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ABSTRACT
To secure all communications, Named Data Networking
(NDN) requires that each entity joining an NDN network
go through a bootstrapping process first, to obtain its initial
security credentials. Several solutions have been developed
to bootstrap IoT devices in localized environments, where
the devices being bootstrapped are within the physical reach
of their bootstrapper. However, distributed applications need
to bootstrap remote users and devices into an NDN-based
system over insecure Internet connectivity. In this work, we
take Hydra, a federated distributed file storage system made
of servers contributed by multiple participating organiza-
tions, as a use case to drive the design and development of
a remote bootstrapping solution, dubbed Cornerstone. We
describe the design of Cornerstone, evaluate its effectiveness,
and discuss the lessons learned from this process.

CCS CONCEPTS
•Networks→ Security protocols; • Security and privacy
→ Authentication;
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1 INTRODUCTION
The existing TCP/IP architecture was originally designed to
provide resilient infrastructure connectivity [5]. IP views a
networked system as made of interconnected nodes identi-
fied by IP addresses. IP’s bootstrapping process, generally
carried out by the DHCP service, provides each newly joined
node with a set of parameters to enable it to send and receive
IP packets. Over time, a number of security solutions, such
as IPSec, TLS, BGPSec, etc., have been introduced into to-
day’s Internet to fence off various attacks. Security solutions
also need a bootstrapping step, i.e. getting a set of security
parameters to enable nodes to sign and verify each piece
of data. However, today’s security bootstrapping, by and
large, relies on manual configurations. For example, TLS re-
lies on out-of-band installation of root certificate files into
end hosts [12].
As a new network architecture design, Named Data Net-

working (NDN) [2, 9] views a networked system as made of
named entities that have various trust relations among each
other. These named entities can be devices, servers, applica-
tion instances, or anything that produces and/or consumes
named data packets [24]. These entities communicate by
fetching secured data using their semantic names, and this
use of semantic names makes it possible to build security
directly into all communications. To communicate securely,
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however, requires that all entities go through a security boot-
strapping process first when they join an NDN network, in
order to obtain their initial security credentials and parame-
ters, namely trust anchor, certificate, and security policies.

Several systematic and automatic NDN bootstrapping so-
lutions have been developed in recent years, such as those
reported in [10, 13, 14, 16]. Each of them takes a different
technical approach to implement security bootstrapping,
however a shared feature among all is that they provide
bootstrapping for devices within the physical reach of the
bootstrapper. Therefore, they can utilize the physical vicinity
to securely perform the device authentication, such as using
visual or acoustic signals, scanning barcodes or QR codes
attached to the devices to be bootstrapped; one could also
let the bootstrapper install all the required security parame-
ters into devices through the local, secured communication
channel.

Recently, a new class of NDN-based remote collaborative
applications has emerged [6, 7, 11, 15]. These applications
need to perform security bootstrapping for remote devices
and users. We refer to this problem as Remote Bootstrapping.
Due to the collaborative nature of these applications, NDN
entities usually run on devices that are in the control of differ-
ent organizations. Therefore, it is infeasible for an application
administrator to directly access remote devices and manually
install trust anchors, certificates, and trust schemas into re-
mote application instances or devices. Existing NDN security
bootstrapping solutions that utilize physical vicinity [10] or
require direct access [13, 14, 16] no longer work.

In this study, we take a first step towards addressing NDN
remote bootstrapping problems by developing a bootstrap-
ping solution for a specific application use case, Hydra. Hy-
dra [11, 15] is a distributed, federated file storage system.
It is composed of storage servers contributed by the Hydra
user community from multiple organizations. Using Hydra
bootstrapping as a case study, we make three contributions
to remote bootstrapping by developing Cornerstone. First,
we explore the approach of using existing unique identifiers in
the Internet, such as DNS names and email addresses, to au-
thenticate remote entities. Following the direction sketched
out by Yu et. al. in remote server authentication [19], this
work develops a protocol for remote server and user au-
thentication, and makes a concrete implementation. Second,
to simplify the definition of trust schemas for Hydra, we
develop naming conventions to systematically convert the
existing identifiers to Hydra specific NDN names. Third, we
decouple authentication and naming from certification in the
bootstrapping process, which simplifies the implementation
and avoids potential conflicts of functionality.
The remainder of this paper is organized as follows. §2

provides an overview of NDN and its trust domain model.
§3 introduces our target application scenario, Hydra, and

our design goals. §4 describes the overview and design de-
tails of Cornerstone§̇5 reports the evaluation results of our
Python implementation of Cornerstone on its performance
and effectiveness. Finally we conclude our work in §8.

2 BACKGROUND AND RELATEDWORK
In this section, we first give an overview of the NDN net-
working model, then describe previous works in this area,
and a few core concepts our work is based on.

2.1 NDN Networking Model
An NDN-based system is made of connected, semantically
named entities, with various trust relations among them.
Because their names are decoupled from network addresses,
these entities can utilize all available connectivity options
to exchange named and secured data packets. NDN uses se-
mantics in the names to write trust schema, which express
security policies by defining the relations between the names
of data and the names of crypto keys used to sign and en-
crypt data [20]. All NDN entities use defined trust schema
to authenticate all received data.
NDN enables each administrative domain to perform its

own authentication and set its own security policies through
a hierarchical trust model. The work by Nichols [13] defines
the concept of trust domain as a network governed by a sin-
gle authority identified as the trust root for the domain. This
trust root can be cryptographically identified by a self-signed
certificate, dubbed trust anchor, and this trust anchor is in-
stalled into all the entities in the trust domain. The concept
of trust domains helps precisely define the control scope of
a trust anchor and the trust schema.
In order to produce authenticatable data, each entity 𝐸

in a trust domain must also have its name(s) certified. The
certified name(s) uniquely identify 𝐸 in the system and each
name’s authentication chain terminates at the same trust
anchor. The trust schema, defined by the trust root, limits
the signing power of each certificate to a specific namespace,
enabling the enforcement of finer-grained security policies
for authentication, authorization, and access control.

2.2 NDN Bootstrapping
Our Cornerstone model is built upon the results from a few
previous works in NDN bootstrapping. Zhang et al. [21, 24]
identified the necessary security components that must be
installed into each new entity during its bootstrapping pro-
cess. Following the trust domain concept introduced in [13],
NDN bootstrapping is about bootstrapping an NDN entity
into a specific trust domain. Yu et al. [19] further introduced
the concept of a trust domain controller as a trust domain’s
governing entity, and articulated the following four neces-
sary logical steps in the security bootstrapping process: (1)
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achieving mutual authentication between the bootstrapper
and the entity 𝐸 to be bootstrapped, (2) installing the domain
trust anchor, (3) installing the trust schema defined for 𝐸,
and (4) issuing a NDN certificate to 𝐸.
Our work in this paper adopts the concept of trust do-

main and trust domain controller, and develops a solution
for remote bootstrapping scenarios.

2.3 Utilizing Existing Internet Identifiers
for Authentication

In [19], Yu et. al. make a proposition that the establishment
of a new trust relation relies on some pre-existing trust re-
lation(s), which is based on some pre-existing identifiers.
Therefore, NDN Bootstrapping requires two pieces of in-
formation to be provided to a trust domain 𝐷 : the unique
semantic identifier of a remote entity 𝐸, and the trust relation
between 𝐷 and 𝐸. In the context of adding a new entity 𝐸

into a trust domain 𝐷 , this trust relation denotes authorize
𝐸 into 𝐷 .

Assuming 𝐸 has a unique, semantically meaningful identi-
fier in the Internet, this identifier may also carry sufficient
information to help the trust domain controller to assign 𝐸

an NDN name that is meaningful in the specific NDN applica-
tion context as we show later. The trust relation between 𝐷

and 𝐸 needs to come out-of-band, e.g. defined by the operator
of trust domain𝐷 . As an example, Hydra design assumes that
the network operation center (NOC) is configured with a list
of pre-authorized user identifiers (the users’ email addresses)
and server identifiers (the servers’ DNS names).
When new NDN entities are remote thereby only reach-

able through the network, the authentication process must
be carried out through unsecured Internet connectivity. A
practical approach is to utilize existing trust relations in to-
day’s systems to establish trust relations with remote entities.
As a system that has been in operation over 40 years, today’s
Internet has deployed a number of authentication systems
that associate semantic identifiers with defined trust rela-
tions [3, 4, 8, 17].We argue that these authenticated, semantic
identifiers from today’s Internet can serve as a starting point
to bootstrap remote NDN entities. As we describe in §4.1,
these existing identifiers and trust relations are only used for
authentication purposes during the bootstrapping procedure.
Once bootstrapped into a trust domain, NDN entities no
longer rely on those identifiers; instead they will be assigned
NDN names and certificates that will be used in secure NDN
communications.

3 REMOTE BOOTSTRAPPING
In this section, we provide a brief introduction to our target
application Hydra and its security assumptions, then we
explain why Hydra needs remote bootstrapping.

Hydra [15] is a distributed and federated data storage sys-
tem designed for sharing genomics data among researchers
from multiple campuses. It operates on the basis of a feder-
ated trust model, where different organizations contribute
storage servers which collectively form a distributed data
repository. To ensure secure communications within the
system, Hydra establishes a Networking Operating Center
(NOC) responsible for establishing an NDN trust domain for
Hydra system and maintaining the trust relations within the
domain.

Hydra NOC

File Server

Hydra 
App

File Server

Hydra 
App

User Laptop

Hydra 
App

Trust Domain

User Laptop

Hydra 
App

Figure 1: Hydra trust relationshop. Not shown here is
the trust relation among storage servers, once they are
installed with the same trust anchor.

Figure 1 shows a simplified trust relationship of the Hydra
system, in which the Hydra NOC self-signs a certificate as
the trust anchor, and inputs the trust schema configuration
from human administrators to start a trust domain. The NOC
uses two lists to control the domain membership: the server
list and the user list. The former contains the DNS names of
all the contributed storage servers, while the latter is made
of the email addresses of invited users that are authorized
to upload data files to Hydra. The files stored on Hydra
contain public data, therefore there is no control on the users
who fetch files from Hydra. Hydra administrators manually
input the NOC with these two lists, which serve the role of
authorizing storage servers and file-uploaders to join Hydra.
The lists need to be kept up-to-date whenever a server or
user joins or leaves the system. Developing an automated
update tool is one of our future work.
Security Assumptions: Hydra operates under the as-

sumption that each organization has complete control over
the servers they contribute, and that the authorized Hydra
servers are considered trustworthy. However, the commu-
nication between Hydra servers, as well as between servers
and the NOC, occurs over unsecured networks. Similarly, the
authorized Hydra users are assumed to be trustworthy, and
they communicate with the NOC and servers over unsecured
networks. Additionally, it is assumed that each contributed
Hydra server possesses a DNS name (as all institutional hosts
generally do), and each Hydra user has a valid email address.

Restrictions Leading to Remote Bootstrapping: Since
the remote owners have complete control over their devices,
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Hydra NOC cannot remotely access and configure individ-
ually owned devices. Meanwhile, the owners of the con-
tributed storage servers and user devices may not be familiar
with NDN, thereby Hydra also cannot rely on human at the
remote end configuring NDN security components. A sys-
tematic solution is needed for Hydra to remotely bootstrap
user and server entities.

4 THE DESIGN OF CORNERSTONE
In this section, we describe the design of Cornerstone. First,
we discuss the design goals of our remote bootstrapping
solution, followed by an overview of Cornerstone (§4.1). We
then discuss the detailed design of Cornerstone by the four
tasks done in the bootstrapping: installing the trust anchor
and the trust schema (§4.2), authenticating the new entity
(§4.3), assigning an NDN name to the new entity (§4.4), and
issuing certificates (§4.5).
Design Goals: To enable secure data communications

in Hydra, the remote security bootstrapping solution must
fulfill the following two design goals. First, enabling remote
Hydra servers and users to securely obtain all necessary
trust parameters, including the trust anchor, certificate, and
trust schema, from the Hydra NOC. Second, automating
the remote bootstrapping as much as possible to minimize
manual intervention.

4.1 Overview
As Figure 2 shows, the security bootstrapping starts with
mutual authentication between remote NDN entity and the
NOC. The Cornerstone makes use of the trust relations that
already exist in today’s Internet operational environment
to let both sides authenticate each other. A new Hydra user
or server authenticates the NOC through Hydra software
distribution chain (§4.2), from which a new entity 𝐸 is also
able to install the Hydra trust anchor and trust schema.

Afterwards, the new entity runs Name Authentication and
Assignment Protocol (NAAP) (§4.3) with the NOC to request
authentication and name assignment by using of its existing
identifier (§4.3), that could be an X.509 certificate owned
by a Hydra server, or an email identifier assigned by some
recognized external identity provider to a new Hydra user.
For example, a server with domain name “node1.medicalx.
com” can be authenticated by its X.509 certificate. Alice, a
user with account “alice” at “medicalx.com”, can be au-
thenticated with its OpenID Connect’s ID token signed by
“medicalx.com”. During the authentication process, each
new entity uses a temporary key pair to uniquely identify
itself from other new entities.
After the authentication step, the NOC assigns an NDN

name to the new entity based on its external identity used for

authentication (§ 4.4). The name assignment rules are config-
urable by the NOC deployment. In the example above, if Hy-
dra runs at the name prefix “/hydra”, the server may obtain
the name “/hydra/servers/com/medicalx/node1” and Al-
ice may obtain “/hydra/users/com/medicalx/alice”. The
assigned name is given to Alice in the format of Proof-of-
Possession (PoP), a NOC-signed NDN Data packet that binds
Alice’s temporary public key to her assigned name.

Lastly, Alice utilizes the NDNCERT protocol [23] to in-
teract with the Hydra Certificate Authority (CA), an entity
delegated by the Hydra NOC for certification. Alice presents
the PoP signed by the NOC to the CA as her name assign-
ment. Upon verifying Alice’s PoP, the CA issues Alice the
final NDN certificate that she can use in Hydra (§4.5).

Shared TrustWeb PKI
Remote 
Host

NDN 
App

Hydra 
NOC

Software Distribution Chain Authentication

X.509 or OpenID Connect Authentication

Identity Provider

Shared Trust

Remote 
Host

NDN 
App

Hydra 
NOC

NOC Authentication

Name Assignment

Hydra 
CA

Certificate Issuance

Entity Authentication

Installing Trust Anchor 
and Trust Schema

Obtaining Proof of Possession 
as Name Assignment

Installing Certificate
Input

Output

Delegation

NDNCERT

NAAP

Bootstrapping Done

NAAP

Software Built‐in Authentication

Certifies

Certifies

Figure 2: Overall workflow of Cornerstone. The mag-
nifier focuses on the mutual authentication process
and the upper part of this figure reveals more details
of this two-way authentication.

4.2 Installing Trust Anchor and Trust
Schema

Hydra embeds the trust anchor and trust schema into its
software distribution, therefore all users and servers will
install the same trust schema. By doing so, we assume that
every Hydra user and server can receive these security com-
ponents securely through the existing software distribution
channel, such as GitHub, which can provide an authenticated
communication channel that Hydra administrators use to
distribute Hydra software package.
As a result, when Hydra users and servers receive the

software package, they can be confident that the embedded
trust anchor and trust schema are authentic and have not
been tampered.
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4.3 Authenticating New Hydra Entity
Cornerstone leverages existing identifier authentication sys-
tems to authenticate server and users.
If a storage server has a DNS name, the existing authen-

tication systems include DNSSEC [8] and X.509 certificates
issued by certificate authorities [4]. For user authentication,
Cornerstone utilizes identity verification protocols such as
OpenID Connect (OIDC) [17]. OIDC allows an application to
verify the identity of users through identity providers such
as Google, Facebook, or GitHub. Hydra NOC can request
OIDC authentication from user’s identity provider, and this
process involves validating a provider-signed token, which
indicates the user’s account name and authentication status.
As Figure 3 depicts, Cornerstone’s overall new entity au-

thentication workflow is a two-phase protocol NAAP (Name
Authentication and Assignment Protocol), executed between
the new entity, which is either a new user or a new server to
be bootstrapped, and the Hydra NOC. The first phase is Au-
thentication Request and Response (𝐴), where the new entity
requests authentication from the NOC, providing necessary
parameters, including a public key to uniquely identify the
new entity during the bootstrapping process. The second
phase is Identity Proof Request and Response (𝑃 ), where the
new entity proves its identity to the NOC and receives a
PoP which contains its name assignment (discuss shortly in
Section 4.4).

processing
processing

New Entity NOC
A-I1: Authentication Request

A-I2: Authentication Parameters Request

A-D2: Authentication Parameters Response

A-D1: Authentication Response

P-I1: Identity Proof Request

P-I2: Identity Proof Parameters Request

P-D2: Identity Proof Parameters Response

P-D1: Identity Proof Response

processing
processing

Figure 3: NAAP Overview
Each phase consists of the following Interest-Data packet

exchanges:
• I1: an Interest sent by the new entity to notify the
NOC.1

1I1 contains the new entity’s temporary NDN name prefix in its content.
The NOC uses this prefix to construct I2 and fetch parameters. For example,

• I2: an Interest sent by the NOC to the new entity to
fetch necessary parameters.

• D2: a Data packet sent by the new entity in response
to I2, carrying parameters requested by the NOC.

• D1: a Data packet sent by the NOC in response to I1,
carrying the result of this phase.

The rest of this section will describe the server authenti-
cation workflow and user authentication workflow, respec-
tively. The detailed packet exachange are presented in Ap-
pendix A.
Server Workflow: In the server authentication flow, the
server is assumed to have a valid X.509 certificate, and in-
tends to use the same key pair to bootstrap in Cornerstone.
The NOC verifies the X.509 certificate chain, and authen-
ticates the server entity by requiring it to sign a random
number using the certified key pair.
Specifically, in A phase, the authentication parameter A-

D2 is the server’s X.509 certificate chain. Then in A-D1, the
NOC generates a random number and requires new server’s
signature to be sent back in P-D2. Receiving the signature,
the NOC examines that the X.509 certificate chain is properly
signed by a known CA, and the random number is properly
signed by the certified key.
User Workflow: In the user authentication workflow, new
user presents an identity from an OIDC provider known to
the NOC (discuss shortly), proves the ownership, and gets
authenticated. In A phase, the authentication parameters A-
D2 are the OIDC provider’s name, the user’s username at the
provider, and a newly generated public key. Then inA-D1, the
NOC gives a URI which the user can use to perform an OIDC
authentication. Generally, this URI embeds the application’s
credentials registered at the OIDC provider. In P phase, the
P-D2 is the OIDC ID token provided by the OIDC provider.
Receiving P-D2, the NOC examines that the OIDC ID token
is properly signed by the key of user’s OIDC provider.
Automation: The automation of server authentication relies
on two factors. First, the Hydra NOC has established trust
relationships with CAs through out-of-band installation of
CA root certificates. This requirement is typically fulfilled
by the operating system’s software distribution chain, as
modern operating systems come pre-installed with CA root
certificates. Second, the servers need to be able to request
X.509 certificates and obtain them automatically. To address
this, Cornerstone leverages Let’s Encrypt [1], which provides
a free and automated X.509 certificate issuance service for
servers.
The automation of user authentication relies on Hydra

NOC having pre-established trust relationships with the rel-
evant identity provider. If the provider is certified by a NOC

a user Alice connected to the MedicalX network may use the name prefix
“/Medical/Alice/HydraBoot” in this authentication.
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trusted CA, the NOC-Provider trust relationship has estab-
lished during the operating system installation.

4.4 Naming New Hydra Entity
Name assignment happens between the NOC receiving P-D2
and sending P-D1. Note that the NOC only assigns name to
new entities that are authorized by the user list and server
list.

To simplify trust schema rule writing and ensure semanti-
cally meaningful NDN names in the system, it is desirable
to assign names that leverage existing identifiers used for
authentication.

Based on our communications with Hydra administrators,
we have learned that they prefer managing trust relation-
ships with organizations groups. Therefore, the semantics
of DNS names and email addresses are suitable for reuse in
the name assignment process. In the assignment of names
for Hydra entities, we split the domain names into multi-
ple name components and concatenate them with a name
prefix that indicates whether the entity is a server or a user
(which will be discussed shortly). This approach allows us to
preserve the existing identifiers’ semantics while providing
unique and semantically meaningful NDN names within the
system.

As shown in figure 4, the entity naming convention is con-
figurable by administrators programming name assignment
functions using Cornerstone’s predefined rules. For example,
the rule New creates a base name “/hydra/servers”, while
theDomainSplit rule converts a DNS name node1.medicalx.com
into an NDN name “/com/medicalx/node1”. The Concat rule
then appends the converted name after “/hydra/users”, re-
sulting in the NDN name “/hydra/servers/com/medicalx
/node1”. Similarly, by combining the rules New, EmailSplit,
and Concat, Alice’s email address can be converted into the
NDN name “/hydra/users/com/medicalx/alice”.

The programmable naming rules in Cornerstone empower
Hydra administrators to define entity naming conventions
without dealing with the low-level implementation details.
For advanced administrators who wish to define custom
name conversion rules, Cornerstone also provides APIs that
allow for the design of customized naming rules. This flex-
ibility enables administrators to tailor the naming process
according to their specific requirements.
Proof-of-Possession: After the NOC assigns an NDN name
to a new entity, it generates a Proof of Possession (PoP) by
signing a Data packet with its private key, and sends PoP
back in Data P-D1. The PoP can be considered as a tempo-
rary certificate used to bind the entity’s public key with the
NDN name which the NOC assigned to the new entity. The
content of the Data packet includes the new entity’s public
key obtained during the authentication process (Data A-D2).

New

DomainSplit

/hydra/servers

/com/medicalx/node1

Conca /hydra/servers/com/medicalx/node1
Output

Input

“node1.medicalx.com”

SignatureValue: d33b…   

Name: /authenticate/hydra/servers/com/medicalx/node1
/KEY/456/noc/v=1

MetaInfo: KEY

Content:

KeyLocator: /hydra/noc/KEY/123/self/v=1

Signature:

New Entity Public Key Obtained from A-D2

Proof of Possession

NotBefore: 2023-06-15 11:30:59
NotAfter: 2023-06-15 11:35:59

Assigned Name

Name Assignment Function

NOC Sending Back in P-D1

Figure 4: Example of name assignment based on do-
main names

The PoP follows a specific naming convention that starts
with the keyword prefix “/authenticate”, followed by the as-
signed entity name, the identifier of the corresponding public
key, issuer information, and a version number. In the exam-
ple of Figure 4 in which the NOC assigns the name “/hydra
/servers/com/medicalx/node1” to a new server with the
public key identifier “456”, the NOC signs a PoP with the
name “/authenticate/hydra/servers/com/medicalx/node1
/KEY/456/noc/v=1”. The “noc” component indicates that the
PoP is issued by the NOC, and “v=1” represents the version
number.

Note that the public key contained in the PoP is supposed
to be an ephemeral key that serves to uniquely identify the
new entity during the security bootstrapping process. It may
not be the same public key that will be included in the final
certificate issued to the entity.
PoP also includes a validity period that restricts the life-

time of the key-name binding. Within the validity period of
the PoP, the new entity must complete the security bootstrap-
ping process by requesting a certificate from a Hydra CA
(as described in Section 4.5) using this PoP. If the entity fails
to complete the security bootstrapping within the validity
period, a new PoP must be obtained through re-executing
the entire protocol.
In summary, the PoP serves as a proof of ownership for

the assigned name and facilitates the security bootstrapping
process by establishing a binding between the entity’s public
key and its assigned NDN name.

4.5 Certification
One key aspect that sets Cornerstone apart from previous
bootstrapping solutions is the decoupling of authentication
and naming from certification. This is achieved by allow-
ing the Hydra NOC to delegate the certification process to

6



NDNCERT [22], a CA entity within Hydra. Hydra NOC con-
figures the Hydra CA in the trust domain setup time, by
delegating a name prefix to host NDNCERT CA, signing the
CA certificates, and running the CA software.
New entity learns the Hydra CA prefix by naming con-

vention. Once the new Hydra entity obtains its PoP, it runs
the NDNCERT protocol and initiates the Proof-of-Possession
Challenge. During this challenge, the CA validates the en-
tity’s PoP and requests the entity to provide proof of own-
ership of the corresponding private key. Upon successful
verification, the CA issues the final NDN certificate for the
entity under the name appointed by the PoP.

This approach offers several advantages. Firstly, it simpli-
fies the implementations of both the NOC and the CA, as
their roles and responsibilities are clearly defined. Secondly,
it helps avoid potential conflicts in functionality between the
NOC and the CA. By separating the authentication and nam-
ing process from certification, each component can focus
on its specific tasks, leading to a streamlined Cornerstone
design.

5 IMPLEMENTATION
We have implemented Cornerstone for Hydra security boot-
strapping by using python-ndn libraries [18] and other tools.
The tools include python scripts that download Hydra soft-
ware from a trusted URL, then use the Cornerstone library to
run the NAAP protocol with the Hydra NOC and NDNCERT
protocol with the Hydra CA.
In order to evaluate the efficiency of Cornerstone itself,

we eliminate the effects of network delay by running Hy-
dra new entity, Hydry NOC, and Hydra CA, all on the same
machine equipped with Apple M1 Pro and 16GB RAM. Our
preliminary performance evaluation focuses on the time be-
tween the Hydra software download completion and the
installation of the NDN certificate, which we refer to as the
bootstrapping time cost. To simulate the users’ daily work en-
vironment, we assume that users have already logged in with
their OIDC providers in browsers. During our experiments,
the authors acted as users to be bootstrapped into Hydra,
providing only their email addresses and OIDC providers to
the user bootstrapping tool. The servers participated in se-
curity bootstrapping with their actual X.509 certificates. As

Bootstrapping Time
Cost

User Entity Server Entity

Total 2.34s 0.27s
User Interaction 85.89% N/A
Miscellaneous 14.11% 100%

Table 1: Bootstrapping Time Cost

shown in Table 1, Cornerstone took 0.27𝑠 to bootstrap a Hy-
dra server, while the user bootstrapping process took 2.34𝑠
to complete. This user bootstrapping time cost was primarily
due to necessary user interactions in the browser. Specifi-
cally, the bootstrapping tools opened a browser prompt and
requested the user’s consent to authorize Hydra to authenti-
cate their email.2 Therefore, Cornerstone still achieved the
design goals mentioned in § 3.

6 RELATEDWORK
The focus of previous works [10, 13, 14, 16] has primarily
been on bootstrapping devices that do not have existing
identifiers. As a result, these works have to rely on other
authentication approaches such as direct access or physical
confirmation (e.g. visual or acoustic) to establish trust.
In contrast, our work addresses a different problem, that

is remotely bootstrap entities that have already been authen-
ticated and named in today’s Internet. This key distinction
allows us to leverage existing authentication systems and
reuse the authenticated identifiers in NDN names.

Although [19] described the idea of using TLS certificates
to authenticate Hydra servers, this work moves forward to
propose a specific protocol design to authenticate Hydra
servers and users thus focus more on technical details.

7 DISCUSSION
A popular misconception is that NDN applications communi-
cate securely unconditionally. NDN applications do require
security bootstrapping, as the crucial step, to configure the
initial security components to start secured communications.
One might view the Cornerstone’s approach to security

bootstrapping, which depends on existing identities, as ad
hoc. However, as [19] pointed out, authentication always
relies on pre-existing trust relations. Before NDN gets widely
deployed, one needs to identify isolated remote entities through
existing identity system. In today’s Internet, application plat-
form identity providers (e.g. Google) offer the most available
unique identifiers for end users, and Web Public Key Infras-
tructure (PKI) offers the security solution for almost all ap-
plications that people use daily. Therefore, leveraging those
trust relations to authenticate new NDN entities is a practical
solution in NDN Bootstrapping. Once NDN becomes widely
deployed, each remote entity would possess NDN assigned
name and certificate by a remote trust domain 𝐷 ; therefore
when a trust domain 𝐷1 wants to bootstrap a remote entity
𝐸 into its own domain, 𝐷1 can utilize its trust relation with
𝐸 (the pre-existing trust relation) to authenticate 𝐸.

2We acknowledge that the user’s response time to the browser prompt
may vary from one person to another, and our experiments did not involve
multiple user interviews. However, the user’s reaction time to provide
consent is an essential time cost that cannot be optimized.
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8 CONCLUSION
Security bootstrapping plays a critical role in building secure
NDN-based systems. Although different application scenar-
ios may require bootstrapping approaches tailored to the
specific needs, the shared goal of all bootstrapping solutions
is the installation of trust anchors, certificates, and trust
schema into new entities joining NDN-based networks and
applications.
Cornerstone is the first complete design and implemen-

tation for bootstrapping remote users and devices. Our pre-
liminary evaluation shows that Cornerstone successfully
achieves its design goals. Although it is designed for a spe-
cific federated system Hydra, Cornerstone offers an initial
exploration to the solution space of remote bootstrapping.
Our design experience suggests that performing remote se-
curity bootstrapping necessarily makes use of the existing
identifier authentication systems, and that a separate autho-
rization step (checking the authorization list provided by
human administrators) follows the authentication. We hope
that these insights could help the development of future
bootstrapping solutions.
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A NAAP PROTOCOL DETAILS

processing
processing

New Server NOC
A‐I1: /<NOC‐Prefix>/NAA/AUTH/<nonce>/NOTIFY

A‐I2: /<Server‐Local‐Prefix>/NAA/AUTH/<nonce>/NOTIFY/MSG

A‐D2: /<Server‐Local‐Prefix>/NAA/AUTH/<nonce>/NOTIFY/MSG

A‐D1: /<NOC‐Prefix>/NAA/AUTH/<nonce>/NOTIFY

processing
processing

Parameter: {Server‐Local‐Prefix}

Content: {x509}

Content: {rand}

P‐I1: /<NOC‐Prefix>/NAA/PROOF/<nonce>/NOTIFY

P‐I2: /<Server‐Local‐Prefix>/NAA/PROOF/<nonce>/NOTIFY/MSG

P‐D2: /<Server‐Local‐Prefix>/NAA/PROOF/<nonce>/NOTIFY/MSG

P‐D1: /<NOC‐Prefix>/NAA/PROOF/<nonce>/NOTIFY

Content: {signed‐rand}

Content: {Proof‐of‐Possession}

rand=Rand()

signed‐rand=𝑠𝑖𝑔𝑛௩(rand)

𝑣𝑒𝑟𝑖𝑓𝑦𝑝𝑢𝑏(signed‐code)

validate(x509)

list: the list of Hydra server DNS names
prv, pub: the key pair of server’s        

X.509 certificate
x509: server’s X.509 certificate chain

𝑚𝑒𝑚𝑏𝑒𝑟௦௧(dns)

Figure 5: Server authentication workflow
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New User NOC
A‐I1: /<NOC‐Prefix>/NAA/AUTH/<nonce>/NOTIFY

A‐I2: /<User‐Local‐Prefix>/NAA/AUTH/<nonce>/NOTIFY/MSG

A‐D2: /<User‐Local‐Prefix>/NAA/AUTH/<nonce>/NOTIFY/MSG

A‐D1: /<NOC‐Prefix>/NAA/AUTH/<nonce>/NOTIFY

processing
processing

Parameter: {User‐Local‐Prefix}

Content: {oidc‐user, oidc‐provider, tmp‐cert}

Content: {oidc‐auth‐uri}

P‐I1: /<NOC‐Prefix>/NAA/PROOF/<nonce>/NOTIFY

P‐I2: /<User‐Local‐Prefix>/NAA/PROOF/<nonce>/NOTIFY/MSG

P‐D2: /<User‐Local‐Prefix>/NAA/PROOF/<nonce>/NOTIFY/MSG

P‐D1: /<NOC‐Prefix>/NAA/PROOF/<nonce>/NOTIFY

Content: {odic‐token}

Content: {Proof‐of‐Possession}

oidc‐auth‐uri = getURI(oidc‐provider)

oidc‐token = getToken(oidc‐auth‐uri)

validate(oidc‐token)

tmp‐cert = selfsign(User‐Local‐Prefix)

list: the list of Hydra user emails
oidc‐user: the username from identity 

provider
oidc‐provider: the identity provider name

𝑚𝑒𝑚𝑏𝑒𝑟௦௧(oidc‐user)

Figure 6: User authentication workflow
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