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Abstract

We prove several versions of the second theorem of welfare economics for exchange
economies with nonconvex preferences.
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1. Introduction

The Second Welfare Theorem asserts, under appropriate assumptions (chiefly convexity
of preferences), that Pareto optimal allocations are Walrasian equilibria under some
redistribution of income. If preferences are nonconvex, the theorem no longer holds.
The purpose of this paper is to prove several versions of the Second Welfare Theorem
in the case of nonconvex preferences.

It is useful to consider the interpretation commonly placed on the Second Welfare
Theorem in undergraduate microeconomics courses. It is asserted that it would be
better for government to redistribute income, and then allow the workings of the
market to determine the allocation of commodities to individuals, rather than have
the government establish subsidies for certain commodities or to allocate goods
through non-market mechanisms. The argument is as follows: the outcome if the
government undertakes non-market actions will probably not be Pareto optimal; in
any case, we may find a Pareto optimal allocation f which equals or Pareto dominates
the non-market outcome. In the convex case, the Second Welfare Theorem asserts
that the government can achieve f merely through redistributing income; once redis-
tribution has occurred, the workings of the market will yield the outcome f without
further intervention on the part of the government. To be more precise, let 4 be the
set of agents in an exchange economy, e(aq) the endowment of agent a. An income

transfer is a function 4 - IR with %t(a) <0. The budget set of an individual g,
as

relative to the transfer ¢ and price vector p, is {x: p-x<p-e+t(@)}. A Walrasian
equilibrium relative to the transfer ¢ is (f, p), where f assigns consumption vectors to
the agents, p is a price vector, f{a) maximizes the preference of a over a’s budget set

(relative to the transfer), and 2 Af(a) < EAe(a). With convex preferences, the Second
f-13 -1

Welfare Theorem asserts that given any Pareto optimum f, there is an income transfer
(with 21(a) =0) such that f is a Walrasian equilibrium relative to the transfer .
aed

Three caveats are required, even in the convex case. First, the above story assumes
that the operations of the market produce Walrasian equilibria as outcomes; this may
not be the case if there are large agents, who have incentives not to act as price-takers.
Second, a problem arises if Walrasian equilibrium is not unique. If the government
is restricted to redistributing income, the income redistribution that makes f a
Walrasian equilibrium might also make some f' # f Walrasian; f' could be much more
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favorable to some individuals, and less favorable to others, than f. Of course, if fis
Pareto optimal, then under standard assumptions, it will be the unique Walrasian
equilibrium for the economy with f as the endowment map. However, allowing the
government to redistribute goods to achieve f as the initial allocation, and then noting
that the market yields no further trade, violates the decentralized spirit of the inter-
pretation of the Second Welfare Theorem described above. Third, the government
might choose not to respect the preferences of individuals. For example, the govern-
ment cannot provide an income transfer directly to young children; the transfer would
have to be made to the parents of the children, and there may be a conflict between
the interests of the children and the preferences of the parents. For this reason, the
government might choose to provide certain specific goods to families with young
children, rather than providing an income transfer to those families. We shall not,
however, pursue these points here.

Farrell [10] gave an early discussion of welfare theory in large economies with
nonconvexities. Hildenbrand [12] showed that the Second Welfare Theorem holds
without convexity in economies with a measure space of agents. The first rigorous
work on asymptotic versions of the Second Welfare Theorem for large finite economies
with nonconvexities was done by Khan and Rashid [14], using Nonstandard Analysis.
Mas-Colell ([16], Proposition 4.5.1) has proved an elementary version of the Second
Welfare Theorem. He used the Shapley-Folkman Theorem (Starr [18]) to show that
any Pareto optimal allocation f can be approximately supported in the following
sense: there is a price vector p such that any xg,f(a) satisfies p-x is nearly as great
as, or greater than, p- f(a). However, there is no reason to think that f{a) is close
to a’s demand set. Indeed, Anderson and Mas-Colell [7] give an example of a
sequence of exchange economies with the number of agents going to infinity and a
sequence of Pareto optimal allocations in which every agent is far from her demand
set for every price and every income transfer.

The form of decentralization given in Mas-Colell’'s Theorem is not sufficient to justify
the interpretation of the Second Welfare Theorem discussed above. Let us suppose
the government has carried out the transfers needed to make f{e) lie on the frontier
of @’s budget set, with respect to the price p. We note first that there is no guarantee
that there will be any price ¢ that clears the markets, since preferences are nonconvex,
we are forced to consider prices that approximately clear the markets. Worse still,
since f{a) is not near &'s demand set with respect to the price p, there is no reason
to think that p will approximately clear the markets. Rather, as shown in Figure 1,
it is possible to have a Pareto optimum f so that the local supporting price p at f is
not an equilibrium price, since agent I's demand will be at the point x, while II's
demand will be at the point y. If one makes the income transfer necessary to make
f affordable for each agent at the price p, there will be a unique equilibrium price ¢
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which yields an allocation g far from f and such that the utility levels of agents at
g are very different from the levels at f. Indeed, there is no income transfer ¢ such
that there is a Walrasian equilibrium relative to ¢ which yields utility levels close to
those of f to both agents. Considering approximate Walrasian equilibria does not
help either, since either agent I's demand will be near x or II's demand will be near
¥, or both, so per capita excess demand is not small. In other words, the government
cannot even achieve the desired utility levels of the agents through income transfers
and a market mechanism. If one allows the government to dictate commodity transfers
rather than income transfers, the government could specify f as the initial endowment:
in that case, there is no Walrasian equilibrium, nor even a price that makes per capita
excess demand relatively small. Of course, if there were an approximate Walrasian
allocation g, it would have the property that fla)g,g(a) for all a (observe that f{a)
is in the budget set). However, as in the convex case, allowing the government to
dictate f as the initial allocation destroys the interpretation of the Second Welfare
Theorem as a story of decentralized allocation.

In Theorem 3.3, we show that the government can achieve the utility levels desired
for all but k£ agents, where k is the dimension of the commedity space. In other
words, the pathology illustrated in Figure 1 disappears (at least for most agents)
provided that the number of agents is large relative 1o the number of commodities.
The proof is elementary, relying primarily on the Shapley-Folkman Theorem. We
focus on a particular choice of decentralizing price p; this price is used by Mas-Colell
in the proof of his theorem, and is closely related to the so-called gap-minimizing
price studied in Anderson [6]; essentially, p is the price which minimizes the measure

by which support fails in Mas-Colell’s Theorem. Given any Pareto optimum f, there
is an income transfer s and a quasiequilibrium ? with respect to 7 such that at most
k agents prefer f to ? If preferences are monotone and a mild assumption on the
distribution of goods at f is satisfied, then we may show that 7 is strictly positive,
and hence ? is a Walrasian equilibrium with respect to . As an alternative, we can
achieve an approximate equilibrium (i.e. total excess demand is bounded, independent
of the number of agents) ? such that no agent prefers f to } It is worth emphasizing
that Theorem 3.3 is a universal theorem, applying to all exchange economies, rather
than a generic theorem. However, there is no guarantee that ?(a) is close to fla)

for any a.

In Theorem 4.1, we show that, for most large exchange economies, all Pareto optima
satisfying certain bounds are close in the commodity space to Walrasian equilibria
with income transfers. Specifically, we assume that we are given a distribution g of
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agents’ preferences. We think of this as being the distribution of preferences of all
possible people. We then form a sequence of exchange economies e,, with 4, as the
set of agents. Agents’ endowments are assigned in an arbitrary way; their preferences
are assigned by sampling from the given distribution. We show that, with probability
one, the following conclusion holds: If f,(a) is a sequence of Pareto optimal allocations,
bounded in an appropriate sense, there is a sequence of income tragsfers and Walrasian
equilibria {(f,,p,) relative to those transfers such that |f,{a) — f,{a)| converges to
0; the sense of convergence is either convergence in measure or mean, depending on
the sense in which the sequence of Pareto optima is bounded.

The methodology used in proving Theorem 4.1 is similar to that used in Anderson
[5] to prove a convergence theorem for the core in exchange economies with nonconvex
preferences. We are grateful to Andren Mas-Colell for suggesting that we apply that
methodology to the set of Pareto optimal allocations. The proof uses Nonstandard
Analysis (Robinson [17]). A general meta-theorem guarantees that a standard proof
also exists, but it could be quite difficult to write it out. We do not know of a
tractable standard proof of the result. Indeed, the general case of the result in
Anderson [5] has stubbornly resisted the author’s attempts to give a reasonable
standard proof. Converting the proof of Theorem 4.1 to a standard proof poses
additional problems not present in [5]. Specifically, the theorem says that, for a set
of sequences of economies having probability one, the result applies to every Pareto
optimal allocation satisfying certain bounds. Proving this requires interchanging the
order of two quantifiers. Since there are an uncountable number of Pareto optima
in each economy, there is no obvious way to interchange the quantifiers using standard
measure-theoretic techniques. From the structure of the nonstandard proof, it appears
that the best hope for obtaining a reasonable standard proof would be to consider
finite sets of candidate supporting prices which fill out the price simplex as the
number of agents grows.

One might suppose that Theorem 4.1 could be deduced from Anderson [5], using the
fact that any Pareto optimal allocation f is in the core of the economy with f as the
endowment map. However, the result in [S] applies only to economies in which the
endowment maps are obtained by sampling from a distribution. Such economies have
special properties. Our theorem applies to all Pareto optima within certain bounds;
for many of them, the economies resulting from taking the optima as the new
endowments do not satisfy the special properties.

Nor does it appear possible to deduce the result in [5] from Theorem 4.1. Any core
allocation is Pareto optimal, so Theorem 4.1 tells us that core allocations are near
demand sets after income transfers. However, [5] demonstrates that core allocations
are near demand sets withour income transfers.
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As a corollary of the nonstandard proof, we are also able (in Theorem 4.4) to prove
a version of the second welfare theorem for type sequences of exchange economies.

2. Preliminaries

We begm with some notation and deflm’uons which will be used throughout. Suppose
X, Ve R*, B< R x' denotes the " component of x; x>y means

x! _>_y foralli;x > ymeansx » yand x # y; x >>ymeansxi>yifora11 i, x, is

defined by (x+)i=max{xf,0}; X_ =X, —X REIR M =11¥a§klxil;
<ig

| Ix| |r=(i§z|xilr)1/r; RY ={xe R¥: x>0} ; R,, =ixe R: x>0} p(x,B)

= inf{| |x—y| |~ y € B}

A preference is a binary relation % on IRf satisfying the following conditions: (i)
weak monotonicity: x> >y = xpy; and (ii) free disposal: x> >y, ypz = xpz. Let
P' denote the set of preferences. A preference o is said to be (iii) continvous if
i(x,y): yfox} is relatively open in IR_,_ X 1R+ (iv) transitive if xpy, ypz = x@z; and
(v) irreflexive if xgx. Let P" denote the space of preferences satisfying (i)-(v). A
preference is said to be (vi) monotone if x>y = xgy. Let P denote the set of
preferences satisfying (i)-(iii) and (vi).

An exchange economy is a map e: 4 - P x IR%, where A4 is a finite set. For a ¢ A4,
let g, denote the preference of a (i.e. the projection of e(a) onto P) and e(a) the
initial endowment of a (i.e. the projection of &(a)} onto ﬂ{+) An allocation is a

map fA4 -kIRﬁ such that A I{f(a) = a%e(a). Given an allocation f, we define My
= max{ | [Ef(ai)l lw @ @1,...,2; are distinct elements of A}. Note that in the last
definition, k is the dimension of the commeodity space E{ﬁ_ An allocation f is said
to be Pareto optimal if there does not exist an allocation g such that g(a)p,f(a) for
all ae A. Let &(¢) denote the set of all Pareto optimal allocations for the economy
e. Observe that #(e) depend only on the preferences and the social endowment ae%e(a),

not on the individual endowments.
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A price p is an element of IR‘fﬁ with | {p| |1 =1. A denotes the set of prices,
A= {p e A;p> >0} . The demand set for (%,e), with income augmented by re R is
D(p,(p,e),7) =fxe RX: p-x<p-e+r, yox > p-y>p-e+r}. D(p,(p,e),7) could
be empty under the hypotheses we have placed on preferences. An income transfer

is a function 1. A~ IR with EAt(a) <0. By abuse of notation, we Ilet
1€

D(p,a,1) = D(p, (0, e(@)), 1(a)) if a € 4.

The quasidemand set for (p,e), with income augmented by re R is Q(p,(g,e),7)

={x € IRﬁ: p-x<p-e+r, ypx=>p-y2p-e+r}i. Q(p,(p,e),r) could be empty
under the hypotheses we have placed on preferences. By abuse of notation, we let

Q. a,1) = Q(p, (Pa,e(a)),1(a)) if a e 4.

A Walrasian equilibrium for e, relative to the income transfer ¢, is a pair (f,p), where
EAf(cz) < %e(a), pel, and fla) € D(p,a,r) for all ae A. Let 9(e, ) denote the set
ae ae

of Walrasian equilibria for ¢, relative to the income transfer z.

A Walrasian quasiequilibrium for e, relative to the income transfer ¢, is a pair (f,p),
where 2 . fla) < ZAe(a), peA, and fla) € O(p,a,t) for all a € A. Let 2(e,1) denote the

set of Walrasian quasiequilibria for e, relative to the income transfer ¢.
Given xe IR&, @€ P, and pe A, define

¢(@x,9) = |infip-(y—x)ppxi].

¢ measures how far x is from being demand-like. In particular, if p> >0, then
o(p,x, p) =0 if and only if x e D(p,(%,x)). By a slight abuse of notation, we let

o(p.fra) = ¢(p, fla), o) if £ is an allocation, and ¢{p,x,a) = ¢{p, x, P,) if x ¢ IR‘:‘__

Next, we consider sequences of assignments of commodity bundles. Specifically,
suppose we have sets 4, with |A4,| = n. Define

G, =Lt fid,~ IRi, I{aeAn:f,,(a)i>y}i /n>y for each i},

and
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@ is the set of sequences of assignments with the property that, for each good, a
positive fraction of the population possesses a positive amount of the good. Define

'%?nn_—- {1,} € @T: Mfm/m < 7 for m> n}

and

B=_ R, , e g++ngw.%wn= {9 M /n~0}

&% is the subset of ¥ consisting of sequences of assignments in which the largest
bundle given to any agent becomes small in relation to the size of the economy. Define

E
U={{f,}c9 E,cd, Bl o s LS n@it.-on

n
acE,

9 is the subset of @ consisting of assignments which are uniformly integrable; the
economic interpretation is that no group consisting of a small proportion of the agents
can possess a significant quantity, per capita, of the goods. Observe that % < &.

3. Two Consequences of the
Shapley-Folkman Theorem

Mas-Colell ([16], Proposition 4.5.1) gave an elementary version of the Second Welfare
Theorem, using the Shapley-Folkman Theorem (Starr [18]). We shall use Mas-Colell’s
theorem as the first step in the proof of our results. Since our normalization of prices
differs from his, and our assumptions on preferences are a little weaker, we shall give
a proof.

Theorem 3.1 (Compare Mas-Colell [16], Proposition 4.5.1): Let e: 4 » P’ x I‘Ri be
an exchange economy. If fe %(¢), there exists p ¢ A such that %:,b(p, fia) <My

3. Two Consequences of the Shapley-Folkman Theorem 7




Proof: Suppose fe #(¢). Let y(a) ={y— fla): yp fla)} and T = %y(a).

Suppose there exists G € T with G < < 0. Then there exists g: 4 - IR‘:‘_ with g(a) € y(a)

such that %g(a) ={. Define h@)=gla) + fla)— G/ |4].
h(a) > > (gla) + fla)) p.fla); since p, satisfies free disposal, h(a)p,f(a). But
2 h(a) Eg(a) + 2 Af(a) 2—| = G+ 2 e(a)' -G = ae(a), which contradicts

the Pareto optnnahty of f. Hence G <0 -;.GQ’I‘

Suppose x € con I'. By the Shapley-Folkman Theorem (Starr [18]), we can write x in
the form x= % g(a), where g{a) € con y(a) for all a e 4 and g{a) € y(a) for all but
m values of g, for some m < k. Let those values be {ay,...,aq,}. Let g(g) = (5,...,8)

for some &6>0 and g(a)=gla) for ad{ai,..,a,}. Since vy(@)>—fa),

con y{g) > —f(a,). Let z=— (Mf, .., Mp). Then x= EAg(a)
- SF@+ Sa@ -ms, ) > $F@ - 5fa) -mG, .., 0)

> %E(a) +z-m(3,...,8). Since g(a) € v(a) for all ae A, %E(a) eT, and hence we
ae ac

cannot have x < <z~ m(8,...,6). Since & is arbitrary, we cannot have x < <z.

Hence, con T’ does not intersect {we Rk w< < z}. Therefore, there exists pe A

with inf p-T >sup p-iw: w< <z} = —My. Therefore, %zj;(p,f,a) Mg

Remark 3.2: For certain applications, it may be useful to use a different normalization

of prices. If (1/7)+ (1/5) =1 (with the usual convention that 1/« = 0), and prices

are normalized so that | |p||;=1, then the theorem remains true with
k

M= K/ max | Izi fla) | |,. The reader is warned that there was an error in this

remark in the working paper version of this paper: the factor k17T was omitted.

Theorem 3.3: Suppose e: A+ P x Bk is an exchange economy. If fe £(e), then
there exists an income transfer ¢ with —ZMf< Zt(a) <0 and (f D) € 2(e,1) such
that, for all but k agents a € 4, fla)g, f (a). Alternatlvely, we may find an income
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transfer 7 with —My< EA?(a) <0 and )'}(a) € Q(p,a, ?) such that, for all aec A4,
A ae
)@, f(a) and

P (2(}(0) - 6’(0))) + (2(?(&) — e(a))) < 3Mp.
+

aed acAd

If in addition we assume that g, e PNP" for all ¢ and

Zf(a) <-%2f(a) whenever | S| <k ("),

aes aeAd

then we can take p> >0, (_?,f}') € (e, 1), and ?(a) e D(p,a, ?) for all ¢ € A.

Remark 3.4: Since preferences may be nonconvex, %/ (e,f) may be empty. The con-
clusion that it is not empty is less surprising that it might at first appear. Since we

only require that E?(a) < %e(a), and we may have EAr(a) <0, the government ends
aeAd ae ae

up with some quantity of goods. It is as if the government had a linear preference

relation with indifference curves perpendicular to p; this provides the necessary

A

freedom to obtain a Walrasian equilibrium. The alternative formulation involving f

is a notion of approximate Walrasian equilibrium. The theorem indicates that the
market value of the absolute value (taken componentwise) of the excess demand is
bounded. This result is obtained essentially by combining the formulation involving

f with the argument in Anderson [3]. Finally, note that the statement of the Second

Welfare Theorem in Debreu’s Theory of Value [9] involves the notion of equilibrivm
relative to a price system. An equilibrium relative to a price system is immediately
seen to be a Walrasian equilibrium after income transfers in the sense that we use here,

Lemma 3.5: Suppose § satisfies free disposal. If x € IR’_i‘,, then con {z: zfx} is closed.
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Proof: Let B ={z: zox}. If ye B and w>y, then we may find w, »w and y,, >y
such that w,> >y, and y,px. By free disposal, w,@x, so we B. Thus,
B+ R* < F< R%. Hence, con B is closed (Mas-Colell [16], p. 27, F.1.2.).

Proof of Theorem 3.3: By Theorem 3.1, there exist p ¢ A such that inf p-T' > —M;.
If pe A, then inf p-T € 0. Hence, « = —sup inf p-T exists. Suppose p, is such that
inf p, -I - — a. By taking a convergent sﬁ)%equence, we may assume that p, » p for
some p € A, Then —ea >inf ﬁ -T; on the other hand, if inf p-I' < — «, then there exists
GeT and §>0 such that 5 G < —a— 8 < inf p, T —8/2 (for n sufficiently large)
<p,+G—8/2, a contradiction since p, = 7. Hence, inf 5-I'=—a. The price p is
used in the proof of Mas-Colell [16], Proposition 4.5.1. We call § the gap-minimizing
price because it minimizes the "decentralization gap" for the Pareto optimum f, see

Anderson [6] for a related construction for core allocations.

Let z=(—a,..,—a). We claim that zecon I; if not, there exists g#0, g-z
< inf g-con I. Observe that for any i and any >0, (0,...,0,¢,0...,0) ¢ T, where
the ¢ occurs in the i’th place, by weak monotonicity. Hence, if g' <0 for some i,
inf g-con L = —«, a contradiction. Hence, g >0, so we may assume g € A. Thus,
inf g-T =infg-conl > g-z = —a, contradicting the definition of «. Hence,

zecon I = con %y(a) = EAcon v(a) = %con y(a) (since y(a) is bounded below
by ~f(@)) = Z (con {z: zp.fl)} ~fla)) = Z (con {z: z0,f(e)} — f(a)) (by Lemma
3.5) = %con @. Hence, we may write z = > g(a), where g{a) € con @. By

acA

the Shapley-Folkman Theorem, there is a set {aj,..,az} <4 so that we may choose
g(@) € y(a) for all adiay,..,ax} < A. Since EAﬁ-g(a) =pz = —a =inf p-T

= EAinf 7-v(a), 7-gla) =inf §-y(a) for all a € A.

Define 7 (a)=g(a) + fla) if adias,..,a} and f(a)=0 (1<i<k). Ej(a)
= 3 @@+f@) £ 6@ +/@) =2+ If@) < Tfa) = Tela).

ad{ay,...ar
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Define 1(a) = (f(a) — e(@)). f(a) =5 - (@) +1(0). 2 Ha)= 25 (f (@) - fla))
= E:Ap"-g(a) Ep fla) = prlz- 2 fl@)), so —2Mr< Ez(a) <0. We will show
that f(a) € Q(p,a,t) for all a. Suppose first ad'{ay,...,2;}. Suppose xgoaf(a). By
continnity there exists y e y(@) such that xgp,(y + f(@)). By the definition of y(a),
(O + fla))paf(a); by transitivity, xp,f{a). Hence, p -x >inf p-y(a) +p - fla) =P -;‘:(a)
=5 -e(a) +1a). Thus, [ (@) € Q(F,a,0). If aeiay,..,ar}, f-7@) = 5-ela)+ 1(a)
=0, so it is trivial that },(0) € Q(p,a,t). Hence, (}‘,ﬁ) € 2(e, 1).

Suppose a¢'{aq, ....,ak}. If f(a)gaa?(a), then by continuity we may find y € y{a) such

that fla)p, (v + f(a)). By the definition of y(a), (¥ + fla))p.f(a); by transitivity,
fl@)p.f(a), contradicting irreflexivity. Hence, for all ad{ay,...,a;}, la)g.f(a).

Define 7 (a) = g(a) + fla) if adiay, ., q} and let F(a) =5 (@) +7(a), where () is
chosen arbitrarily from {xe}—(a p-x=inf p v{a)}. Let ?(a) =p- (? (a) — e{a)).

%t (a) = E/rp gla) = p-z, so —Mf< 2 t{a) <O By the same arguments as in

the last two paragraphs, it follows for all g ¢ A that f (@) € Q(P,a,1) and fla)g, f (a).

Note that

A A k
S(f@-e@) = 3 (f@-1@) = z+§(§(a,-)~—g(a,-))

aeAd aed

=z+ i [ (8@ +1@)) - (sta) +f(a,-))] :
=1

and so
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S (f@-c@) < ]

k
acA i=1

k
2= (8(a) + @) < (@) + fia).
f=1

Therefore

ﬁ-[(Z(?(a)—e(a))) +(2c?(a>—e(a))) ]
acA acA
: + ~

k

k k
S*ﬁ-2+ﬁ-E(g(ai)+f(ai))+ﬁ-2(§(a,v)+f(a,-)) < Mp+25- Sfla) < 3Mj.
i=1 i=1

i=1

Now suppose that preferences are monotone and the condition (*} holds. If we can
show that 7 > > 0, then it follows by standard arguments that @(e, ) = 9% (e, 1), sOo we

will be done. Suppose p! = 0 for some i. Suppose ad{ay,...,a;}. If p- ?(a) > 0, then
by monotonicity and continuity, there exists yg,)a?(a), F-y<p -?(a). By continuity
we may find x such that yp,x and x — f{a) € v(a). By the definition of y(a), xp,f(a),
and so yf, f(a) by transitivity, a contradiction. Therefore, p -?(a) = 0 foradiay, ..., a}.

By changing the units in which the commodities are measured, we can assume without

loss of generality that
1 k
(zf(a)) = .= (Zf(a)) ,
aed acA

Then, choosing i to minimize

3. Two Conseguences of the Shapley-Folkman Theorem 12




( > f(a))
adiay, .. q}

and j to maximize

J
()

~ k
Siz = Yrg@ = 3 F-G@-f@)+ Y5-gay)

acA ach ae’{al,... ,ak} m=1

k
== > Ff@+258@) s - Y 5f@

adioy,.a} m=1 adiay, .. al

s—( > f(a)) < —%(Zf(m) (by (*))

adiay, .. a} acAd

j J
1 & —_—
= _5( > f(a)) < - ffs*lfus{k( §Lf(a)) (by (*)) = —M,.

aed aes

Hence, inf § - T < —Mj, contradicting the definition of p and the last line of the proof
of Theorem 3.1. Thus, p > > 0, completing the proof.

4. Random Sequences of Economies

The purpose of this section is to show that a version of the Second Welfare Theorem
stronger than the results of section 3 holds for almost all sequences of economies
drawn at random: agents’ consumptions are close to their consumptions at a Walrasian

4, Random Sequences of Economies 13




equilibrium with income transfers. The key observation in the proof is that sequences
of economies drawn at random from a given distribution of agents’ characteristics
converge in a stronger sense than weak convergence. The proof is modelled after the
proof of a strong core convergence theorem with nonconvex preferences in Anderson
[5]. As a corollary of the proof, we also prove a theorem (Theorem 4.4) for type
sequences of exchange economies.

P can be made into a Borel subset of a compact metrizable space (Hildenbrand [13],
Grodal [11]); the topology this metric generates is called the topology of closed
convergence. Let # be the space of Borel probabilily measures g on P.

Suppose u € Jt We may think of p as describing the underlying distribution of
preferences of ''all possible people," and construct sequences of finite economies by
sampling from p. Spec1f1ca11y, we take £ to be the countable product PN, with the
countable product measure &', Any w e @ is a sequence {w; w3 ..} w; € P of pref-
erences. lLet d,=1{1,...,n}. G1ven such an « and an arbitrary sequences of endowment
maps e,: A, ~ IR}_,‘, we form a sequence of economies ep:A4,» P x 1R+, where

el (D) = (w;, 6, (i)). In other words, &% is the economy whose agents have characteristics
(wl,en(l)) o, (wy,2,(n)). The construction of a sequence of economies by sampling
in this way is due to Hildenbrand; see [13], page 138.

Theorem 4.1: Suppose i € . There is a set £ < @ with pM(@) = 1 with the following
property: if w € &, then for every sequence of endowments e, satisfying

0< < lim - 23 (i) and Tim - ze () < <o
]=1 Iﬂl

and every sequence {f,} € &, f,, € $(¥), there exist (for sufficiently large n) income

transfer functions ¢z, with EA t,(a) <0 and (?n, Pn) € P#(eq . 1,) such that, for all § > 0,
acdy

T Hacdy 115,@-F@11.>8 ~o.

nl

Furthermore, if the sequence {f,} € %, then we may choose f, and ?n such that
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1
|4

S @0 and —— 3 117,@ - T,@] ] ,~0.

nl acdy, l nI acA,

Remark 4.2: The comments in Remark 3.4 apply here also. In addition, note that our
assumptions on preferences are not sufficient to guarantee that demand sets are not
empty. However, one consequence of Theorem 4.1 is that the existence of Pareto
optima implies that demand sets are nonempty.

We shall first prove the following result for Nonstandard exchange economies, which
were introduced by Brown and Robinson [8].

Theorem 4.3: Let e: 4 » * (P x IR’i) be an internal exchange economy. Define the
counting measure A(B) = |B| / | 4| for B an internal subset of 4. Suppose f ¢ *&(e),
and

(i) |4] e* IN— IN.
My
| 4]
where L(A) is the Loeb measure generated by X [15], and

(i) ~ 0 and, for each i, LA)(fae 4: 0 < °(f(a))i}) >0,

o, 1
(iii) 0< < (TZTMEA ela)) < <.

{{faed: p,e B}

on *P
A}

(iv) the induced measure »(B) =

is standardly distributed {see section 8 of Anderson [4]).

Then there exists an internal income transfer A -+ * IR with %t(a) <0 and
ae

(?,p) € *9¢{e,t) such that ?(a) = fla) for L(A)-almost all a € 4.

If, instead of (ii), we substitute the stronger assumption

(i) f is S-integrable (ie. :i : ~0 s ﬁa%e(a) ~ 0),

then we may choose ¢ and ? such that

4. Random Sequences of Economies 15




mamt(a) ~ 0 and m;i [fla)—f@| 1, =~ 0.

Proof: Let p(B) = L(»)(st—'(B)) for Borel B c P. By Anderson [4] (Proposition
8.4(i1)), p is a Radon Probability measure. In particular, g, is near-standard for
p-almost all a.

Given pe A® and &, 8¢ IR, define

Bs=1ipeP |lxl1.s1/e ¢(x0)<8 > I p{x, D(p, (§,)) < e}

Fix ee R, peA® xe RY and pe P. If ¢(p,x,) =0, then

YPX = p-y2p-X. (*)

Since p> >0, x € D(p, (,x)) if x=0. I x # 0, ypx, and p-y = p-x, then we can find
' arbitrarily close to y with p- ¥ < p-x. Since g is continuous, we can choose such
a y' satisfying y'px, contradicting (*). Hence, ¢(p,x, %) =0 = x € D(p, (p,x)). Now,
let x vary, subject to the constraint | [x] | < 1/e. We claim that there exists & such
that g € Bys. If not, then we may find a sequence x, with ¢(p,x,, )~ 0 but
p(xn, D(p, (,3))) > ¢ for every y. By taking a convergent subsequence, we may assume
without loss of generality that x, - x for some x. ¢(p,x, ) = 0, and so x € D(p, (p,x)).
Letting y = x, we arrive at a contradiction. Thus, for fixed pe A® and e ¢ R,

s505pes =L

Since u is countably additive, given. ee IR, there exists §e¢ IR,, such that
#(Bpes) > 1~ e. Since » is standardly distributed, »(*Bp.g) = * (4(Bpes)) =#(Bpes), 50

p(*Bpes) >1 —2e.

Suppose f € *#(e). Transferring Theorem 3.1, we see that there exists pe *A such

that —L— S (p.fra) <My/14| = 0. Therefore ¢(p.f.a) = 0, L(A)-almost surely.

IAIaeA

We show °p>>0. If not, we can assume without loss of generality that °pl>0,
°p?=0. L\ ({a: ¢(p,f,a) = 0, p, near-standard, °f(e) < < }) = 1. By assumption
(ii), we can find a such that ¢{p,f,a) = 0, @, is near-standard, °fla) < <, and
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G@h>0. Lt y=f+ (228l 0 e RE,
oy = °f(£1) + (O, 1, 0, eesy O), SO °y o@a Of(a). Hence, y@af(a)' But p-y

=p -J(a) =2¢(p, f, @) —2p> +p>» <p-fla) —4(p,f,a), a contradiction. Thus, °p > > 0.

Thus, given &€ R, , we may find 8 ¢ IR, such that »(*Bep,s) > 1—2¢. ¢(°p,f,0)
<o(p,f, ) +2] 1p=pl 11l | fla)] |w/min p* = 0 L(A) —almost surely. Hence,
Aiaed: o(°p,fia) <8Y) = 1 for be¢ IR_IH,‘ Hence there is some & =~ 0 such that
A{a e A: ¢(°p,f, a) <8} = 71. Forall e R, P(*BDPEE) > 1 — 2. Hence, there is
some £ =~ 0 such that ”(B"pzé) >1 -2 = 1,

For L(A) -—almos;t all a e A, the following conditions hold: (i) ¢(°p, f,a) <8, (i)
Pg € BOPES, and (i) ||fle)] lo<1/E For such g’s, there exists y such that
p(f(a), D(p, (@4,))) <& = 0. Foralla € 4, choose g(a) to minimize | { gla)} —fla) | | »
subject to gla) € *D(°p, (g,,)) for some y; if *D(°p, (p,,p)) is empty for all y, we
set g{a) = 0. Then define h(a) =g(a) if | [gla) - fla)| | . <1, and A{a) =0 otherwise.
h is internal, and h(a) = fle) L(A)—almost surely.

If we defined ? =hand t(e) = °p- (}: (a) — e(a)), we would satisfy all the conclusions
of the theorem except possibly aa?(a) < ﬂeEAe(cz) and E;ir(a) <0. We shall show how
to modify % in order to obtain these last properties. Note that k(a)' < f(a)'+ 1 for
each g and i. Further, since A(¢) = f(a) L{(A\)-almost surely, there exists n = 0 such

3

that

1 i 1 i _ i i
T a%h(“) < g{f(a) t= T Me(a) +7

for each i. By assumption (ii), there is some B e IR, such that
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liaed: f@) > B} >28.

1
[4]

Since h(a) = f(e) L{A)-almost surely,

Ijﬂ o€ A: (@) > B8] >B.

|
I

R

Il[ % Define
P (f (@) - e(@))
for all a. For each i, Ej(a)" saih(a)i -B%IAI =a§h(a)f—n|A[ P> Af(a)

= E:?.Ae(a)i. a!(a) =°p. EEA(}:({J) —e(a)) <0. Then f(a) € *D(°p,a,t) for all a, so

Hence, we can find Alc 4 with h(a)i>B for ce A* and 0 =

"hn

?(a) —Oforae AlU.. UAk, and ?(a) = h(z) otherwise. Define t{a) =

(F,°p) € *9#(e, ).

Now suppose assumption (iii') holds. | I?(a) —fla) | }« €1, unless ?(a) = (). Since

f(a) is S-integrable, so is ? By Anderson [1] (Theorem 9), —— IA e 2 | t Aa) — ?(a) | | o
= [ °11f@-F@] . dL) =0, since °| [fla) = 7 (@) |w =0 L(\)—almost
everywhere. % d@) =% (@) - F@) s r Z /@ =T @] 1w = 0

This completes the proof.

A type sequence of economles is a sequence of economies e,:4, - T, where 7 is a
finite subset of P x IR_,, The elements of ' are called types; two individuals a, b
¢A, with g,(a) = &,(b) are said to be of the same type, in that they have identical
characteristics. Note however that allocations (including Pareto optimal allocations)
may give different consumption vectors in IR‘]fr to @ and b. Let My be the largest
| | . | |o-norm of the endowments in 7.
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Theorem 4.4: Let ¢,:4, —~ T be a type sequence of exchange economies and £, € &(¢&p)
satisfying (i) |4, ] = o, (i) {£,} € B, (i) inf | ;1| / | 4,] >0 for each t € T, and
n

, E): e> > 0. Then for sufficiently large n, there exist income transfers #, with > t,(a)
9.2 eT acAp

<0 and (F,,p,) € P#(e,,t,) such that, for all 8> 0,

1

7 ey [1£,@ =7 ,@]11.>8 =0

Furthermore, if the sequence {f,} ¢ %, then we may choose ¢, and ?n such that

_1

S @ >0 and —— S| (1@ -, @] |, 0.

aed, l An | acd,

Proof of Theorem 4.4. Consider the nonstandard extension of the sequences A,,f,,
etc. and choose ne* IN— IN. We shall apply Theorem 4.3 to the economy e,.
Assumptions (i) - (iii) of Theorem 4.3 follow from the corresponding assumptions in
Theorem 4.4. Assumption (iv) follows from the fact that the sequence is a type
sequence {Anderson [4], Example 8.2). Hence, there is an internal income transfer
thand (f,,pn) € *P# (e, t,) such that f,(a) = fy(a) for L(A) —almost all a € 4,. Hence,

1 [{aed,: | l?n(a)—f,,(a)i lw> 8% = 0. Hence, 37 ¢ IN such that, for n>n,

| A
we may find I, and (FnsBn) € P(en, 1y) such that
7 e et 11 7@ = @1 1> 8] = 0.
n

If the sequence f, is uniformly integrable, then for infinite n, f, is S-integrable

(Anderson  [4], Theorem 6.5). By Theorem 4.3, Ff:—| EA t,{ey =~ 0 and
nl 9€4n
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1 S ~ 1
a) — o = 0. It follows that, for ne IN, ——— 2 1,(a) = 0

% 1 fm(a) —?,, (e)| | o = 0. This completes the proof.

and
IAnI a

Proof of Theorem 4.1: Let ne* IN— IN. By Theorem 8.7(i) of Anderson [4], there
exists an internal ©”, < *Q such that *u M(Q") >1 —2ne=V"/4 and v2 is standardly

distributed for all w € @, Letting @, = 0 0, we find Q" with *u M@y ~ 1

such that »7, is standardly distributed for all w e Q" and all m > n.

Suppose « € 2,. We shall apply Theorem 4.3 to the economy ej,, Where m 2> n.
Assumption (i) holds trivially, since |A,,| =m. Assumption (iii) follows from the
assumption on the endowments e,. Assumption (iv), that vy, is standardly distributed,
follows from the definition of {,,. :

Let

QB‘I’STVT ={w:m2nf, e P ) {,} e '%}’WI

= 30,3 ,,.p,) € W(ey,ty,) Aa: | [ fla) = f(a)] | >8] <B}
Fix o,8,v,6 ¢ IR, Suppose 7 = 0, and ne * IN— IN. By Theorem 4.3,
MR 2 1 M@, >1 -

Since this statement holds for all ne * IN— IN and all # = 0, it also holds for some
ne IN and some 7 ¢ IR, , Thus, by the Transfer Principle,

s Qg 50 > 1 - 2
In other words, letting

Upys = nL,JnRBYa’fI”’

ﬂ(gﬁyﬁ) = 1.
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Let 0= Bﬂaﬁg,,g. p.w () = 1, since the intersection can be taken over a countable
' Y

number of #'s, v's and 8's. Suppose w € &, ifin} € B, fin € P(ey). Fix B,8e Ry,
Since {f,,} € &,

it eUNYB,

50
Um} € Qgﬁﬁn

for some € Ry, we8 3 weQpss Thus, w e Qpgayn for some 7 e IR, and some

e IN. {fin} e UBy,, and so {f,,} € B; for some 7 e IN.
Since w € QBW?-V_!’ fm € g(am), and Um} € '%Wﬁ’

30,37 s By) € e 1) A | 1fl@) =T (@) ].>6) <B
for m > 7. Since f§ is arbitrary,

1
|4,1

lfaed: | |f@—f@!|. >80,

as required.

Now suppose in addition that {f,} e . Since | | Fn(a) —fu(@) | |w <1 OF fr(a) =0,
£ ,(a) is uniformly integrable. Since | |f;(a) — fr(a)| | converges to 0 in measure
and is uniformly integrable, it converges to 0 in mean, i.e.

1

~7 2 Hh@-F@ll.~o.

n I aed,

4. Random Segquences of Economies 21




Then

nt aed,
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