 0 50

0 500 1000
Number of overlaps between peaks

and splicing events per RBP

0
100
200
300
400

Fr
eq

ue
nc

y

O
ve

rla
pp

in
g

 e
ve

nt
s

U
ni

qu
e

 e
ve

nt

PSI = .3

PSI = .2

PSI = .1

1 2 3+
Number of overlaps

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rc

en
t o

f
sp

lic
in

g 
ev

en
ts

B

A

hnRNPC knockdown

C

K

L

-5
0 0

30
0

0

20
Pe

ak
 C

ou
nt

s

DensityPeak

p-val
< 0.05

-3
00

0 50 -5
0 0

30
0

-3
00

0 50

-5e-4
0
5e-4

Background
subtract R

ead D
ensity

Peaks
Reads

-5
0 0

30
0

-3e-4

2.5e-3

In
fo

rm
at

io
n

co
nt

en
t

R
ea

d 
de

ns
ity

All events Outliers removed
All events Outliers removed

-3
00 0 50 -5
0 0

30
0

-3
00 0 50

Included
Excluded

M

Bases (nt)

Bases (nt)

Bases (nt)

Bases (nt)Bases (nt)

hnRNPK knockdown 

G

Included
Excluded
Native cassette exons

hnRNPK
knockdown

-5
0 0

30
0

-1.0e-3

1.0e-3

Ba
ck

gr
ou

nd
su

bt
ra

ct
R

ea
d 

D
en

si
ty

-3
00 0 50 -5
0 0

30
0

-3
00 0 50

-1.0e-4

1.0e-4 Background
subtract

5' R
ead D

ensity

J

−2 0 2 4 6 8 10121416
IP RPM

−20
−10

0
10
20
30
40
50
60
70

M
ea

n 
N

or
m

al
iz

ed
 E

nr
ic

hm
en

t

−2 0 2 4 6 8 10 12 14
IP RPM

−50

0

50

100

150

200 Background Subtract
Information content

In
fo

rm
at

io
n

co
nt

en
t r

ea
d 

de
ns

ity

Al
l

Sp
lic

in
g 

ev
en

ts

−4e-6

0

4e-6

-500 250
3’ skipped exon

Bases (nt)

5%
 o

ut
lie

r r
em

ov
ed

Sp
lic

in
g 

ev
en

ts

−4e-4

0

4e-4

Excluded hnRNPC splicing events

3’ skipped exon
Bases (nt)

-500 250

N

In
fo

rm
at

io
n

co
nt

en
t r

ea
d 

de
ns

ity

Figure 3.13: Supplementary Figure 6. Considerations for design of splicing maps (A)
Schematic of overlapping splicing event removal. For all events that overlap with their upstream
and downstream exon, the event with the largest percent spliced in (PSI) is chosen as the
canonical event. (B) Box plot shows the fraction of events per knockdown experiment removed,
based on (x-axis) the number of events within an overlapping window as shown in (A). (C)
Comparison of splicing maps generated for RBFOX2 knockdown-excluded cassette exons
based on peak density (gold) and background subtracted normalized read density (blue) in
HepG2. (D) Histogram indicates the distribution of the number of peaks overlapping significant
splicing events for each RBP with both ENCODE eCLIP and knockdown RNA-seq datasets.
(E-J) Cassette exon splicing maps for RBP hnRNPK in HepG2, showing 50 exonic and 300
intronic nucleotides for the upstream exon 5 splice site, cassette exon 3 and 5 splice sites, and
downstream exon 3 splice site. Binding around knockdown-excluded (blue), included (red), and
native (black) events are shown. (E) Lines indicate read density in IP. (F) Read density in input.
(G) Background subtraction splicing map. (H) Information content splicing map. (I-J) Splicing
maps indicate mean centered normalized background subtraction and information content scores
as compared to IP RPM counts for each significant splicing event at two specific locations: (I)
8bp upstream of the 3 splice site of the cassette exon, and (J) 42bp downstream of the 5 splice
site of the cassette exon. (K) Full version of Fig. 6H, showing average information content
normalized read density before outlier removal at hnRNPC knockdown-excluded (light red)
and included (light blue) events and after performing outlier removal for excluded (dark red)
and included (dark blue) events in HepG2. (L) Heatmaps show information content normalized
read density in the 3 section of cassette exon events for hnRNPC (HepG2) before (left) and
after (right) outlier removal. (M-N) Comparison of whole-read based inclusion (light blue) and
exclusion (dark blue) splicing maps versus 5 end-only based inclusion (light red) and exclusion
(dark red) background subtraction normalized maps for (M) U2AF2 (HepG2) and (N) RBFOX2
(HepG2).
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Chapter 4

Insights gained from individual CLIP-seq

experiments

4.1 ABSTRACT

Analysis of a single RBP, or comparison of binding patterns for mutant and wildtype

RBPs can lead to novel biological insights. In this chapter I present two short vignettes, both part

of larger stories published elsewhere that illustrate the information gained when computational

analysis on individual RNA binding proteins is performed. In this chapter I briefly frame the

biological question we sought to answer when analyzing two RBPs, UPF1 and MSI2, describe

the computational analysis and summarize how these results contributed to the overall study.

4.2 INTRODUCTION

ts
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4.2.1 UPF1

The dynamic interaction of RNA binding proteins (RBPs) with RNA is critical to every

aspect of RNA metabolism[Moo05]. An important question yet to be fully addressed is how RNA

regulators faithfully distinguish their target RNAs from the large complement of non-targets in

the cell. Most models for RBP-target specificity invoke RBP affinity for target-specific RNA

sequences, structures or bound proteins[ÄN12, GBYD08]. However, for RNA quality control

pathways, which detect and destroy faulty or non-functional RNAs, target-specific mechanisms

for RBP recruitment are harder to envision, as these aberrant RNAs have the potential to differ

widely in sequence composition and associated proteins[VW11, PL13].

The first mRNA quality control pathway discovered was nonsense-mediated decay

(NMD)[LPJC91, LL79, MKRR81, PA93]. This translation-dependent pathway is conserved

among eukaryotes and degrades transcripts on which translation is halted by termination codons

recognized as premature. In this way, NMD prevents accumulation of truncated polypeptides

arising from aberrant mRNAs bearing premature termination codons (PTCs) and also serves

as a potent gene suppression mechanism for select naturally occurring mRNAs, impacting the

expression of up to 10% of protein-coding genes in diverse eukaryotes[SRZ+13].

The key RNA binding regulator in NMD is Upf1, a helicase belonging to the SF1 fam-

ily of DNA and RNA helicases[FWGJ10]. Degradation of target mRNAs involves assembly

of Upf1 with other NMD protein factors including Upf2 and Upf3 and, in most eukaryotes

studied to date, the kinase Smg1 and one or more Smg5-7 proteins[KJ12, SRZ+13]. In hu-

mans, Smg1 phosphorylates Upf1 in a manner stimulated by Upf2, Upf3 and the exon junction

complex[KYI+06], which promotes association of phospho-binding proteins Smg5, Smg7 and

mRNA decapping and deadenylation machinery[CBS+14, CHC+13, LJI13, OKYK+12]. Smg6

is itself an endonuclease, which has both phospho-dependent and -independent interactions with

Upf1 [CBS+14, ELAMJ09, NJK+14, OKYK+12]. In addition, the ATPase activity of Upf1 itself

has been implicated in a late step of target mRNA degradation to remodel the mRNP for enhanced
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nuclease access[FSLA10].

Despite the wealth of information regarding the processes involved in NMD target degra-

dation, a fundamental, and yet poorly understood, aspect of the NMD pathway is what enables the

central NMD factor Upf1 to distinguish target mRNAs from non-targets in the first place. NMD

targets that have been well-studied share in common the fact that translation termination occurs at

an unusual position in the mRNA distal to the poly(A) tail due to an extended 3UTR or with an

exon-exon junction located downstream of termination[SRZ+13]. One model for NMD target

recognition proposes that stalled or aberrant termination complexes recruit Upf1[KJ12, SRZ+13].

Indeed, ribosome toe-printing assays in S. cerevisiae extracts and rabbit reticulocyte lysates

revealed that ribosome dissociation at an NMD-inducing PTC compared to a normal termi-

nation codon (NTC) is stalled aberrantly[AGK+04, PIB+12] and interactions between Upf1

and the ribosome release factors, eRF1 and eRF3, have been found in both yeast and human

cells[CREP+98, IGK+08, KYI+06, SRLA08]. Though the determinants leading to aberrant

termination at a PTC have yet to be fully elucidated, it has been suggested that the absence of

proximal mRNP factors that promote normal termination, such as poly(A) binding protein, under-

lies the difference between NMD targets and non-targets[CBC+02, IGK+08, KJ12, UiHI+02].

Recent reports cloud the simple view that aberrantly stalled translation termination com-

plexes account fully for Upf1 recruitment to mRNAs. For example, Upf1 was found to associate

with both target and non-target mRNAs even in the absence of translation, and the manner

and degree to which translation affects Upf1-mRNA accumulation appears to vary among dif-

ferent mRNAs [HG10, KM13, KLH+14, ZGZM13]. Additionally, genome-wide crosslinking-

immunoprecipitation studies have revealed that translation inhibitors induce a shift in Upf1

distribution across mRNAs, from a 3 untranslated region bias to increased association with

protein-coding regions [GSM+14, HRB13, ZGZM13], suggesting that translation influences

where Upf1 associates along the length of an mRNA, in addition to how strongly it associates

with NMD target and non-target mRNAs overall.
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Thus, the mechanisms involved in Upf1 discrimination of NMD target from non-target

mRNAs have remained unclear. Here we present evidence that Upf1 ATPase activity is required

for NMD target selection. In the absence of Upf1 ATPase activity, Upf1-mRNA selectivity is

disrupted and NMD complexes accumulate indiscriminately on target and non-target mRNAs.

4.2.2 MSI2

Umbilical cord blood (CB)-derived hematopoietic stem cells (HSCs) are essential in many

life saving regenerative therapies, but their low number in CB units has significantly restricted

their clinical use despite the advantages they provide during transplantation[MKE13]. Select

small molecules that enhance hematopoietic stem and progenitor cell (HSPC) expansion in culture

have been identified[BWR+10, FCG+14], however, in many cases their mechanisms of action or

the nature of the pathways they impinge on are poorly understood. A greater understanding of the

molecular pathways that underpin the unique human HSC self-renewal program will facilitate the

development of targeted strategies that expand these critical cell types for regenerative therapies.

Whereas transcription factor networks have been shown to influence the self-renewal and lineage

decisions of human HSCs[NSL+11, LDZ+13], the post-transcriptional mechanisms guiding HSC

fate have not been closely Users investigated. By performing a global analysis of MSI2-RNA

interactions, we determined that MSI2 directly attenuates aryl hydrocarbon receptor (AHR)

signaling through post-transcriptional downregulation of canonical AHR pathway components in

CB HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that

underlie the self-renewal process and give evidence that manipulating such networks ex vivo can

provide a novel means to enhance the regenerative potential of human HSCs.
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4.3 RESULTS

4.3.1 Upf1-mRNA selectivity is lost on a transcriptome-wide level in Upf1

ATP-binding and ATP-hydrolysis mutants

To examine the contribution of Upf1 ATPase activity to mRNA selectivity among endoge-

nous mRNAs, we next turned to a global approach. We employed RIP-seq (RNA immunopre-

cipitation followed by strand-specific high-throughput sequencing) with Flag-tagged Upf1 WT,

DEAA and KA expressed at endogenous levels (Figure 1 and S1A) to query the enrichment in IPs

over inputs for endogenous RNAs in comparison to a parental cell line expressing no exogenous

Upf1 used as a negative control. RIP-seq libraries were sequenced to a mean depth of 23 million

reads and approximately twenty thousand genes had >0.1 RPKM per library. Significantly, Upf1

WT, DEAA and KA RIPs were all enriched for transcripts annotated as protein-coding with a

smaller fraction derived from pseudogenes, indicating that the ATPase mutations do not disrupt

Upf1 transcript specificity for mRNAs as a class.

Using the background recovery of RNAs in the negative control IPs to establish a 5% false-

discovery rate (Figure S1B), a distinct population of 2,040 Upf1-associated RNAs was identified

as enriched by at least 2-fold over input levels (Figure 1A, Upf1-enriched genes indicated in red;

Figure 1D). Based on observations by others [HG10, KLH+14, ZGZM13], these RNAs likely

include a mix of NMD sensitive mRNAs and mRNAs that are less sensitive to NMD but limited

in downstream steps of the NMD pathway. In striking contrast to WT Upf1, RIPs for Upf1 DEAA

and KA did not show enrichment for any RNAs when subjected to the same FDR cutoff (Figure

S1B), and, accordingly, the population of WT Upf1-enriched RNAs was not enriched in Upf1

DEAA and KA RIPs over a WT Upf1-non-enriched RNA population defined by 0.97- to 1.03-fold

enrichment in WT Upf1 RIPs over inputs (Figures 1A-C, compare red and blue; Figure 1D).

These global findings generalize our observations for individual mRNA reporters to the human

transcriptome, supporting the conclusion that RNA selectivity is lost in Upf1 mutants deficient in
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ATP binding or hydrolysis, despite their preserved specificity in associating with mRNAs as an

RNA class.
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Figure 4.1: Figure 1. Selectivity in mRNA association is lost on a transcriptome-wide level
in Upf1 ATP binding- and ATP hydrolysis-deficient mutants (A-C) Scatter plots of reads per
kilobase transcript per million mapped reads (RPKM) from RNA-seq of input samples versus
IPs for Flag-Upf1 WT (A), DEAA (B) and KA (C). Genes with IP/input ratios for WT Upf1 of
greater than 2.05 (cut-off based on 5% false discovery rate (FDR) established by comparison to
negative control cells expressing Flag epitope only, Figure S2) are shown in red (Upf1-enriched),
while genes with log2 (IP/input) between -0.5 and +0.5 are shown in blue (non-enriched). All
remaining genes are shown in grey. (D) Cumulative fraction of Upf1-enriched and non-enriched
genes with IP enrichment represented as log2 (IP RPKM/input lysate RPKM) for Flag-Upf1 WT,
KA, and DEAA, along with Flag only. Difference between WT Upf1 (Upf1-enriched) curve
compared to all other curves was statistically significant (p-value <0.05 for all comparisons,
KS-test).

4.3.2 ATP binding- and ATPase-deficient Upf1 accumulate on mRNA 3UTRs

and are enriched near termination codons and 3 ends

Our observations suggest that Upf1 ATPase activity is required for preventing Upf1 from

accumulating and promoting NMD complex formation on translated non-target mRNAs. Recent

studies employing Upf1 UV cross-linking IPs followed by high throughput sequencing (CLIP-seq)

have reported that while Upf1 cross-links can be found all along the length of mRNAs, the overall

distribution of binding sites has a distinct 3UTR bias [GSM+14, HRB13, ZGZM13]. To gain
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insight into how binding to mRNA of Upf1 disrupted in the ATPase cycle might differ from

WT Upf1, we performed UV CLIP-seq on Flag-Upf1 WT, DEAA and KA expressed at near

endogenous levels (Figures S2A, B, C).

Notably, the binding site distributions of Upf1 DEAA and KA were nearly identical to

each other and exhibited preference for mRNAs as a transcript class, with a 3UTR bias similar

to WT Upf1 (Figures 2A, and S2D, E). However, Upf1 mutant binding was strikingly shifted

in comparison to WT Upf1 towards greater binding in 3UTRs on average (Figure 2A; compare

read densities in 3UTRs for DEAA, KA with WT) and across all genes, as seen by the increased

fraction of 3UTR derived reads per mRNA normalized to length in Upf1 DEAA and KA CLIPs

compared to WT Upf1 CLIP (Figure 2B, left graph, see right-shifted curves for DEAA, KA

compared to WT; p-value < 0.05, KS test). Examination of read distributions for the WT

Upf1-enriched and non-enriched RNA subpopulations identified by RIP-seq (Figure 2) revealed

that a greater fraction of the Upf1 enriched mRNAs had a stronger 3UTR bias in WT Upf1

distribution than the non-enriched mRNAs, while the two sets of mRNAs were indistinguishable

in their enhanced 3UTR distribution bias for both Upf1 mutants (Figure 2B, right graph, compare

dashed and solid lines). These findings suggest that Upf1 ATPase activity is needed to limit Upf1

association preferentially with 3UTRs, and particularly so for the mRNA subpopulation that is

less highly bound by WT Upf1 at steady state.

A closer examination of CLIP-seq read density at nucleotide resolution around translation

termination codons and at mRNA 3 ends revealed two peaks that are stronger for Upf1 DEAA

and KA than WT Upf1. The first centers around 45 nucleotides downstream of the termination

codon (Figure 2C, left), while the second peak was observed upstream of transcript 3 ends (Figure

2C, right). This difference in binding site distribution between Upf1 mutants and WT Upf1 in

regions proximal to the termination codon and the poly(A) tail was observed of both the WT

Upf1-enriched and non-enriched mRNAs (Figure S2F). These observations suggest that the Upf1

ATPase cycle plays a particularly critical role in limiting accumulation of Upf1 at these specific
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sites in the 3UTR.

4.3.3 MSI2 Global Analysis

To identify key RNA targets that underlie MSI2 function, we analysed global MSI2 protein-

RNA interactions using cross-linking immunoprecipitation followed by sequencing (CLIPseq)[YCL+09]

(Figure S3a, b). Replicates were highly correlated via gene RPKMs (reads per kilobase of tran-

script per million mapped reads) and 5,552 protein-coding genes were bound in both replicates

(Figure S3c and Figure 3a, b). Within the top 40% of reproducible clusters, MSI2 bound predomi-

nantly to the 3 untranslated regions (3UTRs) of mature mRNAs (Figure 3c). Importantly, 9% of

annotated protein-coding gene mRNAs were reproducible MSI2 targets, compared to 0.2% of

long non-coding RNAs (Figure S3d), suggesting that MSI2 controls the stability or translation

of coding mRNAs. Motif analysis identified a consensus pentamer (U/G)UAGU resembling

the known mouse Msi1-binding sequence[ONT+12, KLL+14] within binding sites in all genic

regions; additionally, MSI2-binding sites were generally significantly more conserved than back-

ground and tended to occur after the stop codon (Figure 3d and Figure S3eh). The presence of

MSI2 binding sites within Msi1 targets[KLL+14] across species indicates that Musashi proteins

may bind the same genes through 3UTR-embedded motifs (Figure S3i). Finally, target gene

ontology analysis revealed 186 biological processes categories, among the most significant of

which were electron transport, oestrogen receptor signalling regulation and metabolism of small

molecules, all processes known to be transcriptionally influenced by AHR signalling[Tij05].

Among the top 2% of enriched CLIPseq targets were the 3UTRs of the genes for two

AHR pathway components: heat shock protein 90 (HSP90) and CYP1B1. Each exhibited

multiple MSI2-binding motifs correlating with overlapping clusters of CLIPseq reads (Figure

3e and Figure S4a). To investigate the ability of MSI2 to post-transcriptionally regulate these

genes during HSPC expansion, we looked for instances of uncoupled transcript and protein

expression. HSP90 displayed uncoupling of transcript (1.6-fold up) and protein (1.6-fold down)
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expression early in culture, but after 7 days showed further upregulated transcript expression

(2.5-fold) and variable protein levels (Figure 3f and Figure S4b). As AHRHSP90 binding is

essential for ligand-dependent transcriptional activity[MFK03], downregulation of HSP90 protein

at the outset of HSPC culture would be expected to reduce latent AHR complex formation and

attenuate AHR signalling. Indeed, CYP1B1 transcript and protein expression displayed twofold

reductions early in culture, consistent with decreased AHR pathway activity; however, at day 7,

CYP1B1 transcripts were upregulated 1.7-fold and uncoupled from protein expression, which

was downregulated twofold (Figure 3g and Figure S4c). To test whether MSI2 directly mediates

post-transcriptional repression of these targets, the 3UTRs of CYP1B1 and HSP90 were coupled

to luciferase. MSI2 overexpression induced significant reductions in luciferase signal from both

reporters, and this effect was mitigated when the core CLIPseq-identified UAG motifs were

mutated (Figure S4d, e). As MSI2 overexpression-mediated post-transcriptional downregulation

of the AHR pathway converged on CYP1B1 protein repression throughout culture, we explored the

effects on HSPCs of inhibiting CYP1B1 independently with (E)-2,3‘,4,5‘-tetramethoxystilbene

(TMS). During culture, TMS increased the frequency and total numbers of CD34+ cells by

1.5-fold and 2-fold, respectively (Figure 3h, i), phenocopying the effects of MSI2 overexpression.

Finally, overexpression of both CYP1B1 lacking its 3UTR and MSI2 decreased secondary CFU-

GEMM replating efficiency (Figure S4f, g); this suggests that CYP1B1, while typically used to

report AHR signalling, itself promotes HSPC differentiation.

4.4 METHODS

4.4.1 RIP sample preparation for Western, Northern or RNA-seq analysis

To monitor protein depletions, if used, and recovery of Flag- or Myc-epitope tagged pro-

teins and/or coprecipitating proteins, a fraction of the input lysate and IP was set aside for Western

blotting in 1x SDS loading buffer (60 mM Tris-HCl, pH 6.8, 2% SDS, 4% -mercaptoethanol, 10%
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glycerol, 0.1% bromophenol blue and xylene cyanol). To monitor RNA, Trizol (Ambion) was

added to input, unbound, and IP samples. RNA was isolated according to the manufacturer, with

25 g linear polyacrylamide used as carrier for either library preparation for RNA-seq analysis

(see below) or Northern blotting.

4.4.2 RIP-seq and CLIP-seq analysis

Sequence alignment of CLIP-seq and RIP-seq data to the human genome. Sequencing

reads from CLIP-seq and RIP-seq libraries were first trimmed of polyA tails, adapters, and low

quality ends using cutadapt with parameters –match-read-wildcards –times 2 -e 0 -O 5 –quality-

cutoff’ 6 -m 18 -b TCGTATGCCGTCTTCTGCTTG -b ATCTCGTATGCCGTCTTCTGCTTG

-b CGACAGGTTCAGAGTTCTACAGTCCGACGATC -b TGGAATTCTCGGGTGCCAAGG

-b AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -b

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT. Reads were then

mapped against a database of repetitive elements derived from RepBase18.05. Bowtie version

1.0.0 with parameters -S -q -p 16 -e 100 -l 20 was used to align reads against an index generated

from Repbase sequences [LTPS09]. Reads not mapped to Repbase sequences were aligned to the

hg19 human genome (UCSC assembly) using STAR [DDS+13] version 2.3.0e with parameters

–outSAMunmapped Within outFilterMultimapNmax 1 outFilterMultimapScoreRange 1.

4.4.3 CLIP-seq Cluster Identification and analyses.

Reads that were PCR replicates were removed from each CLIP-seq library using a custom

script. Briefly one read was kept at each nucleotide position when more than one reads 5’ end was

mapped. Clusters were then assigned using the CLIPper software with parameters –bonferroni

–superlocal –threshold- software [LGM+13]. Clusters that overlap by at least one base pair are

considered overlapping clusters, as determined using bedtools [QH10] and pybedtools[DPQ11].
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4.4.4 Read Distribution Region Counting and comparisons.

Genic features were defined using gencode v17 annotations [HDF+06]. For each gene,

all annotated transcripts for that gene were combined and gene level features were generated. 5’

UTR, CDS, and 3’ UTR regions from gencode genes were identified and merged at the gene level.

The number of reads mapping to each annotated meta-region for each gene was counted. Each

gene region (3’ and 5’ UTRs and CDS) was binned into 100 bins, and the mean of reads in each

bin was calculated. Then for all genes, the mean of each bin was calculated and plotted. Finally,

for each experiment the distribution was normalized to compute a probability density across each

bin. To compare different regions, the total number of reads within each region was totaled. For

each region the RPK (reads per 1,000 bases) was calculated. To find the percent of reads falling

into each region, the percent of RPK normalized reads that were contained within a given region

per gene was calculated.

4.4.5 Read Distribution Feature Counting.

For read distributions around specific genic features (termination codons and 3 transcript

ends), features from gencode v17 were selected, the number of reads around each feature

was counted, and the mean for each base was calculated across all features. Finally, for each

experiment the distribution was normalized to show a probability density across each bin. A

background model was generated assuming a uniform distribution of reads distributed to each

base, and reads were normally distributed. Each feature at each base is then an independent

observation and a z-test was applied to each base (Bonferroni corrected) to see if the reads at that

base differed significantly from the background distribution.
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4.4.6 RIP-seq Analysis.

RPKMs for each gene annotated in gencode v17 were calculated from RIP-seq data using

custom scripts. We determined the fold-change (log2) threshold by which at most 5% of genes in

the FLAG RIP-seq sample were enriched. This threshold reflected a false discovery rate (FDR) of

5%, and was applied to both WT Upf1 and mutant Upf1 RIP-seq samples to identify Upf1 target

genes. Non-targets were defined as having a log2 fold change in WT Upf1 RIPs of between -0.05

and 0.05 RPKM

4.4.7 UV CLIPseq library preparation

CLIPseq was performed as previously described[YCL+09]. Briefly, 25 million NB4

cells (a transformed human cell line of haematopoietic origin) were washed in PBS and UV-

cross-linked at 400mJcm2 on ice. Cells were pelleted, lysed in wash buffer (PBS, 0.1% SDS,

0.5% Na-deoxycholate, 0.5% NP-40) and DNase-treated, and supernatants from lysates were

collected for immunoprecipitation. MSI2 was immunoprecipitated overnight using 5g of anti-

MSI2 antibody (EP1305Y, Abcam) and Protein A Dynabeads (Invitrogen). Beads containing

immunoprecipated RNA were washed twice with wash buffer, high-salt wash buffer (5 PBS, 0.1%

SDS, 0.5% Na-Deoxycholate, 0.5% NP-40), and PNK buffer (50mM Tris-Cl pH 7.4, 10mM

MgCl2, 0.5% NP-40). Samples were then treated with 0.2U MNase for 5min at 37 with shaking

to trim immunopreciptated RNA. MNase inactivation was then carried out with PNK + EGTA

buffer (50mM Tris-Cl pH 7.4, 20mM EGTA, 0.5% NP-40). The sample was dephosphorylated

using alkaline phosphatase (CIP, NEB) at 37 for 10min followed by washing with PNK+EGTA,

PNK buffer, and then 0.1mgml1 BSA in nuclease-free water. 3RNA linker ligation was performed

at 16 overnight with the following adaptor: 5P-UGGAAUUCUCGGGUGCCAAGG-puromycin.

Samples were then washed with PNK buffer, radiolabelled using P32-y-ATP (Perkin Elmer), run

on a 4-12% Bis-Tris gel and then transferred to a nitrocellulose membrane. The nitrocellulose
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membrane was developed via autoradiography and RNAprotein complexes 1520kDa above the

molecular weight of MSI2 were extracted with proteinase K followed by RNA extraction with

acid phenol-chloroform. A 5RNA linker (5HO-GUUCAGAGUUCUACAGUCCGACGAUC-

OH) was ligated to the extracted RNA using T4 RNA ligase (Fermentas) for 2h and the RNA

was again purified using acid phenol-chloroform. Adaptor ligated RNA was re-suspended in

nuclease-free water and reverse transcribed using Superscript III reverse transcriptase (Invitrogen).

Twenty cycles of PCR were performed using NEB Phusion Polymerase using a 3PCR primer

that contained a unique Illumina barcode sequence. PCR products were run on an 8% TBE gel.

Products ranging between 150 and 200bp were extracted using the QIAquick gel extraction kit

(Qiagen) and re-suspended in nuclease-free water. Two separate libraries were prepared and sent

for single-end 50-bp Illumina sequencing at the Institute for Genomic Medicine at the University

of California, San Diego. 47,098,127 reads from the first library passed quality filtering, of

which 73.83% mapped uniquely to the human genome. 57,970,220 reads from the second library

passed quality filtering, of which 69.53% mapped uniquely to the human genome. CLIP-data

reproducibility was verified through high correlation between gene RPKMs and statistically

significant overlaps in the clusters and genes within replicates. CLIPseq data have been deposited

in NCBIs GEO and are accessible through GEO Series accession number GSE69583.

4.4.8 CLIPseq mapping and cluster identification

Before sequence alignment of CLIPseq reads to the human genome was performed, se-

quencing reads from libraries were trimmed of polyA tails, adapters, and low quality ends using

Cutadapt with parameters -match-read-wildcards -times 2 -e 0 -O 5 -quality-cutoff 6 -m 18 -b TCG-

TATGCCGTCTTCTGCTTG -b ATCTCGTATGCCGTCTTCTGCTTG -b CGACAGGTTCA-

GAGTTCTACAGTCCGACGATC -b TGGAATTCTCGGGTGCCAAGG -b AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

-b TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT. Reads were then

mapped against a database of repetitive elements derived from RepBase (version 18.05). Bowtie
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(version 1.0.0) with parameters -S -q -p 16 -e 100 -l 20 was used to align reads against an index gen-

erated from Repbase sequences[LTPS09]. Reads not mapped to Repbase sequences were aligned

to the hg19 human genome (UCSC assembly) using STAR (version 2.3.0e)[DDS+13] with param-

eters -outSAMunmapped Within -outFilterMultimapNmax 1 -outFilterMultimapScoreRange 1.

To identify clusters in the genome of significantly enriched CLIP-seq reads, reads that were PCR

replicates were removed from each CLIPseq library using a custom script of the same method

as in [Dar12]; otherwise, reads were kept at each nucleotide position when more than one reads

5-end was mapped. Clusters were then assigned using the CLIPper software with parameters

-bonferroni -superlocal-threshold[LGM+13]. The ranked list of significant targets was calculated

assuming a Poisson distribution, where the observed value is the number of reads in the cluster,

and the background is the number of reads across the entire transcript and or across a window of

1000bp±the predicted cluster.

4.4.9 Gene annotations for CLIPseq

Transcriptomic regions and gene classes were defined using annotations found in gencode

v17. Depending on the analysis, clusters were associated by the Gencode-annotated 5UTR, 3UTR,

CDS or intronic regions. If a cluster overlapped multiple regions, or a single part of a transcript

was annotated as multiple regions, clusters were iteratively assigned first as CDS, then 3UTR,

5UTR and finally as proximal (<500 bases from an exon) or distal (>500 bases from an exon)

introns. Overlapping peaks were calculated using bedtools and pybedtools[QH10, DPQ11].

4.4.10 Gene ontology analysis for CLIPseq

Significantly enriched gene ontology (GO) terms were identified using a hypergeometric

test that compared the number of genes that were MSI2 targets in each GO term to genes expressed

in each GO term as the proper background. Expressed genes were identified using the control
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samples in SRA study SRP012062. Mapping was performed identically to CLIPseq mapping,

without peak calling and changing the STAR parameter outFilterMultimapNmax to 10. Counts

were calculated with featureCounts37 and RPKMs were then computed. Only genes with a mean

RPKM>1 between the two samples were used in the background expressed set.

4.4.11 De novo motif and conservation analysis for CLIPseq

Randomly located clusters within the same genic regions as predicted MSI2 clusters

were used to calculate a background distribution for motif and conservation analyses. Motif

analysis was performed using the HOMER algorithm as in [LGM+13]. For evolutionary sequence

conservation analysis, the mean (mammalian) phastCons score for each cluster was used.
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Figure 4.2: Supplementary Figure 1. Supplemental data related to RIP-RNAseq (A) West-
ern blot of Flag-Upf1 recovered in RNA-IPs used for the RNA seq in Figure 2 alongside a
two-fold titration of Flag-Upf1 WT input lysate. (B) Plot showing derivation of empirical false
discovery rate (FDR) based on IP/input ratios for FLAG only, with X-axis as FDR and Y-axis as
the number of genes remaining at that FDR threshold for all experiments. Inset depicts region
around 5% FDR cut-off (0.05) used for designating genes identified in WT Upf1 RNA-IP as
Upf1-enriched.
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Figure 4.3: Figure 2. Upf1 WT and ATPase mutants cross-link preferentially in 3UTRs,
with elevated crosslinking for ATPase mutants downstream of termination codons and
near 3 ends (A) Mean read density across the metagene, normalized to the total number of reads
per gene. (B) Cumulative fraction of genes with 3UTR read abundance represented as a fraction
of total reads in the gene, normalized to nucleotide length, shown for all mRNAs on the left, and
for WT enriched and non-WT enriched mRNAs, as defined in Figure 2, on the right. Differences
between WT and mutant curves were statistically significant (p-value < 0.001; KS statistic 0.30
for both DEAA and KA compared to WT for non-WT Enriched and 0.20 and 0.19 for DEAA
and KA, respectively, compared to WT for WT Enriched) (C) Mean read densities, shown as
percentages of total reads mapped in the region depicted per mRNA, around the first nucleotide
of the translational stop codon, shown on the left, and the 3 end of annotated transcripts, shown
on the right. Solid lines represent regions where differences were found to be significant with a
P-value <0.05 (Bonferroni corrected).
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Figure 4.4: Supplementary Figure 2. Supplemental data related to CLIP-seq (A) Overview
of workflow for CLIP-seq performed with Flag-Upf1 WT, DEAA and KA using α-Flag anti-
bodies for immunoprecipitation. (B) Anti-Flag Western blots of Flag-protein purification for
CLIP-seq. (C) Film exposure of polyacrylamide resolved, 32P-end-labeled RNA that remained
associated with Flag-Upf1 WT, DEAA and KA compared to Flag epitope-only, after 0.02U or
10U MNase digestion. The prominent band made apparent with 10U MNase treatment only in
Flag-Upf samples migrates at a size consistent with Flag-Upf1. White box delineates region
excised for CLIP-seq library construction. (D) Mean read density across the metagene, shown
as a percentage of total reads in CLIPs for WT enriched and non-WT enriched genes, as defined
in Figure 2, not normalized to the total number of reads per gene. (E) Cumulative fraction
of genes with regional read abundance represented as a fraction of total reads in the gene,
normalized to nucleotide length. UTR, untranslated region; CDS, coding sequence (F) Read
density around stop codons and mRNA 3 ends for WT-enriched and non-WT enriched genes.
Solid and long-dash lines represent regions where differences were found to be significant with
a P-value <0.05 (Bonferroni corrected).
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Figure 4.5: Figure 3. MSI2 overexpression post-transcriptionally downregulates AHR
pathway components a, Overlap between MSI2 target genes from separate CLIPseq experi-
ments. b, Statistically significant overlap (P<0.0001, hypergeometric test) of clusters between
the replicates. c, Percentage of CLIPseq clusters in different genic regions. d, Consensus motifs
within MSI2 clusters in different genic regions. P values presented for the top 40% of clusters. e,
CLIPseq reads (blue, replicate 1; green, replicate 2) and clusters (purple) mapped to the 3UTR of
CYP1B1. Matches to the GUAG motif are shown in black. f, g, Immunofluorescence for HSP90
and CYP1B1 3 days after transduction and summary of fold-changes in HSP90 and CYP1B1
protein and transcript levels with MSI2 overexpression at 3 and 7 days after transduction (scale
bar, 20m; dotted line indicates no change; n=3 experiments). h, HSPC marker expression by
CD34+ cells treated with TMS for 10 days. i, Absolute CD34+ cell number with TMS (n=4
experiments). Data are presented as mean±s.e.m. Unpaired t-test, **P<0.01.
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Figure 4.6: Supplementary Figure 3. MSI2 preferentially binds mature mRNA within the
3’UTR a, Validation of the capacity of the anti-MSI2 antibody to immunoprecipitate MSI2
compared to IgG control pulldowns. b, Autoradiogram showing anti-MSI2 immunoprecipitated,
MNase digested and radiolabelled RNA isolated for CLIP library construction and sequencing
(red box). Low levels of MNase show a smearing pattern extending upwards from the modal
weight of MSI2. c, Scatter plot of total number of uniquely mapped CLIP-seq reads for each
gene, comparing both replicates. d, Heatmap indicating the number of different classes of
Gencode annotated genes that contain at least one predicted MSI2 binding site. e, Consensus
motifs within MSI2 clusters in the different genic regions. P-values for the most statistically
significant enriched motif is presented for all overlapping clusters between replicates. f, Cumu-
lative distribution function of mean conservation score (Phastcons) of MSI2 clusters, compared
to a shuffled background control, computed for all overlapping clusters and the top 40% of over-
lapping clusters. P- values were obtained by a Kolgomorov-Smirnov two-tailed test comparing
the distributions from actual and shuffled locations. g, Number of clusters within 200 bases
of the annotated stop codon in known mRNA transcripts for all overlapping clusters between
replicates and the top 40% of overlapping clusters. h, Cumulative distribution function of mean
conservation score (Phastcons) of MSI2 clusters, compared to a shuffled background control,
computed for overlapping clusters between the replicates and the top 40% of overlapping clusters
found in different genic regions. Similarity in the 3’UTR conservation for the top 40% with
the shuffled background control is likely due to MSI2 sites being small and not needing struc-
tural contexts for conservation. P-values were obtained by a Kolgomorov-Smirnov two-tailed
test comparing the distributions from actual and shuffled locations. i, Genome browser views
displaying CLIP-seq mapped reads from replicate 1 (blue), predicted clusters (purple), exact
matches for the GUAG sequence (black) and mammal conservation scores (PhyloP) in the 3’
UTRs for a previously predicted Msi1 target.
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Figure 4.7: Supplementary Figure 4. MSI2 OE represses CYP1B1 and HSP90 3’UTR
Renilla Luciferase reporter activity a, CLIP-seq reads (replicate 1 in blue and replicate 2 in
green) and clusters (purple) mapped to the 3’UTR of HSP90. Matches to the GUAG motif are
shown in black. Mammal PhyloP score listed in last track. b and c, Representative data of mean
per cell fluoresence for HSP90 and CYP1B1 protein in transduced CD34+ CB. Protein level
in cells during in vitro culture was analyzed 3 days (D3) and 7 days (D7) after transduction
and sorting for GFP. Corresponding secondary alone antibody staining is shown for each
experiment. Each circle represents a cell, and greater than 200 cells were analyzed per condition.
d and e, Levels of renilla luciferase activity in NIH-3T3 cells co-transfected with control or
MSI2 OE vectors and the CYP1B1 or HSP90 wild type or TCC mutant 3’UTR luciferase
reporter (dotted line indicates no change in renilla activity; n=4 CYP1B1 and n=3 HSP90
experiments). f, Flow plots of co-transduced CD34+ CB cells with MSI2 (GFP) and CYP1B1
(BFP) lentivirus. g, GFP+ BFP+ CFU-GEMMs generated from f were replated in to secondary
CFU assays and enumerated for total number of colonies formed. A total of 24 CFU-GEMMs
from MSI2- BFP and MSI2-CYP1B1 were replated (n=2 experiments). Data presented as mean
SEM. ***p<0.001, **p<0.01. h, A model for AHR pathway attenuation through MSI2 post-
transcriptional processing. MSI2 mediates the post-transcriptional down regulation of HSP90 at
the outset of culture and continuously represses the prominent AHR pathway effector CYP1B1 to
facilitate HSPC expansion. The resultant MSI2-mediated repression of AHR signaling enforces
a self-renewal program and allows HSPC expansion ex vivo.
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Chapter 5

Discussion and Future Directions

The study of RNA binding proteins, like the study of transcription factors before it has

opened up a brand new field in genomics. We have used this power to understand the effects

of single RBPs on human health and disease, and are just now understanding how to integrate

multiple RBPs to gain a better picture of that is going on in the cell.

5.1 Perspectives on TAF15 project

Single RBP studies can help move the field, even if they dont provide conclusive evidence

towards the mechanism of disease. With the TAF15 study we characterized the RBPs binding in

the most relevant cell types we could easily gain access to, but conclusions we drew from the

results were weak at best. TAF15 appears to at least be loosely associated with ALS, so it may

be worthwhile to keep searching for TAF15s true mechanism of action in the disease. It could

an unobserved effect on RNA processing, or it may have to do with its aggregation into stress

granules, which we were not equipped to study.
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5.2 Perspectives on analysis of other RBPs

The value of single RBP studies have been shown in the additional collaborative analysis

I performed in the process of writing my dissertation. Thanks CLIP-seq experiments, and

integration of results we now better understand the mechanism by which UPF1 functions to

degrade NMD targets. Additionally our studies of Musahi 2 have elucidated the mechanism of

action drugs used in the process of growing hematopoietic stem cells. I expect in the future this

research will directly lead to improved efficiency of bone marrow transplants.

Looking at single RBPs can be hugely informative, and I expect that the majority of

studies will continue to be performed utilizing CLIPs on single RBPs.

5.3 Perspectives on eCLIP quality control project

My work on quality control in eCLIP data is the first published suggestions detailing

considerations for experimental and computational analysis. I provided pre-sequencing measures

of quality control to save money and time for scientists before spending thousands of dollars

finishing an experiment. I provided suggestions as to exactly how deeply to sequence to reach an

optimal cost to discovery ratio, and most importantly I provided computational quality control

metrics post-sequencing so people dont waste time analyzing bad data.

Studies of quality control will continue to be performed. We are just now learning

how to effectively scale CLIP-seq assays to understand the effects of hundreds to thousands of

experiments at once. In the end quality control for each RBP is not a one size fits all approach.

My methods were mostly developed for point source binders, and fail to appreciate the diversity

of RBP binding locations and effects. In the future we will need to create more fine grained

quality control metrics based on an understanding of RBP function. From the over 2000 datasets

that we have in our lab we have just started scratching the surface of binding diversity. At a very

basic level we should mark the difference between narrow and broad binders. Pre-mRNA and
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mRNA binders should also be looked at differently. Finally RBPs that primary map to repetitive

elements need to be looked at in a structured way. We still have trouble knowing exactly what it

means to bind to a repetitive element, let alone what level of binding is significant. Repetitive

element binders pass QC right now likely due to technical artifacts, but this should be fixed in the

future.

In addition to methods refinement to QC researchers could, and should continue to

improve the quality of the experimental assay. This could subtlety change the metrics that are

used to show quality of data.

Likely the observation with most staying power in my research is the estimate of library

complexity. Often times people think that a sequencing library contains infinite molecules. CLIP

and iCLIP proved this is not the case. Being able to communicate that sequencing deeper wont

actually yield additional information and quantifying that is an obvious, but critical observation

for the field.

In the end automated quality control metrics, like automated methods to understand the

effect of data can only detect signals you know youre searching for. This is great most of the

time, but biology is about the discovery of the unknown, the thing that makes you say hmm, thats

unexpected. The best quality control, especially for new RBPs will always be looking at each

dataset by eye, and seeing what is unexpected.

5.4 Future needs for CLIP-seq and genomics fields

I see the CLIP-seq field as a whole as just starting, only within the last two years have truly

reproducible, scalable methods to understand RBP binding been developed. This will enable a

whole new area of basic biology research. With this comes a host of challenges and opportunities.

First and foremost the question we must know who is going to analyze the data. Currently

expert experimentalists hand off data to expert computational analysts. This approach worked
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when the rate and scale of data generation was small. As high throughput methods get cheaper

and faster this will be an inefficient way of doing things. The handoff of data and experimental

question between two individuals takes time, not to mention buy in from both parties. There is a

need for the data generators to take over primary data analysis, so they can ask the right question,

and ask it more quickly than a handoff would allow for. The field isnt there yet, but it is moving

in that direction.

On the experimental side understanding the function of an RBP is still an open question.

RBPs regulate many more individual pathways than transcription factors, which at the end of the

day turn genes on or off, and can be assayed with a simple RNA-seq experiment. The mechanism

of action for TFs is still often an open question, but the readout is well known. For RBPs the

readout can be any one of tens of different high throughput experiments. RBPs can effect stability,

splicing, translation, polyadenylation, capping, one of the 100s of RNA modifications. Going in

blind there are too many hypothesis to test to understand the function of a single RBP. We are

addressing this somewhat using high throughput screens for RBP function including stability,

splicing and translation, but these dont address RBP function in its native context.

In the future we should develop computational approaches, based on RBP binding profiles

to automatically provide suggestions as to the function of an RBP. This would help save time and

money when trying to assay its function.

Finally we are just now scratching the surface of true integrative analysis between many

RBPs binding locations, and other assays to understand their function. We need better methods to

understand how RBPs behave cooperatively to regulate cellular state or disease.

To achieve this dream of integrative analysis though more near term issues must be more

effectively addressed. It will be difficult or impossible to integrate RBP data without high quality

peak calls, and to a lesser extent a better understanding of how to quantify differential binding.

In the TF field, integrative finding common co-bound states enabled analysis, based off of high

quality peak calls. Truly high quality peak identification algorithms must be developed for RBPs
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as well.

The largest current drawback to CLIP-seq peak calling algorithms today is they cant

differentiate peak size effectively. Some RBPs bind a specific motif, some bind entire transcripts.

Current peak callers use the same model to call point-source peaks for both types of RBPs. A true

peak caller would accurately identify both the region of binding for a specific RBP, and provide

an estimate of the point-source binding location (if possible) as well.

Important to small scale studies is an understanding of differential binding. Currently

peak calling methods have trouble comparing between two conditions. This is primarily because

there isnt a solid understanding of the correlation between binding strength and read density. This

understanding must be solidified to better understand RBP binding between different conditions.

The future of the RBP field is in basic research. Once RBP binding patterns are better

understood machine learning methods can be applied to understand how mutations or changes in

gene expression will effect binding and downstream gene regulation. This kind of research and

machine learning approach will need to be enabled by vast scale. Currently CLIP-seq is labor

intensive. To truly understand effects of all RBPs at scale CLIP-seq will need to be automated,

and the price per experiment will need to drop drastically.

These predictions will not only allow the field to predict effects of mutations, but also

ideally allow for the prediction of customized RNA (or otherwise) drugs that can treat an

individuals specific disease.

In the end through biomedical research we are attempting to cure diseases. Analysis of

RNA binding proteins will play their role through basic research, allowing scientists to understand

the cause of disease more easily, and providing new therapeutic avenues for treatment.
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Leonardo Collado-Torres, Siruo Wang, Robert A. Phillips, Nishika Karbhari,
Kasper D. Hansen, Ben Langmead, and Jeffrey T. Leek. Human splicing diversity
and the extent of unannotated splice junctions across human RNA-seq samples on
the Sequence Read Archive. Genome Biology, 17(1):266, dec 2016.

[NJK+14] Pamela Nicholson, Christoph Josi, Hitomi Kurosawa, Akio Yamashita, and Oliver
Mühlemann. A novel phosphorylation-independent interaction between SMG6
and UPF1 is essential for human NMD. Nucleic Acids Research, 42(14):9217–
9235, aug 2014.

[NSK+06] Manuela Neumann, Deepak M. Sampathu, Linda K. Kwong, Adam C. Truax,
Matthew C. Micsenyi, Thomas T. Chou, Jennifer Bruce, Theresa Schuck, Murray
Grossman, Christopher M. Clark, Leo F. McCluskey, Bruce L. Miller, Eliezer
Masliah, Ian R. Mackenzie, Howard Feldman, Wolfgang Feiden, Hans A. Kret-
zschmar, John Q. Trojanowski, and Virginia M-Y M.-Y. Lee. Ubiquitinated
TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Science, 314(5796):130–3, oct 2006.

[NSL+11] Noa Novershtern, Aravind Subramanian, Lee N. Lawton, Raymond H. Mak,
W. Nicholas Haining, Marie E. McConkey, Naomi Habib, Nir Yosef, Cindy Y.
Chang, Tal Shay, Garrett M. Frampton, Adam C B Drake, Ilya Leskov, Bjorn
Nilsson, Fred Preffer, David Dombkowski, John W. Evans, Ted Liefeld, John S.
Smutko, Jianzhu Chen, Nir Friedman, Richard A. Young, Todd R. Golub, Aviv
Regev, and Benjamin L. Ebert. Densely interconnected transcriptional circuits
control cell states in human hematopoiesis. Cell, 144(2):296–309, jan 2011.

[OKYK+12] Yukiko Okada-Katsuhata, Akio Yamashita, Kei Kutsuzawa, Natsuko Izumi, Fu-
miki Hirahara, and Shigeo Ohno. N-and C-terminal Upf1 phosphorylations create
binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids
Research, 40(3):1251–1266, feb 2012.

147



[ONT+12] Takako Ohyama, Takashi Nagata, Kengo Tsuda, Naohiro Kobayashi, Takao Imai,
Hideyuki Okano, Toshio Yamazaki, and Masato Katahira. Structure of Musashi1
in a complex with target RNA: The role of aromatic stacking interactions. Nucleic
Acids Research, 40(7):3218–3231, apr 2012.

[ORJ+12] Pawel K Olszewski, Jan Rozman, Josefin A Jacobsson, Birgit Rathkolb, Siv
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