UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Examining the Psychological Significance of the Jumps in the Decision Process through Test-Retest Reliability Analysis

Permalink

https://escholarship.org/uc/item/8142t653

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Ebrahimi Mehr, Mehdi Amani Rad, Jamal

Publication Date

2024

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Examining the Psychological Significance of the Jumps in the Decision Process through Test-Retest Reliability Analysis

Mehdi Ebrahimi Mehr

Shahid Beheshti University, Tehran, Tehran, Iran, Islamic Republic of

Jamal Amani Rad

Shahid Beheshti University, Tehran, Iran, Islamic Republic of

Abstract

In decision-making, the Levy flights model (LFM), an extension of the diffusion decision model, adopts a heavy-tailed distribution with the pivotal 'alpha' parameter controlling the shape of the tail. This study critically examines the theoretical foundations of alpha, emphasizing that its test-retest reliability is essential to classify it as a cognitive style measure. Our analysis confirms the alpha parameter's test-retest reliability across various occasions and tasks, supporting its role as a trait-like characteristic. The study also explores LFM parameter interrelations, despite low correlation among the other parameters (so representing distinct aspects of data), there is a pattern of moderate correlation between alpha and non-decision time. Investigating the practice effect, our analyses indicate a consistent decrease in non-decision time, threshold, and often alpha across sessions, alongside the drift-rate increase. We also employ Bayesflow for parameter estimation, evaluating its precision with different trial counts. These findings provide valuable guidelines for future LFM research.

6370