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ABSTRACT OF THE DISSERTATION

Elucidating the Mechanism of Action of Teixobactin
By

Hyunjun Yang
Doctor of Philosophy in Chemistry
University of California, Irvine
2019

Professor James S. Nowick, Chair

This dissertation work is centered on understanding the structure and mechanism of
action of the peptide antibiotic, teixobactin. Each chapter shares the themes of understanding the
molecular recognition and supramolecular assembly of teixobactin. Each chapter shares the
approach of chemical design, organic synthesis, and solution-/solid-phase study.

Chapter 1 provides an overview of the field of teixobactin and provides context for the work
described in this dissertation.

Chapter 2 explores an on-resin synthesis of teixobactin analogues to enable structure-activity
relationship studies.

This chapter elucidates the teixobactin pharmacophore by comparing the arginine
analogue of teixobactin Argio-teixobactin to seven homologues with varying structure and
stereochemistry. The roles of the guanidinium group at position 10, the stereochemistry of the
macrolactone ring, and the “tail” comprising residues 1-5 are investigated. The guanidinium
group is not necessary for activity; Lysio-teixobactin is more active than Argjo-teixobactin
against gram-positive bacteria in minimum inhibitory concentration (MIC) assays. The relative
stereochemistry of the macrolactone ring is important; diastereomer L-Thrs,Argio-teixobactin is
inactive, and diastereomer D-allo-Ile11,Argio-teixobactin is less active. The macrolactone ring is
critical; seco-Argio-teixobactin is inactive. The absolute stereochemistry is not important; the
enantiomer ent-Argio-teixobactin is comparable in activity. The hydrophobic N-terminal tail is
important; truncation of residues 1-5 results in loss of activity, and replacement of residues 1-5
with a dodecanoyl group partially restores activity. These findings pave the way for developing
simpler homologues of teixobactin with enhanced pharmacological properties.
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Chapter 3 explores the key interactions of the teixobactin pharmacophore using X-ray
crystallography.

The X-ray crystallographic structure of a truncated teixobactin analogue reveals
hydrogen-bonding and hydrophobic interactions and a cavity that binds a chloride anion. In the
binding cavity, the carbonyl groups of D-Thrs, Alag, Argio, and Ile; in the cyclic depsipeptide
ring point upward, while the amide NH groups of Alas, Argio, and Ilei1 point toward the anion
binding site. Mininmum inhibitory concentration (MIC) assays against Gram-positive bacteria
correlate the observed structure with antibiotic activity.

Chapter 4 explores the supramolecular assembly and amyloid-like characteristic of teixobactin
using gelation assay, ThT fluorescence assay, TEM, and X-ray crystallography.

This chapter describes the X-ray crystallographic structure of a derivative of the
antibiotic teixobactin which suggests that supramolecular assembly through the formation of
antiparallel B-sheets is integral to the antibiotic activity of teixobactin. An active derivative of
teixobactin containing lysine in place of allo-enduracididine assembles to form amyloid-like
fibrils, which are observed through a thioflavin T fluorescence assay and by transmission
electron microscopy. A homologue, bearing an N-methyl substituent, to attenuate fibril
formation, and an iodine atom, to facilitate X-ray crystallographic phase determination,
crystallizes as double helices of B-sheets that bind sulfate anions. B-Sheet dimers are key
subunits of these assemblies, with the N-terminal methylammonium group of one monomer and
the C-terminal macrocycle of the other monomer binding each anion. These observations suggest
a mechanism of action for teixobactin, in which the antibiotic assembles and the assemblies bind
lipid II and related bacterial cell wall precursors on the surface of Gram-positive bacteria.

Chapter 5 explores the design, synthesis, and study two sets of teixobactin analogues providing
further insights of supramolecular assembly and molecular recognition of teixobactin.

This paper describes the chemical synthesis, X-ray crystallographic structure, and antibiotic
activity assay of lactam teixobactin analogues and explores ring-expanded analogues of
teixobactin with B3-homo amino acids. Lactam analogues of teixobactin containing all four
stereoisomers of azathreonine at position 8 were synthesized on a solid-support from
commercially available stereoisomeric threonine derivatives. The threonine stereoisomers are
converted to the diastereomeric aza-threonines by mesylation, azide displacement, and reduction.
In minimum inhibitory concentration (MIC) assays, D-aza-Thrg,Argio-teixobactin exhibits a 2—8
fold increase in antibiotic activity compared to the corresponding macrolactone Argio-
teixobactin. Aza-teixobactin analogues containing other stereoisomers of aza-threonine are
inactive. A dramatic 16-128-fold increase in the activity of teixobactin and teixobactin
analogues is observed with the inclusion of the mild detergent 0.002% polysorbate 80 in broth
during the MIC assay. The X-ray crystallographic structure of N-Me-D-Glns,D-aza-Thrg,Argio-
teixobactin reveals an amphipathic hydrogen-bonded antiparallel B-sheet dimer that bind chloride
anions. In the binding site, the macrolactam amide NH groups of residues 8§, 10, and 11, as well
as, the extra amide NH group of the lactam ring hydrogen bond to the chloride anion. The
teixobactin pharmacophore tolerates 13-membered ring expansion to 14-,15-, and 16-membered
ring containing p*-homo amino acids with retention of partial or full antibiotic activity, but no
enhancement of antibiotic activity is observed.
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Chapter 1
Teixobactin, a new promising peptide antibiotic

Introduction

Antibiotic-resistant bacteria cause more than 2 million illnesses and 23,000 deaths in the
US each year, with direct overall societal costs of about $20 billion and additional indirect
societal costs of about $35 billion due to lost productivity (Figure 1.1).!-? Gram-positive
pathogens — including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-
resistant Enterococci (VRE), antibiotic-resistant Streptococcus pneumoniae, and four others —
cause more than 65% and 87% of these illnesses and deaths. Clostridium difficile (C. difficile)
causes more than 250,000 illnesses and 14,000 deaths per year. Mycobacterium tuberculosis
causes tuberculosis and is one of the top ten causes of death worldwide.?

Number of death caused by

o . . Top 10 global causes of death
antibiotic-resistant pathogens in US

Diarrhoeal disease

Teixobactin Road injury
Diabetes
\ Lung cancer

Alzheimer disease
and other dementi

Figure 1.1. Deaths cause by antibiotic-resistant pathogens in US and pathogens in

the world. Teixobactin is effective against Gram-positive and related pathogens

shown in green.

The emergence of antibiotic resistance and the paucity of effective antibiotics against

multidrug-resistant (MDR) Gram-positive pathogens demonstrates an unmet need for the

development of new antibiotics that overcome these problems. However, the development of



new antibiotics has greatly dropped during the past three decades.! The dramatic attenuation of
antibiotic advancement leaves the medical community with fewer options to treat the growing
threat of antibiotic-resistant pathogens. In addition, bacterial resistance is even emerging against
recently approved antibiotics, such as tigecycline (2005), doripenem (2007), and ceftaroline
(2010).*>% The fight against bacterial pathogens is ongoing, and the new antibiotics will always
be needed.

Antibiotic resistance among bacteria leads to increased human morbidity and mortality.
Conventional S. aureus can be treated with oxacillin, a B-lactam antibiotic with excellent
bactericidal activity. MRSA is generally treated by the intravenous administration of
vancomycin, but clinical failure for such infections has been linked to poor bactericidal activity
of the compound.’-®* While daptomycin has excellent bactericidal activity, it cannot be used
against common lung infections, and has considerable toxicity. Low-level, but clinically
significant resistance is common for both vancomycin and daptomycin. The most advanced and
promising approaches to antibiotic resistance are a therapeutic antibody that neutralizes MRSA
alpha toxin (Medimmune/Astra Zeneca) and an antibody/rifamycin analog conjugate

(Genentech/Roche).>!? Both are in clinical development, and both only target S. aureus.



Teixobactin

In 2015, co-investigator Kim Lewis and co-workers reported a new peptide antibiotic,
teixobactin (Figure 1.2), which is naturally produced by the Gram-negative bacterium Eleftheria
terrae.!! Teixobactin has generated considerable excitement, because it kills Gram-positive
bacteria without detectable resistance and is effective against bacteria that are resistant to other
antibiotics. !2- 13- 1415 Pathogens susceptible to teixobactin include Staphylococcus aureus,
Streptococcus pneumoniae, Bacillus anthracis, and Mycobacterium tuberculosis — the
pathogens that cause staph infections, bacterial pneumonia, anthrax, and tuberculosis. In
minimum inhibitory concentration (MIC) assays in vitro, teixobactin has shown remarkable
potency (MIC=0.005-0.5 pg/mL) toward a wide variety of Gram-positive pathogens. In mice,
teixobactin protects against death from MRSA at dosages of 0.2 mg/kg, and is over an order of
magnitude more effective than vancomycin, which requires 3 mg/kg to achieve equivalent
protection. Single-dose studies in mice at 20 mg/kg initially revealed no evidence of toxicity.
When dosed in mice to a serum concentration of 27 pg/mL, teixobactin remained at levels above
the MIC in the bloodstream for 4 hours. /n vitro studies revealed good stability toward rat liver

microsomes and mouse, rat, human, and dog plasma.

teixobactin / IIe11

LR R
pEgaase

NH HN

allo-| Endm
N-Me-D-Phe; lle, Sers D-Glng D-allo-lles lleg  Ser; D-Thrg Alag (allo enduracididine)

Figure 1.2. Teixobactin.
Teixobactin is a non-ribosomal undecapeptide containing a linear tail (residues 1-7) and a
macrocyclic depsipeptide group (residues 8—11). It contains four D-amino acids and seven L-

amino acids. The macrocyclic depsipeptide group is composed of D-Thrs—Alas—allo-Endio—Iler



in which the C-terminal Ile;; and the hydroxy group of D-Thrs form an ester bond to close the
13-membered ring. Residue 10 is the non-proteinogenic amino acid al/lo-enduracididine (allo-
End), a cyclic arginine analogue.

The mechanism of action of teixobactin is by inhibiting cell wall formation of Gram-
positive bacteria, interrupting both the synthesis of peptidoglycan and the synthesis of teichoic
acid, and ultimately causing bacterial cell lysis.!!:!6 Teixobactin binds the highly conserved
prenyl-pyrophosphate-saccharide regions of lipid II and related membrane-bound cell wall
precursors (Figure 1.3).!7!8 These targets are extracellular and immutable, thus precluding the

development of antibiotic resistance.

(o] H (o]
N

o R
H = H B
N
HO,C N \H/\N \[(\N
H H H H
o D-Glu CO,H O Ala  NHAc CH,0H
o)

D-Ala D-Ala Lys .
or H&2 J o2
m-DAP HOH,C AcHN

GloNAc MU,NACO(;,P\;O(;,P\;OWrenW rogion
pyrophosphate 7 ﬁ/ZvY

Figure 1.3. Lipid II illustrating the peptide, saccharide, pyrophosphate, and

prenyl regions of the molecule anchored in the bacterial cell membrane.
Current efforts

Since the initial report of teixobactin in 2015, several research groups have worked to
synthesize teixobactin and to elucidate its pharmacophore. Four total syntheses of teixobactin
have been published.!*2%-2122 A 10-step or a one-pot synthesis of allo-enduracididine suitable for
preparing gram-quantities has also been reported.?*?? Several groups have reported structure-
activity relationship (SAR) studies of more than 120 teixobactin analogues in which allo-
enduracididine at position 10 is replaced with arginine, lysine, or even isoleucine (Figure
1.4).24:25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 40.41.42.43.44.4546 Cllectively, these studies have revealed

positions that tolerate mutation and have led to homologues that possess antibiotic activity on par

with that of teixobactin in vitro and in vivo against MRSA and VRE.



enantiomer

NH seco 0
o}
| |
N-Me-D-Phe1 lle2 Ser3 D-GIn4——n-allo-lle5 lle6 Ser7 D-Thr8 Ala9——allo-End10——Ile11
D-Phe Leu Ala D-Lys Chg Lys D-Dap Lys Arg Chg
D-Biphenyl D-Asn L-lle Ala Ala D-aza-Thr Lys
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Figure 1.4. Summary of structure-activity relationship studies of teixobactin.
Green = good activity; Orange = moderate activity; Red = poor/low activity.

Most of these studies, however, have provided only a superficial understanding of the
teixobactin pharmacophore, primarily providing insights into the roles of individual residues. A
deeper understanding of teixobactin offers the possibility of learning from millions of years of
evolution, and holds the promise of designing next-generation teixobactin analogues that exploit

the principles that are learned. A deeper understanding of the teixobactin pharmacophore will



pave the way for designing synthetic teixobactin-inspired analogues that are superior to

teixobactin and have broader applications.

Limitations of teixobactin

In spite of its promise, it is not clear whether teixobactin will make it into the clinic.
There are two main problems with teixobactin: (1) Ongoing studies by Lewis and co-workers in
mice and rats have revealed nephrotoxicity. (2) Teixobactin forms a gel when dissolved in serum
or buffer, which impedes its intravenous use at higher concentrations (Figure 1.5A). I have
found that teixobactin and its active analogues behave like amyloidogenic peptides, forming
fibrils that can be observed by transmission electron microscopy (TEM) and a lag time followed
by the onset of fluorescence in a thioflavin T (ThT) fluorescence assay (Figure 1.5B&C).*” The
poor solubility and propensity to form a gel, as well as the nephrotoxicity, highlight the need for
teixobactin analogues with improved properties. Overcoming either of these obstacles would be
a significant advance toward realizing teixobactin’s promise as a new antibiotic to treat Gram-
positive pathogens such as MRSA. The remainder of this dissertation will focus on my effort to
elucidate the mechanism of action of teixobactin which may facilitate strategic design of

teixobactin analogues to realize the promise embedded in teixobactin.

25
220
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5 [¢]
0

0 12 24
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Figure 1.5. Amyloid-like properties of teixobactin. (A) Gelation of teixobactin in PBS buffer at
pH 7.4, with crystal violet as a visual aid. (B) TEM image of teixobactin fibrils, ca. 810 nm in
diameter. (C) ThT fluorescence assay of teixobactin.
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Chapter 2
Elucidation of Teixobactin Pharmacophore

Introduction
At the beginning of 2015, a new antibiotic, teixobactin, was reported in Nature,! with great

2.3.4.5 and the popular press.® Teixobactin is a non-ribosomal

attention in the scientific press
undecapeptide containing a macrocyclic depsipeptide group (Figure 2.1). It contains four D-amino
acids and seven L-amino acids, and the C-terminal Ile1; is cyclized onto the side chain of D-Thrs
to form a 13-membered lactone. Residue 10 of teixobactin is the non-proteinogenic amino acid, L-
allo-enduracididine (allo-Endio), which is a cyclic analogue of arginine. Teixobactin acts against
Gram-positive bacteria by binding to prenyl-pyrophosphate-GlcNAc region of lipid II. This region

is highly conserved in bacteria and cannot easily mutate to impart drug-resistance.”s® It is thus an

attractive antibiotic target.

teixobactin [ ey

PR TR oy

NH HN

o allo-Endg
N-Me-D-Phe; lle; Ser; D-Glng D-allo-lles lleg  Ser; D-Thrg Alag (allo-enduracididine)

Argqo-teixobactin

TR o

Figure 2.1. Structures of teixobactin and Argio-teixobactin.

Recently, Jad et al. and Parmar ef al. reported syntheses of the arginine analogue of

teixobactin Argjo-teixobactin.?19 Both syntheses involve solid-phase peptide synthesis (SPPS) of

2 This chapter is adapted from Yang, H.; Chen, K. H.; Nowick, J. S. ACS Chem. Biol. 2016, 11,
1823-1826.

11



a linear precursor on 2-chlorotrityl resin, followed by solution-phase macrolactamization to form
the Alas—Argio amide bond. The former synthesis requires both Fmoc and Alloc groups as
orthogonal a-amino protecting groups; the latter requires Fmoc, Alloc, and trityl groups. Both
syntheses introduce D-Thrg without protecting the alcohol group and O-acylate it before
completing the N-terminal tail. Both sets of authors reported that Argjo-teixobactin is about an
order of magnitude less active against gram-positive bacteria than teixobactin in minimum

inhibitory concentration (MIC) assays.!'!:!%13

Results and Discussion

In the current study, we set out to elucidate the teixobactin pharmacophore by synthesizing
and evaluating a series of teixobactin homologues. We examine the roles of the guanidinium group
at position 10, the stereochemistry of the macrolactone ring, and the “tail” comprising residues 1—
5. We also report a simpler synthesis of teixobactin analogues and a simpler homologue, which we

term lipobactin 1.

We synthesized Argio-teixobactin and other homologues by SPPS on 2-chlorotrityl resin,
followed by solution-phase macrolactamization to form the Argio—Ile;1 amide bond (Scheme
2.1).1415:16.17 We used only Fmoc protecting groups to construct all of the amide bonds and carried
D-Thrs through the entire synthesis without side chain protection. All homologues were prepared

and studied as the trifluoroacetic acid (TFA) salts.
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l Fmoc-based SPPS OH
Boc-N-Me-D-Phe;-lle;-Sers-D-Glng-D-allo-lles-lleg-Ser;--Thrg-Alag-Argo-04Q)
t-Bu Trt t-Bu Pbf

(1) Fmoc-lle-OH, DIC, DMAP/CH,Cl,
(2) piperidine/DMF
(3) HFIP/CH,Cl,
C‘)flleWNHz
BocfN-Me-D-Phe1-IIez-Sgrg-D-G!n4-D-allo-IIe5-lIee-Se‘>r7-D-Thr8-Alag-Arg10—COOH
t-Bu  Trt t-Bu Pbf
i HBTU, HOBt, DIPEA/CH3CN-THF-CH,Cl,
H
O-llesy-N

|
Boc-N-Me-D-Phe, —Ilez—S?r3—D—G!n4—D—a//o—IIes—lIeG—S?rTD—Thrg—Alag—Arg10

tBu  Trt tBu Pbf
l TFAMH,O/TIPS

Arg,o-teixobactin

Scheme 2.1. Synthesis of Argio-teixobactin.

We began the synthesis by attaching Fmoc-Arg(Pbf)-OH to 2-chlorotrityl resin. Residues
9 through 1 were then introduced by standard Fmoc-based SPPS using HCTU as the coupling
reagent. D-Thrg was introduced without a protecting group at the hydroxy position. No O-acylation
of D-Thrg was observed in the subsequent rounds of SPPS. D-Thrg was then O-acylated with Fmoc-
Ile-OH using DIC and DMAP.!#19:20 Fmoc-deprotection, followed by cleavage from the resin with
20% hexafluoroisopropanol (HFIP) in CH>Cl» afforded the linear precursor. Macrolactamization
with HBTU and HOBY, followed by global deprotection with trifluoroacetic acid (TFA) and RP-
HPLC purification afforded Argio-teixobactin. We also prepared a series of homologues using

similar procedures (Figure 2.2).
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Figure 2.2. Structures of teixobactin homologues.

We investigated the antibiotic activity of Argio-teixobactin and homologues in MIC assays

against four types of gram-positive bacteria. We used the antibiotic vancomycin as a positive

control and the gram-negative bacteria E. coli as a negative control. We selected non-pathogenic
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strains of bacteria to facilitate the safe and rapid screening of Argio-teixobactin and other
homologues in a BSL-1 environment.

To explore the role of a guanidinium group in residue 10, we compared the MIC of Argio-
teixobactin to Lysjo-teixobactin. The arginine residue serves as a surrogate for a//o-enduracididine,
which is not commercially available and has only been prepared by cumbersome multistep
syntheses.?1:22:23.24:25 Argjo-teixobactin gave MIC values of 1-4 pg/mL against the four gram-
positive bacteria studied (Table 2.1). Although side-by-side comparison to an authentic sample of
teixobactin was not possible, comparison to the original published values in related bacteria
suggests that Argjo-teixobactin is about an order of magnitude less active (Table 2.1).
Surprisingly, Lysio-teixobactin gave MIC values 2—4 times lower than Argio-teixobactin. While
the MIC values for Lysio-teixobactin are slightly higher than those reported for teixobactin, they
are comparable to those of vancomycin (Table 2.1). This interesting finding indicates that the
guanidinium group at position 10 is not necessary for activity and lays the foundation for the future

discovery of homologues that lack allo-enduracididine and are even more potent.
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Table 2.1. MIC of teixobactin homologues in pg/mL.

Staphylococcus ~ Streptococcus — Enterococcus Bacillus Escherichia
epidermidis salivarius durans subtilis coli
ATCC 14990 ATCC 13419 ATCC 6056  ATCC 6051 ATCC 10798
Argo-teixobactin 1 1 4 2 >32
Lysio-teixobactin 0.25 0.5 1 0.5 >32
L-Thrg,Argjo-teixobactin >32 >32 >32 >32 >32
D-allq-Ile 1 ,Argm- 2 2 8 4 >32
teixobactin
seco-Argjo-teixobactin >32 >32 >32 >32 >32
ent-Argjo-teixobactin 2 1 4 2 >32
short-Argo-teixobactin >32 >32 >32 >32 >32
lipobactin 1 4 4 8 4 >32
vancomycin 0.5 0.5 0.5 1 >32
0.08-0.3 0.02-0.15 0.3-0.6 0.02-0.6 95
teixobactin! various various various various E colil
Staphylococcus'  Streptococcus'  Enterococcu! Bacillus' ‘

To investigate the role of the macrolactone ring stereochemistry, we compared the
diastereomer L-Thrs,Argio-teixobactin and D-allo-1le11,Argio-teixobactin to Argio-teixobactin. The
former proved inactive (MIC>32 pg/mL) against the Gram-positive bacteria, while the latter
proved half as active (Table 2.1). Collectively, these results suggest that the ring stereochemistry
and the conformation are important in teixobactin activity. Seco-Argio-texibobactin also proved
inactive (MIC>32 pg/mL), further supporting the importance of the cyclic depsipeptide structure
(Table 2.1).

To further investigate the role of the macrolactone ring stereochemistry, we compared ent-
Argio-teixobactin to Argio-teixobactin. Ent-Argio-teixobactin exhibits comparable activity to
Argio-teixobactin. This exciting finding supports a model in which the amide NH groups on
macrolactone ring bind to the achiral pyrophosphate group of lipid II through hydrogen-bonding
interactions. This mode of binding has previously been reported in the NMR structure of the

complex of nisin with lipid I (PDB 1WCO), and appears to occur for teixobactin as well.26
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To investigate the role of the N-terminal tail, we truncated residues 1-5. The resulting
short-Argio-teixobactin also proved inactive (MIC > 32 pg/mL). To investigate the possibility that
the hydrophobic residues N-Me-D-Phe, Ile, and D-allo-Ile at positions 1, 2, and 5 help to anchor
teixobactin into the plasma membrane, we replaced residues 1-5 with a dodecanoyl group.27-28
The resulting homologue, lipobactin 1, proved only 2—4 times less active than Argjo-teixobactin
(Table 2.1). This finding confirms the importance of the hydrophobicity of the N-terminal tail and
paves the way for further developing simpler homologues of teixobactin with enhanced

pharmacological properties.
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Materials and Methods:
Synthesis of Argio-teixobactin

Resin loading.! 2-Chlorotrityl chloride resin (300 mg, 1.2 mmol/g) was added to a 10 mL
Bio-Rad Poly-Prep chromatography column. The resin was suspended in dry CH2CL> (10 mL)
and allowed to swell for 30 min. The resin was loaded with a solution of Fmoc-Arg(Pbf)-OH
(117 mg, 0.18 mmol, 0.50 equiv) and 2,4,6-collidine (300 pL) in dry CH2Cl> (5 mL). The
suspension was agitated for 12 h. The solution was drained, and the resin was washed with dry
CH:Cl> (3x). A mixture of CH>Cl,/MeOH/DIPEA (17:2:1, 8 mL) was added to the resin and
agitated for 1 h to cap any unreacted resin sites. The solution was drained, and the resin was
washed with dry CH2Cl; (3x). The resin loading was determined to be 0.09 mmol [0.29 mmol/g,
48% loading] through UV analysis of the Fmoc cleavage product.

Peptide coupling. The loaded resin was suspended in dry DMF and transferred to a solid-
phase peptide synthesis reaction vessel for automated peptide coupling with Fmoc-protected
amino acid building blocks. The linear peptide was synthesized through the following cycles: i.
Fmoc deprotection with 20% (v/v) piperidine in dry DMF (3 mL) for 10 min, ii. resin washing
with dry DMF (3x), iii. coupling of amino acid (0.36 mmol, 4 equiv) with HCTU (142 mg, 0.36
mmol, 4 equiv) in 20% (v/v) 2,4,6-collidine in dry DMF (3 mL) for 20 min, and iv. resin
washing with dry DMF (6x). For D-to-L and L-to-D amino acid couplings, the reaction time in
step iii was increased to 1 h. After completing the linear synthesis, the resin was transferred to a
10 mL Bio-Rad Poly-Prep chromatography column. The resin was then washed with dry DMF
(3x) and dry CHCl; (3x).

Esterification. In a test tube, Fmoc-lle-OH (303 mg, 0.90 mmol, 10 equiv) and

diisopropylcarbodiimide (140 pL, 0.90 mmol, 10 equiv) were dissolved in dry CH2Cl; (5 mL).
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The resulting solution was filtered through 0.20 pm nylon filter, and then 4-
dimethylaminopyridine (11 mg, 0.09 mmol, 1 equiv) was added to the filtrate. The resulting
solution was transferred to the resin and was gently agitated for 1 h. The solution was drained
and the resin was washed with dry CH>Cl (3x) and DMF (3x).

Fmoc deprotection and cleavage of the linear peptide from the resin. The Fmoc
protecting group on Ile;; was removed by adding 20% piperidine in dry DMF (5 mL) for 30 min.
The solution was drained, and the resin was washed with dry DMF (3x) and then with dry
CHxClz (3x). To cleave the peptide, the resin was treated with 20% hexafluoroisopropanol in dry
CHxCl> (6 mL) followed by gentle agitation for 1 h. The filtrate was collected in a round-
bottomed flask. The resin was washed with a second aliquot of 20% hexafluoroisopropanol (6
mL) and then washed with dry CH>Cl, (3x). The filtrates were combined and concentrated under
reduced pressure to afford a clear oil. The oil was placed under vacuum (< 10 mTorr) to remove
any residual solvents.

Cyclization. The oil was dissolved in a mixture of CH;CN/THF/CH2Cl, (6:2:2, 10 mL).
HBTU (195 mg, 0.54 mmol, 6 equiv) and HOBt (70 mg, 0.54 mmol, 6 equiv) were added to
solution. The reaction mixture was stirred under nitrogen for 30 min. DIPEA (94 pL, 0.54 mmol,
6 equiv) was slowly added to the solution and the reaction mixture was stirred for 2 h. The
mixture was concentrated under reduced pressure to afford the cyclized peptide as a white solid.
The solid was placed under vacuum (< 10 mTorr) to remove any residual solvents.

Global deprotection and purification of Argio-teixobactin. The crude protected peptide
was dissolved in a mixture of trifluoroacetic acid (TFA)/triisopropylsilane/H,O (90:5:5, 10 mL)
and stirred under nitrogen for 1 h. The resulting solution was then concentrated under reduced

pressure to afford the deprotected peptide as a clear yellow oil. The oil was dissolved in 20%
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(v/v) CH3CN in water (5 mL) and centrifuged at 14,000 rpm for 5 min, and the solution was
filtered through 0.20 um nylon filter. The peptide was purified by reverse-phase HPLC with
H>O/CH;CN (gradient elution of 20-50% CH3CN w/ 0.1% TFA). Pure fractions analyzed by
analytical HPLC and electrospray ionization (ESI) mass spectrometry were combined and
lyophilized. Argio-teixobactin was isolated as the trifluoroacetic acid (TFA) salt of a 14.2 mg
white powder (11.6 % yield based on resin loading).

Esterification with DIC and DMAP is known to epimerize amino acids. "H NMR analysis
of the unpurified Argio-teixobactin, and comparison to an authentic sample of D-allo-Ilei1,Argio-
teixobactin, showed a 2:1 ratio of ArglO-teixobactin and the epimeric D-allo-Ilel11,Argl0-
teixobactin. HPLC purification of the crude product afforded Argio-teixobactin in approximately

95% diasteromeric purity.
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Figure S2.1. 600 MHz 'H NMR spectra in DMSO-ds of Argio-teixobactin, D-
allo-lle11,Argio-teixobactin, and unpurified Argio-teixobactin, illustrating
epimeric impurity in Argio-teixobactin.

The other teixobactin homologues were prepared using similar procedures. All
teixobactin homologues were estimated to be at least 90% purity based on RP-HPLC and 'H
NMR analysis, with the exception of ent-Argio-teixobactin, which showed a 16 mol% impurity
in the 'H NMR spectrum. This impurity is suspected to arise from a stereoisomeric impurity at

the L-allo-Iles position, which could result from stereoisomeric impurity in the Fmoc-L-allo-Ile-

OH that was used in the synthesis.
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Table S2.1. Yield of teixobactin homologues.

homologue yield (mg) % yield calcd. MW as TFA salt
Argio-teixobactin 14.2 mg 10.7% 1472.54 (-2 TFA)
Lysio-teixobactin 14.2 mg 10.9% 1444.53 (-2 TFA)
L-Thrg,Argio-teixobactin 4.7 mg 3.6% 1472.54 (-2 TFA)
D-allo-1le11,Argio-teixobactin | 13.2 mg 10.0% 1472.54 (-2 TFA)
seco-Argio-teixobactin 13.2 mg 9.8% 1490.56 (-2 TFA)
ent-Argio-teixobactin 11.5mg 8.7% 1472.54 (-2 TFA)
short-Argio-teixobactin 9.7 mg 12.4% 869.81 (-2 TFA)
lipobactin 1 12.1 mg 14.1% 956.10 (-1 TFA)

NMR sample preparation and data processing

1D and 2D experiments of Argio-teixobactin and other homologues were performed at 2
mM concentration in DMSO-ds at 298K at 600 MHz. samples were prepared gravimetrically,
based on the molecular weight of the corresponding trifluoracetate (TFA) salt. Spectra were
referenced to residual DMSO-ds. The data were collected with the TopSpin software and
processed with the XwinNMR software.
Minimum inhibitory concentration (MIC) assay

MIC assays of Argio-teixobactin and other homologues were determined by using a broth
microdilution method according to CLSI.? Escherichia coli (ATCC 10798), Enterococcus
durans (ATCC 6056), Streptococcus salivarius (ATCC 13419), Staphylococcus epidermidis
(ATCC 14990), Bacillus subtilis (ATCC 6051) were acquired as freeze-dried powders from
ATCC.

Preparation of bacterial plate stocks. A portion of freeze-dried bacteria powder was
removed with a sterile loop and suspended in 5 mL of Mueller-Hinton broth in a 14 mL
polypropylene round-bottom culture tube. The mixture was incubated at 37 °C while shaking

overnight. The mixture was streaked on Mueller-Hinton agar plates, and the plates were
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incubated at 37 °C overnight to allow colonies to grow. The plates were wrapped with Parafilm
and stored for subsequent experiments.

Determination of bacterial concentration (CFU/mL). Five colonies from the bacterial
plate stocks were transferred to a single 14 mL polypropylene round-bottom tube containing
Mueller-Hinton broth (2 mL) and the mixture was incubated at 37 °C while shaking. As the
turbidity of the cell suspension mixture visually increased, a 200 pL aliquot was transferred to a
96-well plate for ODgoo measurement. The cell suspension mixture was diluted with Mueller-
Hinton broth to an ODgoo of 0.075 as measured for a 200 puL sample in a 96-well plate
(equivalent to a 0.5 McFarland standard). A 10 pL aliquot of the diluted cell suspension was
diluted 1:1000 with Mueller-Hinton broth. A 10 pL aliquot of the 1:1000 diluted cell suspension
mixture was further diluted 1:200 with Mueller-Hinton broth. A 100 uL aliquot of the resulting
mixture was then streaked on a Mueller-Hinton agar plate (repeated four times). The agar plates
were incubated at 37 °C overnight. The number of colonies on each agar plate was counted, and
the average of four plates was used to back calculate the bacterial concentration (CFU/mL) at an
ODegoo of 0.075 as measured for a 200 pL sample in a 96-well plate (equivalent to a 0.5

McFarland standard).

Table S2.2. Bacterial concentration determination

Bacteria Average number of Concentration at a
colonies per plate 0.5 McFarland standard”
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Staphylococcus epidermidis 5 1 x 107 CFU/mL
ATCC 14990
Streptococcus salivarius 25 5x 107 CFU/mL
ATCC 13419
Enterococcus durans 32 6 x 107 CFU/mL
ATCC 6056
Bacillus subtilis 25 5x 107 CFU/mL
ATCC 6051
Escherichia coli 24 5x 107 CFU/mL
ATCC 10798

?ODegoo of 0.075 as measured for a 200 pL sample in a 96-well plate

Preparing the peptide homologue stock. Solutions of vancomycin, Argio-teixobactin, and
other teixobactin homologues were prepared gravimetrically by dissolving an appropriate
amount of peptide in an appropriate volume of sterile DMSO to make 20 mg/mL stock solutions.
The stock solutions were stored at -20 °C for subsequent experiments.

Preparing the minimum inhibitory concentration (MIC) assays. An aliquot of the 20
mg/mL peptide homologue stock solutions diluted 1:100 with Mueller-Hinton broth to make a
200 pg/mL. The resulting solution was further diluted to 64 pg/mL with Mueller-Hinton broth. A
200 pL aliquot of the 64 pg/mL solution was transferred to a 96-well plate. Two-fold serial
dilutions were made with Mueller-Hinton broth across a 96-well plate to achieve a final volume
of 100 pL in each well. The 100 pL serial diluted solutions had the following concentrations: 64,
32,16,8,4,2,1,0.5,0.25,0.125, and 0.06125 pg/mL.

Performing the minimum inhibitory concentration (MIC) assays. Five colonies from the
bacterial plate stocks were selected and transferred to a single 14 mL polypropylene round-
bottom tube that contained Mueller-Hinton broth (2 mL) and the mixture was incubated at 37 °C
while shaking. As the turbidity of the cell suspension mixture visually increased, the mixture was

diluted with Mueller-Hinton broth to ODsoo of 0.075 as measured in a 96-well plate (equivalent
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to a 0.5 McFarland standard). Based on the previously determined CFU/mL (above), the diluted
mixture was further diluted to 1 x 10® CFU/mL with Mueller-Hinton broth. A 100 uL aliquot of
the 1 x 10% CFU/mL bacterial solution was added to each well in 96-well plates, resulting final
bacteria concentration of 5 x 10° CFU/mL in each well. As 100 pL of bacteria were added to
each well, peptide homologue solution was also diluted down to the following concentrations:
32,16, 8,4,2,1,0.5,0.25, 0.125, 0.0625, and 0.03125 pg/mL. The plate was covered with a lid
and incubated at 37 °C for 16 h. The ODgoo was measured using a 96-well UV/Vis plate reader
(MultiSkan GO, Thermo Scientific). The MIC values were taken as the lowest concentration that
had no bacteria growth. Each MIC assay was run in duplicate in three independent runs to ensure

reproducibility.
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HPLC, MS, 1D and 2D NMR spectrum of Argio-teixobactin and other homologues

Table S2.3. NMR data of Argio-teixobactin and other homologues.
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Argo-teixobactin : Mass spectrum and Analytical RP-HPLC
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H H ] H HN__O
ANy N\_)LN/\g/N NjggN\_)LN.- :/[/)’
H E H i h NH HN—",
SoH SoH \_ﬁ
Exact Mass: 1243.73
Molecular weight: 1244.50
[M+1H]'*: 1244.74
[M+2H]2‘1 622.87
[M+1H+Na]*": 633.86
[M+1H+NaCH.F302]'*:1380.71
0\0 .
|.623.8801
255.0339 B34.3636
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Signal 1:VWD1 A, Wavelength=214 nm
| Peak| RT | Type | Width | Area |Height | Area % |
# [min] | | [min] mAU*s | [mAU] | |
e e |-----—- |----——- | === - |-—---—- |-=———m—- |
| 1] 9.746 | MM | 0.226] 7116.659]100.000| 100.000]
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Argio-teixobactin : 'H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of Arg;,-teixobactin
2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

Argio-teixobactin
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NOESY spectrum in DMSO-d6 (500 MHz)

Argio-teixobactin
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Lysio-teixobactin : Mass spectrum and Analytical RP-HPLC

100- 608 826
Lys1o-teixobactin o. NH /
2 ",
° ° j o o i}j NH,
H H I H H HN_ O
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H E H/\g/ H 2 HON NH HN,
SOH SoH \ g
Chemical Formula: CsgHg7N13045
1216.659 Exact Mass: 1215.72
M+1H]'*: 1216.73
[M+2H]?*: 608.87
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Signal 1:VWD1l A, Wavelength=214 nm
| Peak]| RT | Type | Width | Area |[Height | Area % |
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|==== === | === === === [———m= === |
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| 3| 9.715|FM | 0.082] 293.588] 4.592]| 3.418]|
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Lysio-teixobactin : 'H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of Lys;o-teixobactin
2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

Lysio-teixobactin
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COSY spectrum in DMSO-d6 (600 MHz)

Lysio-teixobactin
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L-Thrs-Argio-teixobactin : Mass spectrum and Analytical RP-HPLC

100+ 622.852
L-Thrg-Arg,o-teixobactin
8-Argso O _NH, l
J 3/
o o o o !
H H E H HN__O
AN N\:)Lu/\g” N ”\z)\u TI =
2 2 NH HN-—", N
SoH SoH ’ ?
633.840 $
358.098 Chemical Formula: CsgHg7N15015
Exact Mass: 1243.73
[M+1H]'*: 1244.74
[M+2H]2‘3 622.87
[M+1H+Na]*": 633.86
[M+1H+NaCH2F302]'*:1380.71
1244706
S 294.921
701.831
249.004
430.896
566.870 1380.680
4390.369
789828 gagg15
d
974.792 1032.756
'Y 1ea7or | 1313188 1516.637
" o
|-
D I T T T T T T T T T 1 T U T 1 U U T T T T T U T T U U
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1800
mAU mAU
o
g
3 400
500
400 2
200 Q
300 § % ;
o e -
&
200 = f
0
—
100
0 -200
-100 -
2004 -400
T T T T
0 5 10 15 min| 0 5 10 15 min
Signal 1:VWD1 A, Wavelength=214 nm Signal 1:VWDl A, Wavelength=214 nm
| Peak| RT | Type | Width | Area |Height | Area % | | Peak | RT | Type | Width | Area |Height | Area % |
I # | [min] | | [min] | mAU*s | [mAU] | | I # | [min] | | [min] | mAU*s | [mAU] | |
|====1 | | [ | | | I====1 | | [ | | |
| 11 9.788 | MM | 0.073] 1542.626] 65.625| 61.835] | 11 11.529|MM | 0.109] 89.495| 7.706] 9.963]
| 2] 11.507 |MM | 0.110] 111.9391 3.134] 4.487| | 2] 11.954|MM | 0.100] 72.988| 6.848] 8.125]
| 31 11.932|MM | 0.106] 81.198| 2.368| 3.255] | 31 14.433|MM | 0.073] 389.539| 49.873| 43.365]
| 4] 14.408|MM | 0.081] 453.000] 17.359] 18.158] | 4] 15.244|MM | 0.137] 41.289| 2.837| 4.597|
| 51 15.841|MM | 0.094] 63.624] 2.086| 2.5501 | 51 15.861|MM | 0.093] 54.164| 5.489] 6.030]
| 61 16.894|MM | 0.065] 96.093| 4.561] 3.852] | 61 16.912|MM | 0.087] 138.678| 15.043| 15.438]
| 71 17.472 | MM | 0.098] 83.620] 2.636] 3.352] | 71 17.491|MM | 0.093] 64.065| 6.430] 7.132]
| 81 17.700|MM | 0.087] 62.655| 2.231| 2 | 81 17.715|MM | 0.078] 48.057| 5.774| 5
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L-Thrs-Argio-teixobactin : 'H NMR spectrum in DMSO-d6 (600 MHz)

385 Hz

0.098194 Hz
5.0919938 sec
8.00 usec
263.21494 Hz/cm
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1D NMR plot parameters
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TOCSY spectrum in DMSO-d6 (600 MHz)

L-Thrs-Argio-teixobactin
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D-allo-1le1-Argio-teixobactin : Mass spectrum and Analytical RP-HPLC

100 622.860
1244718
D-allo-lle 4-Arg,,-teixobactin
1 10 8 Nk, [
Y o
H © w © T 9 HO"".?_;N(OH
AN N N\_)LN ~NN N N\_)LN.-. :/I/)/ Ne=NH
H Y H/\g/ H E NH HN—"%~ NH,
OH SoH \_%
Chemical Formula: CsgHg7N15045
Exact Mass: 1243.73
[M+1H]”1 1244.74
[M+2H]?*: 622.87
[M+1H+Na]2‘3 633.86
[M+1H+NaCHzF302]'*:1380.71
E-‘O‘ -
22110
450131 1246.737
B672.402 815.143
72.903
1380.703
549.214
267 535 357.092 16.157
1313.225 [1382.721
766.832
WAk . Ju " | ol NATIPIEN ¥ N .
D T T Ak T Il U T T U T UABARLI T T T T U T T T U T U T m,Z
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1800
mAU | I
1 N~
o
800 |
600
400 -
~
1 8
(=]
200
04—
-200
0 5 10 15 min
Signal 1:VWDl A, Wavelength=214 nm
| Peak| RT | Type | width | Area |Height | Area % |
[ # | [min] | | [min] | mAU*s | [mAU] | |
Bl |- |- |-——m— | === |- |
| 1] 9.567 |MF | 0.066] 72.238| 2.511| 1.631]
| 2| 9.727|FM | 0.101| 4115.366| 93.954| 92.932]
| 3] 10.098|FM [ 0.157] 240.780| 3.534| 5.437|
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D-allo-Tlei1-Argio-teixobactin : '"H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of D-allo-1le;;,Argo-teixobactin

2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

D-allo-1le11-Argio-teixobactin
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seco-Argio-teixobactin : Mass spectrum and Analytical RP-HPLC

T miz

100+ 631.819
seco-Argyg-teixobactin
NH, o :/
vog Ho;Ho HO""-H&)E(\OH
A N\:)Lu/'\g/w \ N\)Lu *//[/)/ =
NoH NoH NT_%’: K
Chemical Formula: CsgHagN15016
Exact Mass: 1261.74
[M+1H]'*: 1262.75
642826 [M+2H]>" 631.88
[M+1H+Na]*": 642.87
[M+1H+NaCH2Fs02]'*: 1398.72
= 1262.665
707.806
[708.306
317.205
266,995 1264689
381.027 318'799
19.303
434.204 854.776
546.953 1398.651
0 sl
B U T T T T T U T T T U T U
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
mAU 5
~
@
2000 +
1500
1000
500 | ’ ‘
—— — At Ve N
0 — - \/\/\/\
|
| /\’\
| N\
0 .“') 1‘0 1‘5 min
Signal 1:VWD1 A, Wavelength=214 nm
| Peak| RT | Type | Width | Area |Height | Area % |
I # | [(min] | | [min] | mAU*s | [mAU] | |
|====|========= |======= |======= |======—=- === | === |
| 1 8.731|MM | 0.062| 7911.522[100.000| 100.000]|
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seco-Argio-teixobactin : 'H NMR spectrum in DMSO-d6 (600 MHz)
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TOCSY spectrum in DMSO-d6 (600 MHz)

seco-Argjo-teixobactin
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ent-Argyo-teixobactin : Mass spectrum and Analytical RP-HPLC

100 622.758
ent-Arg,,-teixobactin o. NH
2
| ?}
o o o N o H
H H H H o
NG NN AGAN A SN HNUNa:NH
: H OHH Lo OHH NH HN NH,
Chemical Formula: CsgHg7N45015
Exact Mass: 1243.73
[M+1H]'*: 1244.74
[M+2H]2’i 622.87
[M+1H+Na]*": 633.86
[M+1H+NaCHzF302]' *:1380.71
633.753
32 -4
701.738
1244 545
212.088
7
319.087 430,833 769.713 932.412 246554
566.789 974654 1/330,599
1 1110617 1302.520
L POTTIN I J.. Al |lh.... R n I A " . N
T T T T T T T T T T T T T T T T T T T T T T e T e (12
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 900
mAU
1000 —
500 Pl
2
o
ol _/‘“\\\\\\\\
-500
-1000
T
0 5 10 15 min
Signal 1:VWD1 A, Wavelength=214 nm
| Peak| RT | Type | Width | Area |Height | Area % |
I # | [min] | | [min] | mAU*s | [mAU] | |
Bl | === |-===- | === | === [ === |
| 1] 9.905|MM | 0.126] 3460.172|100.000| 100.000]
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ent-Argio-teixobactin : '"H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of ent-Arg-teixobactin

2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

ent-Argjo-teixobactin
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short-Argio-teixobactin : Mass spectrum and Analytical RP-HPLC
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short-Argio-teixobactin : '"H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of short -Arg,-teixobactin

2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

short-Argio-teixobactin
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lipobactin 1 : Mass spectrum and Analytical RP-HPLC
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lipobactin 1 : '"H NMR spectrum in DMSO-d6 (600 MHz)

1D 'H spectrum of lipobactin 1

2 mM DMSO-d6, 600 MHz, 298 K
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TOCSY spectrum in DMSO-d6 (600 MHz)

lipobactin 1
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COSY spectrum in DMSO-d6 (600 MHz)

lipobactin 1
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Assigned peaks were corroborated by COSY.
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Chapter 3?
X-ray Crystallographic Structure of a Teixobactin Analogue Reveals
Key Interactions of the Teixobactin Pharmacophore

Introduction

The antibiotic teixobactin—first reported in 2015—kills Gram-positive bacteria without
detectable resistance and offers promise against rising resistance in pathogens such as methicillin-
resistant Staphylococcus aureus (MRSA).!? In reflection of this promise, the initial report has
been cited more than 500 times. Teixobactin is a non-ribosomal cyclic undecadepsipeptide and
contains the rare amino acid allo-enduracididine at position 10.> Teixobactin inhibits cell wall
formation in Gram-positive bacteria by binding to lipid II and related peptidoglycan precursors.

Since the initial publication, multiple research groups have worked to synthesize
teixobactin and to elucidate its pharmacophore. Two reports of the total synthesis of teixobactin
have been published,*> as well as the third describing the synthesis of the cyclic depsipeptide
ring.® A 10-step synthesis of allo-enduracididine suitable for preparing gram-quantities has also
been reported.” Several research groups have reported structure-activity relationship studies of
Argjo-teixobactin (Figure 3.1) and related homologues in which arginine is used as a surrogate for
allo-enduracididine 3%-1%11.12.13 Very recently, Singh er al. reported NMR-based structures and
structure-activity-relationships of Argjo-teixobactin and its diastereomers at positions 1, 4, 5, and
g 14

We recently reported the elucidation of the teixobactin pharmacophore, describing
syntheses and structure-activity studies of a variety of teixobactin homologues.!? On the basis of

these data, we proposed a model in which the amide NH groups of the cyclic depsipeptide ring

2 Yang, H.; Du Bois, D. R.; Ziller, J. W.; Nowick, J. S. Chem. Commun. 2017, 53, 2772-2775.
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bind to the pyrophosphate group of lipid II through hydrogen-bonding interactions, in a fashion
similar to the binding of nisin to lipid I (PDB 1WCO).!> We further proposed that the
hydrophobic residues N-Me-D-Phe, lle, and D-allo-lle at positions 1, 2, and 5 help anchor
teixobactin to the plasma membrane and demonstrated that residues 1-5 could be replaced with a
lipid group. The resulting homologue lipobactin 1 (dodecanoyl-A;_s-Argio-teixobactin) is only 2-

4 times less active than Argio-teixobactin (Figure 3.1).
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Figure 3.1. Structures of teixobactin and homologues.

62



Results and Discussion

In the current study, we report the X-ray crystallographic structure of a truncated version
of lipobactin 1 in which the dodecanoyl group is replaced with an acetyl group, Ac-A;_s-Argio-
teixobactin (Figure 3.1). In attempting to crystallize this homologue with inorganic pyrophosphate
anions, we instead obtained a complex with chloride anion and observe that the chloride anion
coordinates to three amide NH groups of the cyclic depsipeptide ring, the amide NH group of Ser,
and the guanidinium group of Argio. Here we describe the X-ray crystallographic structure of Ac-
A1-s-Argio-teixobactin as the hydrochloride salt and relate the observed structure to changes in
activity upon mutation of Argio-teixobactin.

We began our efforts to crystallize the teixobactin pharmacophore by screening Argio-
teixobactin in 864 conditions in a 96-well plate format using crystallization kits from Hampton
Research (PEG/Ion, Index, and Crystal Screen). Initial efforts to screen Argio-teixobactin for
crystallization were thwarted by the propensity of the peptide to form a gel at concentrations as
low as 5 mg/mL used for screening. Truncation by removal of residues 1-5 (Ai-s-Argio-
teixobactin) eliminated the propensity to form a gel but afforded no crystals. We postulated that a
monocationic homologue would better crystallize than the dicationic homologue and were
gratified that Ac-A1-s-Argio-teixobactin afforded crystals suitable for X-ray crystallography. Only
conditions containing chloride anion afforded suitable crystals. Attempts to crystallize with
inorganic pyrophosphate anions, with HCI being used to adjust the pH of the pyrophosphate buffer,
still afforded the chloride salt. The X-ray crystallographic structure shows Ac-Ai_s-Argio-

teixobactin as the hydrochloride salt (Figure 3.2).!6
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Figure 3.2 X-ray crystallographic structure of Ac-Ai_s-Argio-teixobactin as the
hydrochloride salt. (A) Top view. (B) Side view. (C) Rotated side view, in which
the side chains of Iles and Ile1; are shown as spheres. Hydrogens attached to carbons
that are shown as sticks are omitted for clarity. Water of crystallization (1.5 H2O
per molecule of peptide) is not shown.

In the X-ray crystallographic structure, the carbonyl groups of D-Thrs, Alag, Argio, and
Iler; in the cyclic depsipeptide ring point upward, while the amide NH groups of Alag, Argio, and
Ile1 point downward (Figure 3.2B). The a-amino group of D-Thrg and the attached residues (Ser;
and Ileg), run downward at almost a right angle to the cyclic depsipeptide ring. The side chain of
Argjo also runs downward. The side chains of Alag and Ile;1, as well as the methyl group of D-Thrg
point outward from the cyclic depsipeptide ring (Figure 3.2A). The amide NH group of Alag
hydrogen bonds to the oxygen atom of the hydroxy group of Ser;. The side chains of Iles and Ile:
are in loose contact, suggesting a hydrophobic interaction (Figure 3.2C). The methyl group of D-
Thrg sits near the Iles and Ile1; side chains, creating a hydrophobic patch.

The amide NH groups of Argio and Ilei; in the cyclic depsipeptide ring, as well as the
amide NH groups of Ser; and D-Thrg and the guanidinium group of Argio, hydrogen bond to the
chloride anion (Figure 3.2B). This mode of interaction is similar to that of nisin with the

pyrophosphate group of lipid II.!1> We envision that the binding cavity of teixobactin and its
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analogues may be able to adjust to accommodate larger anions, including the pyrophosphate group
of lipid II and other related peptidoglycan precursors.

To explore the roles of the hydrophobic residues at positions 6, 9, and 11, we mutated each
of these residues to lysine and compared the activity of the resulting homologues to that of Argio-
teixobactin in minimum inhibitory concentration (MIC) assays in four types of Gram-positive
bacteria. Mutation of either Iles or Ile; to lysine results in loss of activity, while mutation of Alag
to lysine does not (Table 3.1).!” These data suggest that the hydrophobicity of Iles and Iley; is
important in teixobactin activity, while that of Alag is not. The outward pointing geometry of the
Alag side chain, coupled with the activity of Lyso,Argjo-teixobactin, suggest that the 9-position
should allow functionalization to provide other modified homologous of teixobactin that are active.

To further explore the role of hydrophobicity at positions 6 and 11 and the contact between
the Iles and Ile;; side chains, we mutated both of these residues to cyclohexylglycine (Chg).
Cyclohexylglycine may be thought of as a homologue of isoleucine, in which two carbons have
been added to the sec-butyl side chain to form a cyclohexane ring. The resulting homologue,
Chge,Argi0,Chgi-teixobactin, has slightly greater activity than Argio-teixobactin, with three of the
four measured MIC values in the Gram-positive bacteria lower by a factor of two (Table 3.1). This
finding suggests that hydrophobicity or hydrophobic contact at positions 6 and 11 is important in
the activity of teixobactin.

To explore the hydrogen bond between the amide NH group of Alag and side chain of Ser,
we mutated Ser; to alanine. The resulting homologue, Alas,Argio-teixobactin, shows greatly
diminished activity (Table 3.1).!* This finding supports the importance of this hydrogen bond in

the activity of teixobactin.
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The hydrogen bonding of the depsipeptide ring to the chloride anion (Figure 3.2) suggests
the possibility of increasing the activity of teixobactin homologues by strengthening the
complexation with the pyrophosphate group of lipid II. To explore this idea, we mutated D-Thrs to
D-diaminopropionic acid (D-Dap). The mutation of D-Thrg to D-Dap replaces the lactone oxygen
atom with an amide NH group, but also results in the loss of the threonine methyl group. The
resulting homologue, D-Daps,Argio-teixobactin, shows comparable activity to Argio-teixobactin
(Table 3.1). Direct comparison of these two homologues is hampered, because two factors are
changed at one time in making this mutation. A reasonable interpretation of this observation is that
enhanced activity from replacing the lactone oxygen atom with an NH group is offset by the

increased conformational flexibility of the ring associated with removal of the D-Thrs methyl

group.

Table 3.1. MIC values of teixobactin homologues in pg/mL.?

Staphylococcus Streptococcus Enterococcus Bacillus Escherichia
epidermidis salivarius durans subtilis coli

ATCC 14990 ATCC 13419 ATCC 6056 ATCC 6051 ATCC 10798
Argo-teixobactin 1 1 4 2 >32
lipobactin 1 4 4 8 4 >32
Ac-Aj_s-Argjo-teixobactin >32 >32 >32 >32 >32
Lyse,Argjo-teixobactin >32 >32 >32 >32 >32
Argjo,Lysii-teixobactin >32 >32 >32 >32 >32
Lyso,Argjo-teixobactin 1 1 4 1 >32
Chgg,Argi9,Chgy-teixobactin 1 0.5 2 1 >32
Ala;,Argjo-teixobactin 32 16 >32 32 >32
D-Daps,Argjo-teixobactin 2 1 4 1 >32
vancomycin 0.5 0.5 0.5 1 >32
teixobactin 0.06 0.03 0.5 0.06 >32

2 All teixobactin homologues were prepared and studied as the trifluoroacetate salts. The
Staphylococcus, Streptococcus, Enterococcus, and Bacillus species are non-pathogenic (BSL-1)
Gram-positive bacteria. The E. coli serves as a Gram-negative control. Vancomycin and
teixobactin serve as positive controls.
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Conclusion

The studies described here demonstrate how the X-ray crystallographic structure of a
truncated teixobactin analogue can reveal key interactions of teixobactin. The structure reveals a
13-membered cyclic depsipeptide ring in which the amide groups and ester group of residues 8—
11 align. The amide NH groups of residues 10 and 11, in conjunction with those of residues 7 and
8 and the guanidinium side chain of residue 10, create a cavity that can bind an anion. The
hydrophobic side chains at positions 6 and 11 are required for activity, whereas that at position 9
is not. The hydrogen bond between Ser; and Alay is also important for activity. The teixobactin
pharmacophore tolerates the amide substitution of lactone oxygen in the ring. Figure 3.3
summarizes these findings. We are now using the X-ray crystallographic structure and structure-
activity relationships that we have observed to design teixobactin homologues with better

pharmacological properties.

hydrophobic group required— lle44

o
tolerates amide substitution— p-Thrg O>/\N O
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o

Figure 3.3. Summary of key findings.
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Materials and Methods

General information

Methylene chloride (CH2Clz) was passed through alumina under argon prior to use.
Amine-free N,N-dimethylformamide (DMF) was purchased from Alfa Aesar. Fmoc-D-allo-1le-
OH was purchased from Santa Cruz Biotechnology. Other protected amino acids were purchased
from CHEM-IMPEX. Preparative reverse-phase HPLC was performed on a Beckman Gold
Series P instrument equipped with an Agilent Zorbax SB-C18 column. Analytical reverse-phase
HPLC was performed on either an Agilent 1200 or an Agilent 1260 Infinity II instrument, both
equipped with a Phenomonex Aeris PEPTIDE 2.6p XB-C18 column. HPLC grade acetonitrile
(MeCN) and deionized water (18 MQ) containing 0.1% trifluoroacetic acid (TFA) were used as
solvents for both preparative and analytical reverse-phase HPLC. Deionized water (18 MQ) was
obtained from a Barnstead NANOpure Diamond water purification system. All teixobactin
homologues were prepared and studied as the trifluoroacetate salts.

Synthesis of teixobactin homologues

Ac-A1s-Argio-teixobactin and other teixobactin homologues were synthesized as the
trifluoroacetate salts following procedures we have previously reported.! Dry DMF was used
instead of a mixture of MeCN/THF/CHCl, for the cyclization step. For the acetylation reaction,
glacial acetic acid (3.0 pL, 0.90 mmol, 10 equiv) was coupled with coupling reagent HCTU (142
mg, 0.46 mmol, 4 equiv) in 20% (v/v) collidine in dry DMF (5 mL). For the synthesis of D-
Daps,Argio-teixobactin, Fmoc-D-Dap(Alloc)-OH was used instead of Fmoc-D-Thr-OH, and the
Alloc protecting group was deprotected using Pd(PPh3z)s (0.10 equiv) and PhSiH; (20 equiv) in

CH:Cl; prior to the esterification step.?
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MIC assays of teixobactin homologues

MIC assays of Ac-Ais-Argio-teixobactin and other teixobactin homologues were
performed following procedures we have previously reported.!
Crystallization of Ac-A1.s-Argio-teixobactin3

Ac-A1s-Argio-teixobactin was dissolved in 0.1 M Na4P>0O7 (sodium pyrophosphate) at pH
7.00 (adjusted with HCl and NaOH) to make a 10 mg/mL stock solution. Crystallization
conditions were screened using the hanging-drop vapor-diffusion method with three
crystallization kits (Hampton Index, PEG/Ion, and Crystal Screen) in 96-well plates. Using a
TTP LabTech Mosquito® liquid handling instrument, three 150-nL hanging drops with differing
ratios of peptide to well solution (1:1, 1:2, and 2:1 peptide/well solution) were made per
condition in each 96-well plate, for a total of 864 experiments. Crystals of Ac-Ai.s-Argio-
teixobactin grew rapidly (~24 h) with a well solution of 0.2 M ammonium tartrate dibasic and
20% polyethylene glycol 3,350. Crystallization conditions were further optimized using a 4x6
matrix Hampton VDX 24-well plate, varying the concentration of ammonium tartrate dibasic
(0.12, 0.16, 0.20, 0.24, 0.28, and 0.32 M) in the columns and the concentration of polyethylene
glycol 3,350 (10, 15, 20, and 25%) in the rows. The 0.24 M ammonium tartrate dibasic and 20%
polyethylene glycol 3,350 condition afforded colorless parallelogram-shaped crystals suitable for

X-ray diffraction.
X-ray crystallographic data collection, data processing, and structure determination

A colorless crystal of approximate dimensions 0.030 x 0.130 x 0.200 mm was mounted in
a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2* program
package was used to determine the unit-cell parameters and for data collection (180 sec/frame

scan time for a sphere of diffraction data). The raw frame data was processed using SAINT> and
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SADABS® to yield the reflection data file. Subsequent calculations were carried out using the
SHELXTL? program. The diffraction symmetry was 2/m and the systematic absences were
consistent with the monoclinic space groups C2, Cm and C2/m. It was later determined that
space group C2 was correct.

The structure was solved by direct methods and refined on F? by full-matrix least-squares
techniques. The analytical scattering factors® for neutral atoms were used throughout the
analysis. Hydrogen atoms were either located from a difference-Fourier map and refined (x,y,z
and Uiso) or were included using a riding model. There were 1.5 molecules of water solvent
present per formula-unit. One water molecule was located on a twofold rotation axis. Water
hydrogen atoms were refined with d(O-H) = 0.85A.

At convergence, wR2 = 0.0878 and Goof = 1.016 for 520 variables refined against 7914
data (0.80A), R1 = 0.0424 for those 6389 data with I > 2.0c(I). The absolute structure was
assigned by refinement of the Flack parameter.®

There was a single residual (1.23¢") present in the final difference-Fourier map. It was not
possible to determine the nature of the residual. The SQUEEZE" routine in the PLATON!"
program package was used to account for the electrons associated with the solvent accessible

voids.

Definitions:

WR2 = [S[W(F2-F2)2] / S[w(F2)] 12

R1 = Z||Fo|-|F¢|| / Z|F|

Goof = S = [Z[w(Fo?-F?)?] / (n-p)]"? where n is the number of reflections and p is the total

number of parameters refined.
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The thermal ellipsoid plot is shown at the 50% probability level.

o1
@ C29 N9

c28 C30
010
N7
A
< ? Cl4 c27 _
09 !lTn N8
\\
c10 o7 . \
03 Sl c25<J C26
c16 A ns
06 \‘\ "3) a v
\;‘_ ™ L , y
cs v P s ci9 (e
N1 ~\\
\) S,
02 c20 C24
\ (& Cc5 >
(> © ﬂ')
4) N %Y
c7 \) =4y AN 08
0 A S c2 c21
&\ s
Yo c3k? g 8
S i S Y23
c1
SR

74



Table S3.1. Crystal data and structure refinement for Ac-A1.s-Argio-teixobactin.

Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

z

Density (calculated)
Absorption coefficient

F(000)

Crystal color

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.500°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [[>2sigma(]) = 6389 data]
R indices (all data, 0.80 A)
Absolute structure parameter
Largest diff. peak and hole

C30 Hs4 C1 Ng Og *1.5(H20)
747.29

88(2) K
0.71073 A
Monoclinic

C2
a=19.376(3) A
b=12.405(2) A
c=16.1353) A
3864.5(12) A3
4

1.284 Mg/m?
0.163 mm™!
1604

colorless

0.200 x 0.130 x 0.030 mm?

1.951 to0 26.393°
24<h<24,-15<k<15,-20</<20
21510

7914 [R(int) = 0.0477]

100.0 %

Semi-empirical from equivalents
0.8620 and 0.8121

Full-matrix least-squares on F2

7914 /4 /520

1.016

R1=0.0424, wR2 =0.0811
R1=0.0625, wR2 =0.0878

0.04(4)

0.193 and -0.348 e.A"3

o= 90°.
B=94.809(3)°.
v = 90°.
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Figure S3.1. 'H and TOCSY NMR spectra of Ac-Ai.s-Argio-teixobactin.
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Ac-Aq.5-Argqg-teixobactin

33

55

547

(@) ‘52 53
56 51,
5O HN
)ZJS\N 28t NQQ#N“' f)/
O 3% \OH N|;|2 4I;iN NH,
s 0
Table S3.2. NMR data of Ac-Ai.s-Argio-teixobactin.
Ac 27 1.88 (3H, s) Residue 9 Ala 42 3.90 (1H, qd, 7.5, 5.6)
28 N/A 42-NH | 8.12 (1H, m)
Residue 6 Ile 29 4.16 (1H, t, 8.2) 43 1.34 (3H,4d, 7.5)
29-NH | 7.94 (1H, d, 8.0) 44 N/A
30 1.75 (1H, m) Residue 10 Arg 45 4.30 (1H, m)
31 0.85 (3H, m) 45-NH | 7.75 (1H, m)
32 1.14 (1H, m) 46 1.78 (1H, m)
1.44 (1H, m) 1.65 (1H, m)
33 0.81 (3H, m) 47 1.52 (1H, m)
34 N/A 1.43 (1H, m)
Residue 7 Ser 35 428 (1H,q,5.7) 47-NH | not observed
35-NH | 8.48 (1H, m) 48 3.14 2H, m)
36 3.72 (1H, m) 48-NH | 7.56 (1H,t,5.4)
3.67 (1H, m) 49 N/A
36-OH | 5.25 (1H, br) 49-NH | not observed
37 N/A 50 N/A
Residue 8 D-Thr | 38 4.59 (1H, m) Residue 11 Ile 51 4.03 (1H,t,9.5)
38-NH | 7.94 (1H, m) 51-NH | 7.68 (1H, m)
39 5.34 (1H, m) 52 1.73 (1H, m)
40 1.12(3H,d, 6.2) 53 0.82 (3H, m)
41 N/A 54 1.43 (1H, m)
1.11 (1H, m)
55 0.83 (3H, m)
56 N/A
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HPLC Traces and Mass Spectra of Teixobactin Homologues

Ac-A1s-Argio-teixobactin : Analytical RP-HPLC and mass spectrum
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Lyses,Argio-teixobactin : Analytical RP-HPLC and mass spectrum
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Argio,Lysu-teixobactin : Analytical RP-HPLC and mass spectrum
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Lyso,Argio-teixobactin : Analytical RP-HPLC and mass spectrum
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Chge,Argi0,Chgyi-teixobactin : Analytical RP-HPLC and mass spectrum
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Ala7,Argio-teixobactin : Analytical RP-HPLC and mass spectrum
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D-Daps,Argio-teixobactin : Analytical RP-HPLC and mass spectrum
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Chapter 4?
X-ray Crystallographic Structure of a Teixobactin Derivative
Reveals Amyloid-Like Assembly

Introduction

The peptide antibiotic teixobactin has been the subject of intensive research efforts for its
promise of addressing antibiotic-resistant Gram-positive pathogens such as MRSA and VRE
(Figure 4.1).1:2345.6789 Teixobactin is thought to bind highly conserved prenyl-pyrophosphate-
saccharide regions of lipid IT and related membrane-bound cell wall precursors.! Here we
describe the first X-ray crystallographic structure of a full-length teixobactin analogue, which
reveals an amphipathic amyloid-like assembly that acts as a multivalent receptor for sulfate
anions. This crystallographic structure suggests a working model for the mechanism of action of
teixobactin in which teixobactin forms fibrils or smaller assemblies that bind to the
pyrophosphate groups of lipid II and related cell wall precursors on the bacterial cell membrane
and thus disrupt cell wall biosynthesis. These findings should be of value both in understanding
the mechanism of action of teixobactin and in rationally designing new antibiotics that target

lipid II and related cell wall precursors.

2 Yang, H.; Wierzbicki, M.; Du Bois, D. R.; Nowick, J. S. J. Am. Chem. Soc. 2018, 140, 14028—
14032.
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Figure 4.1. Teixobactin (1), Lysjo-teixobactin (2), and N-Me-D-Phe';,N-Me-D-

Glng,Lysio-teixobactin (3).

While studying structure-activity relationships among teixobactin analogues, we have
observed that teixobactin and analogues with good antibiotic activity (low MIC values) form
gels, while analogues with poor activity (high MIC values) do not
(Figure 4.2).'° For example, Lysio-teixobactin (2), a homologue of teixobactin in which allo-
enduracididine at position 10 is replaced with lysine (Figure 4.1), has an MIC of 0.5-1.0 pg/mL
against S. aureus and forms a gel in PBS buffer, while D-Alas,Lysio-teixobactin (MIC>16
png/mL) does not.! This observation suggested that supramolecular assembly of teixobactin

analogues could be involved in antibiotic activity.
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Figure 4.2. Solubility assays of (A) Lysio-teixobactin (2) and (B) N-Me-D-

Phe'!i,N-Me-D-Gln4,Lysio-teixobactin (3). 1 pL of 20 mg/mL solution of peptide

in DMSO was added to 20 pL of PBS buffer at pH 7.4 containing a small amount

of crystal violet to aid in visualization.
Results and Discussion

We began exploring the supramolecular assembly of teixobactin and its analogues by
performing thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM)
studies upon Lysjo-teixobactin. When we incubated Lysio-teixobactin with PBS buffer and ThT
and monitored fluorescence, we observed a lag phase of ca. 1 day, followed by an increase in
fluorescence (Figure 4.3A).!! This behavior is a hallmark of amyloidogenic peptides and
proteins. To further explore the assemblies that formed, we performed TEM studies. TEM
images of the aggregated Lysio-teixobactin revealed amyloid-like fibrils (Figure 4.3B). The

fibrils range from individual or paired filaments, ca. 8 nm across, through bundles of filaments

ca. 100-200 nm in diameter.
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Figure 4.3. (A) ThT fluorescence assay of Lysjo-teixobactin (2, four replicate

runs with 120 pM peptide in PBS buffer at pH 7.4). (B) TEM images of the fibrils

formed by Lysio-teixobactin (2).

To further study teixobactin supramolecular assembly, we turned to X-ray
crystallography. Although we had successfully crystallized a truncated teixobactin analogue
containing only residues 611, all efforts to crystallize full-length teixobactin analogues failed,
giving only amorphous aggregates.'> We postulated that N-methylation of the peptide backbone
would attenuate the aggregation and permit the growth of crystals.!*!'* We discovered that N-

methylation of D-Gln4 indeed facilitated crystallization. We also incorporated an iodine atom in

N-Me-D-Phe; to give N-methyl-p-iodo-D-phenylalanine (N-Me-D-Phe'}), to permit determination
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of the X-ray crystallographic phases.!>-!¢ Figure 4.1 illustrates the structure of the resulting
teixobactin analogue 3, a homologue of Lysjo-teixobactin (2). Teixobactin analogue 3 does not
form a gel and exhibits only modest activity against S. aureus (MIC=16 pg/mL).

We began our crystallization efforts by screening teixobactin analogue 3 in 864
conditions in a 96-well plate format using crystallization kits from Hampton Research (PEG/Ion,
Index, and Crystal Screen). Rectangular rod-shaped crystals grew in conditions containing
sulfate salts (Li2SO4, MgSO4, NaxSO4, K2SO4, (NH4)2SO4) and polyethylene glycol (PEG)
3,350. With further optimization in a 24-well plate format, 0.19 M Na,SO4 and 15% PEG 3,350
afforded crystals suitable for X-ray diffraction. Four X-ray diffraction datasets were acquired at
the Stanford Synchrotron Radiation Lightsource (SSRL) at a wavelength of 2.07 A. The datasets
were processed using XDS!” and merged using BLEND!®. The structure was solved by single-
wavelength anomalous diffraction (SAD) phasing using the iodine anomalous signal from N-Me-
D-Phe!;. The structure was refined with REFMACS5' in the P2,2,2; space group at 2.20 A
resolution. The asymmetric unit contains 32 crystallographically independent teixobactin
analogue molecules, as well as 32 sulfate anions and 53 ordered water molecules.

The 32 molecules of teixobactin analogue 3 form a double helix of B-sheet fibrils in
which each fibril is composed of 16 peptide molecules. Each fibril may be thought of as
comprising hydrogen-bonded dimers. Figure 4.4 illustrates the structure of a representative
hydrogen-bonded dimer. In the dimer, two molecules of teixobactin analogue 3 come together to
form an antiparallel B-sheet in which Ile; hydrogen bonds with Iles, N-Me-D-Gln4 pairs with N-
Me-D-Glns, and Iles hydrogen bonds with Ile;. The N-methyl groups of the two N-Me-D-Glng4
residues tilt upward, allowing the B-sheet to form in spite of the disruption of the hydrogen-

bonding pattern. As a result, the B-sheet has four hydrogen bonds instead of six hydrogen bonds.
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A (top view) N-Me-D-Glng

N-Me-D-Phel;

Figure 4.4. X-ray crystallographic structure of a representative dimer of N-Me-D-

Phe'i,N-Me-D-Glng,Lysio-teixobactin (3). (A) Top view. (B) Side view.

In the X-ray crystallographic structure, the dimer acts as a receptor for two sulfate anions.
The amide NH groups of the macrocyclic ring of each monomer subunit act in conjunction with
the N-terminus of the other monomer subunit to bind each sulfate anion. Each sulfate anion
hydrogen bonds to the amide NH groups of D-Thrg, Alag, Lysio, and Ilei; of one monomer
subunit and the methylammonium group of the N-Me-D-Phe'; of the other subunit. The B-sheet
dimer is amphipathic: the side chains of N-Me-D-Phe'i, Iles, D-allo-Iles, and Iles create a
hydrophobic surface, and the side chains of Sers, N-Me-D-Glns, and Ser;, as well as the N-
terminal methylammonium group, create a hydrophilic surface. The macrocyclic rings and the
sulfate anions lie above the hydrophilic surface.

Sixteen molecules of teixobactin analogue 3 assemble to form each B-sheet fibril (Figure

4.5). The molecules assemble in an antiparallel fashion to form an extended amphiphilic -sheet,
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with the hydrophobic residues on one face and hydrophilic residues on the other face. At each [3-
sheet interface between the dimers, Ser; hydrogen bonds with Ser;, D-allo-Iles hydrogen bonds
with D-allo-1les, and Ser; hydrogen bonds with Sers. Each dimer interface is thus shifted by two
residues, which results in an offset fibril structure.?’ (In an aligned fibril structure, N-Me-D-Phe!;
would hydrogen bond with Ser;, Sers would hydrogen bond with D-allo-lles, D-allo-lles would

hydrogen bond with Sers, and Ser; would hydrogen bond with N-Me-D-Phe';.)

A (top view)

Figure 4.5. pB-Sheet fibril formed by N-Me-D-Phe!i,N-Me-D-Glna,Lysio-
teixobactin (3). (A) Top view. (B) Bottom view with hydrophobic side chains
shown as spheres.

Two B-sheet fibrils wrap around each other to form a right-handed double helix of B-

sheets, with the hydrophobic surfaces in the interior and the hydrophilic surfaces on the exterior

(Figure 4.6). Each double helix contains 32 molecules of teixobactin analogue 3 and
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corresponds to the asymmetric unit. The double helices are discrete structures in the crystal
lattice and are not part of extended superstructures. The double helix is ca. 9 nm in length and ca.
4 nm in diameter in the middle, tapering to ca. 2 nm at the two ends. The ends of the double helix
are closed, but the middle has a central cavity of ca. 1 nm in diameter and ca. 5 nm in length that
is surrounded by the hydrophobic side chains of N-Me-D-Phe', Ile,, D-allo-1les, and Iles (Figure

4.7). The ordered water molecules surround the hydrophilic exterior of the double helix.

Figure 4.6. Double helix of B-sheet fibrils formed by N-Me-D-Phe'i,N-Me-D-
Glng,Lysio-teixobactin (3). Sulfate anions are shown as spheres.

Figure 4.7. Double helix of B-sheet fibrils formed by N-Me-D-Phe'i,N-Me-D-
Glng,Lysio-teixobactin (3) illustrating the central cavity (grey surface).

The X-ray crystallographic structure of the discrete double helix of B-sheets formed by

teixobactin analogue 3 suggests a molecular model for the assembly of teixobactin analogue 2
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into the filaments and fibrils observed by TEM (Figure 4.3). In this model, teixobactin analogue
2 assembles to form extended networks of B-sheet fibrils, which wrap around each other to form
extended double helices of B-sheets. Figure 4.8 illustrates this model. Unlike the discrete
structures formed by N-methylated analogue 3, these double helices persist for many hundreds of
nanometers and contain thousands of molecules. These fibrils further wrap or bundle together to
form the fibrils and bundles observed by TEM. Although the N-methyl group in teixobactin
analogue 3 does not prevent -sheet formation, it impedes the formation of extended fibrils by

reducing the stability of the B-sheets that form.

Figure 4.8. Crystallograbhwally based molecular model of an extended double

helix of B-sheet fibrils formed by teixobactin analogue 2 and observed by TEM

(Figure 4.3).

The amphipathic assembly formed by teixobactin analogue 3 explains many of the
previously reported structure-activity relationships in teixobactin analogues.!%?!?? Qur laboratory
has previously reported that substituting residues 1, 2, 5, 6, and 7 with L- or D-alanine
dramatically reduces or eliminates the antibiotic activity of Lysio-teixobactin, while substituting
residues 3 and 4 with L- or D-alanine has much smaller effects upon activity.!® Similar effects
have been observed upon replacement of residues 2—7 with L- or D-lysine.?! The densely packed
hydrophobic surface formed by residues 1, 2, 5, and 6 on the interior of the double helix of j-
sheet fibrils (Figure 4.5B) explains why mutating any of these bulky hydrophobic residues to L-

or D- alanine or lysine disrupts supramolecular assembly and causes loss of activity. The
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hydrophilic side chains of residues 3 and 4 are on the hydrophilic exterior of the double helix of
B-sheet fibrils (Figure 4.5A) and are substantially more tolerant of substitution. The hydrophilic
side chain of residue 7 is also on the hydrophilic exterior of the double helix of B-sheet fibrils,
however the X-ray crystallographic structure does not appear to explain the loss of activity upon
mutating this residue to Ala or Lys. Additional studies have reported that substituting L-amino
acids for D-amino acids at residues 1, 4, and 5 in Argjo-teixobactin also dramatically reduces or
eliminates antibiotic activity.?? Each of these stereochemical mutations disrupts the amphipathic
B-sheet formed by residues 1-7 and causes loss of antibiotic activity.

The X-ray crystallographic structure of teixobactin analogue 3, in conjunction with the
observation that Lysio-teixobactin (2) forms amyloid-like fibrils, suggest that supramolecular
assembly may be involved in the antibiotic activity of teixobactin. We thus propose a working
model for the antibiotic activity of teixobactin in which teixobactin forms dimers, higher-order
assemblies, or fibrils through antiparallel B-sheet interactions.?* The dimers or dimer subunits
create binding sites for the pyrophosphate groups of lipid II and related membrane-bound cell
wall precursors, perhaps adhering strongly to the surface through contacts with multiple lipid
molecules.?* In the binding site, the amide NH groups of residues 8-11 of one teixobactin
molecule in the dimer and the N-terminus of the other teixobactin molecule interact with each
bound pyrophosphate group. In teixobactin (1), the guanidinium group of allo-Endio may make
additional contacts to the pyrophosphate group.

This model shares a number of features in common with those observed for other
antibiotics that target lipid IT and related cell wall precursors, including ramoplanin and nisin.?>2°
Ramoplanin forms fibrils with lipid II analogues, and supramolecular assembly through the

formation of antiparallel B-sheet dimers is thought to be important in its mechanism of
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action.?”28:293031 Nigin binds the pyrophosphate group of lipid IT by means of a pyrophosphate

cage formed by amide NH groups in and adjacent to the 16-membered lanthionine A ring.3?3?

Conclusion

The unique pattern of hydrophobicity and stereochemistry of residues 1-7 of teixobactin
makes fibril formation possible. By having evolved a D-L-L-D-D-L-L pattern of stereochemistry
with a hydrophobic-hydrophobic-hydrophillic-hydrophilic-hydrophobic-hydrophobic-
hydrophilic pattern of side chains, Eleftheria terrae has achieved an amyloidogenic non-
ribosomal peptide that can assemble to form amphiphilic B-sheets and amyloid-like fibrils that
can bind oxyanions. On the basis of our crystal structure, we have proposed a working model for
the mechanism of action of teixobactin involving the formation of B-sheet dimers or higher-order
supramolecular assemblies. We further recognize that the crystallographic observation of

34.35 and its potential involvement in antibiotic activity®¢-3” does not

supramolecular assembly
assure its biological relevance.’33° We envision the model put forth here to be worthy of further

study and anticipate reporting these studies in due course.
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Supplemental Figures and Table
Table S4.1. MIC values of teixobactin analogues in pg/mL.

Glng,Lysio-teixobactin (3)*

Staphylococcus | Staphylococcus Bacillus Escherichia
aureus epidermidis subtilis coli
ATCC 29213 ATCC 14990 ATCC 6051 ATCC 10798
Lysio-teixobactin (2)* 1 0.5 1 >32
1
N-Me-D-Phe';,N-Me-D- 16 16 ] =32

2 Trifluoroacetic acid (TFA) salts.

Figure S4.1. Overlay of the 32 crystallographically independent molecules of N-
Me-D-Phe!i,N-Me-D-Gln4,Lysio-teixobactin (3).

Figure S4.2. Wall-eye stereo view of the X-ray crystallographic structure of a
representative dimer of N-Me-D-Phe!i, N-Me-D-Glng,Lysio-teixobactin (3). (A) Top
view. (B) Side view.
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Figure S4.3. Wall-eye stereo view of the double helix of B-sheet fibrils formed by
N-Me-D-Phe'i,N-Me-D-Glns,Lysio-teixobactin (3). Sulfate anions are shown as
spheres.
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Figure S4.4. Ramachandran plot illustrating the ¢ and ¢ angles of residues 2—10
of the 32 independent molecules of N-Me-D-Phe!i,N-Me-D-Glna,Lysio-teixobactin
(3). The dark green regions correspond to preferred dihedral angles for L-peptides
and proteins; the yellow-green regions correspond to allowed regions for L-
peptides and proteins; the pale green and yellow regions correspond to preferred
and allowed dihedral angles for D-peptides and proteins.
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Materials and Methods

General information

Methylene chloride (CH2Clz) was passed through alumina under argon prior to use.
Amine-free N,N-dimethylformamide (DMF) was purchased from Alfa Aesar. Fmoc-D-allo-1le-
OH was purchased from Santa Cruz Biotechnology. Fmoc-N-Me-D-GIn(Trt)-OH was purchased
from Alabiochem Tech. Other protected amino acids were purchased from CHEM-IMPEX.
Preparative reverse-phase HPLC was performed on a Rainin Dynamax instrument equipped with
an Agilent Zorbax SB-C18 column. Analytical reverse-phase HPLC was performed on an
Agilent 1260 Infinity II instrument equipped with a Phenomonex Aeris PEPTIDE 2.6p XB-C18
column. HPLC grade acetonitrile (MeCN) and deionized water (18 MCQ) containing 0.1%
trifluoroacetic acid (TFA) were used as solvents for both preparative and analytical reverse-
phase HPLC. Deionized water (18 MQ) was obtained from a Barnstead NANOpure Diamond
water purification system. Teixobactin analogues 2 and 3 were prepared and studied as the

trifluoroacetate salts.

Synthesis of Lysio-teixobactin (2) and N-Me-D-Phe';,N-Me-D-Glng,Lys1o-teixobactin (3)
Lysio-teixobactin  (2) and N-Me-D-Phe!,N-Me-D-Gln4,Lysio-teixobactin  (3) were
synthesized as the trifluoroacetate salts using procedures we have previously reported.! Dry
DMF was used instead of a mixture of MeCN/THF/CHxCl, for the cyclization step. In the
synthesis of N-Me-D-Phe!;,N-Me-D-Glna,Lysio-teixobactin (3), Boc-N-Me-D-Phe!;-OH was used
instead of Boc-N-Me-D-Phe;-OH. Coupling of Fmoc-Ser;(tBu)-OH after N-Me-D-Glns was
performed using 4 equiv Fmoc-Ser3(tBu)-OH with coupling reagent HATU (4 equiv), HOAt (4

equiv) in 20% (v/v) collidine in dry DMF (5 mL) for 12 h.
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Minimum inhibitory concentration (MIC) assay of teixobactin analogues
MIC assays of teixobactin analogues 2 and 3 were performed using procedures we have

previously reported.!

Solubility assay
Solubility assays of teixobactin analogues 2 and 3 were performed using procedures we

have previously reported.?

Thioflavin T (ThT) fluorescence assay

Preparation of buffered ThT solution. The ThT solution was freshly prepared before use.
A solution of 20 uM ThT was prepared in a 1x PBS buffer at pH 7.4 (5 mL). The solution was
filtered through a 0.2-micron syringe filter. The concentration of ThT in the solution was
determined using a UV-vis spectrophotometer (¢ = 36000 M-1 cm-1 at 412 nm) and adjusted to
20 uM.

ThT fluorescence assay. ThT fluorescence assays were conducted in 96-well plates (96
Well Optical Bottom Black, Polymer base, NUNC, Rochester, NY, USA). A 200-uL aliquot of
ThT solution in PBS (above) was transferred to each of four wells of 96-well plate. A 1.73-uL
aliquot of a 20 mg/mL solution of Lysio-teixobactin in DMSO was added to each well to give
119 uM Lysio-teixobactin and 20 uM ThT in PBS. The 96-well plate was sealed with adhesive
plate sealers. The plate was immediately inserted into a Varioskan LUX multimode microplate
reader (Thermo Fisher Scientific) and incubated at 37°C while shaking (1200 rpm, high shaking
force) and monitoring fluorescence (444 nm excitation, 480 nm emission, 12 nm slit width)

every 20 min over 5 days using the bottom-read mode.
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Transmission electron microscopy (TEM) imaging

Sample preparation. Lysio-teixobactin in DMSO (10 mg/mL concentration) was diluted
to 100 uM with PBS buffer at pH 7.4. The solution was incubated at 37 °C over 72 h with
shaking. A TEM grid (Formvar/carbon film on 400 mesh copper) was treated by glow discharge
using a Leica EM ACE200 vacuum coater (Leica Microsystems, Buffalo Grove, IL, USA). A 5-
pL aliquot of the Lysio-teixobactin solution was applied to the TEM grid. After 15 sec, the
solution was wicked away with filter paper and the grid was immediately washed with two 200-
uL aliquots of distilled H>O. The distilled H2O was wicked away with filter paper and the grid
was immediately stained with 2% uranyl acetate in H,O (5 pL) for 15 sec. The remaining
solution was wicked away from the grid with filter paper.

TEM Imaging. TEM images of Lysio-teixobactin were taken with a JEM-2100F
transmission electron microscope (JEOL, Peabody, MA, USA) at 200 kV with an electron dose
of approximately 15 e/A2. The microscope was equipped with Gatan K2 Summit direct electron
detector (Gatan, Pleasanton, CA, USA) at 15,000x or 25,000x magnification. The sample was
cooled at liquid nitrogen temperature through the cryostage. Contrast and brightness of the

images were adjusted as appropriate.
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Crystallization of N-Me-D-Phe';,N-Me-D-Glng4,Lysio-teixobactin (3)

N-Me-D-Phe!;,N-Me-D-Glng,Lysio-teixobactin (3) was dissolved in 0.2 micron syringe
filtered NANOpure H>O (10 mg/mL). Crystallization conditions were screened by screening in a
96-well plate format using three crystallization kits from Hampton Research (PEG/Ion, Index,
and Crystal Screen). Each well was loaded with 100 pL of a different mother liquor solution
from the kits. The hanging drops were set up using a TTP Labtech Mosquito® liquid handling
instrument. Hanging drops were made by combining an appropriate volume of teixobactin
analogue 3 with an appropriate volume of well solution to create three 150-nL hanging drops
with 1:1, 1:2, and 2:1 peptide:well solution. Rectangular rod-shaped crystals grew in all
conditions that contained sulfate salts (Li2SOs4, MgSOs4, NaSOs4, K>SOs4, (NH4)2SO04) and
polyethylene glycol (PEG) 3,350.

Crystal growth was optimized using conditions containing Na;SOj4. In the optimization,
the Na>SO4 and PEG 3,350 concentrations were varied across the 4x6 matrix of a Hampton VDX
24-well plate to afford crystals suitable for X-ray diffraction. The hanging drops for these
optimizations were prepared on glass slides by combining 1 or 2 pL of teixobactin solution with
1 or 2 puL of well solution in ratios of 1:1, 2:1, and 1:2. Crystals that formed were checked for
diffraction using a Rigaku Micromax-007 HF diffractometer with a Cu anode at 1.54 A. Through

these optimization studies the following conditions were selected: 0.19 M Na;SO4 and 15% PEG

3,350." No cryoprotectant was used other than the PEG 3,350 already present in the drop.

" These conditions afforded multiple crystals that diffracted to 3 or 4 A, but only one crystal that
diffracted to 2 A. All of the crystals had comparable unit cell dimensions, but the crystal for
which the dataset (below) was collected gave the best diffraction data. After collecting data
needed to obtain anomalous signal at 6 keV, the crystal had degraded to a point where it was no
longer possible to collect adequate data at higher energy (ca. 12 keV).
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X-ray crystallographic data collection, data processing, and structure determination

Data collection was performed with the Blu-Ice software3 at Stanford Synchrotron
Radiation Lightsource using BL 9-2 beamline at a wavelength of 2.06633 A. The rotation
method was employed and four sets of 360 images each were collected at a 0.5° rotation interval
(a total of two complete rotations). The four sets were processed separately with XDS#, and the
resulting datasets were merged with BLENDS. The structure was solved with SAD phasing
implemented in the Hybrid Substructure Search (HySS)® module of the Phenix suite’. lodine
atoms of the N-Me-D-Phe!; residues were used as sources of the anomalous signal. The initial
electron density maps were generated using the substructure coordinates as initial positions in
Autosol8. The structure was then refined with REFMACS5° under CCP41° using Coot!! for model
building. All B-factors were refined isotropically and riding hydrogen atoms coordinates were
generated geometrically. The bond length, angles, and torsions restraints for unnatural amino

acids (N-Me-D-Phe!, N-Me-D-Gln, and D-allo-Ile) were generated with AceDRG2 under CCP4.
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Table S4.2. Crystallographic properties, crystallization conditions, data collection, and model

refinement statistics for teixobactin analogue 3

Teixobactin analogue 3

PDB ID
space group

a, b, c(A)
o, B, v ()

peptides per asymmetric unit

crystallization conditions

Data collection

6E00

P21212,

47.5,69.4,1154

90, 90, 90

32

0.19 M Na>SOg4, 15% PEG 3,350

wavelength (A)
resolution (A)

total reflections

2.06633
39.21 - 2.20 (2.279 - 2.200)
479611 (24317)

unique reflections 17797 (1370)
Multiplicity 21.20 (15.1)
completeness (%) 93.36 (67.87)
mean l/c 8.8 (1.48)
Rmerge 0.339 (1.314)
Rmeasure 0.348 (1.36)
CCin 0.991 (0.467)
CC* 0.998 (0.798)
Refinement
Ryork 0.211 (0.216)
Rfice 0.246 (0.294)
number of
non-hydrogen atoms per ASU 3037
RMSponds 0.011
RMSangies 1.880
Ramachandran

favored (%) 100

outliers (%) 0
clashscore 6
average B-factor 20.2
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Synthesis of Boc-N-Me-D-Phe'-OH from D-phenylalanine (D-Phe-OH)

Boc-N-Me-D-Phe!-OH was synthesized from D-Phe-OH in the following steps: first to
Boc-D-Phe!-OH following Richardson et al. J. Org. Chem. 2018, 83, 4525-4536 and then to Boc-
N-Me-D-Phe!-OH following Malkov et al. Tetrahedron 2006, 62, 264-284.1314 The yields were
not optimized as the products were synthesized and used from the first batch of synthesis.

D-Phe!-OH."® D-Phenylalanine (3.0 g, 18.2 mmol), NalO3 (0.82 g, 7.26 mmol), and
(1.84 g, 7.26 mmol) were dissolved in a mixture of 18.2 mL glacial acetic acid and 2.18 mL
concentrated H2SO4. The mixture was heated to 70 °C and stirred under nitrogen for 24 h. NalO4
(116.6 mg, 0.544 mmol) was added and the mixture was heated to 70 °C with stirring under
nitrogen for 24 h. The mixture was concentrated by rotary evaporator to ca. 15 mL. The residue
was dissolved with H2O (50 mL) and transferred to a separatory funnel. The mixture was washed
with Et;0 (2 x 50 mL) and then with CH>Cl, (50 mL). The aqueous phase was transferred to an
Erlenmeyer flask and cooled to 0 °C on an ice bath. The pH was adjusted to 7.0 by slowly adding
5 M aq KOH with stirring (ca. 25 mL of 5 M aq KOH was used). A white solid precipitated and
was isolated by filtration with a Biichner funnel. The solid was transferred to an Erlenmeyer
flask and dissolved in 50% EtOH solution (20 mL). The mixture was heated to 85 °C in an oil
bath. 20-mL aliquots of boiling 50% EtOH were added repeatedly until a clear yellow solution
was obtained. (ca. 125 mL of boiling 50% EtOH was used). The hot solution was filtered
through glass wool and was left for 12 h at room temperature to achieve crystallization. The
resulting crystals were collected by Biichner funnel filtration and was washed with 50 mL of ice
cold 50% EtOH solution. The solid was placed under vacuum (< 100 mTorr) to remove any

residual solvents. The yield of D-Phe!-OH was 1.98 g (38% yield).
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Boc-D-Phe!-OH."3 D-Phe'-OH (2.0 g, 6.9 mmol) and Boc,O (2.4g, 11.0 mmol) were
dissolved in a mixture of MeOH (3.5 mL), H,O (3.5 mL), and Et;N (2.4 mL). The mixture was
heated to 55 °C under nitrogen with stirring for 16 h. The mixture was concentrated by rotary
evaporator and the resulting residue was dried under vacuum (< 100 mTorr). The residue was
dissolved in EtOAc (30 mL) and cooled to 0 °C on an ice bath. The mixture was added to a
separatory funnel containing 250 mM aq HCl (50 mL) and shaken vigorously for 15 s. The
organic phase was collected, and the pH of the aqueous phase was adjusted to pH 1 with 1 M aq
HCI. The aqueous phase was extracted with EtOAc (2 x 20 mL) and then organic phases were
combined, washed with 250 mM aq HCI in saturated aqueous NaCl solution (30 mL), dried with
MgSOs, then filtered through Celite. The filtrate was evaporated by rotary evaporator and the
residue was dried under vacuum (< 100 mTorr) to give a white foam. The product was
recrystallized by suspending in 30 mL of hot hexane with stirring and adding hot Et2O in 2-mL
aliquots until a clear yellow solution was obtained (ca. 60 mL Et;O added). The solution was
transferred to a beaker and boiled until the volume read ca. 30 mL. The product was crystallized
by cooling the solution on an ice bath and isolated by filtration using a Biichner funnel. The
crystals were washed with cold hexane. The yield of Boc-D-Phe!-OH was 1.71 g (65% yield).

Boc-N-Me-D-Phe!-OH.'* Boc-D-Phe!-OH (1.71 g, 4.4 mmol) and Mel (2.74 mL, 44
mmol) were dissolved in THF (20 mL) at 0 °C and then NaH (60% dispersion in mineral oil,
1.76 g in oil, 44 mmol) was slowly added. The mixture was stirred at room temperature for 24 h
under nitrogen. The mixture was quenched with H,O (15 mL) and EtOAc (10 mL) was added.
The solvents were evaporated by rotary evaporator and the residue was dried under vacuum (<
100 mTorr). The residue was dissolved in H>2O (300 mL) and transferred to a separatory funnel.

The solution was washed with EtOAc (150 mL) and the aqueous solution was collected and
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acidified to pH 3.5 with 5% citric acid. The suspension was extracted with EtOAc (200 mL) and
the organic phase was washed with saturated aq NaCl (50 mL), H>O (50 mL), and then dried
with MgSO4, and filtered through a Biichner funnel filtration. The resulting solution was
evaporated by rotary evaporator and the residue was dried placed under vacuum (< 100 mTorr)
to yield 0.78 g of Boc-N-Me-D-Phe!-OH (44% yield). MS (negative ion mode) calcd for
CisH19INOs~ [M - H]” m/z 404.04, found 404.88. Boc-N-Me-D-Phe!-OH was used for solid-

phase peptide synthesis without further purification.
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"H Spectrum of Boc-N-Me-D-Phe'-OH

Figure S4.7.
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HPLC trace and mass spectrum of N-Me-D-Phe!;,N-Me-D-Glns,Lysio-teixobactin (3)
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Chapter 5
Design, Synthesis, and Study of Lactam and Ring-Expanded
Analogues of Teixobactin

Introduction

Teixobactin is a new class of peptide antibiotic against Gram-positive bacteria that
inhibits cell-wall formation, interrupting both the synthesis of peptidoglycan and the synthesis of
teichoic acid, and ultimately causing bacterial cell lysis.!? Teixobactin is thought to bind the
highly conserved prenyl-pyrophosphate-saccharide regions of lipid II and related membrane-
bound cell-wall precursors, and thus precluding the development of antibiotic resistance.?
Furthermore, these targets are extracellular and represent the bottleneck of peptidoglycan
synthesis. Teixobactin exhibits remarkable antibiotic activity against all important Gram-positive
pathogens including methicillin-resistant Staphylococcus aureus (MRSA), drug-resistant
Streptococcus pneumonia, and vancomycin-resistant Enterococci (VRE).

/”911

teixobactin

e

NH HN

N-Me-D-Phe; lle; Serz D-Glny D-allo-lles lleg Ser; D-Thrg Alag

Argqo-teixobactin (1a)

ENEAC AR Lo

Teixobactin is a non-ribosomal undecapeptide containing a linear tail (residues 1-7) and
a macrocyclic ring (residues 8—11). It contains four D-amino acids at positions 1, 4, 5, and 8,
namely N-Me-D-Phei, D-Glns, D-allo-1Iles, and D-Thrs, and seven L-amino acids at positions 2, 3,
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6, 7,9, 10, and 11. The tail represents a unique pattern of D-L-L-D-D-L-L of stereochemistry with
a  hydrophobic—hydrophobic—hydrophilic—hydrophilic—hydrophobic—hydrophobic—hydrophilic
pattern of side chains. The macrocyclic ring is composed of D-Thrs—Alas—allo-Endie—Iler: in
which the C-terminal Ile;; and the hydroxy group of D-Thrs form an ester bond to close the 13-
membered ring. Residue 10 is the rare amino acid allo-enduracididine (al/lo-Endio), a cyclic
arginine analogue.*

We recently reported the X-ray crystallographic structure of a teixobactin analogue.® The
analogue forms hydrogen-bonded antiparallel B-sheet dimers that bind sulfate anions (Figure
5.1A). In the X-ray crystallographic structure, the three NH groups of the macrolactone ring
form three hydrogen bonds to each sulfate anion (Figure 5.1B). The lactone ring oxygen points
toward the bound anion but is unable to form a hydrogen bond. The N-terminal ammonium
group of the second monomer subunit of the dimer also hydrogen bonds to the sulfate anion. The
dimers further assemble to form a double-helix of B-sheet fibrils. The binding of the sulfate
anions suggests how teixobactin might bind to the anionic pyrophosphate group of lipid II and

related cell-wall precursors, and thus inhibit cell wall biosynthesis.>
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Figure 5.1. Proposed working model for mechanism of action of teixobactin (A).
Coordination of an anion by the teixobactin macrolactone ring (B). Hypothesized
coordination of an anion by an azateixobactin macrolactam ring (C).

The current paper begins by exploring the hypothesis that replacement of the lactone ring
oxygen with an NH group will allow the resulting macrolactam ring to better bind anions by
forming an additional hydrogen bond to the bound anion (Figure 5.1C).” We report a synthesis
of macrolactam derivatives of teixobactin that contain D-aza-threonine at position 8 and find that
a lactam derivative of teixobactin is 4-8 times more active as the corresponding lactone. We then
explore whether the 13-membered macrocyclic ring composed of residues 8—11 is optimal for
binding pyrophosphate group by expanding the ring with f-homo amino acids and find that
teixobactin pharmacophore tolerates ring expansion of 14-, 15-, and 16-membered rings with
retention of activity. Through these studies we further elucidate the role of macrocyclic ring in

the teixobactin pharmacophore.

Results and Discussion
Solid-Phase Syntheses of Lactam Teixobactin Analogues Containing Aza-Threonine
at Position 8. We had previously reported a synthetic route to teixobactin homologues through

solid-phase peptide synthesis (SPPS) on 2-chlorotrityl resin followed by solution-phase
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macrolactamization.® In this route, D-Thrg is introduced without a protecting group at the
hydroxy position. Because D-aza-threonine is not commercially available in a suitably protected
form, we envisioned adapting this route by incorporating D-al/lo-Thr at position 8 and converting
it to D-aza-threonine on the solid support by an SN2 displacement reaction.

We tested this approach using the tripeptide Boc-Ala-D-allo-Thr-GIn(Trt) on 2-
chlorotrityl resin and found that conversion of the D-allo-Thr residue to the mesylate and then to
the azide proceeded with elimination to form the corresponding dehydropeptide (Scheme 5.1).
We hypothesized that the elimination reaction could be avoided by introducing the azide group
before elongating the peptide chain (Scheme 5.1). Because Fmoc protecting group is labile to
azide, we first converted the Fmoc group on D-allo-Thr to an Alloc protecting group on resin to
give Alloc-D-allo-Thr-GIn(Trt) dipeptide on resin. This dipeptide could be converted to the
mesylate and then to Alloc-D-azido-Thr-GIn(Trt) on resin by treating with triethylamine and
mesyl chloride in dichloromethane, followed sodium azide in a mixture of 15-crown-5 and DMF.
Alloc deprotection with Pd(Phs)4 and phenylsilane liberated the a-amino group of D-azido-
threonine for subsequent SPPS. This sequence of steps proceeded cleanly, and afforded the
tripeptide Boc-Ala-D-azido-Thr-GIn(Trt)-OH in greater than 90% conversion by HPLC analysis.

\

H 9 H P tj\'rH i
Boc/N\g)LN“ ”%00 1. MsCI, DIPEA/CH,Cl, 4 °C BWN%Q Nsdj\oo

0 l 2. NaNg/DMF, 15-crown-5, 55 °C : o l

oH ., N
o) Lo 0 [r(H o)
MH‘\'@(N%OO 1. MsCl, DIPEA/CH,Cly, 4 °C NLH N\_;)J\O-O

O ’l 2. NaNg/DMF, 15-crown-5, 55 °C o 'l

Tt Tlrt
Scheme 5.1. Model system to study the D-aza-threonine synthesis on solid-support.
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Reduction of the azide group of the resin bound Boc-Ala-D-azido-Thr-GIn(Trt) to an
amino group proved challenging. Treatment with stannous chloride (SnCl,, PhSH, DIPEA)’
resulted approximately 60% conversion after four treatments of reducing cocktail; Staudinger
reduction (PhsP and H,O/THF) !° stalled at the imino-phosphorane intermediate, and no
hydrolysis to the amine was observed even at high temperatures (50 °C) in various mixtures of
solvents. Saneyoshi et al. reported a derivative of triphenylphosphine, triphenylphosphine-2-
carboxamide (PhoP-0-CsH4CONHy), in which a phenyl ring of triphenylphosphine contains an
ortho-carboxamide group to facilitate the hydrolysis of the imino-phosphorane intermediate by
providing anchimeric assistance.!' When we used triphenylphosphine-2-carboxamide in our
model system, we observed good conversion from the azido group to the amino group.

We applied the conditions that we developed to the synthesis of D-aza-Thrs,Argio-
teixobactin (2a). The synthesis began by attaching Fmoc-Ala-OH to 2-chlorotrityl resin. Fmoc-
D-allo-Thr-OH was then introduced by standard Fmoc-based SPPS using HCTU as the coupling
reagent. The Fmoc group was removed by treatment with 20% piperidine in DMF and the N-
terminus was protected with allyl chloroformate. The hydroxy group on D-allo-Thrg was then
converted to a mesyl group with methanesulfonyl chloride and to an azide group with sodium
azide. The Alloc protecting group was removed with tetrakis(triphenylphosphine)palladium(0)
and phenylsilane, and residues 7 through 1 were introduced by SPPS. The azide group on D-
azido-Thrg was reduced to the corresponding amine with triphenylphosphine-2-carboxamide and
H>O. Residues 11 and 10 were then introduced by SPPS. Fmoc deprotection followed by
cleavage from the resin with 20% hexafluoroisopropanol (HFIP) in CH)Cl, afforded the
protected acyclic precursor. Macrolactamization with HBTU and HOBt, followed by global

deprotection with trifluoroacetic acid (TFA), RP-HPLC purification, and lyophilization, afforded
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13.5 mg of D-aza-Thrg,Argio-teixobactin (2a) with >95% purity, from a 0.15 mmol scale

synthesis.

CI—O (2-chlorotrityl chloride resin)
l Fmoc-based SPPS
(I')H
H2N—D-allo-Thr8-AIag-O-O
Alloc protectionl Alloc-Cl, DIPEA/CH,CI,
?H
AIIoc—D-alIo-Thrg-AIag-O-O

Mesylationl MsCI, DIPEA/CH,Cl,, 4 °C
M
(‘), S
AIIoc—D-aIIo-Thrg-AIag-O-O
Azide sNzl NaNy/15-crown-5, DMF, 55 °C
N3
|
AIIoc—D-azido—ThrB-AIag—Oo
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NH,
|
Boc—N—Me-D-Phe1-IIe2-|Ser3-D-|GIn4-D-aIIo-IIe5-lIee-|Ser7-D-aza-Thrg-AIag-OO
tBu Trt tBu
l Fmoc-based SPPS Pbf

|
H ITI—IIeM—Argm—NHZ
Boc—N-Me-D-Phe; —IIez—ISer3—D—IGIn4—D—aIIo—IIe5—lle6—|Ser7—D—aza—ThrB—AIag—OO
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Cleavage | (1) HFIP/CH,CI,
Cyclization | (2) HBTU, HOBt, DIPEA/DMF
Deprotection | (3) TFA/H,O/TIPS

D-aza-Thrg,Argqo-teixobactin (2a)

Scheme 5.2. Synthesis of aza-D-Thrg,Argio-teixobactin (2a).

This synthetic route proved versatile and also allowed us to prepare the three
diastereomeric analogues, aza-D-allo-Thrs,Argio-teixobactin (2b), aza-L-Thrg,Argio-teixobactin
(2¢), and aza-L-allo-Thrs,Argio-teixobactin (2d). Replacing D-allo-threonine with D-threonine

afforded aza-D-allo-threonine; replacing D-allo-threonine with L-allo-threonine afforded aza-L-
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threonine, and replacing D-allo-threonine with L-threonine afforded aza-L-allo-threonine. The
mesylation, azide SN2 displacement, and azide reduction reactions of the diastereomers all
proceeded with similar conversion efficiencies and permitted the synthesis of teixobactin
analogues containing all stereoisomers of aza-threonines, 2a—2d (Figure 5.2). The purification of
teixobactin analogues containing the L-aza-threonine stercoisomers (2¢ and 2d) proved
especially difficult, however, as the crude peptides after global deprotection formed gels in
acetonitrile-water mixtures, thus limiting the amount of peptide that could be injected in

preparative HPLC.

D-aza-Thrg,Argqo- telxobactln (2a)
NH2

(b ”V& o HJ;HH
D-allo-aza-Thrg,Arg4o- telxobactm (2b)
iﬁMWiﬁwiw ‘L
NH HN Ha

L-aza-Thrg, Argm-telxobactln (2c)
NH2

ﬁﬁwwgﬁwaw :

L-allo-aza-Thrg,Arg4o- telxobactln (2d)

%ﬁ(utmr ?\xfﬁ¢ §NH p %NH

?\ =5 ?\
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Figure 5.2. D-aza-Thrs,Argio-teixobactin (2a), aza-D-allo-Thrs,Argio-teixobactin

(2b), aza-L-Thrg,Argio-teixobactin (2¢), and aza-L-allo-Thrs,Argio-teixobactin

(2d).

Minimum Inhibitory Concentration (MIC) Assay of Lactam Teixobactin Analogues.

We assessed the antibiotic activity of D-aza-Thrs,Argio-teixobactin (2a) and related stereoisomer
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analogues (2b—2d) in minimum inhibitory concentration (MIC) assays against three Gram-
positive bacteria (Table 5.1). We used the teixobactin and vancomycin as a positive control and
the Gram-negative bacterium E. coli as a negative control. The MIC values of D-aza-Thrs,Argio-
teixobactin (2a) is 0.5-1 pg/mL across three Gram-positive bacteria, which is 2 times more
potent than Argjo-teixobactin (1a).!>!13¢ Teixobactin analogues containing other stereoisomers of

aza-threonine (2b-2d) were inactive (MIC >32 pg/mL).

Table 5.1. MIC values of teixobactin and teixobactin analogues (pg/mL).

Staphylococcus Staphylococcus Bacillus Escherichia
aureus epidermidis subtilis coli

ATCC 29213 ATCC 14990 ATCC 6051 ATCC 10798
Argo-teixobactin (1a) 2 1 2 >32
aza-D-Thrg,Argjo-teixobactin (2a) 1 0.5 1 >32
aza-D-allo-Thry,Argjo-teixobactin (2b) >32 >32 >32
aza-L-Thrg,Argjo-teixobactin (2¢) >32 >32 >32
aza-L-allo-Thrg,Argjo-teixobactin (2d) >32 >32 >32
teixobactin 0.25 0.25 0.25-0.5 >32
vancomycin 0.25 0.25 0.5 >32

Effect of Polysorbate 80 on Antibiotic Activity. In the original report of teixobactin, the
authors describe the use of the mild detergent polysorbate 80 at 0.002% concentration in their
MIC assays.! Having always performed our MIC assays without polysorbate 80, we decided to
investigate the effect of polysorbate 80 on the MIC values of azateixobactin analogue 2a. When
we performed the MIC assay with broth containing 0.002% polysorbate 80, the MIC values
decreased from 0.5-1 pg/mL to 0.008-0.03 pg/mL, a dramatic 16—128-fold increase in activity
(Table 5.2). We also observe a similar decrease in the MIC of teixobactin, from 0.25-0.5 pg/mL
to < 0.008 pg/mL, the lowest concentration tested. In contrast, we observe only a modest two-

fold decrease in the MIC of vancomycin.!* We observe a similar but slightly smaller increase in
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the activity of teixobactin analogue la with 0.002% polysorbate 80. Thus, azateixobactin

analogue 2a proved 4-8 times more active than teixobactin analogue la in the presence of

0.002% polysorbate 80.

Table 5.2. MIC values of teixobactin and teixobactin analogues (pug/mL) with

0.002% polysorbate 80.
Staphylococcus Staphylococcus Bacillus Escherichia
aureus epidermidis subtilis coli
ATCC 29213 ATCC 14990 ATCC 6051 ATCC 10798
Argo-teixobactin (1a) 0.06 0.13 0.06 >8
aza-D-Thrg,Argjo-teixobactin (2a) 0.008 0.03 0.016 >8
teixobactin <0.008 <0.008 <0.008 >8
vancomycin 0.125 0.25 0.25 >8

The authors of the original teixobactin report suggest that polysorbate 80 prevents the
binding of the antibiotic to plastic surfaces.!> We favor a different explanation, because of the
modest effect of polysorbate 80 on the activity of vancomycin. Having observed that teixobactin
and its analogues form gels and amyloid-like fibrils upon addition to buffer or culture media,'®>
we believe that inclusion of polysorbate 80 in the broth helps solubilize the gels or inhibit fibril
formation, and thus increases the bioavailability and activity of teixobactin and its analogues.

X-ray Crystallographic Structure of N-Me-D-GIng,D-aza-Thrs,Argie-teixobactin
(3a). To assess the effect of the additional amide NH group on the structure of azateixobactin
analogues, we turned to X-ray crystallography. We had previously found that N-methylation of
the peptide backbone of D-Glns facilitated crystallization of a teixobactin analogue by
attenuating its propensity to form a gel.’> In the current study we utilized this finding and

synthesized N-Me-D-Glns,D-aza-Thrs,Argio-teixobactin (3a).!”
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We screened N-Me-D-Glng,D-aza-Thrg,Argio-teixobactin (3a) for crystallization in 864
conditions in a 96-well plate format using crystallization kits from Hampton Research (PEG/Ion,
Index, and Crystal Screen). Hexagonal prism-shaped crystals grew in conditions containing
polyethylene glycol (PEG) and chloride salts. With further optimization in a 24-well plate
format, 0.16 M CaCly, 0.1 M HEPES Na pH 7.00, 24% PEG 400 afforded crystals suitable for
X-ray diffraction. Three X-ray diffraction data sets were acquired at the Advanced Light Source
(ALS) at a wavelength of 1.77 A (7000 eV). The data sets were processed using XDS'® and
merged using BLEND.! The structure was solved by single-wavelength anomalous diffraction
(SAD) phasing using the chloride anomalous signal. The structure was refined with PHENIX?® in
the P3,21 space group at 2.10 A resolution. The asymmetric unit contains one N-Me-D-Gln,D-
aza-Thrg,Argio-teixobactin (3a) molecule, as well as one chloride anion and four ordered water
molecules. We refined the N-methyl terminus (N-Me-D-Phe1) as the free base, rather than as the
methyl ammonium ion, to reflect that only a single chloride anion was identified in the
asymmetric unit, thus balancing the positive charge of the arginine side chain. We found no
electron density or voids in the lattice that could account for an additional anion.

The X-ray crystallographic structure reveals an amphipathic hydrogen-bonded
antiparallel B-sheet dimer that bind chloride anions (Figure 5.3). Residues 1-7 form the
dimerization interface and create an amphipathic antiparallel B-sheet containing both D and L

residues. In the binding site of chloride anion, the macrolactam amide NH groups of residues 8,
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10, and 11, as well as, the extra amide NH group of the lactam ring hydrogen bond to the

chloride anion. The amide NH group of Alay hydrogen bonds to the hydroxy group of Ser7.?!

D N-Me- D-allo- O, )—[(
D-Phe;; O Ser; Me O lles H O Serr Gy NH NH_Arg1o
\N}YNJLN/HTN\HLN/YN\AN&(N L
H S H H : H NH  NH™So
O lle; © ONMe- T O leg o
: ? D-Glny : H D-aza-
D-aza H H H H Thrg O lley

P NMe
O 4 lleg O /DGO [ ley

D o
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OgNH - NH NN N)J\/Nj(kN N A AN
NY TN TN Y
Arg7o NH - NH - D-allo- O Me Ser; O N-Me-
H 0 lles D-Phe,

O Alag

Figure 5.3. X-ray crystallographic structure of N-Me-D-Gln4,D-aza-Thrg,Argio-

teixobactin (3a) binding chloride anion. (A) Monomer. (B and C) Dimer side and

top views with two water molecules shown as non-bonded spheres. (D)

Alignment of the dimer assembly. Four water molecules are omitted for visual

clarity.

In the antiparallel B-sheet assembly, the sidechains of hydrophobic residues N-Me-D-
Phei, Ile;, D-allo-lles, lles, and Ileir as well as the B-methyl group of D-aza-Thrg make
hydrophobic face, and the sidechains of hydrophilic residues Ser3, N-Me-D-Glnas, Ser7, and Argio,
as well as the N-methylamine terminus make hydrophilic face. The N-methyl group of N-Me-D-

Glns points outward from the dimer, thus blocking further assembly. The antiparallel B-sheet
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dimer brings the N-methylamine terminus of each monomer subunit into proximity of the
macrolactam ring of the other monomer subunit and allows each methylamine group to hydrogen
bond to a chloride anion.

The X-ray crystallographically structure of azateixobactin analogue 2a reveals a mode of
antiparallel B-sheet assembly distinct from that which we had previously reported.” In our
previous X-ray crystallographic antiparallel B-sheet dimer, the residues 1-7 also create an
amphipathic dimerization interface (Figure 5.4). The antiparallel B-sheet dimer assembly also
brings each N-terminus into the proximity of the binding site and allows each N-terminus to
hydrogen bond to the anion. However, there are three significant differences between the current
antiparallel B-sheet dimer (2a) and our previously reported antiparallel B-sheet dimer: (1) The
dimerization interfaces involve opposite edges of the B-sheets. In the current structure, residues 3
and 5 form hydrogen-bonded pairs; in our previously reported structure, residues 2 and 6 form
hydrogen-bonded pairs (Figures 5.3D and 5.4D). (2) The psi and phi angles of Ser; differ
dramatically between the two structures, thus rotating the macrocycle toward the dimerization
interface of each structure. (3) The dimer in the current structure binds two chloride anions,
while the dimer in our previously reported structure binds two sulfate anions. Although the
details of the crystallographic structures of the previous and current dimers differ, both structures

are consistent with the model shown in Figure 5.1A.
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Figure 5.4. X-ray crystallographic structure of the N-Me-D-Phe!i,N-Me-D-
Glng,Lysio-teixobactin binding sulfate anion (PDB 6E00). (A) Monomer. (B) Side
view. (C) Top view. (D) Alignment of the dimer assembly.

Ring-expanded Teixobactin Analogues.

The 13-membered macrolactone ring of teixobactin is substantially smaller than that of

122

many other cyclic depsipeptide antibiotics that bind lipid II,?? including ramoplanin??® (49-
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membered macrolactone), lysobactin/katanosin B?* (28-membered macrolactone), and plusbacin
A3 2% (28-membered macrolactone). Our X-ray crystallographic structures of teixobactin
analogues bound to chloride and sulfate anions suggest that a larger ring might allow teixobactin
analogues to better accommodate the larger polyphosphate group of lipid II and related cell-wall
precursors. Inspired by our X-ray crystallographic structures and the larger macrolactone rings of
other antibiotics, we set out to explore the effect of the teixobactin macrolactone ring size upon
antibiotic activity. In this section, we expand the 13-membered macrolactone ring to 14-, 15-,
and 16-membered macrolactone rings with 3*-homo amino acids.

We synthesized seven ring-expanded teixobactin analogues containing 1-3 f*-homo
amino acids at positions 9, 10, and 11 (Figure 5.5) and assessed their activity in MIC assays
(Table 5.3). Six out of seven ring-expanded teixobactin analogues exhibited activity against
Gram-positive bacteria, indicating teixobactin pharmacophore tolerates ring expansion. B*h-
Argio-teixobactin (5) and B*h-Argio,B°h-Ile;i-teixobactin (9) exhibit comparable activity to
Argjo-teixobactin. Molecular modeling studies suggest that the ring expanded analogues are
more flexible and that the NH groups of the rings are less well aligned to bind anions (Figures
S5.3 and S5.4). Collectively, the MIC and molecular modeling studies suggest that the 13-
membered ring of teixobactin may provide an optimal balance of size and preorganization for

lipid II binding.
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Figure 5.5. Structures of 14-, 15-, and 16-membered ring-expanded teixobactin
analogues containing p*-homo amino acids at positions 9, 10, and 11.
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Table 5.3. MIC values of ring-expanded teixobactin analogues in pg/mL.

Staphylococcus  Staphylococcus Bacillus Escherichia
aureus epidermidis subtilis coli

Ring size ATCC 29213 ATCC 14990  ATCC 6051 ATCC 10798
13 Argjo-teixobactin (1a) 2 1 2 >32
14 Bh-Ala,Argyo-teixobactin (4) 4 4 >32
14 B3h-Argo-teixobactin (5) 1 2 >32
14 Argio,B%h-lle;-teixobactin (6) 2 8 >32
15 B3h-Alag,B*h-Arg;o-teixobactin (7) >32 >32 >32
15 B3h-Alag,Argio,Bh-1le;-teixobactin (8) 16 8 >32
15 B3h-Argo,3h-1le;-teixobactin (9) 1 0.5 >32
16 Bh-Alao,B>h-Argio,p°h-Ile; i -teixobactin (10) 2 4 >32
teixobactin 0.25 0.25 0.25-0.5 >32
vancomycin 0.25 0.25 0.5 >32

Conclusion

Lactam analogues of teixobactin containing aza-threonine at position 8 are readily
prepared by solid-phase synthesis, with conversion of the corresponding diastereomeric
threonine analogue to the aza-threonine analogue by mesylation, azide SN2 displacement, and
Staudinger reduction with triphenylphosphine-2-carboxamide. Teixobactin analogues containing
all four diastereomers of aza-threonine can be prepared by this route. Replacement of the lactone
ring oxygen with an NH group substantially increases antibiotic activity, with D-aza-Thrs,Argio-
teixobactin (2a) exhibiting 2-8 fold greater antibiotic activity than Argio-teixobactin (1a).
Polysorbate 80 exhibits a dramatic effect on the antibiotic activity of teixobactin and teixobactin
analogues; D-aza-Thrg,Argio-teixobactin exhibits an MIC of 0.008 pg/mL against S. aureus in
the presence of 0.002% polysorbate 80.

X-ray crystallography reveals that the additional NH group of azateixobactin analogue 3a
hydrogen bonds to a bound chloride anion and supports a model in which azateixobactin
analogues achieve enhanced antibiotic activity by better binding to the anionic pyrophosphate
group of lipid II and related cell-wall precursors. The X-ray crystallographic structure further
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supports a model in which the formation of hydrogen-bonded dimers or amyloid-like higher
order assemblies is central to antibiotic activity, with two molecules of teixobactin or a
teixobactin analogue coordinating to the bound anion. Although ring-expanded teixobactin
analogues were hypothesized to better accommodate the pyrophosphate group of lipid II and
related cell-wall precursors, teixobactin analogues containing B3-homo amino acids exhibited no
greater antibiotic activity. Collectively, these studies illustrate how chemical synthesis, X-ray
crystallography, and antibiotic activity assays may be used together to help elucidate teixobactin.
We anticipate that these studies will facilitate the design of teixobactin analogues with improved

properties that are useful in the clinic.
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Supplemental figures and table

Figure S5.1. Crude HPLC traces of Boc-Ala-D-aza-Thr(CONH-Ilel1-Fmoc)-
GlIn(Trt)-OH.
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Table S5.1. MIC values of teixobactin homologues in pg/mL with 0.002%
polysorbate 80.
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Materials and Methods
General information

Methylene chloride (CH2Clz) was passed through alumina under argon prior to use.
Amine-free N,N-dimethylformamide (DMF) was purchased from Alfa Aesar. Fmoc-D-allo-1le-
OH was purchased from Santa Cruz Biotechnology. Fmoc-N-Me-D-GIn(Trt)-OH was purchased
from ChemPep. Other protected amino acids were purchased from CHEM-IMPEX. 2-
(Diphenylphosphino)benzoic acid was purchased from Arctom chemicals. Preparative reverse-
phase HPLC was performed on a Rainin Dynamax instrument equipped with an Agilent Zorbax
SB-C18 column. Analytical reverse-phase HPLC was performed on an Agilent 1260 Infinity II
instrument equipped with a Phenomonex Aeris PEPTIDE 2.6u XB-C18 column. HPLC grade
acetonitrile (MeCN) and deionized water (18 MQ) containing 0.1% trifluoroacetic acid (TFA)
were used as solvents for both preparative and analytical reverse-phase HPLC. Deionized water
(18 MQ) was obtained from a Barnsttead NANOpure Diamond water purification system.

Teixobactin analogues 2a—10 were prepared and studied as the trifluoroacetate salts.

Synthesis of D-aza-Thrs,Argio-teixobactin (3a)
Resin Loading. 2-Chlorotrityl chloride resin (300 mg, 1.2 mmol/g) was added to a 10-mL Bio-
Rad Poly-Prep chromatography column. The resin was suspended in dry CH>Cl, (5 mL) and
allowed to swell for 15 minutes. The CH2Cl> was dispensed with a flow of nitrogen. The resin
was loaded with a solution of Fmoc-Ala-OH (90 mg, 0.29 mmol, 2 equiv) and 2.,4,6-collidine
(300 pL) in dry CH2Cl; (7 mL) and rocked for 4 hours.

Resin Capping. The solution was dispensed with a flow of nitrogen and washed with dry

CH:ClI: (3x). A mixture of CH2Cl (5 mL), MeOH (0.8 mL), and DIPEA (0.4 mL) was made and
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poured into the Poly-Prep column containing the resin and rocked for 1 h to cap any unreacted
sites in the resin. The solution was dispensed with a flow of nitrogen and washed with dry
CHxCl2 (3x). The resin was washed with MeOH and blown with nitrogen until dry resin was
observed.

Loading Check. Approximately 1 mg of the dry resin was weighed out into a scintillation
vial and 20% piperidine in DMF (3 mL) was added. The vial was rocked for 30 minutes. The
mixture was filtered using a Pasteur pipet plugged with glass wool. The UV/Vis spectrometer
was blanked at 290 nm with a cuvette filled with 20% piperidine in DMF. The absorbance of the
filtered mixture was measured [1.4 mg of resin weighed; A290 = 1.1234; 0.15 mmol loading].

Fmoc deprotection. The loaded resin was transferred to a solid-phase peptide hand
coupling vessel. The resin was washed with dry CH>Cl (3x) and then dry DMF (3x). To the
reaction vessel, 20% piperidine in dry DMF (5 mL) was added. Using a nitrogen flow to bubble
the hand coupling vessel, the reaction was mixed for 20 minutes. The resin was washed with dry
DMF (3x).

Coupling Fmoc-D-allo-Thr-OH with HCTU. Based on loading, Fmoc-D-allo-Thr-OH
(105 mg, 0.30 mmol, 2 equiv) and HCTU (121 mg, 0.30 mmol, 2 equiv) were weighed out and
dissolved in 20% collidine in dry DMF. This solution was added to the reaction vessel containing
the deprotected peptide on resin. Using a nitrogen flow to bubble the hand coupling vessel, the
reaction was mixed for 4 h. The resin was washed with dry DMF (3x).

Fmoc deprotection. To the reaction vessel, 20% piperidine in dry DMF (5 mL) was
added. Using a nitrogen flow to bubble the hand coupling vessel, the reaction was mixed for 20

minutes. The resin was washed with dry DMF (3x).
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Alloc protection. The resin was transferred to a Poly-Prep column with dry DMF and the
solution was dispensed with a flow of nitrogen. The resin was washed with dry CH2Cl> (3x). To
resin in Poly-Prep column, dry CH>Cl; (5 mL), DIPEA (38 pL, 0.23 mmol, 1.5 equiv) and ally
chloroformate (23 pL, 0.23 mmol, 1.5 equiv) were added sequentially then capped and mixed on
a rocker for 1 h. The resin was washed with dry CH>Cl (3x).

Mesylation. Dry CH2Cl2 (6 mL) was added to the resin in Poly-Prep column and then
capped and rocked in a cold room (4 °C) for 15 min. DIPEA (254 pL, 1.5 mmol, 10 equiv) was
directly added to the solution in the Poly-Prep column was rocked in a cold room (4 °C) for
additional 15 min. Methanesulfonyl chloride (113 pL, 1.5 mmol, 10 equiv) was directly added to
the solution in the Poly-Prep column was rocked in a cold room (4 °C) for additional 15 min. The
resin was washed with dry CH2Cl, (3x) then with dry DMF (3x). The resin was transferred to the
hand coupling vessel.

Sn2 with NaN3. NaN3 (474 mg, 7.5 mmol, 50 equiv) was carefully weighed out using the
back of a glass Pasteur pipette into a glass test tube (to avoid possible explosive of NaN3 with
metal or acid). The weighed out NaN3 was transferred to the resin in the hand coupling vessel
containing resin. Dry DMF (1 mL) and 15-crown-5 (1 mL) were added to the hand coupling
vessel. [NaN3 is super saturated in the solvent mixture] A tube with a continuous water flow at
55 °C was wrapped around the hand coupling vessel to provide heating. Using a gentle nitrogen
flow, the mixture was bubbled for 12 h at 55 °C. The resin was washed with 10 mL of 20% H,O
in THF (5x) to remove any excess NaNs. The resin was transferred to a Poly-Prep column with
dry DMF and then washed with dry CH>Cl (3x).

Alloc deprotection. A mixture of CH2Cl» (5 mL),

tetrakis(triphenylphosphine)palladium(0) (16.9 mg, 0.015 mmol, 0.1 equiv) and phenylsilane
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(360 pL, 3 mmol, 20 equiv) was added to the resin and rocked for 30 minutes. The resin was
washed with dry CH2Cl; (3x) then with dry DMF (3x) and transferred to a hand coupling vessel.

Peptide coupling. The linear peptide was synthesized through the following cycles: i.
coupling of amino acid (0.60 mmol, 4 equiv) with HCTU (241 mg, 0.60 mmol, 4 equiv) in 20%
(v/v) 2,4,6-vollidine in dry DMF (3 mL) for 30 min, ii. resin washing with dry DMF (3x), iii.
Fmoc deprotection with 20% (v/v) piperidine in dry DMF (3 mL) for 20 min, and iv. resin
washing with dry DMF (3x). For D-to-L and L-to-D amino acid couplings, the reaction time in
step i was increased to 1 h. After completing the linear synthesis, the resin was transferred to a
10-mL Bio-Rad Poly-Prep chromatography column. The resin was then washed with dry DMF
(3x) and then dry THF (3x).

Azide reduction. Triphenylphosphine-2-carboxamide! (223 mg, 0.45 mmol, 5 equiv) in
THF (5 mL) was added to the resin in a Poly-Prep chromatography column and rocked for 4 h.
The solution was dispensed with a flow of nitrogen and 20% H2O in THF (5 mL) was added and
rocked for 4 h. The resin was washed with dry DMF (3x) and transferred to a hand coupling
vessel using DMF.

Peptide synthesis. The coupling and Fmoc deprotection of Ile1; and Argio was performed
as described above. After Fmoc deprotection of Argio, the resin containing branched linear
peptide was transferred to 10-mL Bio-Rad Poly-Prep chromatography column using DMF. The
resin was washed with dry DMF (3x) and then with dry CH>Cl, (3x).

Cleavage of the branched linear peptide from the resin. To cleave the peptide, the resin
was treated with 20% hexafluoroisopropanol in dry CH>Cl> (7 mL) followed by gentle agitation
on a rocker for 30 min. The filtrate was collected in a round-bottom flask. The resin was washed

with a second aliquot of 20% hexafluoroisopropanol (7 mL). The filtrates were combined and
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concentrated under reduced pressure to afford a clear oil. The oil was placed under vacuum (<
100 mTorr) to remove any residual solvents.

Macrolactamization. To the round-bottom flask containing cleaved peptide, a mixture of
HBTU (332 mg, 0.9 mmol, 6 equiv) and HOBT (118 mg, 0.9 mmol, 6 equiv) in dry DMF (50
mL) was added and stirred for 15 min under nitrogen. Diisopropylamine (153 pL, 0.9 mmol, 6
equiv) was added to the stirring solution and then stirred 12 h under nitrogen. The solution was
evaporated by rotary evaporator and the residue was dried under vacuum (< 100 mTorr) to give
pale yellow pellet.

Global Deprotection. A solution of TFA (9 mL), H,O (0.5 mL), and TIPS (0.5 mL) was
added to the round-bottom flask containing cyclized peptide and stirred for 1 h under nitrogen.
evaporated by rotary evaporator and the residue was dried under vacuum (< 100 mTorr).

Purification. The globally deprotected peptide was dissolved in approximately 35%
CH;CN in H2O (10 mL) and centrifuged at 14,000 rpm for 5 min. the solution was filtered
through a 0.20-pm nylon filter. The peptide was purified by reverse-phase HPLC with
H>O/CH3CN (gradient elution of 20-95% CH3CN with 0.1% TFA). Pure fractions analyzed by
analytical HPLC and electrospray ionization (ESI) mass spectrometry were combined and
lyophilized. D-aza-Thrs,Argio-teixobactin (2a) was isolated as trifluoroacetic acid (TFA) salt of a
13.5 mg white powder with >95% purity. Other related aza-threonine teixobactin analogues (2b—
2d) were prepared in a similar procedure.

For ring-expanded teixobactin analogues containing B*h-amino acids (4-10), were
synthesized as the trifluoroacetate salts using the procedures we have previously reported.? Dry

DMF was used instead of a mixture of CH3CN/THF/CH:Cl; for the cyclization step.
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Minimum inhibitory concentration (MIC) assay of teixobactin analogue

MIC assays of teixobactin and teixobactin analogues (2a—10) were performed using the
procedure we have previously reported.>3 The procedure in this section is adapted from and in
some cases taken verbatim from references 2 and 3.

MIC assays of teixobactin and teixobactin analogues (2a—10) were determined by using a
broth microdilution method according to CLSI. % Staphylococcus aureus (ATCC 29213),
Staphylococcus epidermidis (ATCC 14990), Bacillus subtilis (ATCC 6051) and Escherichia coli
(ATCC 10798) were acquired as freeze-dried powders from ATCC.

Preparation of bacterial plate stocks. A portion of freeze-dried bacteria powder was
removed with a sterile loop and suspended in 5 mL of Mueller-Hinton broth in a 14-mL
polypropylene round-bottom culture tube. The mixture was incubated at 37 °C while shaking
overnight. The mixture was streaked on Mueller-Hinton agar plates, and the plates were
incubated at 37 °C overnight to allow colonies to grow. The plates were wrapped with Parafilm
and stored for subsequent experiments.

Determination of bacterial concentration (CFU/mL). Five colonies from the bacterial
plate stocks were transferred to a single 14-mL polypropylene round-bottom tube containing
Mueller-Hinton broth (2 mL) and the mixture was incubated at 37 °C while shaking. As the
turbidity of the cell suspension mixture visually increased, a 200-pL aliquot was transferred to a
96-well plate for ODgoo measurement. The cell suspension mixture was diluted with Mueller-
Hinton broth to an ODsoo of 0.075 as measured for a 200-pL sample in a 96-well plate
(equivalent to a 0.5 McFarland standard). A 10-pL aliquot of the diluted cell suspension was
diluted 1:1000 with Mueller-Hinton broth. A 10-pL aliquot of the 1:1000 diluted cell suspension

mixture was further diluted 1:200 with Mueller-Hinton broth. A 100-uL aliquot of the resulting
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mixture was then streaked on a Mueller-Hinton agar plate (repeated four times). The agar plates
were incubated at 37 °C overnight. The number of colonies on each agar plate was counted, and
the average of four plates was used to back calculate the bacterial concentration (CFU/mL) at an
ODegoo of 0.075 as measured for a 200-uL sample in a 96-well plate (equivalent to a 0.5
McFarland standard).

Table S5.2. Bacterial concentration determination.?

Bacteria Average number of Concentration at a
colonies per plate 0.5 McFarland standard”

Stap }géoéécgg; Jrews 214 4.3 x 108 CFU/mL

Streptococcus salivarius 23 5% 107 CFUmL

Bactflus subili 25 5x 107 CFU/mL

Eﬂ’ggi’g@;g” 24 4.8 x 107 CFU/mL

2 ODe¢oo of 0.075 as measured for a 200-pL sample in a 96-well plate

Preparing the peptide homologue stock. Solutions of D-aza-Thrg,Argio-teixobactin (2a),
other teixobactin homologues (2b-10), teixobactin and vancomycin were prepared
gravimetrically by dissolving an appropriate amount of peptide in an appropriate volume of
sterile DMSO to make 20 mg/mL stock solutions. The stock solutions were stored at -20 °C for
subsequent experiments.

Preparing the minimum inhibitory concentration (MIC) assays. An aliquot of the 20
mg/mL peptide homologue stock solutions was diluted to 64 pg/mL with Mueller-Hinton broth.
A 200-pL aliquot of the 64 ng/mL solution was transferred to a 96-well plate. Two-fold serial

dilutions were made with Mueller-Hinton broth across a 96-well plate to achieve a final volume
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of 100 uL in each well. The 100-uL serial diluted solutions had the following concentrations: 64,
32,16,8,4,2,1,0.5,0.25,0.125, and 0.06125 pg/mL.

Performing the minimum inhibitory concentration (MIC) assays. Five colonies from the
bacterial plate stocks were selected and transferred to a single 14-mL polypropylene round-
bottom tube that contained Mueller-Hinton broth (2 mL) and the mixture was incubated at 37 °C
while shaking. As the turbidity of the cell suspension mixture visually increased, the mixture was
diluted with Mueller-Hinton broth to ODsoo of 0.075 as measured in a 96-well plate (equivalent
to a 0.5 McFarland standard). Based on the previously determined CFU/mL (Table S2), the
diluted mixture was further diluted to 1 x 10°® CFU/mL with Mueller-Hinton broth. A 100-uL
aliquot of the 1 x 10° CFU/mL bacterial solution was added to each well in 96-well plates,
resulting final bacteria concentration of 5 x 10° CFU/mL in each well. As 100-pL of bacteria
were added to each well, peptide homologue solution was also diluted down to the following
concentrations: 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625, and 0.03125 pg/mL. The plate was
covered with a lid and incubated at 37 °C for 16 h. The ODsoo was measured using a 96-well
UV/Vis plate reader (MultiSkan GO, Thermo Scientific). The MIC values were taken as the
lowest concentration that had no bacteria growth. Each MIC assay was run in duplicate in three
independent runs to ensure reproducibility.

Performing the minimum inhibitory concentration (MIC) assays with Mueller-Hinton
broth containing 0.002% polysorbate 80. Mueller-Hinton broth containing 0.002% (v/v)
polysorbate 80 was autoclaved and used to dilute the 20 mg/mL DMSO peptide stock solution

and the bacteria culture.
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Crystallization of N-Me-D-Glns,D-aza-Thrs,Argio-teixobactin (3a)°

N-Me-D-Glng,D-aza-Thrs,Argio-teixobactin (3a) was dissolved in 0.2 micron syringe
filtered NANOpure H>O (10 mg/mL). Crystallization conditions were screened by screening in a
96-well plate format using three crystallization kits from Hampton Research (PEG/Ion, Index,
and Crystal Screen). Each well was loaded with 100 pL of a different mother liquor solution
from the kits. The hanging drops were set up using a TTP Labtech Mosquito® liquid handling
instrument. Hanging drops were made by combining an appropriate volume of N-Me-D-Gln4,D-
aza-Thrg,Argio-teixobactin (4a) with an appropriate volume of well solution to create three 150-
nL hanging drops with 1:1, 1:2, and 2:1 peptide:well solution. Hexagonal prism -shaped crystals
grew in all conditions that contained polyethylene glycol (PEG) and chloride salts.

Crystal growth was optimized using conditions containing HEPES Na, PEG 400 and
CaCly. In the optimization, the HEPES Na (pH 5.5-8.0), CaCl,, and PEG 400 concentrations
were varied across the 4x6 matrix of a Hampton VDX 24-well plate to afford crystals suitable for
X-ray diffraction. The hanging drops for these optimizations were prepared on glass slides by
combining 1 or 2 pL of teixobactin solution with 1 or 2 pL of well solution in ratios of 1:1, 2:1,
and 1:2. Crystals that formed were checked for diffraction using a Rigaku Micromax-007 HF
diffractometer with a Cu anode at 1.54 A. As a result of the optimization, 0.16 M CaCl,, 0.1 M

HEPES Na pH 7.00, and 24% PEG 400 afforded crystals suitable for X-ray diffraction.
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X-ray crystallographic data collection, data processing, and structure determination

Data collection was performed with the BOS/B3 software at Advanced Light Source
(ALS) using beamline 8.2.2 at a wavelength of 1.771190 A (7000 eV). The rotation method was
employed and three sets of 360 images each were collected at a 1.0° rotation interval (a total of
three complete 360° rotations). The three sets were processed with XDS®, and the resulting
datasets were merged with BLEND?. The structure was solved with SAD phasing implemented
in the Hybrid Substructure Search (HySS)® module of the Phenix suite®. Chloride atom was used
as sources of the anomalous signal. The initial electron density maps were generated using the
substructure coordinates as initial positions in Autosoll?. The structure was then refined with
Phenix.refine 1! under Phenix using Coot!? for model building. All B-factors were refined
isotropically and riding hydrogen atoms coordinates were generated geometrically. The bond
length, angles, and torsions restraints for unnatural amino acids (N-Me-D-Gln, D-aza-Thr, and D-

allo-lle) were generated with eLBOW13 under Phenix.
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Table S5.3. Crystallographic properties, crystallization conditions, data
collection, and model refinement statistics for N-Me-D-Gln4,D-aza-Thrg,Argio-
teixobactin (3a).

N-Me-D-Glny,D-aza-Thrg,Argio-teixobactin (3a)

PDB ID 6PSL

space group P3521

a, b, c(A) 20.024, 20.024, 32.328
o, B,y (") 90.0, 90.0, 120.0

peptides per asymmetric unit 1
crystallization conditions 0.16 M CaCly, 0.1 M HEPES Na pH 7.00, 24% PEG 400

Data collection

wavelength (A) 1.771190 A (7000 eV)
resolution (A) 15.28-2.10 (2.35-2.10)
total reflections 24455 (4809)
unique reflections 535 (144)
Multiplicity 45.7 (33.4)
completeness (%) 99.7 (100)
mean /o 78.2 (52.7)
Rmerge 0.053 (0.066)
Rmeasure 0.053 (0.067)
CCin 1.00 (0.999)
CC* 1.00 (1.00)
Refinement
Ryork 0.092 (0.12)
Rfice 0.117 (0.19)
number of
non-hydrogen atoms per ASU 94
RMSponds 0.014
RMSanges 0.99
Ramachandran

allowed (%) 100

outliers (%) 0
clashscore 0
average B-factor 8.89
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HPLC and MS of teixobactin analogues (2a-10)
aza-D-Thrg,Argio-teixobactin (2a)
aza-D-allo-Thrg,Argjo-teixobactin (2b)
aza-L-Thrg,Argjo-teixobactin (2¢)
aza-L-allo-Thrg,Argio-teixobactin (2d)
N-Me-D-Glng,aza-D-Thrs,Argio-teixobactin (3a)
B*h-Alag,Argio-teixobactin (4)
B*h-Argio-teixobactin (5)

Argio,p*h-Tler -teixobactin (6)
B’h-Alao,B*h-Argio-teixobactin (7)
B*h-Alag,Argio,p>h-Ilei -teixobactin (8)
B*h-Argio,B°h-1le11-teixobactin (9)

B’h-Alao,p*h-Argio,p>h-Ilei -teixobactin (10)
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